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Abstract—In this paper, we provide a framework for con-
structing entanglement-assisted quantum error-correcting codes
(EAQECCs) from classical additive codes over a finite com-
mutative local Frobenius ring. We give a formula for the
minimum number of entanglement qudits required to construct
an EAQECC from an additive code over a finite Galois ring.
This significantly extends known results for EAQECCs over finite
fields.

I. INTRODUCTION

Quantum error-correcting codes (QECCs) protect quantum
states against decoherence caused by the interaction between
quantum states and their environment. The stabilizer frame-
work, proposed by Gottesman [5], is one of the main mecha-
nisms for constructing QECCs. The construction is based on
abelian subgroups of the Pauli group, and the resulting QECCs
are called quantum stabilizer codes. The stabilizer framework
encompasses the first QECC constructed by Shor [13], as
well as the construction from classical error-correcting codes,
discovered independently by Calderbank and Shor [3] and
Steane [15]. The Calderbank-Shor-Steane (CSS) construction
uses dual-containing (or self-orthogonal) classical codes to
form QECCs. Originally developed for qubits, the stabilizer
framework was subsequently extended to higher-dimensional
qudit spaces. The (Pauli) error group in this case is generated
by unitary operators whose actions on qudits are defined
by the algebra of an underlying finite field or ring. The
extension of the stabilizer framework to error groups defined
via finite fields was executed by Ashikhmin and Knill [1],
and Ketkar et al. [9], while the same was done for finite
commutative Frobenius rings by Nadella and Klappenecker
[11], and Gluesing-Luerssen and Pllaha [7].

The stabilizer formalism was extended in a different direc-
tion by Brun et al. [2], who gave a method of constructing
QECCs (over qubits) from non-abelian subgroups of the Pauli
group. The idea here was to add more dimensions to the Pauli
group, so as to introduce extra degrees of freedom that can be
used to “abelianize” the original non-abelian subgroup. The
code construction required the existence of a small number
of pre-shared entanglement qubits between the sender and
receiver, where the receiver-end qubits are assumed to be
error-free throughout. As a consequence, these codes were
called entanglement-assisted quantum error correcting codes
(EAQECCs). Within this framework, any classical binary
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linear code can be used as the starting point for constructing
an EAQECC. Wilde and Brun [16] determined the minimal
number of shared qubits required to construct an EAQECC
starting from a given binary linear code, and more generally,
starting from a given non-abelian subgroup of the Pauli group.

The theory of EAQECCs extends readily to qudit spaces
for which the (Pauli) error groups are defined by finite fields.
Indeed, Wilde and Brun observe in [16, Remark 1] that their
formula for the minimum number of shared qudits also applies
to EAQECCs constructed from linear codes over any prime
field; a formal proof of this was given by Luo et al. [10]. Later,
Galindo et al. [4] verified that this formula also applied to
EAQECCs obtained from linear codes over an arbitrary finite
field Fq . More recently, Nadkarni and Garani [12] derived
an analogous formula for EAQECCs constructed from Fp-
additive codes over Fq , where p is the characteristic of Fq .

In this paper, we extend the EAQECC formalism to qudit
spaces on which error actions are defined by finite local
commutative Frobenius rings. This enables us to construct
EAQECCs starting from classical additive codes over such
rings, which are overall a much richer class of (classical)
codes. It must be pointed out here that Lee and Klappenecker
[6] have previously studied EAQECCs over finite commutative
(but not necessarily local) Frobenius rings. However, their
EAQECC construction relies crucially on Theorem 5 of their
paper, in the proof of which we found a gap that could
not readily be filled — see Remark III.1. By restricting
our attention further to local rings, we prove the necessary
result (Theorem III.1) for the construction of EAQECCs.
Thus, one of the contributions of this paper is to provide a
coding-theoretic framework to construct EAQECCs over finite
commutative local Frobenius rings from first principles.

We also attempt to obtain the minimum number of pre-
shared entanglement qudits required to construct an EAQECC,
starting from an additive code over such a ring. We succeed
in deriving this number for the special case of EAQECCs over
finite Galois rings. To get to the answer, we had to first derive
it for the basic case of the integer rings Zps , which itself turned
out to be a non-trivial task.

