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Abstract
We study nonzero-sum stochastic games for continuous time Markov decision
processes on a denumerable state spacewith risk-sensitive ergodic cost criterion. Tran-
sition rates and cost rates are allowed to be unbounded.Under aLyapunov type stability
assumption, we show that the corresponding system of coupled HJB equations admits
a solution which leads to the existence of a Nash equilibrium in stationary strategies.
We establish this using an approach involving principal eigenvalues associated with
the HJB equations. Furthermore, exploiting appropriate stochastic representation of
principal eigenfunctions, we completely characterize Nash equilibria in the space of
stationary Markov strategies.

Keywords Nonzero-sum game · Risk-sensitive ergodic cost criterion · Stationary
strategies · Coupled HJB equations · Fan’s fixed point theorem · Nash equilibrium

1 Introduction

We consider a nonzero-sum stochastic game on the infinite time horizon for contin-
uous time Markov decision processes (CTMDPs) on a denumerable state space. The

B Chandan Pal
cpal@iitg.ac.in

Mrinal K. Ghosh
mkg@iisc.ac.in

Subrata Golui
golui@iitg.ac.in

Somnath Pradhan
sp165@queensu.ca

1 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

2 Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam, India

3 Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-022-09878-9&domain=pdf
http://orcid.org/0000-0002-4684-0481


6 Page 2 of 31 Applied Mathematics & Optimization (2022) 86 :6

performance evaluation criterion is exponential of integral cost which addresses the
decision makers (i.e., players) attitude towards risk. In other words we address the
problem of nonzero-sum risk sensitive stochastic games involving continuous time
Markov decision processes. In the literature of stochastic games involving continu-
ous/discrete time Markov decision processes, one usually studies the integral of the
cost [11, 16–18, 37] which is the so called risk-neutral situation. In [11] the author
has studied N -person nonzero-sum stochastic games for discrete time Markov chain
and in [16–18, 37] the authors have studied zero-sum/nonzero-sum game problems
for continuous time Markov chain. In the exponential of integral cost, the evaluation
criterion is multiplicative as opposed to the additive nature of evaluation criterion in
the integral of cost case. This difference makes the risk sensitive case significantly dif-
ferent from its risk neutral counterpart. The study of risk sensitive criterion was first
introduced in [26,p. 125] also see [38,Part-II] and the references therein. This criterion
is studied extensively in the context of MDP both in discrete and continuous times;
see, for instance [7–9, 12, 21, 24, 33, 39], and the references therein. The correspond-
ing results for stochastic (dynamic) games are limited. Notable exceptions are [4, 5,
14]. In discrete time and discrete state space the risk-sensitive zero-sum stochastic
games with bounded cost and transition rates have been studied by Basu and Ghosh
[4] and nonzero-sum games in [5]. For CTMDPs, zero-sum stochastic games with
risk-sensitive costs for bounded cost and bounded transition rates have been studied in
[14]. One can see [15, 36], and the references therein for finite horizon risk-sensitive
stochastic games for CTMDPs, where [15] deals with zero-sum game and [36] deals
with nonzero-sumgame. Recently risk sensitive continuous timeMarkov decision pro-
cesses for ergodic cost criterion have been studied in [6, 13, 20, 29, 30]. In the above
five papers the authors have studied risk-sensitive stochastic optimal control problem,
where controller is trying to control the state dynamics by choosing appropriate con-
trols. When there is more than one controller the stochastic control problems become
stochastic game problems. In this paper we have extended the results of the above
five papers from one controller case to multi-controller case where the controllers
are non-cooperative. More specifically, we study ergodic nonzero sum risk-sensitive
stochastic (non-cooperative) games. Using principal eigenvalue approach, under a
Lyapunov type stability assumption, we have shown that the corresponding system of
coupled HJB equations admits a solution which in turn leads to the existence of Nash
equilibrium in stationary strategies. Also, exploiting the stochastic representation of
principal eigenfunction we completely characterize all possible Nash equilibria in the
space of stationary Markov strategies.

The main motivation for studying this kind of games arises from their applications
to many interesting problems, such as controlled birth-and-death systems, telecom-
munication and queueing systems in which the transition and cost rates may be both
unbounded.

Our main contribution in this paper is the following. We establish the existence and
characterization of Nash equilibria under a blanket Lyapunov type stability assump-
tion. To be more specific, we study ergodic nonzero sum risk-sensitive stochastic
games for CTMDPs having the following features: (a) the transition and the cost rates
may be unbounded (b) state space is countable (c) at any state of the system the space
of admissible actions is compact (d) the strategies are (state) feedback. To our knowl-
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edge, these results are new in the literature of ergodic non-zero sum risk-sensitive
games for CTMDPs.

The rest of this paper is organized as follows: Sect. 2 deals with the problem
description and preliminaries. The ergodic cost criterion is analyzed in Sect. 3. Under
a Lyapunov type stability assumption(s), we first establish the existence of a solution
to the corresponding coupled Hamilton-Jacobi-Bellman (HJB) equations. This in turn
leads to the existence of a Nash equilibrium in stationary strategies (see Theorem 3.2).
In Sect. 4, we present an illustrative example.

2 The GameModel

For the sake of notational simplicity we treat two player game. The N -player game for
N ≥ 3, is analogous. The continuous-time two-person nonzero-sum stochastic game
model which consists of the following elements

{S,U1,U2, (U1(i) ⊂ U1,U2(i) ⊂ U2, i ∈ S), π̄i j (u1, u2), c̄1(i, u1, u2), c̄2(i, u1, u2)},
(2.1)

where each component is described below:

• S, called the state space, is assumed to be the set of all positive integers endowed
with the discrete topology, i.e. S =: {1, 2, · · · }.

• U1 and U2 are the action sets for players 1 and 2, respectively. The action spaces
U1 and U2 are assumed to be Borel spaces with the Borel σ -algebras B(U1) and
B(U2), respectively.

• For each i ∈ S, U1(i) ∈ B(U1) and U2(i) ∈ B(U2) denote the sets of admissible
actions for players 1 and 2 in state i , respectively. Let K := {(i, u1, u2)|i ∈ S, u1 ∈
U1(i), u2 ∈ U2(i)}, which is a Borel subset of S ×U1 ×U2.
Throughout this paper, we assume that
(A1)(a)For each i ∈ S, the admissible action spacesUk(i), k = 1, 2, are nonempty
and compact subsets of Uk .

• The transition rates π̄i j (u1, u2), (u1, u2) ∈ U1(i) × U2(i), i, j ∈ S, satisfy the
condition π̄i j (u1, u2) ≥ 0 for all i �= j, (u1, u2) ∈ U1(i) × U2(i). Also, we
assume that:
(A1)(b) The transition rates π̄i j (u1, u2) are conservative, i.e.,

∑

j∈S
π̄i j (u1, u2) = 0 for i ∈ S and (u1, u2) ∈ U1(i) ×U2(i)

and satisfy the following stability condition

π̄i := sup
(u1,u2)∈U1(i)×U2(i)

[−π̄i i (u1, u2)] < ∞ .

• Finally, the measurable function c̄k : K → R+ denotes the cost rate function for
player k, k = 1, 2.

123



6 Page 4 of 31 Applied Mathematics & Optimization (2022) 86 :6

The game is played as follows. The players observe continuously the current state of
the system. When the system is in state i ∈ S at time t ≥ 0, the players indepen-
dently choose actions u1(t) ∈ U1(i) and u2(t) ∈ U2(i) according to some strategies,
respectively. As a consequence of this, the following happens:

• player 1 (resp. 2) pays an immediate cost at rate c̄1(i, u1(t), u2(t)) (resp.
c̄2(i, u1(t), u2(t)));

• the system stays in state i for a random time, with rate of leaving i given by
−π̄i i (u1(t), u2(t)), and then jumps to a new state j �= i with the probability

determined by
π̄i j (u1(t), u2(t))

−π̄i i (u1(t), u2(t))
(see Proposition B. 8 in [19,p. 205] for details).

The whole process then repeats from the new state j . Cost accumulates throughout
the course of the game. The planning horizon is infinite, and each player wants to
minimize his infinite-horizon risk-sensitive cost with respect to some performance
criterion ρ

ξ1,ξ2
k , k = 1, 2, which in our present case is defined by (2.3), below. To

formalize what is described above, below we describe the construction of continuous
timeMarkov decision processes (CTMDPs) under admissible feedback strategies. We
consider a continuous time Markov decision processes (CTMDPs) {Y (t)}t≥0 with
state space S and controlled rate matrix �u1,u2 = (π̄i j (u1, u2)). To construct the
underlying CTMDPs Y (t) (as in [22, 27, 35]) we introduce some notations: let S� :=
S ∪ {�} (for some isolated point � /∈ S), �0 := (S × (0,∞))∞, �m := (S ×
(0,∞))m × S × ({∞} × {�})∞ for m ≥ 1 and � := ∪∞

m=0�m = (S × R+)∞ ∪
{(i ′0, θ1, i

′
1, · · · , θm, i

′
m,∞,�,∞,�, · · · )| m ≥ 0, i

′
l ∈ S, θl ∈ R+ ∀ 0 ≤ l ≤ m},

where R+ = (0,∞).
LetF be the Borel σ -algebra on �. Then we obtain the measurable space (�,F ).

For some m ≥ 1, and sample ω := (i
′
0, θ1, i

′
1, · · · , θm, i

′
m, · · · ) ∈ �, let ĥm(ω) :=

(i
′
0, θ1, i

′
1, · · · , θm, i

′
m) denote the m-component internal history, and define

T0(ω) := 0, Tm(ω) := Tm−1(ω) + θm, T∞(ω) := lim
m→∞ Tm(ω).

Using {Tm}, we define the state process {Y (t)}t≥0 as

Y (t)(w) :=
∑

m≥0

I{Tm≤t<Tm+1}i
′
m + I{t≥T∞}�, for t ≥ 0 (with T0 := 0). (2.2)

Here, IE denotes the indicator function of a set E , and we use the convention that
0+ z =: z and 0z =: 0 for all z ∈ S�. Obviously, Y (t) is right-continuous on [0,∞).
From (2.2), we see that Tm(ω) (m ≥ 1) denotes the m-th jump moment of {Y (t)}t≥0

and i
′
m−1 is the state of the process on [Tm−1(ω), Tm(ω)), θm(ω) = Tm(ω)−Tm−1(ω)

plays the role of sojourn time at state i
′
m−1, and the sample path {Y (t)(ω)}t≥0 has

at most denumerable states i
′
m(m = 0, 1, · · · ). The process after T∞ is regarded

to be absorbed in the state �. Thus, let π̄� j (u�
1 , u�

2 ) := 0, for all j ∈ S, where
u�
1 /∈ U1, u�

2 /∈ U2 are isolated points; U�
1 := U1 ∪ {u�

1 }, U�
2 := U2 ∪ {u�

2 },
U1(�) := {u�

1 }, U2(�) := {u�
2 }. Also, assume that c̄k(�, u1, u2) := 0 (c̄k is the

running cost function for kth player) for all (u1, u2) ∈ U�
1 × U�

2 . Moreover, let

123



Applied Mathematics & Optimization (2022) 86 :6 Page 5 of 31 6

Ft := σ({Tm ≤ s,Y (Tm) ∈ S} : 0 ≤ s ≤ t,m ≥ 0) for all t ≥ 0, Fs− =: ∨
t<s Ft ,

and F̃ := σ(A× {0}, B × (s,∞) : A ∈ F0, B ∈ Fs−) which denotes the σ -algebra
of predictable sets on � × [0,∞) related to {Ft }t≥0.
To complete the specification of a risk-sensitive stochastic game problem, we need,
of course, to introduce an optimality criterion. This requires to define the class of
strategies as below.

