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Abstract. We introduce the Hilbert-Galton board as a variant of the classical
Galton board. Balls fall into a row of bins at a rate depending on the bin, and
at random times, each bin gets shifted one unit to the right and an empty bin is
added to the left. We compute the stationary distribution of this Markov chain
and show the existence of an enriched Markov chain on triangular arrays which
projects down to the Hilbert-Galton board. We also define finite-ball projections
of the Hilbert-Galton board, for which we compute the stationary distribution, the
full spectrum and the grand coupling time.

1. Introduction

The Galton board is a mechanical device introduced by Galton (1894) in order
to illustrate the central limit theorem. Balls fall through an array of regularly
placed obstacles into a row of bins. At each obstacle, a ball may go left or right
with the same probability, so that the abscissa of the bin into which the ball falls
has a binomial distribution, which approximates the normal distribution when the
number of obstacles and bins is large. See Figure 1.1 for a small example.
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visit to the Institut Henri Poincaré and from DST grants DST/INT/SWD/VR/P-01/2014 and
EMR/2016/006624. The second author acknowledges the support and hospitality of the Insti-
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Figure 1.1. An illustration of the Galton board, with obstacles
marked by black dots.

Forgetting about the mechanical obstacles, one can simply consider the Galton
board as a Markov chain on configurations of balls inside bins, where the rate at
which a ball falls into a given bin is a function of the position of the bin. We gen-
eralise this by considering arbitrary rates of falling inside each bin, and in addition
a shift operation as follows. Consider a row of n bins, labelled from 1 to n from
left to right. Balls fall into bin number i at rate xi for any 1 ≤ i ≤ n. At rate
x0, a shift to the right occurs, which means that the following events take place
simultaneously:

(1) the rightmost bin gets deleted ;
(2) every bin of index 1 ≤ i ≤ n− 1 gets shifted to the right by one unit, thus

becomes indexed by i+ 1 ;
(3) an empty new bin is added at position 1.

When a bin gets shifted, the number of balls it contains remains unchanged. See
Figure 1.2 for an example of this shift operation. We denote this Markov chain
by Z(n) and call it the Hilbert-Galton board, as a reference to the parable of the
Hilbert hotel (see Gamow, 2012). This continuous-time Markov chain is irreducible
and we compute its stationary distribution (Theorem 2.2). We show the existence
of a natural Markov chain X(n) on triangular arrays which projects down to the
Hilbert-Galton board and for which we can compute the stationary distribution
(Theorem 2.3). We call X(n) the enriched Hilbert-Galton board.

1 2 3 4 1 2 3 4

shift

Figure 1.2. An example of the shift transition on Z(4).

We also introduce a finite-ball projection of (a variant of) the Hilbert-Galton

board. Let Z̃(n) be the Markov chain defined as the Hilbert-Galton board, with the
only difference being that whenever a new bin is added during a shift operation,
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it arrives containing a single ball (rather than arriving empty). The Markov chain

Y (n) is defined by looking at the evolution of the leftmost n balls in Z̃(n). We call
Y (n) the n-ball projection of the Hilbert-Galton board. One can reformulate it as
follows. We consider configurations of n balls placed inside a row of bins such that
no bin is empty. For any i ≥ 1, at rate xi−1 we add one ball to the left of the
i’th bin and we delete the rightmost ball, so that the total number of balls remains
constant. If i = 1, we need to create a new leftmost bin where we add the new ball.
If the rightmost bin becomes empty after deletion of the rightmost ball, we delete
the bin.

With this formulation, the n-ball projection of the Hilbert-Galton board can be
seen as a modification of the infinite-bin model introduced by Foss and Konstan-
topoulos (2003), where the new balls were added to the left of the i’th ball, rather
than to the left of the i’th bin1. A special instance of the infinite-bin model had
already appeared in the work of Aldous and Pitman (1983). The infinite-bin model
was initially defined to study a model of random directed acyclic graphs called the
Barak-Erdős model, introduced in Barak and Erdős (1984), but in recent years it
has received quite a bit of attention as an interacting particle system. Properties
of interest have been the speed of the front, i.e. the rate of creation of new leftmost
bins (see Foss and Konstantopoulos, 2003; Mallein and Ramassamy, 2016, 2017;
Aldous and Pitman, 1983) and the existence of a grand coupling (see Chernysh and
Ramassamy, 2017), which makes it a renewal process and allows perfect sampling of
the stationary measure using coupling from the past (see Foss and Konstantopou-
los, 2003; Foss and Zachary, 2013). The stationary probabilities for the infinite-bin
model are rational functions of the rates xi, but there is currently no general formula
for them. The spectrum of the Markov chain is not known either.

