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Abstract
We probe the quantum speed limit (QSL) of an electron when it is trapped in a non-uniform
magnetic field. We show that the QSL increases to a large value, but within the regime of causality,
by choosing a proper variation in magnetic fields. We also probe the dependence of QSL on spin of
electron and find that it is higher for spin-down electron in the relativistic regime. This can be
useful in achieving faster speed of transmission of quantum information. Further, we use the
Bremermann–Bekenstein bound to find a critical magnetic field that bridges the gap between
non-relativistic and relativistic treatments and relates to the stability of matter. An analytical
framework is developed. We also provide a plausible experimental design to supplement our
theory.

1. Introduction

Quantum speed limit (QSL) provides a quantitative estimate about the speed with which quantum
information is processed [1]. Its historical roots are entrenched in the foundations of quantum mechanics.
Thus, the first appearance of QSL emerged in the context of the energy–time uncertainty relation [2]. QSL
time sets the lower bound for the evolution time between two quantum states. Motivated by the Heisenberg
energy–time uncertainty principle, Mandelstam, Tamm (MT) [2] and Margolus, Levitin (ML) [3] derived
bounds on the minimum time needed for a quantum system to evolve between the states. These were
combined to provide a tight bound on the QSL time for a closed quantum system. Originally developed for
evolution connecting two orthogonal states, they were subsequently generalized for arbitrary initially mixed
and also between non-orthogonal states [4]. Another approach, based on the geometrical distance between
the states, was recently developed [5].

The definition of QSL in the context of open quantum systems [6] was developed in the last decade
[7–9]. The concept of QSL has been used to shed light into various facets of quantum information [10, 11],
open systems [12–15], control of quantum systems [16] and quantum thermodynamics [17, 18]. Further,
using causality and thermodynamics, the important Bremermann–Bekenstein bound [19, 20] relates the
energy cost per bit of information to the QSL time. Another fundamental issue to which the notion of QSL
can be put to use is the inherent stability of the quantum state [21].

In recent times, the cross-fertilization of quantum information ideas with relativistic quantum
mechanics has been particularly fruitful. Relativistic quantum simulations have impacted developments in
Leggett–Garg inequalities [22, 23], probes of curved spacetime [24], geometric phase [25] and coherence
[26] in the context of subatomic particles, such as, neutrinos and neutral mesons. It has also led to
investigations into the Unruh effect [27]. Further, in a recent work [28], the role of nonlocality on the rate

of information spreading, as characterized by the butterfly velocity, was studied and was shown to increase
with larger magnetic fields.
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Boghosian and Taylor were first to suggest the study of relativistic quantum systems with quantum
simulators [29]. Quantum simulations of Dirac particles have been proposed and investigated using a
variety of systems [30] that include single trapped ions [31], neutral atoms [32] and graphene [33].
Graphene provides a test-bed for relativistic quantum system for quantum information processing. A
graphene based quantum capacitor has been developed that is potentially useful in producing qubits [34].
Recently, quantum logic gate has been proposed where qubits are encoded with surface plasmons in
graphene nanostructures [35]. Further, uniform magnetic fields have been used to control the dynamics of a
chain of molecular qubits [36]. Also, magnetostrain-driven quantum engines have been proposed on
graphene flakes [37]. Thus, relativistic systems as well as magnetic field provide important tools for
quantum information processing. This sets the scene for the present investigation, where we use the
relativistic dynamics of electron in presence of magnetic field to evaluate QSL.

It was shown [38] that in the presence of uniform magnetic field (B0), the QSL increases and saturates to
0.2407c, where c is the speed of light, with increasing B0 in case of spin-up electron for the superposition of
ground and first excited states. Is it possible to achieve higher QSL that could help in improving the rate of
quantum information processing and making optimal control of quantum systems? What if, the magnetic
field varies? There are many realistic scenarios, for e.g., condensed matter experiments, plasma,
astrophysical systems, where magnetic field is non-uniform for all practical purposes. In condensed matter,
examples for spatially varying magnetic field include nuclear magnetic resonance (NMR) imaging and
systems with local magnetic order. In fact, NMR has been among the first experimental methods used to
implement small quantum algorithms [39, 40]. Further, magnetic nanoparticles, topological defects, as well
as Coulomb interaction effects can be engineered to create long-range spatially varying magnetic induction
[41–43]. We will touch upon one such feasible experimental design in this work. In a star, the magnetic
field is generally expected to be growing from its surface to center, i.e., a spatially decaying field. Even our
own planet’s magnetic field is not uniform. A recent evidence shows the role of quantum physics in
affecting a key reaction in a cell that enables the migratory birds to navigate using non-uniformity of
Earth’s magnetic field [44]. We will show that QSL decreases in a spatially decaying non-uniform field.
However, in a spatially growing field, it increases. This possibly could be beneficial in achieving a faster
speed of transmission of quantum information.