Definition 2.1 An admissible (feedback) strategy for player 1, denoted by ξ1 =
{ξ1(t)}t≥0, is a transition probability ξ1(du1|ω, t) from (� × [0,∞), F̃ ) onto
(U�

1 ,B(U�
1 )), such that ξ1(U1(Y (t−)(ω))|ω, t) = 1. An admissible strategy ξ1, is

usually determined by a sequence {ξm1 ,m ≥ 0} of stochastic kernels on U1 such that

ξ1(t)(ω) =ξ1(du1|ω, t)

=I{t=0}(t)ξ01 (du1|i ′
0, 0)

+
∑

m≥0

I{Tm<t≤Tm+1}ξm1 (du1|i ′
0, θ1, i

′
1, . . . , θm, i

′
m, t − Tm)

+ I{t≥T∞}δu�
1
(du1),

where ξ01 (du1|i ′
0, 0) is a stochastic kernel onU1 given Swhich satisfies ξ01 (U1(i

′
0)|i

′
0, 0)= 1, ξm1 (m ≥ 1) are stochastic kernels on U1 given (S × (0,∞))m+1 which satisfy

ξm1 (U1(i
′
m)|i ′

0, θ1, i
′
1, · · · , θm, i

′
m, t − Tm) = 1, and δu�

1
(du1) denotes the Dirac mea-

sure at the point u�
1 . The set of all admissible strategies for player 1 is denoted by

U Ad
1 . For more details see [23,Definition 2.1, Remark 2.2], [36, 39].
An admissible strategy ξ1 ∈ U Ad

1 , is called a Markov strategy for player 1 if
ξ1(t)(ω) = ξ1(t,Y (t−)(ω)), i.e., ξ1(du1|ω, t) = ξ1(du1|Y (t−)(ω), t) for every ω ∈
� and t ≥ 0, where Y (t−)(ω) := lims↑t Y (s)(ω). We denote by UM

1 the family of all
Markov strategies for player 1. If theMarkov strategy ξ1 for player 1 does not have any
explicit time dependency then it is called a stationaryMarkov strategy. The set of such
strategies for player 1 is denoted by U SM

1 . The sets of all admissible strategies U Ad
2 ,

all Markov strategies UM
2 and all stationary strategies U SM

2 for player 2 are defined
similarly.

Some comments are in order.

Remark 2.1 In the definition of strategies we do not include the entire history of the
game, i.e., past and present states, past sojourn times and past actions taken by the
players. If players use general strategies (i.e., history dependent non-anticipative strate-
gies) there may not be a probability measure over plays; see Proposition 1 in [32]. See
also [31]. Thus it is imperative for us to confine our attention to specific classes of
strategies. In this paper we restrict our attention to feedback strategies only, i.e., at any
point of time each player has access to past and present states and past sojourn times.
Though the past and present states and past sojourn times implicitly contain the past
actions of the players, explicit inclusions thereof in the strategies run into unassailable
technical issues as explained clearly in [32].
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To avoid possible explosion of the state process {Y (t)}t≥0, we make the following
Lyapunov stability assumption imposed on the transition rates, which had been widely
used in CTMDPs; see, for instance, [21–24] and the references therein.

Assumption 2.1 There exists a non-constant function W̃ : S → [1,∞) such that

(i)
∑

j∈S W̃ ( j)π̄i j (u1, u2) ≤ C1W̃ (i) + C2 for all (u1, u2) ∈ U1(i) × U2(i) and
i ∈ S with some constants C1 �= 0, C2 ≥ 0;

(ii) π̄i ≤ C3W̃ (i) for all i ∈ S with some positive constant C3.

For the rest of this article Assumption 2.1 is in force. Note that if supi∈S π̄i < ∞ then
Assumption 2.1 holds. In this case we can choose W̃ to be a suitable constant. Also
note that under Assumption 2.1, for any initial state i ∈ S and any pair of strategies
(ξ1, ξ2) ∈ U Ad

1 ×U Ad
2 , Theorem4.27 in [28] yields the existence of a unique probability

measure denoted by Pξ1,ξ2
i on (�,F ). Let Eξ1,ξ2

i be the expectation operator with

respect to Pξ1,ξ2
i . Also, from [19,pp. 13–15], we know that {Y (t)}t≥0 is a Markov

process under any (ξ1, ξ2) ∈ UM
1 × UM

2 (in fact, strong Markov).
For any compact metric space A, letP(A) denote the space of probability measures

on A with the topology of weak convergence. Let Vk = P(Uk) and Vk(i) = P(Uk(i))
for i ∈ S and k = 1, 2. Since Uk(i) is a compact set for each i ∈ S, we have Vk(i)
is a compact metric space for k = 1, 2. For each i, j ∈ S, k = 1, 2, v1 ∈ V1(i)
and v2 ∈ V2(i), the associated transition and cost rates are defined, respectively, as
follows:

πi j (v1, v2) :=
∫

U1(i)

∫

U2(i)
π̄i j (u1, u2)v1(du1)v2(du2),

ck(i, v1, v2) :=
∫

U1(i)

∫

U2(i)
c̄k(i, u1, u2)v1(du1)v2(du2).

Note that for k = 1, 2, ξk ∈ U SM
k can be identified with a map ξk : S → Vk such that

for each j ∈ S, ξk( j) ∈ Vk( j) for each j ∈ S. Thus, we have U SM
1 = �i∈SP(U1(i))

and U SM
2 = �i∈SP(U2(i)) i.e., the sets U SM

1 and U SM
2 are endowed with the product

topology. Therefore by Tychonoff theorem, the setsU SM
1 and U SM

2 are compact metric
spaces.
For j = 1, 2, let M(Uj (i)), i = 1, 2, . . . , be the space of finite signed mea-
sures on Uj (i) endowed with the topology of weak convergence. Then M(Uj (i))
is a locally convex topological vector space which is metrizable [34]. Thus for
j = 1, 2, �i∈SM(Uj (i)) is a locally convex topological vector space which is
metrizable as well. Moreover for j = 1, 2, U SM

j is a compact, convex subset of
�i∈SM(Uj (i)). For more details along these lines we refer to [11].

We list the commonly used notations below.

• Given any real-valued functionV ≥ 1 on S, we define a Banach space (L∞
V , ‖·‖∞

V )

of V-weighted functions by

L∞
V =

{
u : S → R | ‖u‖∞

V := sup
i∈S

|u(i)|
V(i)

< ∞
}
.
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• L1,∞
V denotes the subset of L∞

V consists of function u such that ‖u‖∞
V ≤ 1.

For a pair of admissible strategies (ξ1, ξ2) ∈ U Ad
1 ×U Ad

2 , the risk-sensitive ergodic
cost for player k, k = 1, 2, is given by

ρ
ξ1,ξ2
k (i) := lim sup

T→∞
1

T
ln Eξ1,ξ2

i

[
e
∫ T
0 ck (Y (t),ξ1(t),ξ2(t))dt

]
, (2.3)

where Y (t) is the CTMDP corresponding to (ξ1, ξ2) ∈ U Ad
1 ×U Ad

2 and Eξ1,ξ2
i denotes

the expectation with respect to the law of the process Y (t) with initial condition
Y (0) = i .

Definition 2.2 A function f : S → R is said to be norm-like if for every k ∈ R, the
set {i : f (i) ≤ k} is either empty or finite.

Definition 2.3 A time-homogeneous Markov process Y with rate matrix Q = [π̄i j ]
is irreducible if for any i, j ∈ S, i �= j , there exist distinct states i1, i2 · · · , ik ∈ S
satisfying π̄i i1 · · · π̄ik j > 0 (see, [19,p. 107]).

Since we are allowing our transition and cost rates to be unbounded, to guarantee the
finiteness of ρ

ξ1,ξ2
k for k = 1, 2, we make the following Lyapunov stability Assump-

tion.

Assumption 2.2 We assume that the CTMDP {Y (t)}t≥0 is irreducible under every pair
of stationary Markov strategies (ξ1, ξ2) ∈ U SM

1 × U SM
2 . Furthermore, suppose there

exist a constantC4 > 0 and a functionW : S → [1,∞) such that one of the following
hold.

(a) When the running cost is bounded: For some positive constant γ >

max{‖c̄1‖∞, ‖c̄2‖∞} and a finite setK it holds that

sup
(u1,u2)∈U1(i)×U2(i)

∑

j∈S
W ( j)π̄i j (u1, u2) ≤ C4 IK (i) − γW (i) ∀i ∈ S,

where ‖c̄k‖∞ := sup
(i,u1,u2)∈K

c̄k(i, u1, u2) for k = 1, 2.

(b) When the running cost is unbounded: For some norm-like function  : S → R+
and a finite setK it holds that

sup
(u1,u2)∈U1(i)×U2(i)

∑

j∈S
W ( j)π̄i j (u1, u2) ≤ C4 IK (i) − (i)W (i) ∀i ∈ S.

Also, the functions (·)− max
(u1,u2)∈U1(·)×U2(·)

c̄k(·, u1, u2), k = 1, 2, are norm-like.

This type of Foster-Lyapunov condition on the dynamics is quite common in the
literature to study the continuous-time risk-sensitive ergodic control problems, for
example, see [2, 3] for controlled diffusion case and [6, 20] for Markov chain case.
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Definition 2.4 A pair of strategies (ξ∗
1 , ξ∗

2 ) ∈ U Ad
1 ×U Ad

2 is called a Nash equilibrium
if

ρ
ξ∗
1 ,ξ∗

2
1 (i) ≤ ρ

ξ1,ξ
∗
2

1 (i) for all ξ1 ∈ U Ad
1 and i ∈ S

and

ρ
ξ∗
1 ,ξ∗

2
2 (i) ≤ ρ

ξ∗
1 ,ξ2

2 (i) for all ξ2 ∈ U Ad
2 and i ∈ S.

