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Abstract—In this paper, we propose a strategy for mak-
ing DNA-based data storage information-theoretically secure
through the use of wiretap channel coding. This motivates us
to extend the shuffling-sampling channel model of Shomorony
and Heckel (2021) to include a wiretapper. Our main result is
a characterization of the secure storage capacity of our DNA
wiretap channel model, which is the maximum rate at which data
can be stored within a pool of DNA molecules so as to be reliably
retrieved by an authorized party (Bob), while ensuring that an
unauthorized party (Eve) gets almost no information from her
observations. Furthermore, our proof of achievability shows that
index-based wiretap channel coding schemes are optimal.

I. INTRODUCTION

In DNA-based storage, raw data (e.g., text) is converted into
sequences over an alphabet consisting of the building blocks
of DNA, namely, the four nucleotide bases, adenine (A),
guanine (G), thymine (T), and cytosine (C). The sequences
over the DNA alphabet are then physically realized by artifi-
cially synthesizing DNA molecules (called oligonucleotides,
or oligos, in short) corresponding to the string of A, G, T, C
letters forming the sequences. These synthetic DNA molecules
(oligos) can be mass-produced and replicated to make many
thousands of copies and the resulting pool of oligos can
be stored away in a controlled environment. At the time of
data retrieval, sequencing technology is used to determine
the A-G-T-C sequence forming each oligo from the pool.
Prior to sequencing, the pool of oligos is subjected to several
cycles of Polymerase Chain Reaction (PCR) amplification. In
each cycle of PCR, each molecule in the pool is replicated
(“amplified”) by a factor of 1.6–1.8. The PCR amplification
process requires knowledge of short initial segments (prefixes)
and final segments (suffixes) of the oligos to be amplified. This
knowledge is used to design the required primers to initiate
PCR amplification. After PCR, a small amount of material
from the amplified pool is passed through a sequencing plat-
form [1] that randomly samples and sequences (by patching
together “reads” of a relatively short length) the molecules
from the pool. The raw data is then retrieved from these
sequences.

While DNA-based data storage technology provides a re-
liable solution for long-term data storage, there often can
arise security issues. Suppose Alice wants to store using
DNA-based data storage some sensitive information which
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is to be retrieved later by a trusted party, Bob. A solution
to this problem is that Alice uses a private key K, which is
shared with Bob, to one-time pad her information W and then
store it into a pool of synthetic DNA oligonucleotides. But a
significant drawback of this scheme is that the size of the key
K should be comparable to the size of information W , which
is not practically feasible. Another simple solution, proposed
by Clelland et al. [2], is to design the oligos that encode W
in such a way that the keystring K can be converted to the
specific primers needed for initiating PCR-based amplification
of these oligos. Then, these oligos can be synthesized in
small amounts (low copy numbers), and then hidden within an
ocean of “background” or “junk” DNA. The background DNA
could, for example, be fragments from the human genome. A
vial containing the composite pool of information-bearing and
background DNA is stored in a DNA-storage repository.

Since Bob knows K, given the vial containing the compos-
ite oligo pool, he can provide the primers needed to selectively
amplify only the information-bearing oligos using PCR. After
several cycles of PCR, the copy numbers of these oligos in the
post-PCR sample become large enough that when the sample
is fed into a sequencing platform, each of these oligos get
a large number of reads. After filtering out the reads that
come from the background DNA (this is easily possible if the
background DNA is made up of human genome fragments),
the remaining reads correspond to the information-bearing
oligos. These reads can be assembled using standard sequence
assembly algorithms, after which their information content,
W , can be recovered by Bob.

Eve, on the other hand, does not know K, so is unable
to selectively amplify the information-bearing oligos. Instead,
her only option is to amplify the entire composite oligo
pool, including background DNA, using whole-library PCR.
(In whole-library PCR, known adapters are non-selectively
ligated onto the oligos in the pool, and the complementary
sequences of these adapters are used as primers to initiate
PCR.) However, this process does not discriminate between
information-bearing oligos and background DNA, so it does
not significantly change the proportion of information-bearing
molecules to background DNA. Since background DNA still
constitutes the overwhelming majority of molecules in the
amplified pool, it is highly unlikely that the information-
bearing oligos will get sufficiently many reads to get reliably
sequenced. This protects the data W from being reliably
recovered by Eve.