The role of critical magnetic field in determining the (non-)relativistic regimes is widely known. For a
uniform magnetic field, it is given by m2

ec3/�e G (Gauss) for electron and obtained when the gyromagnetic
radius is of the order of Compton wavelength of electron, where me and e are respectively the mass and
charge of electron, c is the speed of light and � is the reduced Planck constant. However, for a non-uniform
magnetic field, such an analysis is much more involved. We present here a unique way to determine the
critical magnetic field for a variable magnetic field using a quantity that limits the maximal rate of
information production, i.e., the Bremermann–Bekenstein bound.

In the next section, we introduce the model and the underlying framework to approach our present
goal. Subsequently, we discuss the variation of QSL with respect to various parameters in section 3. Further,
in section 4, the Bremermann–Bekenstein bound is explored to bridge the gap between non-relativistic and
relativistic regimes. To provide an analytical framework for our results, an ansatz is explored in section 5.
We provide the plausible experimental design to achieve variable magnetic field in section 6 before we
conclude in section 7. Some of the calculational details are relegated to the appendix.

2. Model and framework

For simplicity, we take a power law variation of magnetic field, given by

B = B0ρ
nẑ, (1)

in cylindrical coordinates (ρ,φ, z), where ‘n’ is the magnetic non-uniformity index. Note that n > −1 so
that effective potential is always attractive [45]. In this work, we take ρ in pm (picometer) and magnetic
field B in G. For dimensional consistency, B0 is considered in units of G pm−n. Thus, B0 = |B| at 1 pm.
Also, the size of the system is comparable to the gyromagnetic radius of electron.

Using a gauge freedom for the vector potential A, we choose

A = B0
ρn+1

n + 2
φ̂ = Aφ̂. (2)

To obtain eigenstates of an electron and their corresponding eigen-energies, we solve the Dirac equation

i�
∂Ψ

∂t
=

[
cα ·

(
−i�∇− qA

c

)
+ βmec2

]
Ψ, (3)

2



New J. Phys. 24 (2022) 085001 S Aggarwal et al

Figure 1. Comparison of eigenlevels and the split states of +σ.B and − σ.B for n = −0.5, 0 and 0.5.

where me and q are the mass and charge of electron respectively, α and β are Dirac matrices and A is the
vector potential.

We begin with relativistic calculations, i.e., the solution of Dirac equation, so that they reduce to
non-relativistic scenario while considering weak magnetic fields. This will enable us to cover a wide range of
magnetic field strengths. The solution of Dirac equation for the power-law magnetic field given by
equation (1) has been explored in detail earlier [45], part of which will be employed for the present
purpose.

Let
Ψ(t, r) = e

iEt
� ψ(r), (4)

then the general solution of ψ in presence of such a magnetic field is given by

ψ = ei(mφ+ pz
�

z)
[

R(ρ)
−R(ρ)

]
, (5)

where R(ρ) is the two-component matrix, ‘m�’ is the angular momentum of the electron and pz is the
eigenvalue of momentum in the z-direction. The method of obtaining R(ρ) numerically is discussed in
detail in the appendix A. We have chosen pz and m both equal to zero in this work.

The energy of a level ν is given by
Eν = mec2

√
1 + αν , (6)

where αν represents the eigenvalue for the level ν (see appendix A).
The eigen-spectrum, corresponding to αν , for five levels is given in figure 1. It is interesting that with

increasing eigen states, eigenvalue difference between the two consecutive states remains same for n = 0,
decreases for n < 0 and increases for n > 0. Further, the spin degeneracy that is present in the case of
uniform magnetic field is lifted in the presence of non-uniform magnetic field. The alignment of spin-up
and spin-down levels is also different for positive and negative n. For positive n, the lower level of spin-up
electron is always below the higher level of spin-down electron, whereas, for negative n, the former lies
above the latter.

To evaluate the QSL of an electron for the evolution from one state to the other, we require the
information about two main quantities:

(a) Radial displacement of electron (ρdisp),

(b) Minimum time of evolution (τQSL).

Let us assume that the particle is in the superposition of the νth and (ν + 1)th states at all times, such
that its initial (t = 0) and final (t = τQSL) states are

Ψ(r, 0) =
1√
2

[
ψν(r) + ψν+1(r)

]
, (7)

and

Ψ(r, τQSL) =
1√
2

[
ψν(r)e

iEντQSL
� + ψν+1(r)e

iEν+1τQSL
�

]
. (8)

3
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The mean radial position at a time t is given by

〈ρ〉 = 1

2

[
〈ν|ρ|ν〉 + 〈ν + 1|ρ|ν + 1〉+ 2〈ν|ρ|ν + 1〉 cos(Et)

]
, (9)

where

E =
Eν+1 − Eν

�
.

Hence, the radial displacement of electron is

ρdisp = |〈ρ〉τQSL − 〈ρ〉0|

= 2

∣∣∣∣
∫ ∞

0
ρDS(ρ)dρ

∣∣∣∣, (10)

where
Ds(ρ) = ψ†

ν ρ ψν+1 (11)

(ρ in equation (11) is due to cylindrical volume element ρdρdφdz).
Since, for this system, the initial and final states of the electron are orthogonal, MT [2] and ML [3]

bounds become same. The minimum time of evolution, given by MT bound, is

τQSL =
π�

2ΔH
, (12)

with

ΔH =
Eν+1 − Eν

2
. (13)

Thus, QSL of an electron is given by

ṽ =
ρdisp

τQSL
. (14)

3. Results

The QSL of spin-up electron was probed in constant magnetic field earlier [38]. We investigate the variation
of QSL of electron with different parameters in presence of variable magnetic field for both spin-up as well
as spin-down electrons.