We wish to establish the existence of a Nash equilibrium in stationary strategies. To
ensure the existence of a Nash equilibrium, we assume the following:

Assumption 2.3 (i) For any fixed i, j ∈ S, k=1,2 , π̄i j (u1, u2) and c̄k(i, u1, u2) are
continuous in (u1, u2) ∈ U1(i) ×U2(i) .

(ii)
∑

j∈S
W ( j)π̄i j (u1, u2) is continuous in (u1, u2) ∈ U1(i) × U2(i) for any given

i ∈ S, where W is as Assumption 2.2.
(iii) There exists i0 ∈ S such that π̄i0 j (u1, u2) > 0 for all j �= i0 and for all (u1, u2) ∈

U1( j) ×U2( j).

It is also possible to consider other type of condition instead Assumption 2.3(iii). We
refer to Remark 3.1 for further discussion.

We nowproceed to establish the existence of aNash equilibrium in stationary strate-
gies. To this end we first outline a standard procedure for establishing the existence
of a Nash equilibrium. Suppose player 2 announces that he/she is going to employ a
strategy ξ2 ∈ U SM

2 . In such a scenario, player 1 attempts to minimize

ρ
ξ1,ξ2
1 (i) = lim sup

T→∞
1

T
ln Eξ1,ξ2

i

[
e
∫ T
0 c1(Y (t),ξ1(t),ξ2(Y (t−)))dt

]
,

over ξ1 ∈ U Ad
1 . Thus for player 1 it is a continuous time Markov decision problem

(CTMDP) with risk sensitive ergodic cost. This problem has been studied in [6, 13,
29, 30]. In particular under certain assumptions, it is shown in [6, 29, 30], that the
following Hamilton-Jacobi-Bellman (HJB) equation

⎧
⎪⎨

⎪⎩

ρ1 ψ̂1(i) = inf
v1∈V1(i)

[ ∑

j∈S
πi j (v1, ξ2(i))ψ̂1( j) + c1(i, v1, ξ2(i))ψ̂1(i)

]

ψ̂1(î0) = 1,

has a suitable solution (ρ1, ψ̂1), where ρ1 is a scalar and ψ̂1 : S → R has suitable
growth rate; and î0 is some fixed state in S. Furthermore it is shown in [6, 29, 30] that

ρ1 = inf
ξ1∈U Ad

1

lim sup
T→∞

1

T
ln Eξ1,ξ2

i

[
e
∫ T
0 c1(Y (t),ξ1(t),ξ2(Y (t−)))dt

]
,
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and if ξ∗
1 ∈ U SM

1 is such that for all i ∈ S

inf
v1∈V1(i)

[ ∑

j∈S
πi j (v1, ξ2(i))ψ̂1( j) + c1(i, v1, ξ2(i))ψ̂1(i)

]

=
∑

j∈S
πi j (ξ

∗
1 (i), ξ2(i))ψ̂1( j) + c1(i, ξ

∗
1 (i), ξ2(i))ψ̂1(i),

then ξ∗
1 ∈ U SM

1 is an optimal control for player 1, i.e., for any i ∈ S

ρ1 = lim sup
T→∞

1

T
ln E

ξ∗
1 ,ξ2
i

[
e
∫ T
0 c1(Y (t),ξ∗

1 (Y (t−)),ξ2(Y (t−)))dt
]
.

In [30], the ergodic case is treated via the limit of the corresponding finite horizon risk-
sensitive continuous-time MDP. For the latter, the HJB equation is an infinite system
of coupled ODEs. Then as the length of the horizon tends to ∞, the above equation is
derived using limiting horizon asymptotics. In [29], the existence of ergodic optimal
control is established by using vanishing discount approach. In [6], the ergodic case is
studied directly by an approach involving the principal eigenpair associated with the
above equation. In this paper we follow the approach of [6].
In view of the foregoing it follows that given that player 2 is using the strategy ξ2 ∈
U SM
2 , ξ∗

1 ∈ U SM
1 is an optimal response for player 1. Clearly ξ∗

1 depends on ξ2 and
moreover there may be several optimal responses for player 1 in U SM

1 . Analogous
results holds for player 2 if player 1 announces that he is going to use a strategy
ξ1 ∈ U SM

1 . Hence given a pair of strategies (ξ1, ξ2) ∈ U SM
1 × U SM

2 , we can find a
set of pairs of optimal responses {(ξ∗

1 , ξ∗
2 ) ∈ U SM

1 × U SM
2 } via the appropriate pair

of HJB equations described above. This defines a set-valued map. Clearly any fixed
point of this set-valued map is a Nash equilibrium.

The above discussion leads to the following procedure for finding a pair of Nash
equilibrium strategies. Suppose that there exist a pair of stationary strategies (ξ∗

1 , ξ∗
2 ) ∈

U SM
1 ×U SM

2 , a pair of scalars (ρ∗
1 , ρ

∗
2 ) and a pair of functions (ψ̂

∗
1 , ψ̂∗

2 )with appropriate
growth conditions, satisfying the following coupled HJB equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∗
1 ψ̂∗

1 (i) = inf
v1∈V1(i)

[ ∑

j∈S
πi j (v1, ξ

∗
2 (i))ψ̂∗

1 ( j) + c1(i, v1, ξ
∗
2 (i))ψ̂∗

1 (i)
]

=
∑

j∈S
πi j (ξ

∗
1 (i), ξ∗

2 (i))ψ̂∗
1 ( j) + c1(i, ξ

∗
1 (i), ξ∗

2 (i))ψ̂∗
1 (i)

ψ̂∗
1 (î0) = 1,

ρ∗
2 ψ̂∗

2 (i) = inf
v2∈V2(i)

[ ∑

j∈S
πi j (ξ

∗
1 (i), v2)ψ̂

∗
2 ( j) + c2(i, ξ

∗
1 (i), v2)ψ̂

∗
2 (i)

]

=
∑

j∈S
πi j (ξ

∗
1 (i), ξ∗

2 (i))ψ̂∗
2 ( j) + c2(i, ξ

∗
1 (i), ξ∗

2 (i))ψ̂∗
2 (i)

ψ̂∗
2 (î0) = 1,

123
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where as before î0 ∈ S is a fixed state. Then it can be shown that (ξ∗
1 , ξ∗

2 ) is a pair of
Nash equilibrium and (ρ∗

1 , ρ
∗
2 ) is the pair of correspondingNash values. Thus themain

result of our paper is to establish that the above coupled HJB equations has suitable
solutions.

Remark 2.2 Note that similar stochastic optimal control problems have been studied
in [13, 30] for bounded cost and bounded transition rates. But in our game model
transition and cost rates are allowed to be unbounded. Analogous MDP problems are
treated in [6].

3 Coupled HJB Equations and Existence of Nash Equilibrium

By the definition of weak convergence of probability measures, one can easily get
the following result, which will be crucial for the existence of Nash equilibrium; for
details we refer to [16,Lemma 7.2].

Lemma 3.1 Under Assumptions 2.1, 2.2, and 2.3, the functions

ck(i, v1, v2), k = 1, 2 and
∑

j∈S
πi j (v1, v2)φ( j)

are continuous on V1(i) × V2(i) for each fixed φ ∈ L∞
W and i ∈ S.

For any finite set D ⊂ S, we define

BD = { f : S → R | f is a Borel measurable function and f (i) = 0 ∀ i ∈ Dc}.

Also, B+
D ⊂ BD denotes the cone of all nonnegative functions vanishing outside D.

Let Dn ⊂ S be an increasing sequence of finite sets such that ∪nDn = S such that
i0 ∈ Dn for each n ≥ 1 , where i0 ∈ S is a fixed state as in Assumption 2.3 . Also, we
denote � as the partial ordering in BDn with respect to the closed cone B+

Dn
, i.e., for

f , g ∈ BDn , f � g if and only if f − g ∈ B+
Dn

. Now using Krein-Rutman theorem
we prove the existence of an eigenpair to a Dirichlet problem in Dn for each n ∈ N .
In the next lemma we show the existence of eigenpairs to certain equations in Dn for
each n ∈ N .

Lemma 3.2 Suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. Then for each
n ∈ N, the following hold.

(1) For ξ̂2 ∈ U SM
2 , there exists an eigenpair (ρ1,n, ψ1,n) ∈ R × B+

Dn
, satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ1,nψ1,n(i) = inf
v1∈V1(i)[ ∑

j∈S
ψ1,n( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1,n(i)

]
for i ∈ Dn,

ψ1,n(i0) = 1.

(3.1)

123
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Moreover, we have

0 ≤ lim inf
n→∞ ρ1,n ≤ lim sup

n→∞
ρ1,n

≤ inf
ξ1∈U Ad

1

lim sup
T→∞

1

T
ln Eξ1,ξ̂2

i0

[
e
∫ T
0 c1(Y (t),ξ1(t),ξ̂2(Y (t−)))dt

]
,

(3.2)

and {ρ1,n} is a bounded sequence.
(2) Similarly, for ξ̂1 ∈ U SM

1 , there exists an eigenpair (ρ2,n, ψ2,n) ∈ R × B+
Dn

,
satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ2,nψ2,n(i) = inf
v2∈V2(i)[ ∑

j∈S
ψ2,n( j)πi j (ξ̂1(i), v2) + c2(i, ξ̂1(i), v2)ψ2,n(i)

]
for i ∈ Dn,

ψ2,n(i0) = 1.

(3.3)

Moreover, we have

0 ≤ lim inf
n→∞ ρ2,n ≤ lim sup

n→∞
ρ2,n

≤ inf
ξ2∈U Ad

2

lim sup
T→∞

1

T
ln E ξ̂1,ξ2

i0

[
e
∫ T
0 c2(Y (t),ξ̂1(Y (t−)),ξ2(t))dt

]
,

(3.4)

and {ρ2,n} is a bounded sequence.