This paper is organized as follows. In Section II, we estab-
lish the basic definitions and notation needed to describe the
construction of quantum stabilizer codes and EAQECCs. This
section also contains statements of our main results. In Section
III, we provide the means to construct EAQECCs from any
additive code over a finite commutative local Frobenius ring.
In Section IV, we derive our formula for the minimum number
of pre-shared entanglement qudits required to construct an
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EAQECC over the ring Zpa . Some directions of future work
are suggested in Section V.

II. PRELIMINARIES

Let R be a finite commutative ring with unity. Let
Hom(R,C∗) be the set of all additive characters of R, i.e., the
set of group homomorphisms from (R,+) to C∗. A ring R is
called a Frobenius ring if there exists an additive character χ
such that Hom(R,C∗) = R.χ. Any additive character with this
property is called a generating character of R. Finite fields,
the rings ZN of integers modulo N, Galois rings and finite
chain rings are a few examples of finite Frobenius rings.

Throughout this section, let R be a finite commutative local
Frobenius ring with generating character χ. Further, as R is
a finite commutative local ring, the characteristic, charR, of
R is a power of a prime number, and the cardinality, |R|,
of R is also a power of prime number. Let |R| = pa = q,
and charR = pb, where p is a prime. Furthermore, let ζ ∈
C∗ be a primitive pb-th root of unity. Then χ(r) ∈ 〈ζ〉 =

{1, ζ, ζ2, . . . , ζpb−1} for each r ∈ R.
A subset C ofRn is called an additive code overR of length

n if C is an additive subgroup of Rn. Clearly, C ⊆ Rn is an
additive code if and only if C ⊆ Rn is a module over Zpb . The
rank of C is defined as the minimum number of generators of
C as a Zpb -module, and is denoted by rank(C).

The symplectic weight of a vector (x, y) =
(x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ R2n, denoted by wts(x, y),
is defined as wts(x, y) = |{i | (xi, yi) 6= 0}|. The minimum
symplectic distance ds(A) of a subset A of R2n is defined as
ds(A) = min{wts(a) | a ∈ A \ {0}}. The symplectic inner
product on R2n is defined as 〈(a, b)|(a′, b′)〉s := ba′ − b′a
for a, b, a′, b′ ∈ Rn. (Here ba′ and b′a are the dot products
in Rn.)

Definition II.1. For an additive code C of R2n, the symplectic
dual C⊥s of C is defined by

C⊥s = {v ∈ R2n | 〈c|v〉s = 0 for all c ∈ C}.

We also define

C⊥χ = {v ∈ R2n | χ(〈c|v〉s) = 1 for all c ∈ C}.

Note that C⊥χ is also an additive code of R2n.

Definition II.2. Let C ⊆ R2n be an additive code over R.
• A code C′ ⊆ R2(n+c) is called a χ-self-orthogonal

extension of C if C′ ⊆ C′⊥χ , and C can be obtained from
C′ by puncturing C′ at the coordinates n+1, n+2, . . . , n+
c, 2n+1, 2n+2, . . . , 2n+2c. The number c is called the
entanglement degree.

• A χ-self-orthogonal extension of the code C with the least
entanglement degree among all such extensions is called
a minimal χ-self-orthogonal extension of C. The entan-
glement degree of a minimal χ-self-orthogonal extension
of C is called the minimum entanglement degree of C.

Briefly, the reason for the nomenclature of “entanglement
degree” is that this is the number of entanglement qudits
needed in the construction of an EAQECC from C.

Lemma II.1 ([11], Lemma 6). For an additive code C ⊆ R2n,
we have |C||C⊥χ | = |R2n|.

A. Quantum stabilizer codes over local Frobenius rings

Let B = {|x〉 | x ∈ R} be an orthonormal basis of Cq.
The state of a unit system, a qudit, is a superposition of these
basis states of the system and is given by

|ψ〉 =
∑
x∈R

ax|x〉, where ax ∈ C and
∑
x∈R
|ax|2 = 1.