3.1. Variation with spin
For a given n, QSL increases with increasing magnetic field strength and then saturates. The QSL in the
limit of B0 →∞ is called as saturated quantum speed limit (SQSL). Figure 2 shows that the SQSL of
spin-down electron is more than twice of that for spin-up electron in presence of uniform magnetic field
for the superposition of ground and first excited states.

We can calculate SQSL of a spin-down electron for a superposition between ground and first excited
states for uniform magnetic fields. In the limit of B0 →∞, the energies of spin-down electron can be
approximated as

E0 = mec2; E1 = mec2√α1 = mec2

√
2eB0�

m2
ec3

(15)

which renders

τQSL ≈ π�

mec2
(√

2eB0�

m2
e c3 − 1

) ≈ π

2cβ
, (16)

where β =
√

eB0
2�c .

The radial displacement is same for both the spins of electrons. Hence, radial displacement for
spin-down electron (as given for spin-up electron [38]) can be taken as

ρdisp =

√
π

4β

(
1 +

3

2
√

2

)
. (17)

Consequently, SQSL for spin-down electron vlim↓ in presence of constant magnetic field is given by

vlim↓ =
c

2
√
π

(
1 +

3

2
√

2

)
= 0.5815 c. (18)

4
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Figure 2. Comparison of radial speed of spin-up and spin-down electrons for uniform magnetic field.

Figure 3. Variation of QSL of spin-up (solid lines) and spin-down (broken lines) electrons with n for different strengths of the
central magnetic field, for (a) lower fields (b) higher fields. The rectangle in (b) highlights that the QSL for spin-up electron
merges for low n for B0 = 1015 and 1017 G pm−n, signifying that SQSL has been attained for these n.

Note that the SQSL for spin-up electron vlim↑ is 0.2407c [38]. Hence, one can achieve higher SQSL for
spin-down electron.

3.2. Variation with n
We now analyze the variation of QSL with n in non-relativistic and relativistic regimes. Figure 3(a) shows
the variation for lower magnetic fields, wherein B0 = 1010 G pm−n and 1012 G pm−n can be considered as
the non-relativistic regime while B0 > 1014 G pm−n as the relativistic regime, shown in figure 3(b). The
variation of QSL between spin-up and spin-down electrons is quite opposite between non-relativistic and
relativistic regimes. In the non-relativistic regime, QSL is same for lower n (�1) for both the spins and
becomes smaller for spin-down electron as n increases. In the relativistic regime, it becomes higher at low n
for the spin-down case which decreases with increasing n.

Further, figure 3(b) shows that as magnetic field increases, QSL tends to saturate. Note that the curves
representing 1015 and 1017 G pm−n for spin-up electron overlap for n � 0 depicting that QSL does not
increase further with increase in B0, and has attained SQSL. The figure also indicates the significant
difference between QSL for spin-up and spin-down electrons, thus, showing the importance of spin at small
non-linearity (low n) for relativistic electron.

The variation of QSL with n is steeper for lower B0. Note that QSL for n = 1 becomes four times QSL
for n = 0 at B0 = 1010 G pm−n, while at B0 = 1015 G pm−n, the ratio of the two is just 1.2 for spin-up
electron. Thus, even a linear variation of the magnetic field in laboratories, could help to attain much
higher QSL of electron as compared to its constant counterpart.

5
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Figure 4. Comparison of QSL of electron for increasing (n = 1), decreasing (n = −0.1) and uniform (n = 0) magnetic fields
with different magnetic field strength (B0) for spin-up (solid lines) and spin-down (broken lines) electron for a superposition of
ground and first excited states. Here, SQSLs for n = 1 are highlighted for both the spins. For n = −0.1, SQSLs for spin-up and
spin-down electrons are 0.2288c and 0.5638c, respectively, and for n = 0, they are 0.2407c and 0.5815c for spin-up and
spin-down electrons, respectively.

QSL for spin-up and spin-down electrons tends to be same in the non-relativistic regime for small
variation of magnetic field (n � 1), because

ΔH(relativisic) = mec2
(√

1 + αν+1 −
√

1 + αν

)
(19)

non − relativistic−−−−−−−−−−−→
mec2

2
(αν+1 − αν). (20)

The above set of equations shows that ΔH depends on the difference of α between two consecutive levels in
the non-relativistic regime, which is not for the relativistic regime. Since, the difference between the
respective levels for spin-up and spin-down cases is nearly same for small variation of magnetic fields, QSL
is same for both the spin orientations of electron at low B0, shown in figure 3(a).

It is interesting that the variation of SQSL with n is similar to the QSL variation for spin-down electron,
as shown for the latter in figure 3(b), i.e., SQSL increases with increasing n and attains a peak. While for the
spin-down case, SQSL is maximum for the quadratic variation of magnetic field, n has to be 15 to attain
maximum SQSL for spin-up electron.