One issue is that Eve’s protocol will allow her to partially
recover the data W , which may be undesirable. This is
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Fig. 1. The basic strategy of secure DNA-based data storage.

possible even after just one round of sequencing, but if her
budget allows for multiple rounds of sequencing, then she can
use the sequences recovered from the first round to determine
some of the primers. She can then use these primers for
selective amplification in the next round of sequencing to
boost her chances of getting more information about W . The
more the rounds of sequencing she is allowed, the better she
can do.

A. Our proposed strategy: Using coding to boost security

What we propose is the use of coding to greatly (and
cheaply) improve upon the basic scheme above. As observed
above, the use of the shared key K as primers gives Bob
an advantage over Eve. In information-theoretic parlance, we
say that the use of primers creates a “channel” from Alice
to Bob that is much less noisy (much more reliable) than
the “channel” from Alice to Eve. In the area of information-
theoretic security, this situation is called a wiretap channel
[3], and the design of coding schemes for such a channel
is a well-investigated research topic – see e.g., [4], [5], [6].
These coding schemes greatly boost any advantage that Bob
has over Eve, however small it may initially be. To clarify, the
aim of a wiretap channel coding scheme is to enable Alice
to encode the data W into a codeword X (in our case, this
will be realized as a pool of oligos) such that the difference in
noise statistics between the Alice-Bob and Alice-Eve channels
can be exploited, as envisioned below:
(a) When X passes through the channel from Alice to Bob,

what Bob receives is a slightly noisy version of X , which
we denote by Y , from which he is able to recover the
data W highly reliably;

(b) but when X passes through the channel from Alice to
Eve, Eve observes a significantly noisier version Z, from
which she gets almost no information about the data W .

The proportion, ρ, of information-bearing molecules in the
composite pool is a knob that we can use to control the noise
statistics of Eve’s channel — see [7, Appendix A] for a brief
discussion of how ρ affects Eve’s probability of oligo erasure.
It is desirable to keep ρ small (10−3 or lower) so as to put
Eve at a significant disadvantage. But it cannot be so small
that the primers used to initiate PCR fail to find a sufficient
quantity of information-bearing molecules to amplify, causing
even Bob’s protocol to fail.

The advantages of our approach over the basic approach
are two-fold:
(i) Our scheme should be able to tolerate higher ratios ρ than

the basic scheme of Clelland et al. [2], as it is enough
to choose a ρ that gives a minor statistical advantage for
Bob over Eve. Higher ratios ρ will allow Bob’s protocol
to work much more reliably.

(ii) Wiretap channel coding is supposed to ensure that Eve
gets essentially no information about the data W , no
matter what strategy she uses to recover W from her
observations Z.

B. Main contribution

We build on the recent pioneering work of Shomorony and
Heckel [8] that models and determines the fundamental limits
of DNA-based data storage (but without any considerations
of security). In this work, data W is encoded in the form
of an oligo pool, which is viewed as a multiset X , each
element of which is a sequence of length L over the DNA
alphabet Σ = {A,C,G, T}. From the multiset X , a multiset
of N sequences is randomly drawn according to some fixed
probability distribution P . The P distribution encapsulates
the randomness inherent in the processes of oligo synthesis,
PCR amplification and sequencing. The resulting multiset, Y ,
of sequences is observed by the decoder, which attempts to
retrieve W from Y . This channel is referred to as a (noise-free)
shuffling-sampling channel with distribution P . Shomorony
and Heckel [8] studied the storage capacity of this model,
defined to be the maximum rate at which data W can be
stored in an oligo pool X , and reliably retrieved from the
observed multiset Y . Their study in fact extends to a noisy
model wherein the N sequences sampled from X may further
be corrupted by insertion, deletion and substitution errors
affecting the individual letters making up each sequence.

We extend the noise-free Shomorony-Heckel model above
by introducing an additional noise-free shuffling-sampling
channel with distribution Q for the unauthorized party (Eve).
Bob’s ability to selectively amplify information-bearing oligos
using his knowledge of primers allows us to assume that
the probability, q0, that a particular oligo is not seen by
Eve is larger than the corresponding probability, p0, for Bob.
We study the secure storage capacity, Cs, of the noise-
free shuffling-sampling model, which we define to be the
maximum rate at which data W can be stored in an oligo pool
X , and reliably retrieved from Bob’s observation Y , while
ensuring that Eve gets (almost) no information about W from
her observations. We completely characterize Cs, giving an
expression for it that depends only on q0 and p0.