An orthonormal basis of the quantum state space of n qudits
Cqn = (Cq)⊗n is given by B⊗n = {|x〉 = |x1〉⊗ |x2〉⊗ · · · ⊗
|xn〉 | x = (x1, x2, . . . , xn) ∈ Rn}.

For a ∈ R, define two linear maps X(a) and Z(b) on
Cq by their action on the basis B as X(a)(|x〉) = |x +
a〉 and Z(a)(|x〉) = χ(ax)|x〉 for all x ∈ R. Extend these
maps to unitary maps on Cqn as X(a) = X(a1) ⊗X(a2) ⊗
· · · ⊗ X(an) and Z(a) = Z(a1) ⊗ Z(a2) ⊗ · · · ⊗ Z(an) for
a = (a1, a2, . . . , an) ∈ Rn. Clearly, X(a)(|x〉) = |x+ a〉 and

Z(a)(|x〉) = χ(ax)|x〉 for all a, x ∈ Rn, where ax =
n∑
i=1

aixi

is the dot product in Rn. A set En(R) := {X(a)Z(b)|a, b ∈
Rn} is called an error basis of the n-qudit error group. To
define the n-qudit error group, called as the Pauli group, let
us fix some notations first. Let

N =

{
pb if p is odd;
2pb if p is even.

Further, let ω ∈ C∗ be a primitive N -th root of unity.

Definition II.3. [7] The Pauli group Pn(R) is defined as

Pn(R) := {ω`X(a)Z(b) | 0 ≤ ` ≤ N − 1, a, b ∈ Rn}.

Define a map Ψ : Pn(R) → R2n as Ψ(ω`X(a)Z(b)) =
(a, b). The map Ψ is a surjective group homomorphism with
ker Ψ = {ω`I | 0 ≤ ` ≤ N − 1}.

The weight of an operator ω`X(a)Z(b) = ω`X(a1) ⊗
X(a2)⊗· · ·⊗X(an)Z(a1)⊗Z(a2)⊗· · ·⊗Z(an) ∈ Pn(R) is
defined as wt(ω`X(a)Z(b)) = |{i | (ai, bi) 6= 0}|. That is, the
weight of an operator is defined as the number of non-scalar
components of the tensor product that forms the operator.

A quantum error correcting code is a K-dimensional sub-
space of Cqn . A quantum code has minimum distance D if
it can detect all errors of weight less than equal to D − 1
and cannot detect some error of weight D. A quantum code
Q ⊆ Cqn of dimension K and minimum distance D is referred
to as an ((n,K,D))q quantum code. The subscript q may be
dropped if there is no ambiguity.

Definition II.4. [7]
(a) A subgroup S of Pn(R) is called a stabilizer group if S

is abelian and S ∩ ker Ψ = {Iqn}.
(b) A subspace Q of Cqn is called a quantum stabilizer

code if there exists a stabilizer group S such that Q =
Q(S) := {|x〉 ∈ Cqn | V |x〉 = |x〉 for all V ∈ S}.
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It is well known that set of undetectable errors for a quantum
stabilizer code Q(S) are those which commute with all the
elements of S but are not the elements of S (by ignoring the
overall phase factor of the error and of the elements of S).

B. EAQECCs over local Frobenius rings

Quantum stabilizer codes can be constructed only from
abelian subgroups of Pn(R). To construct QECCs from
non-abelian subgroups of Pn(R), there is a framework
of entanglement-assisted quantum error correcting codes
(EAQECCs), which involves the use of maximally entangled
states shared between the transmitter and the receiver. Brun
et al. [2] first proposed this construction from non-abelian
subgroups of Pn(Z2). The basic idea of Brun et al. can be
extended to construct EAQECCs from non-abelian subgroups
of Pn(R). For this, we need a method to extend a non-abelian
subgroup of Pn(R) into an appropriate higher dimensional
space to form an abelian group. To this end, we first note
that if S is a subgroup of Pn(R), then Ψ(S) ⊆ R2n

is an additive code over R. Moreover, by Lemma 3.2 of
Gluesing-Luerssen and Pllaha [7], we see that an operator
P = ω`X(a)Z(b) ∈ Pn(R) commutes with elements of
the subgroup S if and only if χ(ba′ − b′a) = 1 for each
ω`
′
X(a′)Z(b′) ∈ S. From this, we observe that if V1 ∈ Pn(R)

commutes with all elements of S, then Ψ(V1) ∈ Ψ(S)⊥χ .
Thus, extending S to make it an abelian subgroup S ′ of

