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We implement a recursive Green’s function method to extract the Fock space (FS) propagator and associated
self-energy across the many-body localization (MBL) transition, for one-dimensional interacting fermions in a
random on-site potential. We show that the typical value of the imaginary part of the local FS self-energy, �t ,
related to the decay rate of an initially localized state, acts as a probabilistic order parameter for the thermal to
MBL phase transition and can be used to characterize critical properties of the transition as well as the multi-
fractal nature of MBL states as a function of disorder strength W . In particular, we show that a fractal dimension
Ds extracted from �t jumps discontinuously across the transition, from Ds < 1 in the MBL phase to Ds = 1
in the thermal phase. Moreover, �t follows an asymmetrical finite-size scaling form across the thermal-MBL
transition, where a nonergodic volume in the thermal phase diverges with a Kosterlitz-Thouless–like essential
singularity at the critical point Wc and controls the continuous vanishing of �t as Wc is approached. In contrast,
a correlation length (ξ ) extracted from �t exhibits a power-law divergence on approaching Wc from the MBL
phase.
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I. INTRODUCTION

A many-body localized (MBL) phase is a fascinating
nonequilibrium state of matter which can originate in isolated
quantum systems in the presence of disorder and interactions
[1–4]. In the MBL phase, high-energy eigenstates violate
the eigenstate thermalization hypothesis (ETH) [5–7], and
local memory can be retained up to arbitrarily long times
under time evolution. After the early landmark papers [8,9],
a mathematical proof [10] and numerous numerical studies
[11–16] have provided strong evidence in favor of the ex-
istence of the MBL phase in one dimension. However, the
universal properties of the transition from the thermal or
ETH phase to the MBL phase remain under active debate
[17–23]. This is mainly due to the challenge to “first princi-
ples” numerical verification of theoretical scenarios, posed by
the exponentially growing Fock-space dimension (NF ) with
system size L [11,13,17,24,25]. To complement calculations
on microscopic models, several phenomenological renormal-
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ization group-based approaches have been employed [18,26–
28], which suggest a Kosterlitz-Thouless (KT) -like scenario
for the MBL transition.

A further complementary approach to MBL is to consider
it as an effective “Fock-space (FS) localization” problem of
a fictitious particle on the complex, correlated FS graph (or
“lattice”) [16,29–31]. This has led to crucial insights such
as the role of strong FS correlations in stabilizing the MBL
phase [30–33], multifractality of eigenstates therein [17,34–
37], and, importantly, a numerical scaling theory of the MBL
transition in terms of FS inverse participation ratios (IPR)
of eigenstates, which is consistent with a KT-like scenario
[35,36]. Here we ask the following question: can a scaling
theory of the MBL transition be formulated in terms of FS
propagators?

In this work we answer this question in the affirmative, by
studying the propagator or Green’s function on the FS lattice
for a fermionic chain with L � 22. In particular, we extract
the local Feenberg self-energy [30,38,39] from the diagonal
elements of the FS propagator. As known since Anderson’s
seminal paper [40], the typical value of the imaginary part
of the Feenberg self-energy, �t , acts as a probabilistic order
parameter in the thermodynamic limit for Anderson transi-
tions [40–43]. This quantity has recently been employed to
construct a self-consistent mean-field theory of the MBL tran-
sition on the Fock space [30,31]. However, numerically exact
evaluation of the FS self-energy for the microscopic models of
MBL, and analysis of its behavior across the MBL transition,
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is scarce. Here we fill this void and show that the MBL
transition from ergodic extended states in the thermal phase
to multifractal states in the MBL phase [17,34–37,44–46] is
manifest in an anomalous scaling of �t with the Fock-space
dimension. This, together with a scaling theory of the MBL
transition based on the order parameter �t , that is consistent
with the KT-like scenario, constitutes the central result of the
work.

The FS propagator contains information about the
ergodic/nonergodic nature of the phase, as different eigen-
states contribute to it, based on their energy and amplitudes
over FS lattice sites. From a technical point of view, compu-
tation of the propagator in principle requires all eigenstates.
This restricts the system sizes accessible to numerical exact
diagonalization (ED), which for L > 18 can access only a
limited number of eigenstates [47]. To access larger sizes,
comparable to those accessible via parallelized shift-invert
method [47] or POLFED [48], but at significantly cheaper
computational cost, we compute the FS propagators using
a standard recursive Green’s function method [49–51], but
adapted to the FS graph. Moreover, for the reasons discussed
below, we study a scaled version of the self-energy, viz.
�t/

√
L, and refer to it as �t throughout the rest of the paper

for notational convenience. Employing the recursive method,
we obtain the following main results.