II. DNA STORAGE WIRETAP CHANNEL MODEL

Let M denote the number of DNA molecules in the oligo
pool, and L denote the length of each molecule. Though
{A,C,G, T} is the alphabet of DNA coding, we work with
Σ := {0, 1} for the sake of simplicity. However, in the case of
general alphabet Σ, the results will involve an extra log2 |Σ|
term. Fix a constant β := limM→∞

L
logM > 1; throughout this
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paper, all logarithms are to the base 2. Let W be a uniform
random variable taking values in W ≜ {1, 2, . . . , 2MLR}
for some R ≥ 0. Alice encodes (maps) the message W
into M DNA molecules, each of length L, which is denoted
by a multiset XML = {XL

1 , . . . , X
L
M}. The stored XML

is amplified and sequenced to recover the message W . A
fundamental model that captures the cumulative effect of these
processes without errors is the noise-free shuffling sampling
channel with some distribution (π0, π1, . . .) [8]. This chan-
nel randomly permutes (shuffles) the order of the L-length
molecules, and independently outputs each molecule n ≥ 0
times with probability πn. The output of this channel is also
a multiset. We can use this model for the amplification and
synthesis at both Bob and Eve’s side. Hence Bob and Eve
observe multisets Y NmL = {Y L

1 , . . . , Y
L
Nm

} and ZNwL =
{ZL

1 , . . . , Z
L
Nw

}, respectively, which are obtained by passing
the input XML through two independent noise-free shuffling
sampling channels with distributions P = (p0, p1, . . .) and
Q = (q0, q1, . . .), respectively. See Fig. 2. The quantities1

Nm and Nw are random variables taking non-negative integer
values, and Y L

i , Z
L
j are elements of ΣL. The goal of Alice is

to store a message that can only be recovered by Bob while
keeping Eve in ignorance of it.

Formally, let ϕ : W −→ NΣL

be an encoding function (pos-
sibly a stochastic function) of Alice, and ψ : NΣL −→ W∪{e}
be a decoding function of Bob, where e denotes an error, and
NΣL

denotes the set of all multisets with finite cardinality over
ΣL. We say that a secure message rate R is achievable if there
exists a sequence of pairs of encoding and decoding functions
{(ϕ, ψ)}∞M=1 that satisfy Bob’s recoverability condition,

P{ψ(Y NmL) ̸=W} → 0, (1)

and the (strong) secrecy condition,

I(W ;ZNwL) → 0 (2)

as M → ∞. The secure storage capacity, Cs, is defined by

Cs ≜ sup{R : R is achievable} (3)

XML

Noise-free
shuffling sampling channel

P = (p0, p1, p2, . . .)

Noise-free
shuffling sampling channel

Q = (q0, q1, q2, . . .)

Y NmL

ZNwL

Fig. 2. DNA storage wiretap channel model

In the q0 = 1 case, where none of the molecules are
sampled by Eve’s channel, the secure storage capacity is
nothing but the storage capacity of Bob’s channel [8].

A useful fact about multisets is that they can be uniquely
identified with frequency vectors. Given a multiset A whose
elements are from a finite set A = {a1, . . . , a|A|}, we

1The subscripts ‘m’ and ‘w’ stand for “main” and “wiretap”, respectively.

denote by fA = [fA(a1), . . . , fA(a|A|)] the frequency vector
corresponding to A. For ai ∈ A, the component fA(ai)
counts the number of occurrences of ai in the set A. In a
slight abuse of notation, we use fX , fY and fZ to denote
the frequency (random) vectors corresponding to the multisets
XML, Y NmL and ZNwL, respectively, over ΣL. As frequency
vectors and multisets are interchangeable, the Markov chain
W −XML − (Y NmL, ZNwL) is equivalent to

W − fX − (fY , fZ) (4)

for any joint distribution that is induced by an encoding func-
tion. The components of a frequency vector will be typeset
in regular font, for example fX . Let h(x) denote the binary
entropy function, i.e, h(x) = −x log x−(1−x) log(1−x), for
x ∈ (0, 1). The n-dimensional probability simplex, denoted by

∆n, is defined as ∆n ≜
{
(x0, . . . , xn) ∈ Rn+1 :

n∑
i=0

xi = 1
}
.

III. SECURE STORAGE CAPACITY

Our main result is the following expression for the secure
storage capacity of our model.