Pn+c(R) for some c is equivalent to extending C := Ψ(S)
to C′ := Ψ(S)′ ⊆ R2(n+c) such that C′ ⊆ C′⊥χ , In other
words, it is equivalent to constructing a χ-self-orthogonal
extension C′ ⊆ R2(n+c) of the additive code C ⊆ R2n. In
Theorem III.2, we provide a method to construct such a χ-
self-orthogonal extension. Then, in Theorem III.3, we give
a construction of an ((n + c, qn+c/|C|)) quantum stabilizer
code from C′, which will be the desired EAQECC. As in
the Brun et al. framework, the c extra qudits involved in the
construction are entanglement qudits assumed to be residing
error-free at the receiver end. This quantum code is referred
to as an ((n, qn+c/|C|; c)) EAQECC over R.

As the receiver-end qudits are assumed to be maintained
error-free, we note that if E = ω`X(a, a′)Z(b, b′) ∈
Pn+c(R), with a, b ∈ Rn, a′, b′ ∈ Rc, is an error op-
erating on the transmitted codeword, then we must have
a′ = b′ = (0, 0, . . . , 0) ∈ Rc. Thus, only errors of the form
ω`X(a, 0)Z(b, 0) ∈ Pn+c(R), with a, b ∈ Rn, are assumed
to occur in this model. We then say that an ((n, qn+c/|C|; c))
EAQECC has minimum distance D if it can detect all errors
of the form ω`X(a, 0)Z(b, 0) ∈ Pn+c(R), with a, b ∈ Rn, of
weight at most D − 1, but it cannot detect some error of this
form of weight D. Such a quantum code is referred to as an
((n, qn+c/|C|, D; c)) EAQECC over R.

C. A summary of our main results

In this paper, we provide a coding-theoretic framework to
construct EAQECCs over R. To do that, we provide a method
to construct EAQECCs over R from classical additive codes
over R, and the main result is as follows:

Theorem II.1. Let C ⊆ R2n be an additive code, i.e., C is a
module over Zpb . From C, we can construct an ((n,K,D; c))
EAQECC over R, where the number of entanglement qudits
needed is c = 1

2 rank(C/(C ∩ C⊥χ)), the minimum distance is

D =

{
ds(C⊥χ) if C⊥χ ⊆ C
ds(C⊥χ \ C) otherwise ,

and the dimension K is bounded as
qn+c/(|C| p

∑b−1
t=1 (b−t)ρt) ≤ K ≤ qn+c/|C|, the ρt’s being

numbers determined by a certain chain of subcodes of C.
Additionally, if C is free (i.e., it is a free module over Zpb ),
then K = qn+c/|C|.

This result is a direct consequence of Theorems III.2 and
III.3 stated in the next section, and proved in the extended
version of this paper [14]. The precise expression for the
numbers ρt can also be found in [14].

Our second main result is an explicit formula for the
minimum number of pre-shared entanglement qudits required
to construct an EAQECC from an additive code over a Galois
ring. This theorem significantly extends the results of Galindo
et al. [4] and Nadkarni and Garani [12] obtained for EAQECCs
from additive codes over finite fields.