(1) The typical value �t of the self-energy is finite in
the thermal phase. It vanishes ∝ N−(1−Ds )

F in the MBL phase
and at the critical point, where Ds < 1 is a fractal dimension
reflecting the multifractal nature of the states. Ds changes
discontinuously across the MBL transition, from Ds < 1 to
Ds = 1 throughout the thermal phase.

(2) The finite-size scaling of �t as a function of disorder
strength (W ) is consistent with an asymmetric finite-size scal-
ing form [35,36,52,53] across the MBL transition. Scaling
on the thermal side is controlled by a nonergodic volume
scale �, which diverges with an essential singularity � ∼
exp (b/

√
δW ) [δW = (Wc − W ), b ∼ O(1)] at a critical dis-

order (Wc), redolent of a KT-like transition. Scaling on the
MBL side by contrast is controlled by a FS correlation length
(ξ ), which exhibits a power-law divergence on approaching
criticality. Moreover, the scaling theory implies that in the
thermodynamic limit �t vanishes continuously on approach-
ing the transition from the thermal side as ∼ exp [−b′/

√
δW ]

with b′ ∼ O(1).
As already mentioned, multifractal characterization of

MBL states [17,34] and numerical scaling theory consistent
with a KT-like MBL transition have been obtained via study
of eigenstate IPRs [35,36]. However, our work reveals the
multifractality and KT-type critical scaling in terms of a FS
order parameter for the thermal-MBL transition. Additionally,
the FS order parameter, being associated with an inverse decay
time of localized initial states, provides a truly dynamical
characterization of MBL transition unlike the static properties
studied based on eigenstates in the previous studies [17,34–
36].

II. MODEL

We study the following standard model [11–13,15–17,54]
of MBL for a fermionic chain with an i.i.d. random on-site

FIG. 1. (a) Fock-space lattice constructed out of real-space
occupation-number basis states (orange circles), illustrated for L =
8, starting at the top with |111...000〉, i.e., all particles on the left side,
and ending at the bottom with all particles on the right. The hoppings
(blue lines) and the slices (gray lines) are indicated. (b) ln �t as a
function of lnNF ∝ L for different W (color bar) across the MBL
transition (Wc). The exponential decrease of �t with L for W > Wc

is shown by the dashed black line (linear fit) for one value of W .
We also show the data for L = 22 for several disorder strengths.
(c) The fractal dimension Ds obtained from the finite-size scaling
theory jumps discontinuously across the transition, from Ds < 1 in
the MBL phase to Ds = 1 in the thermal phase. At W = Wc (vertical
dash-dotted line) Ds � 0.5.

potential εi ∈ [−W,W ] of strength W on i = 1, . . . , L sites
and nearest-neighbor repulsion (V ),

H = t
L−1∑
i=1

(
c†

i ci+1 + c†
i+1ci

) +
L∑

i=1

εi n̂i + V
L−1∑
i=1

n̂i n̂i+1. (1)

Here c†
i (ci ) is the fermion creation (annihilation) operator

for site i, with number operator n̂i = c†
i ci . We choose t = 0.5

and V = 1 to be consistent with earlier studies and study the
model in the half-filled sector at “infinite temperature,” which
corresponds to the middle of the many-body energy spectrum.
In this case, the model shows a thermal to MBL transition
at a critical disorder Wc � 3.7–4.2 [17]. In this work, we
take the critical disorder Wc as 3.75. Variation of Wc between
∼3.5 and 4 leads to comparably good scaling collapse in our
finite-size scaling analysis.

To describe the many-body system in Fock space, we em-
ploy the occupation-number basis {|I〉} of particles on the
real-space sites, |I〉 = |n(I )

1 n(I )
2 . . . n(I )

L 〉 with n(I )
i ∈ 0 or 1. In

this basis, the Hamiltonian Eq. (1) takes the form of a tight-
binding model [30,33,55]

H =
∑
I,J

TIJ |I〉 〈J| +
∑

I

EI |I〉 〈I| , (2)

but on the FS lattice [Fig. 1(a)]. Here, the FS “hopping” TIJ =
t when |I〉 and |J〉 are connected by a single nearest-neighbor
hop in real space and TIJ = 0 otherwise. The on-site “disor-
der” potential at FS site I is EI = ∑

i εin
(I )
i + V

∑
i n(I )

i n(I )
i+1,

and is a combination of the real-space disorder potential and
the nearest-neighbor interaction.