Proof We prove part (1); part (2) follows by analogous arguments. Fix ξ̂2 ∈ U SM
2 . Let

δ > 0. Set c̃1(i, v1, v2) = c1(i, v1, v2) − kn − δ, where kn = sup{c1(i, v1, v2) | i ∈
Dn, v1 ∈ V1(i), v2 ∈ V2(i)}. From [6,Proposition 3.1], it is easy to see that for each
g ∈ BDn the following equation

−g(i) = inf
v1∈V1(i)

[∑

j∈S
φ1( j)πi j (v1, ξ̂2(i)) + c̃1(i, v1, ξ̂2(i))φ1(i)

]
for i ∈ Dn,

admits a unique solution φ1 ∈ BDn and φ1 is given by

φ1(i) = inf
ξ1∈U Ad

1

Eξ1,ξ̂2
i

[∫ τ(Dn)

0
e
∫ t
0 c̃1(Y (s),ξ1(s),ξ̂2(Y (s−)))dsg(Y (t))dt

]
, i ∈ S,

123
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where τ(Dn) := inf{t > 0 : Y (t) /∈ Dn}. Therefore, the operator T : BDn → BDn

given by

T (g)(i) := φ1(i) = inf
ξ1∈U Ad

1

Eξ1,ξ̂2
i

[∫ τ(Dn)

0
e
∫ t
0 c̃1(Y (s),ξ1(s),ξ̂2(Y (s−)))dsg(Y (t))dt

]
,

i ∈ Dn, g ∈ BDn

with T (g)(i) = 0 for i ∈ Dc
n is well defined. Then by similar arguments as in

[6,Lemma 3.1], the map T is order-preserving, 1-homogeneous, completely con-
tinuous and for some nonzero function g ∈ B+

Dn
, there exists M > 0, such that

MT (g) � g, i.e., it satisfies all conditions of Krein-Rutman theorem. Hence by
a version of nonlinear Krein-Rutman theorem [1,Sect. 3.1], there exist nontrivial
ψ1,n ∈ B+

Dn
and λDn > 0, satisfying Tψ1,n = λDnψ1,n . Let ρ̃1,n = −[λDn ]−1.

Then we have that the pair (ρ̃1,n, ψ1,n) satisfies

inf
v1∈V1(i)

[∑

j∈S
πi j (v1, ξ̂2(i))ψ1,n( j)+c̃1(i, v1, ξ̂2(i))ψ1,n(i)

]
= ρ̃1,nψ1,n(i), ∀i ∈ Dn .

Now, let ρ1,n = ρ̃1,n + kn + δ, then it is easy to see that the pair (ρ1,n, ψ1,n) satisfies
the following equation

ρ1,nψ1,n(i) = inf
v1∈V1(i)[ ∑

j∈S
ψ1,n( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1,n(i)

]
for i ∈ Dn, ψ1,n � 0.

From Assumption 2.3(iii) and using the above equation we have ψ1,n(i0) > 0. Thus
by normalizing ψ1,n we obtain ψ1,n(i0) = 1. Therefore, it follows that the pair
(ρ1,n, ψ1,n) satisfies the required HJB equation (3.1).

Now, following [6,Lemma 3.3] one can show that ρ1,n satisfies (3.2) and {ρ1,n} is
a bounded sequence. ��
Next by taking limit n → ∞ we show that the limiting equations admit eigenpairs in
appropriate spaces. In particular, we have the following theorem.

Theorem 3.1 Suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. Then the fol-
lowing hold.

(1) For ξ̂2 ∈ U SM
2 , there exists a unique minimal eigenpair (ρ1, ψ1) ∈ R+ × L1,∞

W ,
ψ1 > 0, satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ρ1ψ1(i) = inf
v1∈V1(i)

[ ∑

j∈S
ψ1( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1(i)

]
for i ∈ S,

ψ1(i0) = 1.

(3.5)

123
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Moreover, we have

ρ1 = inf
ξ1∈U Ad

1

lim sup
T→∞

1

T
ln Eξ1,ξ̂2

i

[
e
∫ T
0 c1(Y (t),ξ1(t),ξ̂2(Y (t−)))dt

]

(:= ρ
ξ̂2
1 = inf

ξ1∈U Ad
1

ρ
ξ1,ξ̂2
1 ), (3.6)

and there exists a finite set B1 ⊃ K , such that

ψ1(i) = inf
ξ1∈U SM

1

Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1)))

]

(:= ψ
ξ̂2
1 (i)) ∀i ∈ Bc

1, (3.7)

where τ̂ (B1) = τ(Bc
1) = inf{t : Y (t) ∈ B1} =: τ̃1.

(2) Similarly, for ξ̂1 ∈ U SM
1 , there exists a unique minimal eigenpair (ρ2, ψ2) ∈

R+ × L1,∞
W , ψ2 > 0 satisfying

⎧
⎪⎨

⎪⎩

ρ2ψ2(i)= inf
v2∈V2(i)

[ ∑

j∈S
ψ2( j)πi j (ξ̂1(i), v2)+c2(i, ξ̂1(i), v2)ψ2(i)

]
for i ∈ S,

ψ2(i0) = 1.

(3.8)

Moreover, we have

ρ2 = inf
ξ2∈U Ad

2

lim sup
T→∞

1

T
ln E ξ̂1,ξ2

i

[
e
∫ T
0 c2(Y (t),ξ̂1(Y (t−)),ξ2(t))dt

]

(:= ρ
ξ̂1
2 = inf

ξ2∈U Ad
2

ρ
ξ̂1,ξ2
2 ), (3.9)

and there exists a finite set B2 ⊃ K , such that

ψ2(i) = inf
ξ2∈U SM

2

E ξ̂1,ξ2
i

[
e
∫ τ̂ (B 2)

0 (c2(Y (t),ξ̂1(Y (t−)),ξ2(Y (t−)))−ρ2)dtψ2(Y (τ̂ (B2)))

]

(:= ψ
ξ̂1
2 (i)) ∀i ∈ Bc

2, (3.10)

where τ̂ (B2) = τ(Bc
2) = inf{t : Y (t) ∈ B2} =: τ̃2.

Proof Since c1 ≥ 0, using Assumption 2.2, we deduce that there exists a finite setB1
containing K such that

• under Assumption 2.2 (a), since γ > ‖c̄1‖∞, we have

sup
(u1,u2)∈U1(i)×U2(i)

c̄1(i, u1, u2) − ρ1,n < γ ∀ i ∈ Bc
1 and all n large enough .
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• under Assumption 2.2 (b), since the function (·) − max
(u1,u2)∈U1(·)×U2(·)

c̄1(·, u1, u2)
is norm-like, we have

sup
(u1,u2)∈U1(i)×U2(i)

c̄1(i, u1, u2) − ρ1,n < (i) ∀ i ∈ Bc
1 and all n large enough .

Let ξ1 ∈ U SM
1 . Then applying Itô-Dynkin formula, from Assumption 2.2, we prove

the following estimates:

• Under Assumption 2.2(a):

Eξ1,ξ̂2
i

[
eτ̂ (B1)γ W (Y (τ̂ (B1)))

]
≤ W (i) ∀i ∈ Bc

1 . (3.11)

• Under Assumption 2.2(b):

Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (Y (t))dtW (Y (τ̂ (B1)))

]
≤ W (i) ∀i ∈ Bc

1 . (3.12)

It is easy to see that the proof of (3.11) is analogous to that the proof of (3.12) when
we replace with γ . So, we prove only (3.12). Suppose Assumption 2.2 (b) holds. Let
n be large enough so that B1 ⊂ Dn . Applying Dynkin’s formula [19,Appendix C.3],
for i ∈ Bc

1 ∩ Dn and T > 0, we have

Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)∧T∧τ (Dn )

0 (Y (s))dsW (τ̂ (B1) ∧ T ∧ τ(Dn))

]
− W (i)

= Eξ1,ξ̂2
i

[∫ τ̂ (B1)∧T∧τ(Dn)

0
e
∫ t
0 (Y (s))ds[(Y (t))W (Y (t))

+
∑

j∈S
πY (t) j (ξ1(Y (t−)), ξ̂2(Y (t−)))W ( j)]dt

]

≤ Eξ1,ξ̂2
i

[∫ τ̂ (B1)∧T∧τ(Dn)

0
e
∫ t
0 (Y (s))dsC4 IK (Y (t))dt

]
= 0,

where τ(Dn) = inf{t > 0 : Y (t) /∈ Dn} (as defined in Lemma 3.2). Now by Fatou’s
lemma, taking first n → ∞ and then T → ∞, we get (3.12). Now we scale ψ1,n in
such a way that it touches W from below. Define

θ̂n = sup{k > 0 : (W − kψ1,n) > 0 in S}.

Then we see that θ̂n is finite asψ1,n vanishes inDc
n andψ1,n � 0. Also, it is easy to see

that θ̂nψ1,n ≤ W . We claim that if we replace ψ1,n by θ̂nψ1,n , then ψ1,n touches W
insideB1. If not, then for some state î ∈ Bc

1, (W − ψ1,n)(î) = 0 and W − ψ1,n > 0
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inB1 ∪ Dc
n . Then by Dynkin formula, we get (under Assumption 2.2 (b))

ψ1,n(î) ≤ Eξ1,ξ̂2

î

[
e
∫ T∧τ̂ (B 1)

0 (c(Y (s),ξ1(Y (s−)),ξ̂2(Y (s−)))−ρ1,n)dsψ1,n(Y (T ∧ τ̂ (B1)))

I{T∧τ̂ (B1)<τ(Dn)}
]

≤ Eξ1,ξ̂2

î

[
e
∫ T∧τ̂ (B 1)

0 (Y (s))dsψ1,n(Y (T ∧ τ̂ (B1)))I{T∧τ̂ (B1)<τ(Dn)}
]
.

Since ψ1,n ≤ W , in view of (3.12), by the dominated convergence theorem, taking
T → ∞, we get

ψ1,n(î) ≤ Eξ1,ξ̂2

î

[
e
∫ τ̂ (B 1)

0 (Y (s))dsψ1,n(Y (τ̂ (B1)))

]
.

Using this and (3.12), we have

0 = (W − ψ1,n)(î) ≥ Eξ1,ξ̂2

î

[
e
∫ τ̂ (B 1)

0 (Y (s))ds(W − ψ1,n)(Y (τ̂ (B1)))

]
> 0.

Hencewe arrive at a contradiction. Thusψ1,n touchesW insideB1. Similar conclusion
holds under Assumption 2.2 (a). Therefore, ψ1,n ≤ W and at some point î∗ ∈ B1,
ψ1,n(î∗) = W (î∗).

Since ψ1,n ≤ W for all n large enough, by diagonalization argument we deduce
that along a suitable subsequenceψ1,n(i) → ψ1(i) for all i ∈ S, for someψ1 ∈ L1,∞

W .
Also, from Lemma 3.2, we have {ρ1,n} is a bounded sequence. Thus along a further
subsequence we have ρ1,n → ρ1 as n → ∞. Let ξ̃n1 ∈ U SM

1 be a minimizing selector
of (3.1), i.e., we have

ρ1,nψ1,n(i) =
[ ∑

j∈S
ψ1,n( j)πi j (ξ̃

n
1 (i), ξ̂2(i)) + c1(i, ξ̃

n
1 (i), ξ̂2(i))ψ1,n(i)

]
for i ∈ Dn .