By contrast, the n-ball projection of the Hilbert-Galton board is much more
tractable. Although it is irreversible, we derive formulas for the stationary prob-
abilities (Theorem 2.4) as well as for the spectrum of the chain (Theorem 2.11).
Perfect sampling using coupling from the past is also possible and we derive a for-
mula for the grand coupling time (Proposition 2.10). We note in passing that all
the Markov chains studied in this work are irreversible. Very few families of irre-
versible Markov chains are known for which stationary distributions and spectra
can be explicitly computed. One such class is that of R-trivial Markov chains, stud-
ied in Ayyer et al. (2015b). For these, the representation theory of monoids can be
used to obtain the stationary distribution, the spectrum and the mixing time. This
has been used effectively by Ayyer et al. (2014) for sampling linear extensions for
posets using promotion and by Ayyer et al. (2015a) for understanding nonabelian
sandpile models on trees.

Organization of the paper. In Section 2 we introduce the notation for triangular
arrays and use it to state and discuss our main results. We compute in Section 3
the stationary distribution for the Hilbert-Galton board using two methods: first
via a bi-infinite stationary version of the Markov chain, and then using a projection
from the enriched Hilbert-Galton board. Finally, in Section 4, we focus on the n-ball
projection of the Hilbert-Galton board. We compute its stationary distribution, its
spectrum and give a formula for its grand coupling time.

1To be precise, this is actually the finite-dimensional projection of the infinite-bin model, which
may involve configurations with infinitely many balls.
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2. Statement and discussion of the results

2.1. The Hilbert-Galton board and its enrichment. Fix an integer n ≥ 1. The state
space of the Hilbert-Galton board Z(n) is the set Zn

≥0, i.e. the set all the n-tuples

of nonnegative integers (c1, . . . , cn). The integer ci is interpreted as the number of
balls in the i’th bin. For any 0 ≤ j ≤ n, we define the map Uj : Zn

≥0 → Z
n
≥0 as

follows: for any c = (c1, . . . , cn) ∈ Z
n
≥0, set

Uj(c) =

{

(0, c1, . . . , cn−1) if j = 0,

(c1, . . . , cj−1, cj + 1, cj+1, . . . , cn) if 1 ≤ j ≤ n.

The Hilbert-Galton board Z(n) is defined to be the continuous-time Markov chain
on Z

n
≥0, where an n-tuple c ∈ Z

n
≥0 makes a transition to Uj(c) at rate xj for any

0 ≤ j ≤ n. Unless otherwise stated, we will assume in the remainder of this article
that x0 > 0 and x1 > 0. The general formula for the stationary probability of any
state of Z(n) uses the notion of triangular arrays, which we now define.

Definition 2.1. For any n ≥ 0, a triangular array of size n is a collection of
nonnegative integers A = (Ak,j)1≤j≤k≤n. We denote by An the set of all triangular
arrays of size n. By convention, there exists a single triangular array of size 0,
denoted by ǫ.

We represent a triangular array by aligning each row to the left. For example, a
triangular array A of size 3 is represented as

A1,1

A2,1 A2,2

A3,1 A3,2 A3,3.

There are three natural ways to take partial sums of elements in a triangular array:
horizontally, vertically or diagonally. For any integers 1 ≤ i ≤ n and for any array
A ∈ An, we define these sums,

hi(A) :=

i
∑

j=1

Ai,j ,

vi(A) :=

n
∑

k=i

Ak,i,

di(A) :=

i
∑

j=1

An−i+j,j .

(2.1)

See Figure 2.3 for an illustration of the various sums in an array.
For any n-tuple of nonnegative integers (c1, . . . , cn), we define

Hn(c1, . . . , cn) := {A ∈ An| hi(A) = ci ∀i ∈ [1, n]}

to be the set of triangular arrays of size n with prescribed row sums. Recall that
for any nonnegative integers m1, . . . ,mk, if we write m = m1 + · · ·+mk, then the
multinomial coefficient associated with the k-tuple (m1, . . . ,mk) is defined by

(

m

m1, . . . ,mk

)

:=
m!

∏k
i=1 mi!

.
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h1
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h3

v1 v2 v3

d1

d2

d3

Figure 2.3. An illustration of horizontal, vertical and diagonal
sums in a triangular array of size 3.

Given a vector x = (x0, . . . , xn) of nonnegative reals such that x0 > 0, we define
the weight function wx : An → R≥0 as follows. For any A ∈ An,

wx(A) := xn
0

n
∏

k=1

(

dk(A)

An−k+1,1, . . . , An,k

)

x
vk(A)
k

y
dk(A)+1
k

, (2.2)

where yk := x0 + x1 + · · · + xk. By an abuse of notation, if the vector x has
more than n+ 1 elements, we can still define the function wx on An by restricting
the vector x to its first n + 1 elements. By convention, when n = 0, we have
wx(ǫ) = 1. Using this notation, we can now express the stationary probabilities for
the Hilbert-Galton board.