The disorder-averaged many-body density of states for the
model is a Gaussian as a function of energy E , with the mean
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∝ L and variance μ2
E = (t2 + W 2/6 + V 2/8)L/2 [55]. As a

result, to treat different system sizes on the same footing and
for the theory to have a well-defined thermodynamic limit
[31], we scale the parameters and work with a rescaled H̃ =
H/

√
L [30,31,55]. This leads directly to the scaled version of

the self-energy mentioned above. We also set the mean many-
body energy to zero, by transforming H̃ to H̃ − 1TrH̃/NF

for each disorder realization, since the middle of the spectrum
fluctuates with disorder realization for a finite system.

III. RECURSIVE GREEN’S FUNCTION METHOD

Elements of the retarded FS propagator G(E ) = [(E +
iη)1 − H̃]−1 are computed by implementing the standard
recursive method [49–51,56,57] at the middle (E = 0) of
the energy spectrum. We choose the broadening (or regula-
tor) η(W ) = √

2πμE/(
√

LNF ) [30,55], the mean many-body
level spacing of H̃, which depends on disorder strength W
through the variance μ2

E . We arrange the Fock space basis
states in a layered lattice structure, as illustrated in Fig. 1(a).
Crucially, this is local, in that sites belonging to any slice or
layer are connected through hopping only to sites belonging
to the nearest-neighbor layers. It is this locality that allows for
an efficient implementation of the method for the FS lattice,
as detailed in Appendix A.

We calculate the diagonal elements GII (E ) = 〈I|G(E )|I〉,
where I ∈ the middle slice M [Fig. 1(a)]. We extract one of
the important characterizations of the localization properties
in the FS, the imaginary part �I of the Feenberg self-
energy 	I (E ) = XI (E ) − i�I (E ) ≡ G−1

II (E ) − (E + iη − EI )
at a FS site I . As mentioned in the Introduction, the analogous
quantity on the real-space lattice was quintessential in the
development of the concept of localization [40] for nonin-
teracting systems. We consider the distributions of �I , in
particular its disorder-averaged typical value, denoted by �t .
The latter is the geometric mean calculated by averaging over
different disorder realizations and different Fock space sites
using ln �t = 〈ln �I〉I,{εi}, where 〈. . .〉I,{εi} denotes averaging
over I ∈ M and disorder realizations {εi}. Depending on L,
∼150 to 10 000 disorder realizations are employed to generate
the distribution of �I (Appendix C). We have checked that our
results converge with the number of disorder samples for all
the system sizes, L = 12–22, that we study, and the details are
given in Appendix C.

IV. MULTIFRACTALITY AND SCALING THEORY FROM
THE IMAGINARY PART OF FEENBERG SELF-ENERGY

The imaginary part �I (E ) of the self-energy determines
the energy-resolved decay time [�I (E )−1] of a localized ini-
tial state |I〉 or, alternatively, the lifetime of an excitation
with energy E created at the FS lattice site I [40]. As such,
�I (E ) directly encodes information about localization or lack
thereof. In the thermal phase, the typical value �t ∼ O(1), as
the initial state decays in a finite time, whereas, in the MBL
phase, �t → 0 in the thermodynamic limit NF → ∞.

Numerical results for �t as a function of NF are shown
in Fig. 1(b). �t indeed decreases as a function of W from
an O(1) value in the thermal phase to a value which in the
MBL phase vanishes exponentially rapidly with L. Deep in

the thermal phase at weak disorder, �t is independent of NF .
By contrast, in the MBL phase (W > Wc), �t decays as a
power law, ∝ N−(1−Ds )

F with 0 < Ds < 1. As discussed later,
Ds is a spectral fractal dimension which characterizes the
multifractality of the MBL states. It depends on W as shown
in Fig. 1(c), where Ds has been obtained from the finite-size
scaling analysis discussed below. Note that, at intermediate
disorder in the ETH phase, �t initially decays with NF for
small L, before showing an increasing trend, presumably to-
wards its finite asymptotic value in the thermodynamic limit
[Fig. 1(b)]. This indicates that the systems are in the critical
regime at intermediate disorder.