(3.13)

Since U SM
1 is compact along further subsequence ξ̃n1 → ξ̃1 in U SM

1 . Therefore, by
generalized Fatou’s lemma [25,Lemma 8.3.7], letting n → ∞, from (3.13) it follows
that

ρ1ψ1(i) ≥ inf
v1∈V1(i)

[ ∑

j∈S
ψ1( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1(i)

]
for i ∈ S .

(3.14)

Also, from (3.1), for any v1 ∈ V1(i), we have

ρ1,nψ1,n(i) ≤
[ ∑

j∈S
ψ1,n( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1,n(i)

]
for i ∈ Dn .
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Since ψ1,n ≤ W , by the dominated convergence theorem, letting n → ∞ we deduce

ρ1ψ1(i) ≤
[∑

j∈S
ψ1( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1(i)

]
. (3.15)

Therefore, combining (3.14) and (3.15), it follows that the pair (ρ1, ψ1) ∈ R+×L1,∞
W ,

ψ1 ≥ 0 satisfies

ρ1ψ1(i) = inf
v1∈V1(i)

[∑

j∈S
ψ1( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ1(i)

]
for i ∈ S.

Since at some point in B1 we have (W − ψ1,n) = 0, for all large n, we have (W −
ψ1)(î∗) = 0 for some î∗ ∈ B1. Since W ≥ 1, it is clear that ψ1 is nontrivial. Now
we claim that ψ1 > 0. If not, we must have ψ1(ĩ) = 0 for some ĩ ∈ S. Then, for any
minimizing selector ξ̃∗

1 ∈ U SM
1 of (3.5), it follows that

ρ1ψ1(ĩ) =
[ ∑

j∈S
ψ1( j)πĩ j (ξ̃

∗
1 (ĩ), ξ̂2(ĩ)) + c(ĩ, ξ̃∗

1 (ĩ), ξ̂2(ĩ))ψ1(ĩ)

]
.

This implies

∑

j �=ĩ

ψ1( j)πĩ j (ξ̃
∗
1 (ĩ), ξ̂2(ĩ)) = 0.

Since the Markov chain Y (t) is irreducible under (ξ̃∗
1 , ξ̂2) ∈ U SM

1 × U SM
2 , from the

above equation, it follows that ψ1 ≡ 0. So, we arrive at a contradiction. This proves
that (ρ1, ψ1) is an eigenpair to (3.5).

By truncating the running cost c1, one can show that ρ1 satisfies (3.6) (see,
[6,Lemma 3.5]) . Next we prove the stochastic representation (3.7).

Applying Itô-Dynkin formula for any minimizing selector ξ∗
1 of (3.5) and any

T > 0, we have

ψ1(i) = E
ξ∗
1 ,ξ̂2
i

[
e
∫ τ̂ (B 1)∧T
0 (c1(Y (t),ξ∗

1 (Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1) ∧ T ))

]
∀i ∈ Bc

1 .

Then applying Fatou’s lemma, by taking T → ∞, we get

ψ1(i) ≥ E
ξ∗
1 ,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ∗
1 (Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1)))

]

≥ inf
ξ1∈U SM

1

Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1 .

(3.16)
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Again, by applying Itô-Dynkin formula, from (3.1) for any ξ1 ∈ U SM
1 , T > 0 and

i ∈ Dn ∩ Bc
1 it follows that

ψ1,n(i) ≤ Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)∧τ(Dn )∧T
0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1,n)dtψ1,n(Y (τ̂ (B1) ∧ τ(Dn) ∧ T ))

]

≤ Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1,n)dtψ1,n(Y (τ̂ (B1)))I{τ̂ (B 1)≤τ(Dn )∧T }
]

+ Eξ1,ξ̂2
i

[
e
∫ T
0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1,n)dtψ1,n(Y (T ))I{T≤τ̂ (B 1)∧τ(Dn)}

]
. (3.17)

Under Assumption 2.2 (a), the estimate (3.11) and the fact that ψ1,n ≤ W (from the
construction of θ̂n , it is clear that if we replace ψ1,n by θ̂nψ1,n , we get this inequality),
we have

Eξ1,ξ̂2
i

[
e
∫ T
0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1,n)dtψ1,n(Y (T ))I{T≤τ̂ (B1)∧τ(Dn)}

]

≤ e(‖c1‖∞−ρ1,n−γ )T Eξ1,ξ̂2
i

[
eT γ W (Y (T ))I{T≤τ̂ (B1)∧τ(Dn)}

]

≤ e(‖c1‖∞−ρ1,n−γ )T W (i) .

Thus, letting T → ∞ from (3.17) we get

ψ1,n(i) ≤ Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ1((Y (t−))),ξ̂2(Y (t−)))−ρ1,n)dtψ1,n(Y (τ̂ (B1)))I{τ̂ (B 1)≤τ(Dn)}
]
.

Again, sinceψ1,n ≤ W , using (3.11) and applying the dominated convergence theorem
it follows that

ψ1(i) ≤ Eξ1,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ1(Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1 .

(3.18)

Since ξ1 ∈ U SM
1 is arbitrary, combining (3.16) and (3.18), we obtain (3.7). Also, it it

clear from the proof that for any minimizing selector ξ∗
1 of (3.5) we have

ψ1(i) = E
ξ∗
1 ,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ∗
1 (Y (t−)),ξ̂2(Y (t−)))−ρ1)dtψ1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1 .

(3.19)

Using (3.12) it is easy to check that the same conclusion holds under Assumption
2.2(b) .

Now exploiting the stochastic representation (3.7), we show that (ρ1, ψ1) ∈ R+ ×
L1,∞
W is theminimal eigenpair. Suppose (ρ̂1, ψ̂1) ∈ R+×L1,∞

W , ψ̂1 > 0 is an eigenpair
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satisfying

⎧
⎪⎨

⎪⎩

ρ̂1ψ̂1(i) = inf
v1∈V1(i)

[ ∑

j∈S
ψ̂1( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ̂1(i)

]
for i ∈ S,

ψ̂1(i0) = 1.

(3.20)

We want to show that ρ1 ≤ ρ̂1. If not suppose that ρ1 > ρ̂1. Then, for any minimizing
selector ξ̂∗

1 of (3.20), applying Itô-Dynkin formula and Fatou’s lemma, we obtain

ψ̂1(i) ≥ E
ξ̂∗
1 ,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ̂∗
1 (Y (t−)),ξ̂2(Y (t−)))−ρ̂1)dt ψ̂1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1 .

(3.21)

On the other hand from (3.7), we have

ψ1(i) ≤ E
ξ̂∗
1 ,ξ̂2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ̂∗
1 (Y (t−)),ξ̂2(Y (t−)))−ρ̂1)dtψ1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1 .

(3.22)

Let κ̂ := minB1
ψ̂1
ψ1

. Hence, from (3.21) and (3.22) it follows that (ψ̂1 − κ̂ψ1) ≥ 0 in

S and (ψ̂1 − κ̂ψ1)(ĩ0) = 0 for some ĩ0 ∈ B1 . Now, combining (3.5) and (3.20) we
deduce that

[ ∑

j �=ĩ0

(ψ̂1 − κ̂ψ1)( j)πĩ0 j
(ξ̂∗

1 (ĩ0), ξ̂2(ĩ0))

]
≡ 0 . (3.23)

SinceY (t) is irreducible under (ξ̂∗
1 , ξ̂2), in viewof (3.23) it is clear that (ψ̂1−κ̂ψ1) ≡ 0.

Again, since ψ̂1(i0) = ψ1(i0) =1, we get ψ̂1 ≡ ψ1. But, this is a contradiction to the
fact thatρ1 > ρ̂1. Thuswe deduce that (ρ1, ψ1) ∈ R+×L1,∞

W is theminimal eigenpair.
Following the above argument one can show that any eigenfunction satisfying (3.7)
is unique up to a scalar multiplication. Also, by the similar argument, one can show
that there exists a minimal eigenpair (ρ2, ψ2) ∈ R+ × L1,∞

W satisfying (3.8), (3.9) and
(3.10). This completes the proof. ��
Remark 3.1 We can replace Assumption 2.3 (iii) by other similar assumption. For
example, if the killed process communicates with every state from i0 before leav-
ing the domain Dn , for large n, then our method applies. More precisely, for every
Dn , (ξ1, ξ2) ∈ U SM

1 × U SM
2 and for every j ∈ Dn\{i0}, if there exists distinct

i1, i2, · · · , im ∈ Dn\{i0} satisfying

πi0i1(ξ1(i0), ξ2(i0))πi1i2(ξ1(i1), ξ2(i1)) · · · πim j (ξ1(im), ξ2(im)) > 0,

then we getψ1,n(i0) > 0 inDn (see Lemma 3.2). Also, the conclusion of Theorem 3.1
holds.
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To proceed further we establish some technical results needed later.

Lemma 3.3 Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then the maps ξ̂1 → ψ
ξ̂1
2

from U SM
1 → L∞

W , ξ̂1 → ρ
ξ̂1
2 from U SM

1 → R+, ξ̂2 → ψ
ξ̂2
1 from U SM

2 → L∞
W , and

ξ̂2 → ρ
ξ̂2
1 from U SM

2 → R+ are continuous.

Proof Let {ξ2,n} be a sequence in U SM
2 such that ξ2,n → ξ̃2 in U SM

2 , i.e., for each

i ∈ S, ξ2,n(i) → ξ̃2(i) in V2(i). Now by Theorem 3.1, there exists (ρ
ξ2,n
1 , ψ

ξ2,n
1 ) ∈

R+ × L1,∞
W , ψ

ξ2,n
1 > 0 satisfying

ρ
ξ2,n
1 ψ

ξ2,n
1 (i) = inf

v1∈V1(i)

[∑

j∈S
ψ

ξ2,n
1 ( j)πi j (v1, ξ2,n(i)) + c1(i, v1, ξ2,n(i))ψ

ξ2,n
1 (i)

]
,

(3.24)

withψ
ξ2,n
1 (i0) = 1. Now, sinceψ

ξ2,n
1 ∈ L1,∞

W , by a standard diagonalization argument,

there exists a functionψ∗
1 ∈ L1,∞

W such thatψ
ξ2,n
1 (i) → ψ∗

1 (i) as n → ∞ for all i ∈ S.

Also, {ρξ2,n
1 } is a bounded sequence. Hence, along a suitable subsequence (without

loss of generality denoting by the same notation) ρ
ξ2,n
1 → ρ∗

1 . Now from (3.24), for
any v1 ∈ V1(i) we deduce that

ρ
ξ2,n
1 ψ

ξ2,n
1 (i) ≤

[∑

j∈S
ψ

ξ2,n
1 ( j)πi j (v1, ξ2,n(i)) + c1(i, v1, ξ2,n(i))ψ

ξ2,n
1 (i)

]
.