Theorem 2.2. Fix n ≥ 1. Then the Hilbert-Galton board Z(n) is an irreducible pos-
itive recurrent Markov chain and the stationary probability of any state (c1, . . . , cn)
∈ Z

n
≥0 is

πZ(n)(c1, . . . , cn) =
∑

A∈Hn(c1,...,cn)

wx(A). (2.3)

More generally, for any 1 ≤ ℓ ≤ n, the stationary probability that the i’th bin
contains exactly ci balls for 1 ≤ i ≤ ℓ is given by

πZ(n)(c1, . . . , cℓ) =
∑

A∈Hℓ(c1,...,cℓ)

wx(A). (2.4)

Since the stationary probabilities for Z(n) are expressed as sums over triangular
arrays, it is natural to ask for the existence of an enriched Markov chain on trian-
gular arrays which would project down to the Hilbert-Galton board. It turns out
that such a Markov chain on An indeed exists.

We call this the enriched Hilbert-Galton board and denote it by X(n). It acts
on An as follows. For any A = (Ak,j)1≤j≤k≤n ∈ An, there are n+1 transitions out
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of A:

A −→











































































































0

A1,1 0

A2,1 A2,2 0
...

...
. . .

. . .

An−1,1 An−1,2 . . . An−1,n−1 0,

with rate x0,

A1,1

A2,1 A2,2

...
. . .

Ai,1 . . . . . . Ai,i + 1
...

. . .

An,1 . . . . . . . . . An,n.

with rate xi for 1 ≤ i ≤ n.

We have the following result for the chain X(n).

Theorem 2.3. Fix n ≥ 1 and assume that xi > 0 for all 0 ≤ i ≤ n. Then the
Markov chain X(n) is irreducible and positive recurrent. Moreover, for any A ∈ An

the stationary probability of A is given by

πX(n)(A) = wx(A). (2.5)

Furthermore, defining the map

pn : A ∈ An → (h1(A), . . . , hn(A)) ∈ Z
n
≥0,

the projection pn(X
(n)) is a Markov chain with the same law as Z(n).

Theorem 2.2 follows immediately as a corollary of Theorem 2.3. The proofs of
these results are given in Section 3.

2.2. The finite-ball projection. We now move on to the n-ball projection of the
Hilbert-Galton board. For any n ≥ 1, the state space of Y (n) is the set Cn of
all compositions of the integer n, i.e the set of all ℓ-tuples (c1, . . . , cℓ) of positive
integers, with 1 ≤ ℓ ≤ n. The integer ℓ is called the length of the composition
(c1, . . . , cℓ). It is well-known that #Cn = 2n−1. For any integer 0 ≤ j ≤ n − 1,
define the map Tj : Cn → Cn as follows: for any composition c = (c1, . . . , cℓ) ∈ Cn,
we set

Tj(c) =











(1, c1, . . . , cℓ−1, cℓ − 1) if j = 0,

(c1, . . . , cj−1, cj + 1, cj+1, . . . , cℓ−1, cℓ − 1) if 1 ≤ j ≤ ℓ− 1,

c if j ≥ ℓ,

where the last part should be deleted in the first two cases if cℓ = 1. The chain
Y (n)(t) is defined as the continuous-time Markov chain on Cn, where a composition
c ∈ Cn makes a transition to Tj(c) at rate xj for any 0 ≤ j ≤ n − 1. From the

stationary distribution of Z(n) one can deduce the stationary distribution of Y (n).
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Theorem 2.4. The n-ball projection of the Hilbert-Galton board Y (n) is irreducible.
Furthermore, fix c = (c1, . . . , cℓ) ∈ Cn and set γi = ci − 1 for any 1 ≤ i ≤ ℓ. Then
we have the following two equivalent expressions for the stationary probability of c
for Y (n):

πY (n)(c) =
∑

A∈Hℓ−1(γ1,...,γℓ−1)

wx(A)−

γℓ−1
∑

s=0

∑

A∈Hℓ(γ1,...,γℓ−1,s)

wx(A) (2.6)

=
∞
∑

s=γℓ

∑

A∈Hℓ(γ1,...,γℓ−1,s)

wx(A). (2.7)

In formula (2.6), there are a finite number of terms, but some are present with
a minus sign. In formula (2.7) all terms have positive coefficients, but there are an
infinite number of terms. In this case too, it is possible to construct a Markov chain
on triangular arrays which projects down to Y (n). The enriched chain is similar to
X(n) with a result similar to that of Theorem 2.3, but the case analysis is a little
more complicated.