3.3. Variation with B0

Figure 4 shows that QSL increases with the increase in B0 and then reaches SQSL, which is a function of n,
for a superposition of ground and first excited states. For spin-up electron in the figure, for n = −0.1 and
n = 0, QSL reaches SQSL, while for n = 1, QSL is still increasing and has not reached SQSL in the magnetic
field regime shown in the figure. This indicates that B0 leading to SQSL is larger for n = 1 as compared to
n = 0 and n = −0.1. Similar features hold for spin-down electron. This implies that B0 corresponding to
SQSL increases with the increase in n. Also, note that SQSL for spin-down electron (vlim↓) is larger than that
for spin-up electron (vlim↑), as discussed above.

3.4. Variation with state
QSL varies with state ν in an opposite manner for opposite electron spins, considering the system as
superposition of states (ψν ,ψν+1). For spin-up electron, it increases as energy state increases and then
saturates, whereas for spin-down electron, it decreases before saturation as shown in figure 5. However, the
saturation value is independent of spin and increases with n.

The opposite variation for spin-up and spin-down electrons, in lower energy states owes to the large
energy difference between the ground and first excited states for spin-down electron, thereby making its
τQSL smaller than spin-up electron. The radial displacement is similar for both the spins. It initially
increases for increasing ν and then saturates. Therefore, QSL, being strongly dependant on τQSL, is
significantly higher for spin-down electron for superposition of ground and first excited states. However, for
higher excited states, the energy difference between the consecutive levels becomes similar between states for
both the spins, leading to the convergence of QSL with states.

6
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Figure 5. Variation of quantum speed with different superposition of states (ψν ,ψν+1) at B0 = 1015 G pm−n for spin-up (solid
lines) and spin-down (broken lines) electron.

4. Bremermann–Bekenstein bound

Bremermann [19] argued that speed, memory, and processing capacity of any computational device are
limited by certain physical barriers: the light barrier, the quantum barrier, and the thermodynamical barrier.
In an almost heuristic way, he found an upper bound on the rate of information communication by using
Shannon’s work [46] on classical channel capacities and the associated noise energy, speed of light, and the
energy–time uncertainty principle. Subsequently, Bekenstein proposed an alternative approach [17, 20]
based on the upper bound on the information retrieval rate from black holes. In particular, the
Bremermann–Bekenstein bound [9] is given by

〈H〉
I

>
� ln 2

π τQSL
. (21)

It relates the energy cost 〈H〉 per bit of information I to the QSL time. To give a meaning to the information
I, let us consider Bekenstein’s arguments [47], where information I is related to entropy S whose upper
bound in a given region of space of linear dimension R can be expressed as the inequality S

〈H〉 <
2πkBR
�c .

The Bremermann–Bekenstein bound has been an important result in quantum information, cosmology
and black hole physics [17, 20, 48, 49]. Refinements to this bound, resulting in the so called generalized
Bremermann–Bekenstein bound, have been made in recent times, wherein the information I is replaced by
the accessible information characterized by the Holevo information [49]. This bound is also dependent on
τQSL. Here, we will explore how Bremermann–Bekenstein bound can be used to determine important
properties of the system.

4.1. Determination of critical magnetic field
We depict the left-hand side (lhs) of equation (21) for one bit of information and its right-hand side (rhs)
for (a) uniform magnetic field (n = 0) and (b) non-uniform magnetic field (n = 2) in figure 6. The bridge
between the magnetic fields in the non-relativistic and relativistic regimes is clearly visible in the figure. The
sub-figures are divided into three regions. In region I, 〈H〉 and (� ln 2)/(πτQSL) are well separated and
exhibit a tendency of convergence toward region II in weak magnetic fields, indicating non-relativistic
regime; in region II the separation reduces, depicting transition and the region III shows the two lines
becoming almost parallel and is the relativistic regime. It is known that the critical magnetic field Bc above
which relativistic Landau quantization is important, in realm of uniform magnetic field, is
m2

ec3/�e = 4.414 × 1013 G. Note that Bc lies in region II in figures 6(a) and (b), thus, justifying our
division. For uniform magnetic field considered in figure 6(a), (� ln 2)/(πτQSL) is spin independent in the
non-relativistic regime and is larger for spin-down electron in the relativistic regime. On the other hand, it
is spin dependent even in the non-relativistic regime in presence of non-uniform magnetic field as shown in
figure 6(b). It is lower for the spin-down electron in the non-relativistic regime, while higher in the
relativistic one. Point Q (B0 = 1.35 × 1014 G pm−n) in region II in figure 6(b) is the intersection point for
spin-down and spin-up electrons and may represent the critical magnetic field for n = 2. Thus,
Bremermann–Bekenstein bound provides a simple method to estimate the critical magnetic field.

7
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Figure 6. Transition from non-relativistic to relativistic regimes and critical magnetic field for spin-up and spin-down electrons
for the variation of (a) uniform magnetic field (n = 0), (b) non-uniform magnetic field with n = 2.