This implies that

ρ
ξ2,n
1 ψ

ξ2,n
1 (i) − ψ

ξ2,n
1 (i)πi i (v1, ξ2,n(i))

≤
[∑

j �=i

ψ
ξ2,n
1 ( j)πi j (v1, ξ2,n(i)) + c1(i, v1, ξ2,n(i))ψ

ξ2,n
1 (i)

]
.

(3.25)

Note that

∑

j �=i

ψ
ξ2,n
1 ( j)πi j (v1, ξ2,n(i)) ≤

∑

j �=i

W ( j)πi j (v1, ξ2,n(i)). (3.26)

Thus, using Lemma 3.1, generalized Fatou’s lemma in [25,Lemma 8.3.7] and taking
n → ∞ in (3.25), we get

ρ∗
1ψ

∗
1 (i) ≤

[∑

j∈S
ψ∗
1 ( j)πi j (v1, ξ̃2(i)) + c1(i, v1, ξ̃2(i))ψ

∗
1 (i)

]
.

123



6 Page 20 of 31 Applied Mathematics & Optimization (2022) 86 :6

Hence,

ρ∗
1ψ

∗
1 (i) ≤ inf

v1∈V1(i)

[∑

j∈S
ψ∗
1 ( j)πi j (v1, ξ̃2(i)) + c1(i, v1, ξ̃2(i))ψ

∗
1 (i)

]
. (3.27)

Let ξ∗
1,n ∈ U SM

1 be a minimizing selector of (3.24), i.e.,

ρ
ξ2,n
1 ψ

ξ2,n
1 (i) =

[∑

j∈S
ψ

ξ2,n
1 ( j)πi j (ξ

∗
1,n(i), ξ2,n(i)) + c1(i, ξ

∗
1,n(i), ξ2,n(i))ψ

ξ2,n
1 (i)

]
.

(3.28)

Since U SM
1 is compact under the product topology, there exists ξ∗

1 ∈ U SM
1 such

that along a subsequence (without loss of generality denoting by the same notation)
ξ∗
1,n → ξ∗

1 .
Now, using Lemma 3.1, the dominated convergence theorem and passing n → ∞

in (3.28), we obtain

ρ∗
1ψ

∗
1 (i) =

[∑

j∈S
ψ∗
1 ( j)πi j (ξ

∗
1 (i), ξ̃2(i)) + c1(i, ξ

∗
1 (i), ξ̃2(i))ψ

∗
1 (i)

]
.

Therefore

ρ∗
1ψ

∗
1 (i) ≥ inf

v1∈V1(i)

[∑

j∈S
ψ∗
1 ( j)πi j (v1, ξ̃2(i)) + c1(i, v1, ξ̃2(i))ψ

∗
1 (i)

]
. (3.29)

Hence, from (3.27), and (3.29), it follows that

ρ∗
1ψ

∗
1 (i) = inf

v1∈V1(i)

[∑

j∈S
ψ∗
1 ( j)πi j (v1, ξ̃2(i)) + c1(i, v1, ξ̃2(i))ψ

∗
1 (i)

]
. (3.30)

Since ρ
ξ̃2
1 is the minimal eigenvalue corresponding to ξ̃2 of (3.30), we have ρ∗

1 ≥ ρ
ξ̃2
1 .

Suppose ρ∗
1 > ρ

ξ̃2
1 . Now, from Theorem 3.1, for any minimizing ξ̂1 ∈ U SM

1 of (3.5),
there exists a finite set B1 ⊃ K , such that

ψ1(i) = E ξ̂1,ξ̃2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ̂1(Y (t−)),ξ̃2(Y (t−)))−ρ
ξ̃2
1 )dtψ1(Y (τ̂ (B1)))

]
∀i ∈ Bc

1,

(3.31)

where τ̂ (B1) is a stopping time define as in Theorem 3.1. Since ρ∗
1 > ρ

ξ̃2
1 , by similar

arguments as in [6,Lemma 3.4] we deduce that

ψ∗
1 (i) ≤ E ξ̂1,ξ̃2

i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ̂1(Y (t−)),ξ̃2(Y (t−)))−ρ
ξ̃2
1 )dtψ∗

1 (Y (τ̂ (B1)))

]
∀i ∈ Bc

1.

(3.32)

123



Applied Mathematics & Optimization (2022) 86 :6 Page 21 of 31 6

From (3.31) and (3.32), we obtain

(ψ1 − ψ∗
1 )(i) ≥ E ξ̂1,ξ̃2

i[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ̂1(Y (t−)),ξ̃2(Y (t−)))−ρ
ξ̃2
1 )dt (ψ1 − ψ∗

1 )(Y (τ̂ (B1)))

]
∀i ∈ Bc

1.

(3.33)

Now choosing an appropriate constant θ (e.g., θ = maxB1
ψ1
ψ∗
1
), we have (ψ1−θψ∗

1 ) ≥
0 inB1 and for some î0 ∈ B1, (ψ1 − θψ∗

1 )(î0) = 0. Thus, in view of (3.33), we get
(ψ1 − θψ∗

1 ) ≥ 0 in S. Now combining (3.5) and (3.30), we get

ρ
ξ̃2
1 (ψ1 − θψ∗

1 )(î0)

≥
[∑

j∈S
(ψ1 − θψ∗

1 )( j)πî0 j
(ξ̂1(î0), ξ̃2(î0)) + c1(î0, ξ̂1(î0), ξ̃2(î0))(ψ1 − θψ∗

1 )(î0)

]
.

This implies that

∑

j �=î0

(ψ1 − θψ∗
1 )( j)πî0 j

(ξ̂1(î0), ξ̃2(î0)) = 0 . (3.34)

Since, {Y (t)}t≥0 is irreducible under (ξ̂1, ξ̃2) ∈ U SM
1 × U SM

2 , from (3.34) it follows

thatψ1 ≡ θψ∗
1 . But, this is a contradiction to the fact that ρ

∗
1 > ρ

ξ̃2
1 . Hence, we deduce

that ρ∗
1 = ρ

ξ̃2
1 . This proves the continuity of the map ξ̂2 → ρ

ξ̂2
1 . Since ψ

ξ̂2,n
1 (i0) = 1

for all n ≥ 1, we have ψ∗
1 (i0) = 1. Hence by Theorem 3.1, we have ψ∗

1 is the unique

solution of (3.5). Thus ψ∗
1 = ψ

ξ̃2
1 . This proves the continuity of the map ξ̂2 → ψ

ξ̂2
1 .

Continuity of other maps follows by the similar argument. ��
Fix ξ̂2 ∈ U SM

2 . For each i ∈ S, v1 ∈ V1(i), set

F̃1(i, v1, ξ̂2(i)) =
[∑

j∈S
ψ

ξ̂2
1 ( j)πi j (v1, ξ̂2(i)) + c1(i, v1, ξ̂2(i))ψ

ξ̂2
1 (i)

]
,

where ψ
ξ̂2
1 is the solution of (3.5) corresponding to the strategy ξ̂2 ∈ U SM

2 . Let

H̃(ξ̂2) =
{
ξ̂∗
1 ∈ U SM

1 : F̃1(i, ξ̂∗
1 (i), ξ̂2(i)) = inf

v1∈V1(i)
F̃1(i, v1, ξ̂2(i)) ∀ i ∈ S

}
.

ByLemma 3.1, we know that the functions c1(i, v1, ξ̂2(i))ψ
ξ̂2
1 (i) and

∑
j∈S ψ

ξ̂2
1 ( j)πi j

(v1, ξ̂2(i)) are continuous on V1(i)×V2(i) for each i ∈ S. Also since V1(i) is compact
for each i ∈ S, it is easy to see that H̃(ξ̂2) is a non empty subset of U SM

1 . From the
definition of H̃(ξ̂2) and the topology of U SM

1 , it is clear that H̃(ξ̂2) is convex and
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closed. Since U SM
1 is a compact metric space under the product topology, it follows

that H̃(ξ̂2) is also compact. Similarly, for i ∈ S, ξ̂1 ∈ U SM
1 , v2 ∈ V2(i), we set

F̃2(i, ξ̂1(i), v2) =
[ ∑

j∈S
ψ

ξ̂1
2 ( j)πi j (ξ̂1(i), v2) + c2(i, ξ̂1(i), v2)ψ

ξ̂1
2 (i)

]
, i ∈ S,

where ψ
ξ̂1
2 is the solution of (3.8) corresponding to the strategy ξ̂1 ∈ U SM

1 . Let

H̃(ξ̂1) =
{
ξ̂∗
2 ∈ U SM

2 : F̃2(i, ξ̂1(i), ξ̂∗
2 (i)) = inf

v2∈V2(i)
F̃2(i, ξ̂1(i), v2) ∀ i ∈ S

}
.

Then by analogous arguments, H̃(ξ̂1) is a nonempty, convex and compact subset of
U SM
2 . Next set

H̃(ξ̂1, ξ̂2) = H̃(ξ̂2) × H̃(ξ̂1).

From the above argument it is clear that H̃(ξ̂1, ξ̂2) is a nonempty, convex, and compact
subset of U SM

1 × U SM
2 . Therefore we may define a map from U SM

1 × U SM
2 →

2U SM
1 ×U SM

2 .

3.1 Existence of Nash Equilibria

Next lemma proves the upper semicontinuity of certain set valuedmap. This result will
be useful in establishing the existence of a Nash equilibrium in the space of stationary
Markov strategies.

Lemma 3.4 Suppose Assumptions 2.1, 2.2, and 2.3 hold. Then the map (ξ̂1, ξ̂2) →
H̃(ξ̂1, ξ̂2) from U SM

1 × U SM
2 → 2U SM

1 × U SM
2 is upper semicontinuous.

Proof Let {(ξm1 , ξm2 )} ∈ U SM
1 × U SM

2 and (ξm1 , ξm2 ) → (ξ̂1, ξ̂2) in U SM
1 × U SM

2 , i.e.,
for each i ∈ S, (ξm1 (i), ξm2 (i)) → (ξ̂1(i), ξ̂2(i)) in V1(i) × V2(i). Let ξ

m
1 ∈ H̃(ξm2 ).

Then {ξm1 } ⊂ U SM
1 . Since U SM

1 is compact, it has a convergent subsequence (denoted
by the same sequence by an abuse of notation), such that

ξ
m
1 → ξ1 in U SM

1 .

Then (ξ
m
1 , ξm2 ) → (ξ1, ξ̂2) in U SM

1 × U SM
2 . Note that

∑

j �=i

πi j (ξ
m
1 (i), ξm2 (i))ψ

ξm2
1 ( j) ≤

∑

j �=i

πi j (ξ
m
1 (i), ξm2 (i))W ( j).