Theorem II.2. Let C ⊆ GR(pb,m)2n be an additive code
over the Galois ring GR(pb,m). From C, we can construct an
((n,K,D; c)) EAQECC over GR(pb,m), where the minimum
number, c, of entanglement qudits needed for the construction
is equal to

⌈
1

2m rank(C/(C ∩ C⊥Tr))
⌉
, the minimum distance

is
D =

{
ds(C⊥Tr) if C⊥Tr ⊆ C
ds(C⊥Tr \ C) otherwise ,

and the dimension K is bounded as
pbm(n+c)/(|C| p

∑b−1
t=1 (b−t)ρt) ≤ K ≤ pbm(n+c)/|C|, the ρt’s

being numbers determined by a certain chain of subcodes of
C. Additionally, if C is free, then K = pbm(n+c)/|C|.

In the statement of the theorem above, C⊥Tr = {v ∈
GR(pb,m)2n : Tr(〈v|c〉s) = 0 ∀ c ∈ C} is the trace-symplectic
dual of C, defined with respect to the generalized trace map
Tr : GR(pb,m)→ Zpb . The proof of the theorem relies on the
machinery of the generalized trace map Tr, and the existence
of bases of GR(pb,m) as a free module over Zpb , that are
dual with respect to Tr. We refer the reader to the extended
version of this paper [14] for the details of the proof, along
with an exact expression for the numbers ρt in the statement
of the theorem. For the special case of the integer ring Zpa ,
we sketch a proof of the result (Theorem IV.1) in Section IV.

III. CONSTRUCTING EAQECCS OVER LOCAL FROBENIUS
RINGS

In this section, we sketch out the method for constructing
EAQECCs from additive codes over a finite commutative
local Frobenius ring R with generating character χ. At the
heart of the construction is a mechanism to obtain a χ-self-
orthogonal extension C′ of an additive code C. We start with
some definitions.
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Definition III.1. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of
R2n is said to be a symplectic subset of R2n if χ(〈ai1 |
aj1〉s) = χ(〈ai2 | aj2〉s) = χ(〈ai1 | ak2〉s) = 1 and χ(〈ai1 |
ai2〉s) 6= 1 for all i, j, k ∈ {1, 2, . . . , e} with i 6= k.

Definition III.2. Let C ⊆ R2n be an additive code, i.e.,
C ⊆ R2n be a module over Zpb . Further, let G be a minimal
generating set of C ⊆ R2n as a Zpb -module.
• A generator g ∈ G is called an isotropic generator if
χ(〈g|h〉s) = 1 for all h ∈ G.

• Two generators g, g′ ∈ G are called a hyperbolic pair if
χ(〈g|g′〉s) 6= 1, χ(〈g|h〉s) = 1 for all h ∈ G \ {g′}, and
χ(〈g′|h)〉s) = 1 for all h ∈ G \ {g}.

Note that a generator is isotropic iff it belongs to C⊥χ . Thus,
an additive code C ⊆ R2n with a generating set G is χ-self-
orthogonal iff all the generators in G are isotropic.

Proposition III.1. Let C ⊆ R2n be an additive code with
a generating set containing e hyperbolic pairs, ui1, ui2,
i = 1, 2, . . . , e, with the remaining generators being
isotropic. Then, C has a χ-self-orthogonal extension C′ ⊆
R2(n+c) if and only if there is a symplectic subset
{a11, a12, a21, a22, . . . , ae1, ae2} ⊂ R2c of cardinality 2e such
that χ(〈ui1 | ui2〉s) = χ(〈ai1 | ai2〉s) for i = 1, 2, . . . , e.

Proof. Let G = {u11, u12, . . . , ue1, ve2, z1, . . . , zd} be a gen-
erating set of C, with z1, . . . , zd being the isotropic generators.
As the generators live in R2n, we can write them as

ui1 = (vi, wi) and ui2 = (xi, yi) for i = 1, 2, . . . , e,

and zj = (ve+j , we+j) for j = 1, 2 . . . , d, where each of the
components ui, vi, xi, yi lies in Rn.