The bare data itself conforms to the expectation that in
the thermodynamic limit �t vanishes in the MBL phase and
approaches a finite O(1) value in the thermal phase. But to
analyze compellingly the critical properties of �t , we perform
a scaling collapse of the data using the following finite-size
scaling ansatz [35,36,52]:

ln
�t

�c
=

{
Fvol

(NF
�

)
: W < Wc,

Flin
( lnNF

ξ

)
: W > Wc,

(3)

where �c = �t (W = Wc) ∼ N−(1−Dc )
F . The scaling ansatz

states that, in the ETH phase, �t follows a “volumic” scaling
form where the finite-size scaling is controlled by a Fock-
space volume scale, � [35,36,52]. In the MBL phase, on
the other hand, the scaling form is “linear” with the scaling
controlled by a Fock-space length scale, ξ [35,36,52]. Taking
Wc = 3.75, the good collapse of the data shown in Fig. 2
suggests that the above scaling forms are appropriate. As
shown in Appendix B, varying Wc between ∼3.5 and 4 leads
to comparably good scaling.

The “nonergodic” volume �(W ) [52] extracted from the
scaling collapse of ln(�t/�c) in the thermal phase (W < Wc)
is shown in the upper panel of Fig. 2 (inset). � diverges at
the critical point with a KT-like essential singularity, � ∼
exp [b/(δW )α] with α � 0.5, where δW = (Wc − W ) and b ∼
O(1). This kind of KT-type singularity has been predicted
by a phenomenological RG theory [18,26–28], albeit based
on a real-space picture. Throughout the ETH phase, since
the eigenstates are understood to be ergodic [35], we expect
�t ∼ O(1) asymptotically in the limit NF � �. This implies
for the volumic scaling function in Eq. (3) that Fvol(x) ∼ (1 −
Dc) ln x for x � 1. As evinced in the upper panel of Fig. 2,
this is indeed the asymptotic form of the scaling function,
Fvol(x) ∼ 0.49 ln x (see Appendix B for details) from which
we estimate Dc � 0.51. This is an excellent agreement with
Dc � 0.5 obtained by fitting the raw data of �t against NF

for Wc = 3.75 [Fig. 1(b)]. A significant conclusion from this
is that Ds = 1 throughout the ETH phase and jumps discon-
tinuously to a value Ds < 1 at the MBL transition, whereafter
it decreases smoothly with increasing W [Fig. 1(c)]. This
is in complete consonance with the discontinuity across the
MBL transition of the fractal dimension characterizing the
Fock-space IPRs of the eigenstates [35,36]. Furthermore, the
form of the divergence of � and the asymptotic form of
Fvol implies that, in the thermodynamic limit, �t vanishes
continuously as the transition is approached from the ETH
side as �t ∼ �−(1−Dc ) ∼ exp[−b(1 − Dc)/δW α].
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FIG. 2. Finite-size scaling collapse of ln(�t/�c ) using respec-
tively the volumic and linear scaling [Eq. (3)] in the thermal (upper
panel) and MBL (lower panel) phase, with Wc = 3.75. Upper panel:
the asymptotic scaling of ln(�t/�c ) ∼ 0.5 ln(NF /�) deep in the
thermal phase is determined by the exponent (1 − Dc ) � 0.5 at
W = Wc, where �c ∼ N−(1−Dc )

F . Inset shows the KT-like essen-
tial singularity of the nonergodic volume, � ∼ exp (b/

√
δW ) with

δW = (Wc − W ), near Wc. Lower panel: deep in the MBL phase,
asymptotic scaling gives ln(�t/�c ) ∝ (lnNF )/ξ . The inset shows
the divergence of the correlation length, ξ ∼ |δW |−β with β � 0.7,
on approaching the transition from the MBL phase. System sizes
from L = 12 to 20 were used to obtain the scaling.

In the MBL phase for W > Wc, the scaling collapse yields
a diverging correlation length, ξ ∼ (W − Wc)−β with β �
0.7, as shown in the lower panel of Fig. 2 (inset). For x =
(lnNF )/ξ � 1, the asymptotic scaling is Flin(x) ∼ −(1 −
Dc)x (Appendix B), as indeed seen in Fig. 2, lower panel.
From the form of Flin(x), ξ = (1 − Dc)/(Dc − Ds), which
implies a divergent ξ as Ds → Dc, i.e., W → Wc+ (Ap-
pendix B). Note that Dc < 1 implies that the MBL critical
point is actually a part of the MBL phase itself. This is
consistent with the understanding that the entire MBL phase
is critical in the sense that it is multifractal, and the MBL
transition can be understood as the terminal end point of the
line of fixed points.