Recall that by Lemma 3.3 the maps ξ̂1 → ψ
ξ̂1
2 , ξ̂2 → ψ

ξ̂2
1 , ξ̂1 → ρ

ξ̂1
2 , ξ̂2 → ρ

ξ̂2
1 are

continuous. Thus by generalized Fatou’s lemma [25,Lemma 8.3.7], Assumption 2.3
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and the (product) topology of U SM
k , k = 1, 2, it follows that for each i ∈ S,

∑

j∈S
πi j (ξ

m
1 (i), ξm2 (i))ψ

ξm2
1 ( j) + c1(i, ξ

m
1 (i), ξm2 (i))ψ

ξm2
1 (i)

converges to

∑

j∈S
πi j (ξ1(i), ξ̂2(i))ψ

ξ̂2
1 ( j) + c1(i, ξ1(i), ξ̂2(i))ψ

ξ̂2
1 (i).

Hence

lim
m→∞ F̃1(i, ξ

m
1 (i), ξm2 (i)) = F̃1(i, ξ1(i), ξ̂2(i)). (3.35)

Now fix ξ̃1 ∈ U SM
1 and consider the sequence {(ξ̃1, ξm2 )}. Using analogous arguments

as above, we conclude that

lim
m→∞ F̃1(i, ξ̃1(i), ξ

m
2 (i)) = F̃1(i, ξ̃1(i), ξ̂2(i)). (3.36)

Since ξ
m
1 ∈ H̃(ξm2 ), for any m we have

F̃1(i, ξ̃1(i), ξ
m
2 (i)) ≥ F̃1(i, ξ

m
1 (i), ξm2 (i)).

Thus, in view of (3.35) and (3.36), taking m → ∞ in the above equation, for any
ξ̃1 ∈ U SM

1 we get

F̃1(i, ξ̃1(i), ξ̂2(i)) ≥ F̃1(i, ξ1(i), ξ̂2(i)).

Therefore, ξ1 ∈ H̃(ξ̂2). Suppose ξ
m
2 ∈ H̃(ξm1 ) and along a subsequence ξ

m
2 → ξ2

in U SM
2 . Then, by similar arguments as above one can show that ξ2 ∈ H̃(ξ̂1). This

proves that the map (ξ̂1, ξ̂2) → H̃(ξ̂1, ξ̂2) is upper semicontinuous. ��
Theorem 3.2 Suppose that Assumptions 2.1, 2.2, and 2.3 are satisfied. Then there
exists a Nash equilibrium in the space of stationary Markov strategies U SM

1 × U SM
2 .

Proof Since H̃(ξ̂∗
1 , ξ̂∗

2 ) is non-empty, compact and convex, using Lemma 3.4 and
Fan’s fixed point theorem [10], it follows that there exists a fixed point (ξ̂∗

1 , ξ̂∗
2 ) ∈

U SM
1 × U SM

2 , for the map (ξ̂1, ξ̂2) → H̃(ξ̂1, ξ̂2) from U SM
1 × U SM

2 → 2U SM
1 ×U SM

2 ,
i.e.,

(ξ̂∗
1 , ξ̂∗

2 ) ∈ H̃(ξ̂∗
1 , ξ̂∗

2 ).
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This implies that (ρ
ξ̂∗
2

1 , ψ
ξ̂∗
2

1 ), (ρ
ξ̂∗
1

2 , ψ
ξ̂∗
1

2 ) satisfy the following coupled HJB equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
ξ̂∗
2

1 ψ
ξ̂∗
2

1 (i) = inf
v1∈V1(i)

[∑

j∈S
πi j (v1, ξ̂

∗
2 (i))ψ

ξ̂∗
2

1 ( j) + c1(i, v1, ξ̂
∗
2 (i))ψ

ξ̂∗
2

1 (i)

]

=
[∑

j∈S πi j (ξ̂
∗
1 (i), ξ̂∗

2 (i))ψ
ξ̂∗
2

1 ( j) + c1(i, ξ̂∗
1 (i), ξ̂∗

2 (i))ψ
ξ̂∗
2

1 (i)

]
,

ψ
ξ̂∗
2

1 (i0) = 1
(3.37)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
ξ̂∗
1

2 ψ
ξ̂∗
1

2 (i) = inf
v2∈V2(i)

[∑

j∈S
πi j (ξ̂

∗
1 (i), v2)ψ

ξ̂∗
1

2 ( j) + c2(i, ξ̂
∗
1 (i), v2)ψ

ξ̂∗
1

2 (i)

]

=
[∑

j∈S πi j (ξ̂
∗
1 (i), ξ̂∗

2 (i))ψ
ξ̂∗
1

2 ( j) + c2(i, ξ̂∗
1 (i), ξ̂∗

2 (i))ψ
ξ̂∗
1

2 (i)

]
,

ψ
ξ̂∗
2

2 (i0) = 1.
(3.38)

Now by Theorem 3.1, from (3.37), it follows that

ρ
ξ̂∗
2

1 = inf
ξ1∈U Ad

1

ρ
ξ1,ξ̂

∗
2

1 = ρ
ξ̂∗
1 ,ξ̂∗

2
1 . (3.39)

Similarly, from (3.38), we have

ρ
ξ̂∗
1

2 = inf
ξ2∈U Ad

2

ρ
ξ̂∗
1 ,ξ2

2 = ρ
ξ̂∗
1 ,ξ̂∗

2
2 . (3.40)

Thus, from equations (3.39) and (3.40), we get

ρ
ξ1,ξ̂

∗
2

1 ≥ ρ
ξ̂∗
1 ,ξ̂∗

2
1 , ∀ ξ1 ∈ U Ad

1 ,

ρ
ξ̂∗
1 ,ξ2

2 ≥ ρ
ξ̂∗
1 ,ξ̂∗

2
2 , ∀ ξ2 ∈ U Ad

2 .

Hence (ξ̂∗
1 , ξ̂∗

2 ) ∈ U SM
1 × U SM

2 is a Nash equilibrium. This completes the proof. ��
The above theorem establishes aNash equilibriumbelonging to the space of station-

ary Markov strategies. Note that the equilibrium thus obtained is a Nash equilibrium
among all admissible strategies. However the equilibrium need not be unique. In case
the set-valued map (of optimal responses) admits a unique fixed point then the Nash-
equilibrium will be unique. For uniqueness stringent conditions may be required on
the transition rates and cost functions. Next we prove a converse of Theorem 3.2.
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Theorem 3.3 Suppose Assumptions 2.1, 2.2, and 2.3 hold. If (ξ∗
1
, ξ∗

2
) ∈ U SM

1 × U SM
2

is a Nash equilibrium, i.e.,

ρ
ξ1,ξ

∗
2

1 ≥ ρ
ξ∗
1
,ξ∗

2
1 , ∀ ξ1 ∈ U Ad

1 ,

ρ
ξ∗
1
,ξ2

2 ≥ ρ
ξ∗
1
,ξ∗

2
2 , ∀ ξ2 ∈ U Ad

2 .

Then ξ∗
1

∈ U SM
1 is a minimizing selector of (3.5) (corresponding to fixed strategy

ξ∗
2

∈ U SM
2 of player 2) and ξ∗

2
∈ U SM

2 is a minimizing selector of (3.8) (corresponding

to fixed strategy ξ∗
1

∈ U SM
1 of player 1).

Proof Applying analogous arguments as in [6,Lemma 3.4 and Remark 3.1], one
can prove that for the given pair (ξ∗

1
, ξ∗

2
) ∈ U SM

1 × U SM
2 , there exists a eigenpair

(ρ
ξ∗
1
,ξ∗

2
1 , ψ

ξ∗
1
,ξ∗

2
1 ) ∈ R × L∞

W , ψ
ξ∗
1

1 > 0 and ρ
ξ∗
1
,ξ∗

2
1 ≥ 0 satisfying

⎧
⎨

⎩
ρ

ξ∗
1
,ξ∗

2
1 ψ

ξ∗
1
,ξ∗

2
1 (i)=∑

j∈S πi j (ξ
∗
1
(i), ξ∗

2
(i))ψ

ξ∗
1
,ξ∗

2
1 ( j)+c1(i, ξ∗

1
(i), ξ∗

2
(i))ψ

ξ∗
1
,ξ∗

2
1 (i),

ψ
ξ∗
1
,ξ∗

2
1 (i0) = 1.

(3.41)

Also, for given ξ∗
2

∈ U SM
2 , there exists a minimal eigenpair (ρ

ξ∗
2

1 , ψ
ξ∗
2

1 ) ∈ R+ × L∞
W ,

ψ
ξ∗
2

1 > 0, satisfying

⎧
⎪⎨

⎪⎩

ρ
ξ∗
2

1 ψ
ξ∗
2

1 (i) = inf
v1∈V1(i)

[∑

j∈S
πi j (v1, ξ

∗
2
(i))ψ

ξ∗
2

1 ( j) + c1(i, v1, ξ
∗
2
(i))ψ

ξ∗
2

1 (i)

]
,

ψ
ξ∗
2

1 (i0) = 1.
(3.42)

Since ρ
ξ∗
2

1 is a minimal eigenvalue of (3.42), corresponding to ξ∗
2
, we have

ρ
ξ∗
2

1 = inf
ξ1∈U Ad

1

ρ
ξ1,ξ

∗
2

1 . (3.43)

Also, we have

ρ
ξ1,ξ

∗
2

1 ≥ ρ
ξ∗
1
,ξ∗

2
1 , ∀ ξ1 ∈ U Ad

1 .

Hence,

inf
ξ1∈U Ad

1

ρ
ξ1,ξ

∗
2

1 ≥ ρ
ξ∗
1
,ξ∗

2
1 . (3.44)
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So, by (3.43) and (3.44), we obtain

ρ
ξ∗
2

1 ≥ ρ
ξ∗
1
,ξ∗

2
1 .

Also, from (3.43), we have

ρ
ξ∗
2

1 ≤ ρ
ξ∗
1
,ξ∗

2
1 .

Hence, we deduce that

ρ
ξ∗
2

1 = ρ
ξ∗
1
,ξ∗

2
1 . (3.45)

Now, applying Ito-Dynkin formula, from (3.41), it follows that

ψ
ξ∗
1
,ξ∗

2
1 (i) = E

ξ∗
1
,ξ∗

2
i[

e
∫ T∧τ̂ (B 1)

0 (c1(Y (t),ξ∗
1
(Y (t−)),ξ∗

2
(Y (t−)))−ρ

ξ∗
1 ,ξ∗

2
1 )dt

ψ
ξ∗
1
,ξ∗

2
1 (Y (T ∧ τ̂ (B1)))

]
∀i ∈ Bc

1,

whereB1 is as in Theorem 3.1. Now, by Fatou’s Lemma, taking T → ∞ in the above
equation, we get

ψ
ξ∗
1
,ξ∗

2
1 (i) ≥E

ξ∗
1
,ξ∗

2
i
[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ∗
1
(Y (t−)),ξ∗

2
(Y (t−)))−ρ

ξ∗
1 ,ξ∗

2
1 )dt

ψ
ξ∗
1
,ξ∗

2
1 (Y (τ̂ (B1)))

]
∀i ∈ Bc

1.