Theorem 1. For a DNA storage wiretap channel with q0 ≥ p0,

Cs =

(
1− 1

β

)
(q0 − p0). (5)

Since the q0 = 1 case corresponds to the storage capacity of
Bob’s channel, we get the result [8, Theorem 1] as a corollary
of the above theorem.

Corollary 1 ([8], Theorem 1). The storage capacity of a
noise-free shuffling-sampling channel with the distribution
P = (p0, p1, . . .) is equal to

(
1− 1

β

)
(1− p0).

The remainder of this section is devoted to a proof of
Theorem 1, which we divide into an achievability part and
a converse part.

A. Achievability part

Alice encodes a message by using distinct indices for each
of the M sequences. The initial segment of length logM of
a sequence contains the index, and the rest of the sequence
is used to encode the message. However, since the index is
only used to order the molecules, the rate is scaled by a factor
of

(
1− 1

β

)
. The technique of indexing converts a noise-free

shuffling-sampling channel with distribution (π0, π1, . . .) into
a block-erasure channel (acting on a block of length L) with
erasure probability π0. As a result, both Bob and Eve’s chan-
nels are equivalent to erasure channels with erasure probabil-
ities ϵm = p0 and ϵw = q0, respectively. So, for this wiretap
channel, a rate of ϵw−ϵm = q0−p0 is achievable by encoding
a message securely using the random coding arguments of
[3], [9]. Though these techniques give a scheme satisfying
the weak secrecy condition, i.e., 1

MLI(W ;ZNwL) → 0, the
resulting secrecy can be strengthened to satisfy (2) by using
the ideas of [10]. Hence,(

1− 1

β

)
(q0 − p0) ≤ Cs. (6)
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B. Converse part

We prove the converse by considering a modified scenario.
In this new scenario, Bob has access to a (genie-aided) side
information S in addition to Y NmL. As the side information
can only increase the ability of Bob to recover the message,
the capacity of this scenario is at least Cs. For Eve, we weaken
her observations by providing her with a processed version of
ZNwL. Here, “processed version of ZNwL” means that it is a
random variable obtained by applying a stochastic function
(independent of everything else) to ZNwL. It is clear that
weakening Eve can only make the secrecy capacity larger,
so that

Cs ≤ Ĉs, (7)

where Ĉs is the secure storage capacity of the model with a
genie-aided Bob and a weaker Eve.

The side information S we give to Bob is the same as
that considered in the proof of [8, Theorem 1]: If Y L

i and
Y L
j , i ̸= j are two identical L-length molecules, then S

distinguishes whether they were sampled from the same input
molecule XL

k or from two identical input molecules XL
k1

and XL
k2

, k1 ̸= k2. Using (S, Y NmL), Bob can compute
the multiset ŶMmL ⊆ {XL

1 , . . . , X
L
M} that contains all the

molecules of XML that were sampled at least once. Here the
random variable Mm denotes the cardinality of the multiset.
Let fŶ denote the frequency vector corresponding to ŶMmL

over ΣL. Note that the distribution of (S, Y NmL) depends on
fX only through fŶ , which implies the Markov chain

W − fX − fŶ − (S, Y NmL). (8)

Instead of ZNwL, Eve has only access to ẐMwL, which is
the set of all distinct L-length molecules in ΣL that appear
in ZNwL. Let fẐ denote the frequency vector corresponding
to ẐMwL over ΣL. The entries of the frequency vector are
fẐ(ai) = 1{fZ(ai) > 0} for ai ∈ ΣL, which indicates
whether an L-length molecule appears in the multiset ZNwL

or not. By (4), we have W − fX − fZ − fẐ . While there are
other choices for Eve that provide a reasonable estimate for
XML through ZNwL (maximum likelihood (ML) estimate of
fX based on fZ is one such choice), we choose ẐMwL for the
purpose of simpler analysis.

Let us derive an upper bound on the secure storage capacity
Ĉs of the new scenario, where Bob has (S, Y NmL) and Eve
has ẐMwL. Suppose that R is an achievable secure message
rate for the new scenario, i.e., there exists a sequence of pair
of encoding and decoding functions {(ϕ, ψ)}∞M=1 that satisfy
Bob’s recoverability condition, P{ψ(Y NmL, S) ̸= W} → 0,
and the secrecy (strong) condition, I(W ; ẐMwL) → 0 as M →
∞. Then R can be upper bounded as follows.