Having established the critical scaling of the FS order
parameter �t and the volume (length) scale in the thermal
(MBL) phase, we now discuss how the system-size scaling
�t ∼ N−(1−Ds )

F in Figs. 1(b) and 1(c) for W > Wc is related
to multifractality in the MBL phase. MBL eigenstates are
known to be multifractal in nature [17,34–37], i.e., nonergodic
but extended over ∼ND

F (0 < D < 1) FS sites. Similar to the
case of the local density of states discussed in Ref. [58], the
multifractality can be deduced from the dependence of the
typical value and the distribution of �I , on the broadening pa-
rameter η for large but finite NF . In this limit, �t saturates as

FIG. 3. (a) In the MBL phase, the scaling of �max with the Fock
space dimension NF is shown to follow a power-law �max ∝ N z

F

for different disorder strengths (color bar). To obtain good statistics,
ln �max plotted here is averaged over a few of the largest values of
ln � for a given L and W . (b) The exponent z, obtained from �max ∼
η−1

c ∼ N z
F in (a), is shown to be <1 in the MBL phase, consistent

with the multifractal scaling of the self-energies. The solid line is
merely a guide to the eye.

a function of η below an energy scale ηc ∼ N−z
F (0 < z < 1),

namely, �t ∼ ηθ
c ∼ N−(1−Ds )

F for η � ηc, whereas �t ∼ ηθ

for η � ηc. Here the exponent θ > 0 and the spectral fractal
dimension Ds = 1 − zθ lies between 0 and 1 [58]. Physi-
cally, ηc signifies the presence of an energy scale much larger
than the mean level spacing N−1

F for multifractal states for
any finite system. In our calculations, η ∝ N−1

F � ηc; thus
we expect �t ∼ N−(1−Ds )

F . This is indeed the behavior for
�t (NF ) that we find in Fig. 1(b) over the entire MBL range
(W > Wc). It is also completely consistent with the asymptotic
form of the scaling function [Fig. 2 (lower panel)] and the Ds

extracted from it [Fig. 1(b)]. The spectral dimension Ds can
be shown to be the same as the fractal dimension D extracted
from the eigenstates under very general considerations [58].
We note that the behavior �t ∼ N−(1−Ds )

F is different from
a self-consistent theory [30,31] of MBL, where the thermo-
dynamic limit of NF → ∞ is taken first before taking the
η → 0 limit. As a result, one obtains �t ∝ η and such a theory
does not in effect distinguish between Anderson localized and
multifractal states.

Further insight into the multifractal behavior may be
gained by analyzing the tail of the probability distribution
function P(�) of �I over disorder realizations. For finite η

and/or NF , one expects [58] the distribution to be cut off
at a maximum value � = �max, where �max ∼ 1/ηc ∼ N z

F
for η � ηc. As shown in Fig. 3(a), we indeed find that �max

directly extracted from the numerical data follows a power
law ∼N z

F . The exponent z extracted from �max is shown in
Fig. 3(b) and indeed satisfies 0 < z < 1. This further confirms
the multifractal scaling of the self-energy in the MBL phase.

V. CONCLUSION

Using a recursive Green’s function method, we have in
summary obtained the critical scaling across the MBL tran-
sition by calculating the self-energy associated with the local
Fock-space propagator, the typical value of the imaginary part
of which, �t , acts as an order parameter for the MBL tran-
sition. The finite-size scaling of �t implies the existence of a
nonergodic volume with a KT-like essential singularity, which
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(a) (b)

FIG. 4. (a) Figure on the top left corner is similar to Fig. 1(a), but rotated by 90◦. The larger figure shows a part of it, up to th slice, where
the gray shaded area shows each slice. Orange circles and solid blue lines represent the FS sites and hopping, respectively. (b) As we keep on
adding the next slices, the Green’s function of the left part gets updated via the iterative Eqs. (A2)