Now, suppose that {a11, a12, a21, a22, . . . , ae1, ae2} ⊂ R2c

is a symplectic subset such that χ(〈ui1 | ui2〉s) = χ(〈ai1 |
ai2〉s) for i = 1, 2, . . . , e. Let ai1 = (bi, ci) and ai2 = (ri, si),
the components being from Rc. We then extend the compo-
nents ui, vi, xi, yi of the generators in G to u′i, v

′
i, x
′
i, y
′
i ∈

Rn+c as follows: v′i = (vi,−bi), w′i = (wi, ci), x′i =
(xi,−ri), y′i = (yi, si) for i = 1, 2, . . . , e, and and v′i =
(vi, 0), w′i = (wi, 0) for i = e+1, . . . , e+d, where 0 is the zero
element of Rc. Finally, set u′i1 := (v′i, w

′
i) and u′i2 = (x′i, y

′
i)

for i = 1, 2, . . . , c, and z′j = (v′e+j , w
′
e+j) for j = 1, 2 . . . , d.

Then, G′ = {u′11, u′12, . . . , u′e1, v′e2, z′1, . . . , z′d} generates an
additive code C′ ⊆ R2(n+c), and the generators in G′ are
all isotropic. For instance, 〈u′i1 | u′i2〉s = v′iy

′
i − w′ix

′
i =

viyi − bisi − (wixi − ciri) = 〈ui1 | ui2〉s − 〈ai1 | ai2〉s,
so that

χ(〈u′i1 | u′i2〉s) = χ(〈ui1 | ui2〉s) ·
(
χ(〈ai1 | ai2〉s)

)−1
= 1.

It follows that C′ is a χ-self-orthogonal extension of C.
The straightforward proof of the converse part can be found

in the extended version of this paper [14].

From the above proof, we see that a χ-self-orthogonal
extension C′ ⊆ R2(n+c) of an additive code C ⊆ R2n can
be constructed in two steps:

(1) Find a generating set G of the additive code C ⊆ R2n as
a Zpb -module, consisting of a set of hyperbolic pairs of
generators and a set of isotropic generators.

(2) Find a symplectic subset of R2c, for some suitable choice
of c, satisfying the property required by Proposition III.1.
The desired code C′ can be generated by the set G′ ob-
tained by extending the generators in G by 2c coordinates
as prescribed in the proof of the proposition.

In the following theorem, we provide a method to obtain a
generating set of the form required by Step (1) above.

Theorem III.1. Let C ⊆ R2n be an additive code. There exists
a generating set of C as a Zpb -module, that consists only of
isotropic generators and hyperbolic pairs, and the number, c,
of hyperbolic pairs satisfies 2c = rank(C/(C ∩ C⊥χ)).

Remark III.1. We point out here that Lee and Klappenecker
stated a result [6, Theorem 5] that is analogous to our theorem.
However, we found a gap in the proof of [6, Theorem 5] that
could not readily be filled, namely, that replacing wk with
w′k−2 = ek,iwk − · · · may not result in a basis of R2n, as
ek,i may not be a unit in the ring R.

Proof of Theorem III.1. Let π : C → C/(C ∩ C⊥χ)
be the canonical projection map that takes
(v, w) ∈ C to the coset (v, w) + (C ∩ C⊥χ). Let
T = {(a1, b1), (a2, b2), . . . , (af , bf )} ⊆ C be such that
π(T ) := {π((a1, b1)), π((a2, b2)), . . . , π((af , bf ))} is a
minimal generating set of C/(C ∩ C⊥χ) as a Zpb -module.
Thus, |T | = |π(T )| = rank(C/(C ∩ C⊥χ)). Further, let S be
a minimal generating set of the additive code C ∩C⊥χ ⊆ R2n

as a Zpb -module. It is easy to verify that S ∪ T generates C.
Since the generators in S belong to C⊥χ , they are all

isotropic. We will not tamper with S; instead, we will bring
T into hyperbolic-pair form. For 1 ≤ i, j ≤ f, χ(biaj − bjai)
is a pb-th root of unity, so let χ(biaj − bjai) = ζ`i,j , where
ζ = exp( 2πi

pb
) and 0 ≤ `i,j < pb. Further, for 1 ≤ i, j ≤ f,

we note that χ(bjai − biaj) = χ(biaj − bjai)−1, which gives
`i,j ≡ −`j,i (mod pb). For each i ∈ {1, 2, . . . , f}, we must
have `i,j 6= 0 for some j ∈ {1, . . . , f}; otherwise, (ai, bi) is
in C ∩ C⊥χ , so that π((ai, bi)) = C ∩ C⊥χ , contradicting the
minimality of π(T ).