4.2. Stability of system
Stability of a system is generally of two types, stability of first kind and stability of second kind [21]. The
former quantifies the finiteness of the expectation value of energy for a quantum system, while the latter
involves providing an understanding of how extensive quantities such as energy and volume scale with the
number of atoms and requires the potential explicitly. As it turns out, the Bremermann–Bekenstein bound
[9] is bounded from below by a quantity involving τQSL (rhs). Hence, finiteness of the rhs of the
equation (21) would imply finiteness of average energy per bit of information. This suggests the connection
of τQSL to the stability of the first kind via the Bremermann–Bekenstein bound. In figure 6, we show the
variation of the lower bound of equation (21). Its finiteness is consistent with the Bremermann–Bekenstein
bound, and thereby the stability of the first kind. We hope to undertake it in greater detail in a future work.

Thus, the connection between Bremermann–Bekenstein bound and τQSL has the following implications.
On one hand, based on it, one is able to uncover the spin dependence of τQSL. On the other hand, it helps
in understanding the transition from the non-relativistic to the relativistic regimes. Moreover, it suggests a
connection to the stability of first kind.

5. Analytical ansatz

Here, we intend to obtain the SQSL of spin-up electron for a superposition of ground and first excited states
for general n, analytically. Since, we do not have an analytical form of the ground and the first excited states
wave functions, it is not possible to calculate the radial displacement using equation (10) analytically. What
we know are the analytical expressions for eigenvalues [45], given by

αν = C3 B
2

n+2
0 (ν + C5)

2+2n
n+2

[
1 ± C5

(ν + C5)

]
, (22)

such that C3 is a constant which depends on n and C5 ∼ 0.5.
We try to obtain the radial displacement of spin-up electron in presence of uniform magnetic field,

given by equation (17) in the limiting case of B0 →∞ [38], in terms of the ground and first excited states
energies and then generalise the expression for all n. Hence, we choose the following ansatz for the radial
displacement of spin-up electron in presence of a magnetic field varying with n:

ρdisp =

[
Γ

(
2

n + 2

)]− 1
n+2

Γ

(
3

n + 2

)
λe

(E1 + E0)2

E3
1

(23)

=

[
Γ

(
2

n + 2

)]− 1
n+2

Γ

(
3

n + 2

)
λe

(
√

1 + α1 +
√

1 + α0)2

(
√

1 + α1)3
, (24)

where λe = �/mec and Γ(x) is the standard gamma-function given by

Γ
(a

b

)
= b

∫ ∞

0
xa−1e−xb

dx. (25)

8
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Figure 7. Comparison between the analytical and the computational vlim↑ .

Therefore, to evaluate SQSL of spin-up electron for the superposition of ground and first excited states
in such a magnetic field, a very high value of B0 can be considered such that α1, α0  1. Then

lim
B0→∞

ρdisp ∼
[
Γ

(
2

n + 2

)]− 1
n+2

Γ

(
3

n + 2

)
λe

(
√
α1 +

√
α0)2

(
√
α1)3

. (26)

In this limit, for uniform magnetic field, E0 and E1 tend to 2mec2λeβ and 2
√

2mec2λeβ respectively from
equation (49). Substituting these values and n = 0 in the above equation, we get back equation (17), thus,
confirming the validity of the above ansatz.

Further,

lim
B0→∞

τQSL ∼ πλe

(
√
α1 −

√
α0)

. (27)

Substituting the values of α1 and α0 from equation (22) in equations (26) and (27) and taking their ratio,
SQSL (vlim↑) is given by

vlim↑ =

[
Γ

(
2

n + 2

)]− 1
n+2

Γ

(
3

n + 2

)
(F(1) + F(0))2(F(1) − F(0))

π F(1)3
, (28)

where

F(ν) =

√
(ν + 0.5)

2+2n
2+n + 0.5 (ν + 0.5)

n
n+2 . (29)

Figure 7 shows the comparison between the analytical SQSL and computational QSL evaluated at very
high B0 (which we choose hypothetically 1030 G pm−n). Here, analytical and computational values merge at

low n. As n increases, α0 and α1 approach ∼1 at this magnetic field due to the dependence of αν on B
2

n+2
0 ,

as shown in equation (22). Thus, an even stronger magnetic field is required to attain SQSL for large n.
Hence, equation (28) provides an upper limit of QSL for spin-up electron, for all n. Also, SQSL never
crosses 0.4c, thereby, providing the upper limit of QSL for the superposition of ground and first excited
states, in any kind of magnetic field independent of n.

6. Experimental design

The proposed power law variation in magnetic field can be achieved in a laboratory environment in
multiple ways, depending on the nature and spatial scale of the quantum system under investigation. For
instance, we can take a solenoid with its core having curved pole pieces as shown in figure 8. Ferrite or soft
iron can be used as core, since they have high magnetic permeability which is desirable to achieve strong
magnetic fields. The overall shape of the pole pieces is cylindrical, but the concavity (convexity) at the end
of the pole pieces will make magnetic field to decrease (increase) strongly at the center, but it will be large
(small) at the boundary. The nature of concavity (convexity) can be engineered to achieve various values
of n.