Let us illustrate the computation of the stationary distribution of Y (n) by an
example.

Example 2.5. Consider the composition c = (2, 3). In this case, ℓ = 2, γ1 = 1 and
γ2 = 2. Let us compute πY (5)(c) using formula (2.6). The first sum is over a single
element, the array of size 1 made up of the number 1. The second sum runs over
the following three arrays of size 2:

1
0 0

,
1
1 0

,
1
0 1

.

Hence

πY (n)(2, 3) =
x0x1

y21
−

x2
0x1

y1y22
−

x2
0x

2
1

y21y
2
2

− 2
x2
0x1x2

y1y32

=
x0x1

(

x3
1 + x0x

2
1 + 3x2

1x2 + 3x1x
2
2 + 2x0x1x2 + x3

2 + 3x0x
2
2

)

y21y
3
2

.

One can deduce from the stationary distributions of the chains Z(n) and Y (n) a
series of properties of the n-ball projection of the Hilbert-Galton board. Since Y (n)

is a finite state chain, the stationary probabilities are multivariate rational functions
of the indeterminates x1, . . . , xn. We define the partition function Z(Y (n)) to be the
least common multiple of the denominators in the stationary probabilities. Then
we have the following results.

Corollary 2.6. The partition function of the n-ball projection of the Hilbert-Galton
board is given by

Z(Y (n)) =

n−1
∏

k=1

yn−k
k .

One can also compute the stationary distribution for Y (n) of the number of balls
in the leftmost bin.



762 A. Ayyer and S. Ramassamy

Corollary 2.7. For the n-ball projection of the Hilbert-Galton board Y (n), the
probability that the first bin contains j balls at stationarity is given by



















x0x
j−1
1

yj1
if j < n,

(

x1

y1

)n−1

if j = n.

As a last application of Theorem 2.4, we identify some instances when the sta-
tionary probability is given by a single monomial. For any α ≥ 1 and ℓ ≥ 2, denote
by cℓ(α) the composition of length ℓ, whose first part equals α and whose other
parts are all equal to 1. For example, c3(5) = (5, 1, 1). Then the following holds.

Corollary 2.8.

(1) For any α ≥ 1 and ℓ ≥ 2, we have

πY (n)(cℓ(α)) =
xℓ−1
0 xα−1

1

yαℓ−1

∏ℓ−2
k=1 yk

.

(2) When x2 = · · · = xn−1 = 0, the stationary probability of a composition
(c1, . . . , cℓ) only depends on n and ℓ and is given by

xℓ−1
0 xn−ℓ

1

yn−1
1

.

We will prove Corollary 2.6 in Section 4. Corollary 2.7 easily follows from the
coupling of Y (n) with Z(n). Corollary 2.8 follows from a careful but elementary
analysis of formula (2.6). We omit the proofs of the last two corollaries.

Given a sequence of transitions, the grand coupling time associated with this
sequence is defined to be the first time that the 2n−1 copies of the Markov chain
Y (n) starting from all the possible states and evolving according to that sequence of
transitions collapse to a single state. Starting the n-ball projection of the Hilbert-
Galton board from any state and applying transition T0 n times produces the state
(1, . . . , 1). Because of the existence of these coupling events when applying the
transitions Tj, it is possible to sample exactly from the stationary distribution πY (n)

using the coupling from the past technique of Propp and Wilson (1996). Given a
sequence (ui)i≥1 of nonnegative integers, one can naturally associate the sequence

of transitions (Tui
)i≥1 on Y (n).

Example 2.9. Take n = 3 and the sequence (ui)i≥1 to be 1, 2, 0, 1, . . .. Then here
is how the four possible Markov chains starting from the four possible initial states
behave when they use (ui)i≥1 as a source of randomness.

T1 T2 T0 T1

(3) → (3) → (3) → (1, 2) → (2, 1)
(2, 1) → (3) → (3) → (1, 2) → (2, 1)
(1, 2) → (2, 1) → (2, 1) → (1, 2) → (2, 1)
(1, 1, 1) → (2, 1) → (2, 1) → (1, 2) → (2, 1)

Hence, the grand coupling time associated with the sequence (ui) is τ = 3.

It is not hard to see that the coupling time is linear in n in expectation, and
hence logarithmic in the number of states of the chain. Indeed, the coupling time
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is at least (resp. at most) equal to the time needed to have n − 1 transitions of
any type (resp. of type 0 or 1) in the chain. We go further and provide a way
to compute exactly the grand coupling time associated with a given sequence of
transitions. For any i ≥ 1, we say that an element ui of the sequence is ineffective
if ui ≥ 2 and there are at most ui − 2 zeros to the left of ui. All the other elements
of the sequence are called effective. Then the following holds.