Let `t,u with t, u ∈ {1, 2, . . . , f} be such that

gcd(`t,u, p
b) = min{gcd(`i,j , p

b) : `i,j 6= 0 and 1 ≤ i, j ≤ f}.

Clearly, gcd(`t,u, p
b) divides gcd(`i,j , p

b) for 1 ≤ i, j ≤
f. As `t,u 6= 0, we have χ(btau − buat) 6= 1. Swap
(a1, b1) and (a2, b2) with (at, bt) and (au, bu), respectively.
For 3 ≤ i ≤ f, replace (ai, bi) with (ai

′, bi
′) = (ai, bi) +

ui (a1, b1) + vi (a2, b2), where ui and vi are solutions of the
linear equations

`1,2ui ≡ `2,i(mod pb) and `1,2vi ≡ −`1,i(mod pb).

Such ui and vi always exist, since gcd(`1,2, p
b)

divides `2,i and `1,i. By doing this, we get a new set
T1 = {(a1, b1), (a2, b2), (a3

′, b3
′), . . . , (af

′, bf
′)} such

that χ(b2a1 − b1a2) 6= 1, χ(bj
′a1 − b1aj

′) = 1, and
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χ(bj
′a2 − b2aj

′) = 1 for j ∈ {3, 4, . . . , f}. In other
words, (a1, b1) and (a2, b2) form a hyperbolic pair. Since
T is recoverable from T1, we see that S ∪ T1 also
generates C. Moreover, π(T ) is recoverable from π(T1) :=
{π((a1, b1)), π((a2, b2)), π((a3

′, b3
′)), . . . , π((af

′, bf
′)), so

π(T1) is also a minimal generating set of C/(C ∩ C⊥χ). In
particular, |T1| = |π(T1)| = rank(C/(C ∩ C⊥χ)).

Repeatedly applying the above process to the genera-
tors (a3

′, b3
′), . . . , (af

′, bf
′), we will eventually obtain a set

T ′ = {(v1, w1), . . . , (vc, wc), (x1, y1), . . . , (xc, yc)} such that
(vi, wi) and (xi, yi), i = 1, 2, . . . , c, are hyperbolic pairs,
S ∪ T ′ generates C, and π(T ′) is a minimal generating set
of C/(C ∩ C⊥χ). In particular, 2c = |T ′| = |π(T ′)| =
rank(C/(C ∩ C⊥χ)).

For the second step in the construction of a χ-self-
orthogonal extension of an additive code C, we need a suitable
symplectic subset. Such a subset can always be obtained from
the generating set of C guaranteed by Theorem III.1, a fact
that is shown the proof of the theorem below.

Theorem III.2. Let C ⊆ R2n be an additive code, i.e.,
a module over Zpb . Then there exists a χ-self-orthogonal
extension C′ ⊆ R2(n+c) of C with entanglement degree c
equal to 1

2 rank(C/(C ∩ C⊥χ)), whose size can be bounded
as |C| ≤ |C′| ≤ |C| · p

∑b−1
t=1 (b−t)ρt , the ρt’s being numbers

determined by a certain chain of subcodes of C. Moreover, if
C is a free module over Zpb , then |C′| = |C|.

Proof. See the extended version of this paper [14].

Finally, the proof of the next theorem provides the formal
construction of an EAQECC from the χ-self-orthogonal ex-
tension of C guaranteed by Theorem III.2.

Theorem III.3. Let C ⊆ R2n be an additive code over R,
and let C′ ⊆ R2(n+c) be the χ-self-orthogonal extension of C
with entanglement degree c, as constructed in Theorem III.2.
Then, there exists an ((n, qn+c/|C′|, D; c)) EAQECC, where

D =

{
ds(C⊥χ) if C⊥χ ⊆ C ;
ds(C⊥χ \ C) otherwise .