As an illustration, if we take a solenoid with 100 turns per cm, ferrite core with concave pole pieces of
diameter 1 mm and carrying 1 A current, we can generate magnetic field close to 104 G at the edge with a
spatially increasing magnetic field. The sample calculation, of attaining non-uniform magnetic field using
this design, is given in appendix B. Let us assume that the electron is confined to the two dimensional

9
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Figure 8. Model for attaining the variable magnetic field. The left one with concave pole pieces can be used to attain increasing
magnetic fields (n > 0) and the one on the right having convex poles is suitable for decreasing magnetic fields (n < 0).

circular plane within 1 μm between the pole pieces. If the magnetic field has linear variation from zero at
the center to a maximum value of 104 G at the edge of ferrite core, it corresponds to 10 G at the boundary
of the circular plane of electron. Hence, |B| = 10 G at ρ = 0.5 μm = 5 × 105 pm when n = 1. Thus, using
equation (1), B0 = 10/(5 × 105) = 2 × 10−5 G pm−n. Correspondingly, QSL for spin-up and spin-down
electrons is 3.2 × 10−7c and 3 × 10−7c, respectively. A consideration of the same situation for uniform
magnetic field with B0 = 10 G yields a QSL of 1.9 × 10−7c for both the spin orientations of electron at the
boundary of the circular plane mentioned above. The size of this plane generally corresponds to the scale of
superconducting Josephson junction [50] or a lithographically defined quantum dots on two dimensional
electron system in semiconductors [51]. Spatially varying magnetic field can also be achieved in a three
dimensional architecture, where the quantum system is placed between a pair of lithographically patterned
films of strong perpendicular magnetic anisotropy [52]. The spatial variation of the magnetic field in the
latter case can be realized in multiple ways, for example, through radial variation in film thickness.
Therefore, increased QSL in presence of spatially increasing magnetic fields can be attained experimentally.
We leave the experimental verification of these results for a future work.

7. Conclusions

Attaining higher quantum speed would be a desirable attribute for quantum information processing. We
suggest, in this work, variable magnetic fields as a possible solution over constant magnetic fields to achieve
higher QSL of electron, in general, charged fermions.

We have computed the QSL in presence of variable magnetic field for spin-up and spin-down electrons.
For the present purpose, we have chosen power law variation of the magnetic field, where its magnitude
varies in the plane, to which the electron is confined, but has a constant direction perpendicular to the
plane. We have shown that electron can attain high QSL in presence of spatially increasing magnetic field
for both the spins of electron within the regime of causality. However, only in the relativistic regime, a
spin-down electron can attain almost twice the value of QSL than spin-up electron, whereas, in the
non-relativistic regime, QSL for latter is higher or equal to the former. We have found an analytical
expression for the estimation of the maximum attainable speed of a spin-up electron for the superposition
of ground and first excited states. Spin-up electron cannot attain speed greater than 0.4c in presence of
magnetic field irrespective of its variation, for our chosen field profile. We have further explored the
usefulness of the Bremermann–Bekenstein bound in determining the critical magnetic field, above which
non-relativistic treatment fails, and its plausible connection to the stability of matter.

From the foundational point of view, this work not only highlights the role of relativistic treatment in
the field of quantum information but also allows us to probe various facets of relativistic dynamics of
electron in a generally non-uniform magnetic field using QSL. On one hand, the relativistic treatment
allows for causality bounds for both the spin-up and spin-down electrons. On the other hand, it results in
the concept of a critical magnetic field which enables looking at non-relativistic and relativistic treatments
from a uniform perspective.

10
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We have provided a plausible experimental design for a laboratory implementation of the ideas. This
centers around creating (rapidly) spatially varying magnetic fields. Nevertheless, there exist multiple ways of
obtaining the same. Local magnetism can be engineered with controlled spatial dependence along grain
boundaries or topological defects in graphene-like two-dimensional materials, for example, the transition
metal dichalcogenides [53]. We have compared the QSL for uniform and non-uniform magnetic fields in
the framework of proposed experimental set-up which is consistent with the theory developed here.

The current study possesses a high outreach potential. It has the scope for applications in burgeoning
fields such as, relativistic quantum thermodynamics [54, 55], quantum information [49] and quantum
metrology [56]. The long spin lifetimes of the Dirac materials such as graphene and topological insulators
make them promising candidates for quantum memory systems [57]. In today’s scenario, the role of
non-uniform magnetic field is not limited only to the realm of physics but also has a broad perspective. For
example, the non-uniformity of Earth’s magnetic field helps the migratory birds to navigate using quantum
physics [44].