MLR = H(W )

(a)

≤ I(W ;Y NmL, S) +MLRδM + 1

(b)

≤ I(W ;Y NmL, S)− I(W ; ẐNwL) + δ′M +MLRδM + 1

(c)

≤ I(W ; fŶ )− I(W ; fẐ) + δ′M +MLRδM + 1

where (a) is because of the inequality H(W | Y NmL, S) ≤
1 + MLRδM for δM → 0, which is a consequence of
Bob’s recoverability condition (1) and Fano’s inequality, (b)
follows from Eve’s secrecy condition (2) where δ′M → 0,
and (c) holds because of the data processing inequality
I(W ;Y NmL, S) ≤ I(W ; fŶ ) for the Markov chain (8), and
I(W ; ẐNwL) = I(W ; fẐ). We can rewrite the above upper
bound on R as

(1− δM )R− δ′′M ≤ 1

ML
[I(W ; fŶ )− I(W ; fẐ)] (9)

where δ′′M =
δ′M+1
ML → 0, δM → 0 and W − fX − (fŶ , fẐ).

1) Degradation of the frequency vector channels: The term
I(W ; fŶ )−I(W ; fẐ) in (9) depends on PfŶ ,fẐ |fX only through
the marginal distributions PfŶ |fX and PfẐ |fX . Hence, with no
loss in generality, we can work with a new coupled distribution
P̃fŶ ,fẐ |fX that has the same marginals as that of PfŶ ,fẐ |fX . For
that, first note that the conditional joint distribution PfŶ ,fẐ |fX
is PfŶ |fXPfẐ |fX because given fX , Bob’s side information
S depends only on the Bob’s noise-free shuffling-sampling
channel which is independent of Eve’s channel. Furthermore,
we can decompose the channel between fX and fŶ (or fẐ) into
|ΣL| i.i.d. channels, one for each of the components of the fre-
quency vectors, because the sampling process is independent
across all the DNA molecules (see Fig. 3). Since XML con-
tains M molecules, the input frequency vector is constrained

by
|ΣL|∑
i=1

fX(ai) = M . Let PfŶ fẐ |fX = PfŶ |fXPfẐ |fX denote

the channel transition probability between the components
fX(ai) and (fŶ (ai), fẐ(ai)), for ai ∈ ΣL. Since fŶ is a sum
of fX number of independent Ber(p0) random variables and
fẐ = 1{fZ > 0}, the channel transition probabilities are given
by

PfŶ |fX (j | i) =

{(
i
j

)
pi−j
0 (1− p0)

j , if j ≤ i and
0, otherwise

and

PfẐ |fX (j | i) =

{
qi0, if j = 0 and
1− qi0, if j = 1

where the alphabets for fX , fŶ and fẐ are {0, 1, . . . ,M},
{0, 1, . . . ,M} and {0, 1}, respectively.

Lemma 1. If q0 ≥ p0, then the channel PfẐ |fX is a degraded
version of PfŶ |fX , i.e., there exists a channel Q such that

PfẐ |fX (j|i) =
M∑
k=0

Q(j|k)PfŶ |fX (k|i)

for all i ∈ {0, 1, . . . ,M} and j ∈ {0, 1}.

A proof of the above lemma can be found in the
extended version of this paper [7]. By using Lemma 1,
we consider the coupled distribution P̃fŶ fẐ |fX = PfŶ |fXQ
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fX(a1)

...

fX(a|ΣL|)

PfŶ fẐ |fX

...

PfŶ fẐ |fX

fŶ (a1)

fẐ(a1)

...

fŶ (a|ΣL|)

fẐ(a|ΣL|)

Fig. 3. The channel between fX and (fŶ , fẐ) is decomposed into |ΣL| i.i.d.
channels between the components with transition probability Pf

Ŷ
f
Ẑ
|fX . The

input fX is constrained by
|ΣL|∑
i=1

fX(ai) = M .

for the component channels with the marginals PfẐ |fX and
PfŶ |fX . This type of coupling for all the component
channels yield a joint distribution that satisfy the
Markov chain W − fX − fŶ − fẐ . So, we can write
I(W ; fŶ )− I(W ; fẐ) = I(W ; fŶ | fẐ) ≤ I(fX ; fŶ | fẐ).