directly controls the continuous vanishing of �t on approach
to the transition from the ergodic side and the multifractal
nature of the MBL phase was demonstrated via determina-
tion of the spectral fractal dimension Ds, which was shown
to change discontinuously across the transition. While our
focus here has been on the local FS propagator, the recursive
Green’s function method also gives access to the nonlocal
propagator, a question of immediate future interest which can
potentially provide insights into the critical scaling of a FS lo-
calization length and also enable study of the inhomogeneous
nature of MBL eigenstates on the FS lattice [36]. It would
also be interesting to explore further the connection [36]
between real-space and Fock-space critical properties, e.g.,
how rare thermal regions in real space [59–61] affect the FS

self-energy. In the same vein, possible connections between
the Fock-space propagators and one-particle density matrix
and real-space propagators [62–67] also remain a question for
future work.
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FIG. 5. Finite-size scaling collapse of ln(�t/�c ) in direct parallel to that of Fig. 2 for Wc = 3.75, but shown here for Wc = 3.5 (left panel)
and Wc = 4.0 (right panel).
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APPENDIX A: RECURSIVE GREEN’S FUNCTION
METHOD

In the recursive method, we calculate different ele-
ments of the Green’s function by starting from one of the
two minimally connected Fock-space sites (|111 . . . 000〉,
|000 . . . 111〉) and by adding the next slice connected by hop-
ping to the earlier slice at each step. Here we start with the
top site |111 . . . 000〉 as shown in Fig. 1(a). At each iteration
step, the method inverts a matrix containing the Hamiltonian
elements for the added slice and is, therefore, of size N × N,
where N is the size of the added slice. Hence this method
avoids the inversion of the full Hamiltonian in Eq. (2). The
maximum size of the matrix (NM × NM) that is inverted
during the calculation is determined by the number of sites
NM in the middle slice, which is the largest slice of the Fock
space [Fig. 1(a)]. For L between 10 and 22, NM is between
∼1 and 2 orders of magnitude lower than the full Fock-space
dimension NF = ( L

L/2

)
. It is this substantial reduction that

provides the advantage to achieve the system size L = 22 even
with serial computation. The method can be applied to even
larger systems like L = 24 with parallelization.

At the th step of recursion, let H () be the Hamiltonian
corresponding to the part of the Fock space lattice contain-
ing all slices up to the th slice. The corresponding Green’s
function for these  slices is given by G() = [E+1 − H ()]−1,
where E+ = E + iη. Using Eq. (2) and the local structure of
the Fock space lattice, the Hamiltonian corresponding to all
slices up to the ( + 1)th slice can be written as

H (+1) =
(

H () Tlr

Trl H (0)(+1)

)
,

H (0)(+1) =
∑

I∈(+1)

EI,+1 |I,  + 1〉 〈I,  + 1| ,

Tlr =
∑
I∈

∑
J∈(+1)

TI,J |J,  + 1〉 〈I, | ,

where H (0)(+1) contains the part of the Hamiltonian corre-
sponding to the ( + 1)th slice disconnected from the rest of
the Fock lattice, Tlr contains the hopping elements for hopping
from the th slice to the ( + 1)th slice, and Trl = T †

lr . |I, 〉,
representing the state |I〉, explicitly mentions the slice index
 which |I〉 belongs to. Similarly, the Green’s function at the
( + 1)th step can be written as

G(+1) =
(

G(+1)
l G(+1)

lr

G(+1)
rl G(+1)

r

)
.

Here the subscript l denotes the matrix elements of the left
part (first to the th slice) and r denotes the elements of the
( + 1)th slice, as described in Fig. 4. Then, at the ( + 1)th
step of recursion, the Green’s function G(+1) and the Hamil-
tonian H (+1) have the following matrix equation:

[E+1 − H (+1)]G(+1) = 1,(
(G() )−1 Tlr,

Trl (G0(+1))−1

)(
G(+1)

l G(+1)
lr

G(+1)
rl G(+1)

r

)
= 1. (A1)

Here (G() )
−1 = (E+1 − H () ) and (G0(+1))

−1
is given by

[E+1 − H (0)(+1)]. From the above equation, we can obtain

FIG. 6. Probability distributions of the imaginary part �I of the
self-energy, considering both I ∈ M and I ∈ FS. These match well
with each other, in both the thermal phase [shown in (a)] and MBL
phase (b). Data shown in the figure are for system size L = 14.

the following equation:

G(+1)
l = G() + G()TlrG(+1)

rl ,

〈s|G(+1)
l |s′〉 = 〈s|G()|s′〉 + 〈s|G()(T|〉〈 + 1|)

× G(+1)
rl |s′〉, s, s′ � .