Proposition 2.10. The grand coupling time τ associated to a sequence (ui)i≥1 is
the position of the (n− 1)’th effective element in the sequence.

One last remarkable property of the n-ball projection of the Hilbert-Galton board
is that one can compute its full spectrum. Let Mn be the (column-stochastic)
generator of Y (n). Then we have the following result.

Theorem 2.11. For any 1 ≤ j ≤ n − 1, −yj appears as an eigenvalue of Mn

exactly
(

n−1
j

)

times. In addition, 0 is the Perron eigenvalue.

Remark 2.12. In the course of the proof of Theorem 2.11, we will prove that for any
n ≥ 3, the matrix Mn is not diagonalizable and we will provide 2n−2 independent
eigenvectors of Mn.

Example 2.13. In the ordered basis {(1, 1, 1), (1, 2), (2, 1), (3)}, the transition matrix
for the Y (3) is given by

M3 =









−x1 − x2 x0 0 0
x2 −x0 − x1 x0 x0

x1 x1 −x0 − x1 0
0 0 x1 −x0









,

and the eigenvalues of M3 are 0,−x0−x1,−x0−x1 and −x0−x1−x2, in agreement
with Theorem 2.11.

3. The Hilbert-Galton board Z(n) and its enrichment X(n)

In this section we provide two proofs of Theorem 2.2. The first one is more
probabilistic and uses a coupling of the Hilbert-Galton board with a bi-infinite
stationary version of the process. The second one is more combinatorial and relies
on the proof of Theorem 2.3 giving the stationary distribution of the enriched
Hilbert-Galton board which projects down to the Hilbert-Galton board.

3.1. Coupling with a bi-infinite stationary version. We start by proving the irre-
ducibility and positive recurrence of the Hilbert-Galton board.

Lemma 3.1. The Markov chain Z(n) is irreducible and positive recurrent.

Proof : Starting from any state c′ ∈ Z
n
≥0, one can get to any given state c =

(c1, . . . , cn) by applying the following sequence of transitions of type U0 and U1,
which have positive probability since x0 > 0 and x1 > 0: apply U0 followed by cn
times U1 then U0 followed by cn−1 times U1, etc, until U0 followed by c1 times U1.
Thus Z(n) is irreducible.

Let ce = (0, . . . , 0) be the state with all the bins empty. We will show that the
return time to ce has finite expectation. Assume that Z(n)(0) = ce and set

τe = inf
{

t ≥ 0 | Z(n)(t) 6= ce

}

.
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Then the return time to ce is given by

Re = inf
{

t ≥ τe | Z
(n)(t) = ce

}

.

For any integer k ≥ 1, let Ek be the event that between times k− 1 and k, a single
transition U1 followed by n transitions U0 have occurred and no other transition
has occurred. Then all the events Ek have a common probability denoted by η.
Since x0 and x1 are positive, we have η > 0. Furthermore,

0 ≤ Re ≤ min {k ≥ 1 | Ek is realized} .

Since Re is dominated by a geometric random variable, it has finite expectation,
which implies that Z(n) is positive recurrent. �

We first provide a proof of Theorem 2.2 based on a coupling of Z(n) with an bi-
infinite stationary version Ẑ(n). Consider the following n+ 1 independent Poisson
point processes on the real line: for any 0 ≤ j ≤ n, let Qj be a Poisson point
process of intensity xj . On the one hand, one can use the restrictions of these

Poisson point processes to R≥0 to define the Markov chain (Z(n)(t))t≥0 : Z(n)(0)
is distributed according to some initial probability distribution, and at every time
t > 0 belonging to some Qj with 0 ≤ j ≤ n, a transition Uj occurs. The Poisson
point process Qj corresponds to the times at which a ball falls into bin number j
(resp. a shift occurs) if 1 ≤ j ≤ n (resp. if j = 0). On the other hand, we use

the Poisson point processes on the whole line to define the process (Ẑ(n)(t))t∈R as
follows. Fix t ∈ R, set τ0(t) = t and define by induction on 1 ≤ i ≤ n

τi(t) := sup{Q0 ∩ (−∞, τi−1(t))}.

The sequence (τi(t))1≤i≤n corresponds the last n shift times before time t. Set also
for any 1 ≤ i ≤ n and 1 ≤ k ≤ n− i+ 1

Bi,k(t) = #(Qk ∩ (τi(t), τi−1(t))). (3.1)

The integer Bi,k(t) represents the number of balls that fall between the i’th shift
before time t and the (i − 1)’th shift before time t in the bin that is at that time
at position k. We then set

(Ẑ(n)(t)) := (Ẑ
(n)
1 (t), . . . , Ẑ(n)

n (t)),

where for any 1 ≤ i ≤ n,

Ẑ
(n)
i (t) :=

i
∑

j=1

Bi+1−j,j(t). (3.2)

Lemma 3.2. For any t ∈ R, the random variable Ẑ(n)(t) is distributed according
to the stationary distribution πZ(n) of Z(n).