2) An upper bound in terms of the component channel

mutual information: For
|ΣL|∑
i=1

fX(ai) = M , carrying on from

(9), we have

(1− δM )R− δ′′M

≤ 1

ML
[I(W ; fŶ )− I(W ; fẐ)]

≤ 1

ML
I(fX ; fŶ | fẐ)

=
1

ML
[H(fŶ | fẐ)−H(fŶ | fX , fẐ)]

=
1

ML

|ΣL|∑
i=1

[
H(fŶ (ai) | fẐ , fŶ (a1), . . . fŶ (ai−1))

−H(fŶ (ai) | fX , fẐ , fŶ (a1), . . . fŶ (ai−1))
]

(a)

≤ 1

ML

|ΣL|∑
i=1

[
H(fŶ (ai) | fẐ(ai))

−H(fŶ (ai) | fX(ai), fẐ(ai))
]

(10)

=
1

ML

|ΣL|∑
i=1

I(fX(ai); fŶ (ai) | fẐ(ai))

=
|ΣL|
ML

|ΣL|∑
i=1

1

|ΣL|
I(fX(ai); fŶ (ai) | fẐ(ai)) (11)

(b)

≤ |ΣL|
ML

I(fX ; fŶ | fẐ) (12)

≤ |ΣL|
ML

sup f(m0, . . . ,mM ). (13)

where (a) follows from the fact that conditioning reduces
entropy and that fŶ (ai) is conditionally independent of
fX , fẐ , fŶ (a1), . . . fŶ (ai−1) given fX(ai) and fẐ(ai), and
(b) is a consequence of the fact that for a Markov chain
X − Y − Z, I(X;Y |Z) is a concave function in the dis-
tribution of X [11, Lemma 1]. The summation in (11)

is a convex combination of conditional mutual information
terms I(fX(ai); fŶ (ai) | fẐ(ai)) evaluated with respect to
an input distribution (m0(i), . . . ,mM (i)) ∈ ∆M where
mj(i) denotes the probability (induced by the encoder)
that the component fX(ai) equals j. One can verify that
|ΣL|∑
i=1

M∑
j=0

jmj(i) =M under the input constraint
|ΣL|∑
i=1

fX(ai) =

M . In (12), I(fX ; fŶ | fẐ) is evaluated at the input distribution

(m0, . . . ,mM ) = 1
|ΣL|

( |ΣL|∑
i=1

m0(i), . . . ,
|ΣL|∑
i=1

mM (i)
)

, which

satisfies the constraint
M∑
j=1

jmj =
M

|ΣL| , and the supremum of

f(m0, . . . ,mM ) := I(fX ; fŶ | fẐ) in (13) is over such input
distributions. By taking limits on both sides, we get the bound

Ĉs ≤ lim inf
M→∞

|ΣL|
ML

sup f(m0, . . . ,mM ) (14)

where, again, the supremum is over (m0, . . . ,mM ) ∈ ∆M

subject to
M∑
j=1

jmj = M
|ΣL| . For sufficiently large M ,

sup f(m0, . . . ,mM ) is bounded above by

h

(
M

|ΣL|
(1− p0)

)
− h

(
M

|ΣL|
(1− q0)

)
+ o

(
ML

|ΣL|

)
.

A proof of this bound is given in the extended version of this
paper [7]. By using this bound in (14), we obtain

Ĉs ≤
β − 1

β
lim inf
x→0

h((1− p0)x)− h((1− q0)x)

−x log x
(c)
=

(
1− 1

β

)
(q0 − p0),

where we set x := M
|ΣL| and use the fact that − log x

L =
L−logM

L → 1 − 1
β as M → ∞, and the evaluation of

the limit in (c) requires the use of L’Hôpital’s rule (twice).
Combining this with (7), we have Cs ≤

(
1− 1

β

)
(q0 − p0),

which completes the proof of the converse part of Theorem 1.

IV. DISCUSSION

The DNA storage wiretap channel model considered in this
paper is motivated by the fact that differential knowledge of
primers creates a statistical advantage for the authorized party,
Bob, over the unauthorized party, Eve. The take-away message
from our work is that by exploiting this advantage using
wiretap channel coding schemes, we can obtain information-
theoretically secure DNA-based storage within our model.

The crucial part of our characterization of the secure storage
capacity of our model is the converse proof, which is based on
analytically solving an optimization problem. An alternative
proof, which is along the lines of that given for the converse
part of Theorem 1 in [8], is provided in [7, Appendix C] for
the special case when Eve’s sampling distribution is Bernoulli
Q = (q0, q1). We were unable to find a way of extending this
argument directly to more general distributions Q.

In future work, we intend to consider the DNA wiretap
channel model with noisy shuffling-sampling channels as its
components.
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