(3.46)

Again, using (3.42), from Theorem 3.1, it follows that

ψ
ξ∗
2

1 (i) ≤ E
ξ∗
1
,ξ∗

2
i

[
e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ∗
1
(Y (t−)),ξ∗

2
(Y (t−)))−ρ

ξ∗
2

1 )dt
ψ

ξ∗
2

1 (Y (τ̂ (B1)))

]
∀i ∈ Bc

1.

(3.47)

So, by (3.46) and (3.47), we obtain

ψ
ξ∗
1
,ξ∗

2
1 (i) − ψ

ξ∗
2

1 (i)

≥ E
ξ∗
1
,ξ∗

2
i[

e
∫ τ̂ (B 1)

0 (c1(Y (t),ξ∗
1
(Y (t−)),ξ∗

2
(Y (t−)))−ρ

ξ∗
2

1 )dt
(ψ

ξ∗
1
,ξ∗

2
1 − ψ

ξ∗
2

1 )(Y (τ̂ (B1)))

]
∀i ∈ Bc

1.

(3.48)

Now arguing as in the proof of Lemma 3.3, we obtain ψ
ξ∗
1
,ξ∗

2
1 (i) ≡ ψ

ξ∗
2

1 . Thus, from
(3.41) and (3.42) it follows that ξ∗

1
is a minimizing selector of (3.5) (for fixed strategy
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ξ∗
2

∈ U SM
2 of player 2). Following similar arguments one can show that ξ∗

2
is a

minimizing selector of (3.8) (for fixed strategy ξ∗
1

∈ U SM
1 of player 1). This completes

the proof. ��

4 Example

In this section, we present an illustrative where transition rates are unbounded and
cost rates are nonnegative and unbounded.

Example 4.1 Consider a shop which deals with only one type of product for buying
and selling. Suppose there are two workers, say, player 1 and player 2 for buying and
selling the products, respectively. The number of stocks in the shop is a finite subset
of the set of natural numbers N at each time t ≥ 0. There are ‘natural’ buying and
selling rates, say μ̃ and λ, respectively, and buying parameters h1 controlled by player
1 and selling parameters h2 controlled by player 2. When the state of the system is
i ∈ S := {1, 2, · · · } (i.e., number of items in the shop), player 1 takes an action u1 from
a given set U1(i), which may increase (h1(i, u1) ≥ 0) or decrease (h1(i, u1) ≤ 0)
the buying rate. These actions produce a payoff denoted by r1(i, u1) per unit time.
Similarly, if the state is i ∈ S, player 2 takes an action u2 from a setU2(i) to decrease
(h2(i, b) ≤ 0) or to increase (h2(i, b) ≥ 0) the selling rate. These actions result in
a payoff denoted by r2(i, u2) per unit time. We assume that when the stock of items
in the shop becomes 1, the first player may buy any number of stocks of that item as
much as he/she likes depending upon the availability of cash. In addition, we assume
that player k, (k = 1, 2) ‘gets’ a reward rk(i) := pki or incurs a cost rk(i) := pki for
each unit of time during which the system remains in the state i ∈ S, where pk > 0
is a fixed reward fee, and pk < 0, a fixed cost fee, per stock, from the owner.
We next formulate this model as a continuous-time Markov game. The corresponding
transition rate π̄i j (u1, u2) and payoff rate c̄k(i, u1, u2) for player k, (k = 1, 2) are
given as follows: for (1, u1, u2) ∈ K (K as in the game model (2.1)).

π̄1 j (u1, u2) > 0 ∀ j ≥ 2, such that
∑

j∈S
π̄1 j (u1, u2) = 0, and π̄1 j (u1, u2) ≤ e−2θ j ∀ j ≥ 2,

(4.1)

where θ > 0 is a constant.
Also, for (i, u1, u2) ∈ K with i ≥ 2,

π̄i j (u1, u2) =

⎧
⎪⎪⎨

⎪⎪⎩

λi + h2(i, u2), if j = i − 1
−μ̃i − λi − h1(i, u1) − h2(i, u2), if j = i
μ̃i + h1(i, u1), if j = i + 1
0, otherwise.

c̄1(i, u1, u2) := i p1 − r1(i, u1), c̄2(i, u1, u2)= i p2−r2(i, u2) for (i, u1, u2) ∈ K .

(4.2)

We now investigate conditions under which there exists a Nash equilibrium. To this
end we make following assumptions:
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(I) For each i ∈ S, U1(i) = U2(i) = [−L, L], L > 0 is a constant.
(II) Let λe−θ > μ̃ > 0, μ̃i+h1(i, u1) ≥ 0 and λi+h2(i, u2) ≥ 0 for all (i, u1, u2) ∈

K with i ≥ 2.
(III) The functions h1(i, u1), h2(i, u2), r1(i, u1), r2(i, u2), and π̄11(u1, u2) are contin-

uous in (u1, u2) for each fixed i ∈ S. Suppose there exists a finite setK such that
hk(i, uk) = uk

eθ i IK (i) and 1 ∈ K . Also assume that inf
(u1,u2)∈U1(·)×U2(·)

rk(·, uk)
is norm like function for k = 1, 2.

(IV) Suppose i pk − rk(i, uk) ≥ 0 ∀i ∈ S, (u1, u2) ∈ U1(i)×U2(i) and (1− e−θ )λ+
(1 − eθ )μ̃ > pk for k = 1, 2.

Proposition 4.1 Under conditions (I)–(IV), the above controlled system satisfies the
Assumptions 2.1, 2.2, and 2.3. Hence by Theorem 3.2, there exists a Nash equilibrium.

Proof Take a Lyapunov function as V(i) := eθ i for i ∈ S for some θ > 0 as described
earlier. Then, we have V(i) ≥ 1 for all i ∈ S. Now for each i ≥ 2, and (u1, u2) ∈
U1(i) ×U2(i), we have

∑

j∈S
π̄i j (u1, u2)V( j) = π̄i(i−1)(u1, u2)V(i − 1) + V(i)π̄i i (u1, u2) + V(i + 1)π̄i(i+1)(u1, u2)

= eθ i
[
(λi + h2(i, u2))e

−θ − (iμ̃ + λi + h1(i, u1) + h2(i, u2)) + (μ̃i + h1(i, u1))e
θ

]

= eθ i i

[
μ̃(eθ − 1) + λ(e−θ − 1) + eθh1(i, u1) + e−θh2(i, u2) − h1(i, u1) − h2(i, u2)

i

]

= iV(i)[μ̃(eθ − 1) + λ(e−θ − 1)] +
[
u1(e

θ − 1) + u2(e
−θ − 1)

]
IK (i)

≤ iV(i)[μ̃(eθ − 1) + λ(e−θ − 1)] + L(eθ − 1)IK (i). (4.3)

Now for every θ > 0, we know

λ(e−θ − 1) + μ̃(eθ − 1) < 0 ⇔ μ̃ < λe−θ .

Let [μ̃(eθ − 1) + λ(e−θ − 1)] = −α for some α > 0. Also, let (i) = iα and

C4 = max

{
L(eθ − 1), e−2θ

1−e−θ

}
(see (4.5)). Then for i ≥ 2,

sup
(u1,u2)∈U1(i)×U2(i)

∑

j∈S
V( j)π̄i j (u1, u2) ≤ C4 IK (i) − (i)V(i) ∀i ∈ S. (4.4)

Also, we have

∑

j∈S
π̄1 j (u1, u2)V( j) < π̄11(u1, u2)e

θ +
∑

j≥2

e−2θ j eθ j ≤ π̄11(u1, u2)e
θ + e−2θ

1 − e−θ
< ∞.

(4.5)
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Since −(i) < 1 for all i ∈ S. Hence from (4.4) and (4.5), for i ≥ 1, we have

∑

j∈S
π̄i j (u1, u2)V( j) ≤ C1V(i) + C2, where C1 = 1 and C2 = C4. (4.6)

For i ≥ 2,

−π̄i i (u1, u2) = μ̃i + λi + h1(i, u1) + h2(i, u2)

≤ i(μ̃ + λ) + 2L

≤ 1

θ
(μ̃ + λ)V(i) + 2LV(i)

= [2L + (μ̃ + λ)
1

θ
]V(i)

= C3V(i). (4.7)

Take W = W̃ = V . Now for k = 1, 2

(i) − sup
(u1,u2)∈U1(i)×U2(i)

c̄k(i, u1, u2) = αi − i pk + inf
uk∈Uk (i)

rk(i, uk)

= iβk + inf
uk∈Uk (i)

rk(i, uk). (4.8)

We see that from condition (IV), that βk = α − pk ≥ 0. So, (i) − sup
(u1,u2)∈U1(i)×U2(i)

c̄k(i, u1, u2) is norm-like function for k = 1, 2. Now by (4.6), we say Assumption 2.1
(i) holds. Also by (4.1) and (4.7), Assumption 2.1 (ii) is verified.
Nowwe verify Assumption 2.2. By (4.4), (4.5) and (4.8), it is easy to see that Assump-
tion 2.2 is satisfied.
Now by condition (III) and (4.2), we say c̄k(i, u1, u2) and π̄i j (u1, u2) are continuous
in (u1, u2) ∈ U1(i) ×U2(i) for each fixed i, j ∈ S and for k = 1, 2. So, Assumption
2.3 (i) is verified. By (4.3) and (4.5) and condition (III), we say that Assumption 2.3
(ii) is verified. Also, from (4.1) it is easy to see that Assumption 2.3 (iii) is satisfied.
Hence by Theorem 3.2 there exists a Nash equilibrium for this controlled process.

��
Remark 4.1 It should be noted that, here we assume when the number of stock in the
shop is one and the players independently choose action according to some strategies
(ξ1, ξ2) ∈ U SM

1 × U SM
2 , respectively, then with a positive probability first player may

buy any number of stocks of the item, i.e., π1 j (ξ1(1), ξ2(1)) > 0 for all j ∈ S. In view
of Remark 3.1, one can weaken this Assumption. For any i ∈ Dn (for n large enough)
i >> 1, player may increase the number of stock in the shop from 1 to i in m number
of steps in Dn , i.e., there exists a finite sequence of states i0, i1, . . . , im connecting
i0 = 1 to im = i , satisfying

πi0i1(ξ1(i0), ξ2(i0))πi1i2(ξ1(i1), ξ2(i1)) · · · πim−1i (ξ1(im−1), ξ2(im−1)) > 0 ,

where i0, i1, . . . , im ∈ Dn .
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