We believe that the present work would motivate the interplay of quantum information theoretic ideas
with the domain of relativistic quantum physics. Although, it shows the attainment of SQSL in relativistic
regime, we have also included the change of QSL in variable magnetic field in presence of weak fields, which
involves non-relativistic treatment. This would help in building quantum systems with low magnetic field
that would have increased QSL and, thereby, could help in achieving faster quantum information
processing. The experimental probing of these facets is expected to provide rich insight into the underlying
dynamics. In particular, this would have relevance to the nascent field of quantum technology.
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Appendix A. Solution of Dirac equation in presence of magnetic field

The Dirac equation for electron of mass me and charge q (−e), in the presence of magnetic field is given by

i�
∂Ψ

∂t
=

[
cα ·

(
−i�∇− qA

c

)
+ βmec2

]
Ψ, (30)

where α and β are Dirac matrices, A is the vector potential, � is the reduced Planck constant and c is the
speed of light. For stationary states, we can write

Ψ = e−i Et
�

[
χ

φ

]
, (31)

where Φ and χ are two-component objects/spinors, and � is h/2π with h being Planck’s constant. We
consider the Pauli–Dirac representation in which

α =

[
0 σ

σ 0

]
, β =

[
I 0
0 −I

]
, (32)

where each block represents a 2 × 2 matrix and σ represents three components of the Pauli matrices
together in a vector. Hence equation (30) reduces to

(E − mec2)χ = cσ ·
(
−i�∇− qA

c

)
φ, (33)

11



New J. Phys. 24 (2022) 085001 S Aggarwal et al

(E + mec2)φ = cσ ·
(
−i�∇− qA

c

)
χ. (34)

Decoupling them for χ, we get

(E2 − m2
ec4)χ =

[
cσ ·

(
−i�∇− qA

c

)]2

χ. (35)

Defining π = −i�∇− qA/c and using the identity (σ · π)(σ · π) = π2 − q�σ · B/c, equation (35) reduces
to

(E2 − m2
ec4)χ =

[
c2

(
π2 − q�

c
σ ·B

)]
χ, (36)

such that the antiparticle wavefunction φ = −χ [58]. We solve equation (36) for our proposed power law
variation of the magnetic field [45], given by

B = B0ρ
nẑ, (37)

in cylindrical coordinates (ρ,φ, z). Using a gauge freedom for the vector potential A, we choose

A = B0
ρn+1

n + 2
φ̂ = Aφ̂. (38)

Hence,

π2χ =

[
p̂2
ρ +

(
p̂φ −

qA

c

)2

+ p̂2
z

]
χ, (39)

where p̂ρ,φ,z denote operators. Noticing that φ and z are ignorable coordinates, the solution of equation (39)
can be written as

χ = ei(mφ+ pz
�

z)R(ρ), (40)

where R(ρ) is a two-component matrix, ‘m�’ is the angular momentum of the electron and pz is the
eigenvalue of momentum in the z-direction. Therefore, equation (39) becomes

π2R = −�
2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R(ρ) +

[
q2A2

c2
+

2q�mA

cρ
+ p2

z

]
R(ρ). (41)

From equations (36), (39) and (41) and substituting q = −e, we obtain(
E2 − m2

ec4

c2
− p2

z

)
R(ρ) = −�

2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R(ρ) +

[
e2A2

c2
− 2e�mA

cρ
+

e�

c
(σzB)

]
R(ρ). (42)

There will be two independent solutions for R(ρ), which can be taken, without loss of generality, to be
the eigenstates of σz, with eigenvalues ±1. Thus if we choose two independent solutions of the form

R+(ρ) =

[
R̃+(ρ)

0

]
, R−(ρ) =

[
0

R̃−(ρ)

]

such that σzR± = ±R±, equation (42) becomes

P̃R̃± = −�
2

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃± +

[
e2A2

c2
− 2e�mA

cρ
± e�

c
B

]
R̃±, (43)

where

P̃ =

(
E2 − m2

ec4

c2
− p2

z

)
. (44)

Dividing equation (43) by m2
ec2, we have an eigenvalue equation as

αR̃± = −
(

�

mec

)2[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃± +

[
e2A2

m2
ec4

+
e�

m2
ec3

(
−2mA

ρ
± B

)]
R̃±

= −λ2
e

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

]
R̃± +

[(
kB0ρ

n+1

n + 2

)2

+ kλe

(
− 2m

n + 2
± 1

)
B0ρ

n

]
R̃±, (45)
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where ε = E
mec2 (dimensionless energy), xz =

pz
mec (dimensionless momentum along z-direction), λe =

�

mec

(Compton wavelength of electrons), k = e
mec2 and α = P̃

m2
ec2 = (ε2 − 1 − x2

z ), is the square of dimensionless

energy and acts as an eigenvalue of the problem [45]. Therefore, energy of level ν becomes

Eν = mec2
√

1 + αν. (46)

For uniform magnetic field, i.e. n = 0, from the solution of equation (45), the eigenvalue of level ν is
given by

αν = 2kλeB0

(
ν +

|m|
2

− m

2
+

1

2
± 1

2

)
. (47)

Hence, in the limiting case of B0 →∞ for m = 0, except for ground state energy of spin-down electron
which is the rest mass energy mec2, energy of level ν is given by

lim
B0→∞

Eν → mec
2√αν (48)

= mec22λeβ

√(
ν +

1

2
± 1

2

)
, (49)

where

β =

√
kB0

2λe
. (50)

Appendix B. Estimation of magnetic field in the proposed experimental design

For an electromagnet with airgap between pole pieces, magnetic field is given by

B =
NIμ0μ

Lcμ0 + LGμ
≈ K

LG
, (51)

where N is the number of turns, I is current in the wire, Lc is the magnetic length of the core, LG is the gap
between the pole pieces, μ0 is vacuum permeability, μ ( μ0) is the permeability of core and K is a
constant.