Proof. See the extended version of this paper [14].

Observe that Theorem II.1 follows immediately from The-
orems III.2 and III.3.

IV. EAQECCS OVER THE RING Zpa

The aim of this section is to sketch a proof of the following
special case of Theorem II.2.

Theorem IV.1. Let C ⊆ Z2n
pa be a submodule. From C, we

can construct an ((n,K,D; c)) EAQECC over Zpa , where the
minimum number, c, of entanglement qudits needed for the
construction is equal to 1

2 rank(C/(C ∩ C⊥s)), the minimum
distance is

D =

{
ds(C⊥s) if C⊥s ⊆ C
ds(C⊥s \ C) otherwise ,

and the dimension K is bounded as
pa(n+c)/(|C| p

∑b−1
t=1 (b−t)ρt) ≤ K ≤ pa(n+c)/|C|, the ρt’s

being numbers determined by a certain chain of subcodes of
C. Additionally, if C is free, then K = pa(n+c)/|C|.

To prove the result, we need an upper bound on the
cardinality of a symplectic subset of Z2n

pa . In fact, we give an
upper bound for the more general notion of a quasi-symplectic
subset of Z2n

pa , defined below. Note that χ(z) = e
2πi
pa z is

a generating character of the ring Zpa , and in particular,
χ(z) = 1 iff z = 0. Thus, a symplectic subset (Definition III.1)
of Zpa is a special case of a quasi-symplectic subset, obtained
by setting J = ∅ in the following definition.

Definition IV.1. A subset {a11, a12, a21, a22, . . . , ae1, ae2} of
Z2n
pa is said to be a quasi-symplectic subset if

(a) 〈ai1, aj1〉s = 〈ai1, ak2〉s = 0 for all i, j, k ∈ {1, 2, . . . , e}
with i 6= k.

(b) there exists a subset J of {1, 2, . . . , e} such that
〈ai1, ai2〉s 6= 0 for all i 6∈ J , and {aj1 mod p}j∈J is
a linearly independent set over Zp.

In the following theorem, we provide an upper bound on
the size of a quasi-symplectic subset of Z2n

pa .

Theorem IV.2. If {a11, a12, a21, a22, . . . , ae1, ae2} is a quasi-
symplectic subset of Z2n

pa (and in particular, if it is a symplectic
subset), then e ≤ n.

Proof. The proof is by induction on a — see [14].

From this, we obtain an explicit formula for the minimum
entanglement degree of a submodule C ⊆ Z2n

pa .

Theorem IV.3. Any minimal χ-self-orthogonal extension of
a submodule C ⊆ Z2n

pa has entanglement degree equal to
1
2 [rank(C/(C ∩ C⊥s))].

Proof. For the generating character χ defined by χ(z) =
e2πiz/p

a

, we have χ(z) = 1 iff z = 0. Hence, C⊥χ = C⊥s .
Let cmin be the entanglement degree of a minimal χ-self-

orthogonal extension, C′, of C. By Theorem II.1, we have
cmin ≤ 1

2 [rank(C/(C ∩ C⊥s))]. On the other hand, from
Theorem III.1, C has a generating set with c = 1

2 [rank(C/(C ∩
C⊥s))] hyperbolic pairs. Then, by Proposition III.1, there is
a symplectic subset of Z2cmin

pa of cardinality 2c. Hence, by
Theorem IV.2, we have c ≤ cmin, as desired.

Observe that Theorem IV.1 follows immediately from The-
orems III.3 and IV.3.

V. FUTURE WORK

An interesting direction of future work would be to extend
our formula for the minimum number of pre-shared entan-
glement qudits to EAQECCs over general finite commutative
local Frobenius rings (beyond Galois rings). It would also be
useful to find constructions of EAQECCs over Frobenius rings
with good parameters, for example, codes that saturate the
generalized quantum Singleton bound applicable to EAQECCs
[8]. Finally, it would be of considerable interest to extend the
EAQECC framework to non-local Frobenius rings.
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