Proof : If t ≥ 0 is such that

#(Q0 ∩ (0, t)) ≥ n, (3.3)

this means that at least n shifts have occurred between time 0 and time t thus the
state Z(n)(t) can be reconstructed only from the knowledge of the realization of
the Poisson point processes between times 0 and t (not requiring any knowledge

of the state at time 0), exactly in the same way that Ẑ(n)(t) was defined. Since

the processes (Ẑ(n)(t))t∈R and (Z(n)(t))t≥0 are coupled by the use of the same
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Poisson point processes for their definition, this means that if t ≥ 0 is such that
condition (3.3) is satisfied, then Z(n)(t) = Ẑ(n)(t) a.s. So for any t ≥ 0,

P(Z(n)(t) 6= Ẑ(n)(t)) ≤ P(#(Q0 ∩ (0, t)) < n). (3.4)

Since x0 > 0, the right-hand side of (3.4) tends to zero as t goes to infinity. As a
consequence of Lemma 3.1, the distribution of Z(n)(t) converges to its stationary

distribution πZ(n) , thus the distribution of Ẑ(n)(t) converges to πZ(n) too. We

conclude from the fact that the distribution of Ẑ(n)(t) is the same for every t ∈ R

because the distributions of the Poisson point processes used to define Ẑ(n)(t) are
invariant by translation. �

Now we can use the bi-infinite stationary process Ẑ(n) to derive a formula for
the distribution πZ(n) .

Proof of Theorem 2.2: In this proof we set t = 0 and to simplify notation we
will write simply τi and Bi,k instead of τi(0) and Bi,k(0) respectively. Fix c =

(c1, . . . , cn) ∈ Z
n
≥0 and 1 ≤ ℓ ≤ n. By the definition (3.2) of Ẑ(n)(0), for any

1 ≤ i ≤ n,

P(Ẑ
(n)
i (0) = ci) =

∑

(Ai,1,...,Ai,i)∈Z
i
≥0

Ai,1+···+Ai,i=ci

P(Bi+1−j,j = Ai,j for all 1 ≤ j ≤ i).

More generally, we can express the probability of a distribution of balls in the
leftmost ℓ bins in terms of triangular arrays as

P(Ẑ
(n)
i (0) = ci for all 1 ≤ i ≤ ℓ) =

∑

A∈Hℓ(c1,...,cℓ)

P(Bi+1−j,j = Ai,j for all (j, i) such that 1 ≤ j ≤ i ≤ ℓ). (3.5)

Set ti := τi−1 − τi for all 1 ≤ i ≤ n. Conditioned on the value of the τi’s, the ran-
dom variables (Bi,k) are independent and Bi,k is distributed like a Poisson random
variable of parameter tixk. We can compute the summand of the right-hand side
of (3.5) conditionally on Q0, ie conditioned on the ti’s by the formula

P(Bi+1−j,j = Ai,j for all (j, i) such that 1 ≤ j ≤ i ≤ ℓ | Q0)

=

ℓ
∏

i=1

i
∏

j=1

e−ti+1−jxj
(ti+1−jxj)

Ai,j

Ai,j !
.
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Since the ti’s are iid exponential random variables with rate parameter x0, we
deduce that

P(Bi+1−j,j = Ai,j for all (j, i) such that 1 ≤ j ≤ i ≤ ℓ)

=

∫

(t1,...tℓ)∈R
ℓ
≥0

ℓ
∏

i=1

e−x0ti x0 dti

i
∏

j=1

e−ti+1−jxj
(ti+1−jxj)

Ai,j

Ai,j !

= xℓ
0

ℓ
∏

j=1

x
vj(A)
j

∫

(t1,...tℓ)∈R
ℓ
≥0

ℓ
∏

i=1

e−yℓ+1−iti
t
dℓ+1−i(A)
i

∏ℓ−i+1
j=1 Ai−1+j,j !

dti

= xℓ
0

ℓ
∏

j=1

x
vj(A)
j

ℓ
∏

i=1

∫

ti∈R≥0

e−yℓ+1−iti
t
dℓ+1−i(A)
i

∏ℓ−i+1
j=1 Ai−1+j,j !

dti

= xℓ
0

ℓ
∏

j=1

x
vj(A)
j

ℓ
∏

i=1

1

y
1+dℓ+1−i(A)
ℓ+1−i

dℓ+1−i(A)!
∏ℓ−i+1

j=1 Ai−1+j,j !

= wx(A).