Let us assume that the surface of the pole pieces is determined by the equation

z = z0(r + r0)β , (52)

such that z0 is the scaling factor and r0 is a length scale, which is very small compared to the size the circular
plane confining the electron, determining the variation of the surface close to the origin. Such a surface can
be easily engineered with appropriate machining of the soft iron core. Noting LG is nothing but twice the
z-coordinate, and combining equations (51) and (52) (neglecting edge effects), we get

B(r) =
K

2z0(r + r0)β
≈ B0rn (53)

with n = −β. Thus, the above equation shows how one can achieve non-uniform magnetic field using the
proposed experimental design in section 6.

ORCID iDs

Srishty Aggarwal https://orcid.org/0000-0001-5809-1994
Subhashish Banerjee https://orcid.org/0000-0002-7739-4680
Arindam Ghosh https://orcid.org/0000-0001-5188-4617
Banibrata Mukhopadhyay https://orcid.org/0000-0002-3020-9513

References

[1] Deffner S and Campbell S 2017 J. Phys. A: Math. Theor. 50 453001
[2] Mandelstam L and Tamm I 1945 J. Phys. USSR 9 249
[3] Margolus N and Levitin L B 1998 Physica D 120 188
[4] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[5] Deffner S and Lutz E 2013 J. Phys. A: Math. Theor. 46 335302

13

https://orcid.org/0000-0001-5809-1994
https://orcid.org/0000-0001-5809-1994
https://orcid.org/0000-0002-7739-4680
https://orcid.org/0000-0002-7739-4680
https://orcid.org/0000-0001-5188-4617
https://orcid.org/0000-0001-5188-4617
https://orcid.org/0000-0002-3020-9513
https://orcid.org/0000-0002-3020-9513
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1088/1751-8121/aa86c6
https://doi.org/10.1016/s0167-2789(98)00054-2
https://doi.org/10.1016/s0167-2789(98)00054-2
https://doi.org/10.1103/physreva.67.052109
https://doi.org/10.1103/physreva.67.052109
https://doi.org/10.1088/1751-8113/46/33/335302
https://doi.org/10.1088/1751-8113/46/33/335302


New J. Phys. 24 (2022) 085001 S Aggarwal et al

[6] Banerjee S 2018 Open Quantum Systems: Dynamics of Non-Classical Evolution vol 20 (Berlin: Springer)
[7] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[8] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[9] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402

[10] Teittinen J, Lyyra H and Maniscalco S 2019 New J. Phys. 21 123041
[11] Paulson K G, Panwar E, Banerjee S and Srikanth R 2021 Quantum Inf. Process. 20 141
[12] Xu Z-Y, Luo S, Yang W L, Liu C and Zhu S 2014 Phys. Rev. A 89 012307
[13] Marvian I and Lidar D A 2015 Phys. Rev. Lett. 115 210402
[14] Marvian I, Spekkens R W and Zanardi P 2016 Phys. Rev. A 93 052331
[15] Uzdin R and Kosloff R 2016 Europhys. Lett. 115 40003
[16] Campbell S and Deffner S 2017 Phys. Rev. Lett. 118 100601
[17] Bekenstein J D 1974 Phys. Rev. D 9 3292
[18] Funo K, Zhang J-N, Chatou C, Kim K, Ueda M and del Campo A 2017 Phys. Rev. Lett. 118 100602
[19] Bremermann H J 1967 Quantum noise and information Proc. 5th Berkeley Symp. Mathematical Statistics, Probability (Biology,

Problems of Health vol 4) (Berkeley, CA: University of California Press)
[20] Bekenstein J D and Schiffer M 1990 Int. J. Mod. Phys. C 01 355
[21] Lieb E H and Seiringer R 2009 The Stability of Matter in Quantum Mechanics (Cambridge: Cambridge University Press)
[22] Naikoo J, Alok A K, Banerjee S and Sankar S U 2019 Phys. Rev. D 99 095001
[23] Naikoo J, Alok A K, Banerjee S, Uma Sankar S, Guarnieri G, Schultze C and Hiesmayr B C 2020 Nucl. Phys. B 951 114872
[24] Dixit K, Naikoo J, Mukhopadhyay B and Banerjee S 2019 Phys. Rev. D 100 055021
[25] Dixit K, Alok A K, Banerjee S and Kumar D 2018 J. Phys. G: Nucl. Part. Phys. 45 085002
[26] Dixit K, Naikoo J, Banerjee S and Alok A K 2018 Eur. Phys. J. C 78 914
[27] Omkar S, Srikanth R, Banerjee S and Alok A K 2016 Quantum Inf. Comput. 16 757
[28] Eccles S, Fischler W, Guglielmo T, Pedraza J F and Racz S 2021 Speeding up the spread of quantum information in chaotic

systems (arXiv:2108.12688 [hep-th])
[29] Boghosian B M and Taylor W 1998 Physica D 120 30
[30] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[31] Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[32] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett. 103 035301
[33] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[34] Khorasani S and Koottandavida A 2017 npj 2D Mater. Appl. 1 7
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