Note that 〈s|A|s′〉 = A(s, s′) denotes an element of a rectangu-
lar matrix A, as each of the slices, indexed by s and s′, contains
different numbers of lattice points in general. For the same
reason, T is also a rectangular matrix containing hopping
matrix elements between th and ( + 1)th slices. Therefore,

G(+1)(s, s′) = G()(s, s′)

+ G()(s, )TG(+1)( + 1, s′), s, s′ � .

Similarly, starting from Eq. (A1),

G(+1)( + 1, s) = G(+1)(+1,  + 1)T †
 G()(, s), s � ,

(A2a)

G(+1)(s,  + 1) = G()(s, )T †
 G(+1)( + 1,  + 1), s � .

(A2b)

Therefore, for s, s′ � ,

G(+1)(s, s′) = G()(s, s′) + G()(s, )TG(+1)

× ( + 1,  + 1)TG()(, s′), (A2c)

TABLE I. L and the corresponding number of disorder realiza-
tions employed to generate the distributions of �I at each W point
are shown in the first two columns. The third column estimates the
product of the number of disorder realizations and the number of FS
sites in the middle slice.

L No. of disorder realizations No. of total data points

12 104 6 × 104

14 5 × 103 8 × 105

16 2 × 103 11 × 105

18 103 17 × 105

20 500 27 × 105

22 130 23 × 105
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FIG. 7. Relative percentage change in ln�t as the sample size is changed from 0.4 times the maximum sample size to the maximum sample
size. The relative change is defined as |(ln�t − ln�

(1)
t )/ln�

(1)
t |, where ln�

(1)
t is calculated considering all the available samples. This shows

the value of ln�t is always within 1% of the values plotted in Fig. 1(b) even for smaller sample sizes, and for all system sizes up to L = 22.

and on-slice elements

G(+1)( + 1,  + 1) = [(G0(+1))−1 − T †
 G()(, )T︸ ︷︷ ︸
self-energy 	()

]−1.

(A2d)
Using Eqs. (A2), we can calculate the desired elements of

the Green’s function, avoiding the inversion of a matrix having
the dimension of the full Fock space.

APPENDIX B: SCALING OF �t

Asymptotic behavior of the scaling functions. In the ergodic
phase, the scaling ansatz Eq. (3) reads

ln �t = ln �c + Fvol(NF /�),

with the critical �c = CcN−(1−Dc )
F and Cc a constant; equiva-

lently,

Fvol

(NF

�

)
= ln �t − ln Cc + (1 − Dc) ln �

+ (1 − Dc) ln
NF

�
.

(B1)

Deep in an ergodic phase, both � and �t are O(1). From
Eq. (B1), for x = NF /� � 1 the asymptotic large-x behavior
of Fvol(x) is then

Fvol(x) ∼ (1 − Dc) ln x (B2)

up to O(1) corrections. Its slope gives the fractal exponent
(1 − Dc) for W = Wc, which is also found to be consistent
with the numerical asymptotic fit in Fig. 1(b).

On the other hand, in the MBL phase W > Wc, �t =
CmN−(1−Ds )

F [Fig. 1(b)], where Cm and Ds both depend on W .
The scaling ansatz Eq. (3) then gives

Flin

(
lnNF

ξ

)
= ln

Cm

Cc
− (1 − Dc)

lnNF

ξ
, (B3)

with ξ defined as

ξ = (1 − Dc)

Dc − Ds
. (B4)

As Ds → D+
c , i.e., as W → W +

c , we see that ξ diverges. Deep
in the MBL phase, where x = (lnNF )/ξ � 1, the asymptotic
scaling is clearly

Flin(x) ∼ −(1 − Dc)x. (B5)

Finally, returning to the ergodic phase, Eq. (B1) with x =
NF /� can be cast as

�t = �−(1−Dc ) exp [Fvol(x) − (1 − Dc) ln x + ln Cc],
(B6)

where (as shown in the main text) the nonergodic volume � ∼
exp[b/

√
Wc − W ] is determined by W and Cc is a constant.