Since the distribution of Ẑ(n)(0) is πZ(n) by Lemma 3.2, this concludes the proof. �

3.2. The enriched Hilbert-Galton board. In this subsection we will assume that
xi > 0 for all 0 ≤ i ≤ n. We now provide an alternate proof of Theorem 2.2
by obtaining it as a corollary of Theorem 2.3 on the stationary distribution of
the enriched Hilbert-Galton board X(n). We begin by showing irreducibility and
positive recurrence.

Lemma 3.3. The Markov chain X(n) on An is irreducible and positive recurrent.

Proof : Starting from any array A′, one can reach an arbitrary array A by the
following sequence of transitions which all have positive probability: first make a
transition of type 0 followed by An,1 transitions of type 1, then make a transition
of type 0 followed by An−1,1 transitions of type 1 and An,2 transitions of type 2. In
this way continue filling up the array diagonally until one arrives at A. Therefore,
X(n) is irreducible. By the same argument as in the proof of Lemma 3.1, if Ae

denotes the array filled with zeros, the expected return time to Ae is finite and
hence the chain X(n) is positive recurrent. �

Now we prove that the Markov chain X(n) indeed projects down to the Markov
chain Z(n).

Lemma 3.4. Defining the map

pn : A ∈ An → (h1(A), . . . , hn(A)) ∈ Z
n
≥0,

the projection pn(X
(n)) is a Markov chain with the same law as Z(n).

Proof : Fix A ∈ An. Then for 1 ≤ i ≤ n, at rate xi the integer hi(A) increases
by 1 and at rate x0 the n-tuple (h1(A), . . . , hn(A)) gets turned into (0, h1(A), . . . ,
hn−1(A)). This is exactly the law of Z(n). �

Remark 3.5. The numbers Ai,j have the following interpretation in terms of balls
and bins. Call an epoch the time between two consecutive shifts and count the
epochs backwards: the current epoch is indexed by 1, the epoch just before the



The Hilbert-Galton board 767

current epoch is indexed by 2, etc. Then Ai,i+1−j is the number of balls that are
in the bin currently indexed by i which arrived during epoch j. In the notation of
the previous subsection, we have Ai,j = Bi+1−j,j .

We will need the following identity to complete the proof of Theorem 2.3.

Lemma 3.6. Let δ1, . . . , δn−1 be n− 1 nonnegative integers. Then

∑

(α1,...,αn)∈Z
n
≥0

n−1
∏

k=1

(

δk + αk+1

αk+1

) n
∏

k=1

(

xk

yk

)αk

=
y
δn−1+1
n

x0y
δ1
1

n−1
∏

k=2

y
δk−1−δk
k .

Proof : From the generalized binomial theorem, we have that for any real number
δ and for any real number 0 ≤ z < 1,

∞
∑

α=0

(

δ + α

α

)

zα = (1− z)−δ−1.

The sum on the left-hand side splits into n such sums (with δ = 0 when k = 1).
Recalling that yk−1 + xk = yk and rearranging the terms gives the right-hand
side. �

Lemma 3.7. For any n ≥ 1, the measure wx : An → R≥0 is a probability measure,
that is

∑

A∈An

wx(A) = 1.

Proof : The proof proceeds by induction. When n = 1, it is easy to check that
∑

A∈A1
wx(A) = 1 because it is a geometric series. Now we want to perform the

sum for general n. Let A′ denote the triangular array A restricted to the first n− 1
rows. We split the sum into two parts,

∑

A′∈An−1

∑

(An,1,...,An,n)∈Z
n
≥0

wx(A)

=
xn
0

y1 · · · yn

∑

A′∈An−1

∑

(An,1,...,An,n)∈Z
n
≥0

n
∏

k=1

(

dk(A)

An−k+1,1, . . . , An,k

)

x
vk(A)
k

y
dk(A)
k

.

After rewriting the multinomial coefficient and shifting the indices, the sum above
becomes

xn
0

y1 · · · yn

∑

A′∈An−1

n−1
∏

k=1

(

dk(A
′)

An−k,1, . . . , An−1,k

)

x
vk(A

′)
k

y
dk(A′)
k+1

×
∑

(An,1,...,An,n)∈Z
n
≥0

n−1
∏

k=1

(

dk(A
′) +An,k+1

An,k+1

) n
∏

k=1

(

xk

yk

)An,k

.

We are now in a position to use Lemma 3.6 to evaluate the inner sum, for which
we obtain

y
dn−1(A

′)+1
n

x0y
d1(A′)
1

n−1
∏

k=2

y
dk−1(A

′)−dk(A
′)

k .