For any W < Wc, and hence for any finite � no matter how
large, the thermodynamic limit corresponds to x → ∞. From
Eq. (B2) the argument of the exponential in Eq. (B6) is then
O(1), so in the thermodynamic limit the order parameter �t

FIG. 8. Convergence of ln�t for different number of disorder samples, i.e., realizations. The maximum number of disorder samples used
in these calculations are shown in Table I. For each system size the number of samples is varied from 0.4 times the maximum sample size to
the maximum sample size. The convergence is tested for three disorder values W = 1.0 (in the thermal phase), 4.0 (near the transition), and
6.0 (in the MBL phase). Values of L corresponding to the colors are shown in the legend of (a).
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FIG. 9. Convergence of the distribution of ln�I for different sample sizes at disorder strength W = 4.0 near the transition. Similar to Fig. 7,
the sample size is changed, as shown in the legend of (a), from 0.5 times the maximum sample size to the maximum sample sizes for all system
sizes. For all sample sizes and system sizes considered, the distribution is seen to be the same.

vanishes continuously as

�t ∼ �−(1−Dc ) (B7)

and is controlled by �.
Dependence of scaling results on Wc. For the finite-size

scaling shown in Fig. 2, Wc = 3.75 was employed. Figure 5
gives corresponding results for the scaling collapse on choos-
ing Wc = 3.5 and 4. As seen, the quality of scaling is quite
robust to the variation in Wc.

APPENDIX C: CONVERGENCE OF THE DATA WITH THE
NUMBER OF FS SITES AND DISORDER REALIZATIONS

We first verify that the statistics of the imaginary part of
the self-energy (�I ) is not affected by considering only the
middle slice of the Fock space to generate the distribution. For
both the ergodic and MBL phases, Fig. 6 gives a representative
example of the fact that the distributions of �I [P(�I ) or
P(�I/η)] are barely affected whether one considers I ∈ M or
I ∈ all Fock-space sites.

In Table I, we show the number of disorder realizations
considered for different sizes to generate the distributions
of diagonal elements of the Green’s function. Due to finite
computational time and resources, we follow the standard path
of decreasing number of disorder realizations with increasing
system size [17,20,25,35].

In Fig. 7, we show the relative change in the same quantity
with respect to the value of ln �t for the largest sample size
for all system sizes. The relative change is always less than
1% of the values plotted in Fig. 1(b), even for smaller sample
sizes for all system sizes up to L = 22.

However, the quantity �I is not expected to be self-
averaging, i.e., there can be sample-to-sample fluctuations

even in the thermodynamic limit. This kind of phenomenon
is well known for conductance and its universal sample-
to-sample fluctuations in studies [68,69] of single-particle
Anderson localization. Still, a scaling theory for the Anderson
localization transition can be constructed using the typical or
average value of the conductance [69]. In a similar spirit,
we consider the typical value of �I , and find its value to
be converged within the disordered realizations considered
(Table I). We have also verified that the distributions do not
change further with an increasing number of disorder realiza-
tions. Figure 8 shows the convergence of ln �t for different
system sizes at three different disorder strengths, W = 1.0
(in the thermal phase), 4.0 (near the critical point), and 6.0
(in the MBL phase). The x axis represents the fraction of
the maximum number of disorder samples considered for the
calculation of ln �t as shown in Table I. For example, for
L = 18 the disorder sample size is changed from 400 to 1000
in steps of 100.

Figure 9 shows the convergence of the distribution of ln �I

over different samples and Fock space sites belonging to the
middle slice, for system sizes L = 18, 20, and 22. We show
here only the convergence for W = 4.0, although the con-
vergence holds for all the disorder strengths. We would also
like to emphasize that the typical value �t for the local FS
self-energy �I is obtained by averaging over both disorder
realizations and FS sites I in the middle slice of the FS lattice
[Fig. 1(a)]. Since the number of sites in the middle slice
increases exponentially with system size, the effective number
of samples, albeit not independent, over which statistics is
accumulated, is ∼106 for L � 14; see Table I. This leads to �t

and P(ln �I ) converging quite rapidly for larger system sizes
like L = 22 even when the number of independent disorder
realizations is smaller for larger L, as we demonstrate here.
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[12] M. Žnidarič, T. Prosen, and P. Prelovšek, Many-body localiza-
tion in the Heisenberg XXZ magnet in a random field, Phys.
Rev. B 77, 064426 (2008).

[13] A. Pal and D. A. Huse, Many-body localization phase transition,
Phys. Rev. B 82, 174411 (2010).

[14] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded
Growth of Entanglement in Models of Many-Body Localiza-
tion, Phys. Rev. Lett. 109, 017202 (2012).

[15] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-Body
Localization in a Disordered Quantum Ising Chain, Phys. Rev.
Lett. 113, 107204 (2014).
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