After combining these factors with the outer sum, we obtain exactly
∑

A′∈An−1

wx(A
′),

which by the induction assumption is 1, completing the proof. �
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Proof of Theorem 2.3: Since X(n) is irreducible and positively recurrent by
Lemma 3.3, the stationary distribution is unique. Furthermore, wx is a proba-
bility distribution by Lemma 3.7. It is therefore sufficient to verify that wx(A)
satisfies the master equation, that is to say, the total outgoing rate from A is the
same as the total incoming rate into A. Fix n ≥ 1. Since A has size n, the total
outgoing rate is always ynwx(A). There are two cases depending on the value of
dn(A).

Case I: dn(A) = 0 : Therefore A1,1 = · · · = An,n = 0. The only incoming
transitions into A are with rate x0 from the set

S(A) =



























A2,1

A3,1 A3,2

...
...

. . .

An,1 An,2 . . . An,n−1

α1 α2 . . . . . . αn

: (α1, . . . , αn) ∈ Z
n
≥0



























. (3.6)

Let A′ ∈ An−1 be the array obtained from A by deleting its top diagonal:

A2,1

A3,1 A3,2

...
...

. . .

An,1 An,2 . . . An,n−1.

Then by the same computation as in the proof of Lemma 3.7, we have
∑

Ã∈S(A) wx(Ã) = wx(A
′). Since the top diagonal of A contains only 0’s, we also

have wx(A) = wx(A
′)× x0/yn. So finally we have

x0

∑

Ã∈S(A)

wx(Ã) = ynwx(A),

which is exactly the master equation for A.
Case II: dn(A) > 0 : Let I(A) = {i ∈ [1, n] : Ai,i > 0}. Let A(i) be the

same array as A, with the sole difference being that Ai,i is replaced by Ai,i − 1.

Note that A(i) makes a transition to A with rate xi for each i ∈ I(A). Using the
definition (2.2) of wx(A), it is clear that

xiwx(A
(i)) = ynwx(A)

Ai,i

dn(A)
.

Summing over all i ∈ I and using the fact that
∑

i∈I(A) Ai,i = dn(A) gives the

master equation at A. �

Theorem 2.2 follows as a corollary of Theorem 2.3 in the case when xi > 0 for all
i ≥ 0. Since the master equation for the chain Z(n) is rational in the xi’s, one can
actually pass to the limit when xi goes to 0 for all i ≥ 2 and recover Theorem 2.2
in full generality.

4. The n-ball projection of the Hilbert-Galton board

4.1. Stationary distribution.

Lemma 4.1. The n-ball projection of the Hilbert-Galton board, Y (n), is irreducible.
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Proof : Starting from any composition c′ ∈ Cn, one gets to the composition c =
(c1, . . . , cℓ) ∈ Cn by the following sequence of transitions, each having positive
probability: T0 followed by cℓ − 1 times T1, then T0 followed by cℓ−1 − 1 times T1,
etc, until T0 followed by c1 − 1 times T1. �

One can couple Y (n) with Z(n) as follows. Define the maps

fn :(c1, . . . , cn) ∈ Z
n
≥0 7→ (c1 + 1, . . . , cn + 1) ∈ Z

n
>0,

ℓn :(c1, . . . , cn) ∈ Z
n
>0 7→ min {1 ≤ i ≤ n | c1 + · · ·+ ci ≥ n} ,

gn :(c1, . . . , cn) ∈ Z
n
>0 7→ (c1, . . . , cℓn(c)−1, n− (c1 + · · ·+ cℓn(c)−1)),

where in the last definition c was shorthand for (c1, . . . , cn). Let Z̃
(n) be the push-

forward of Z(n) by fn and Ỹ (n) be the pushforward of Z̃(n) by gn. Then Ỹ (n) has
the same law as Y (n), so that one can use Theorem 2.2 to study Y (n). In particu-
lar, the stationary distribution πY (n) is obtained as a pushforward by gn ◦ fn of the
stationary distribution πZ(n) .

Proof of Theorem 2.4: Fix c = (γ1 + 1, . . . , γℓ + 1) ∈ Cn to be a composition of n
of length ℓ. Then

πY (n)(c) = πY (n)(Y
(n)
1 = γ1 + 1, . . . , Y

(n)
ℓ = γℓ + 1) (4.1)

= πZ(n)(Z
(n)
1 = γ1, . . . , Z

(n)
ℓ−1 = γℓ−1, Z

(n)
ℓ ≥ γℓ). (4.2)

Writing

πY (n)(c) = πZ(n)(Z
(n)
1 = γ1, . . . , Z

(n)
ℓ−1 = γℓ−1)

−

γℓ−1
∑

s=0

πZ(n)(Z
(n)
1 = γ1, . . . , Z

(n)
ℓ−1 = γℓ−1, Z

(n)
ℓ = s)

and applying formula (2.4), we obtain (2.6). Writing

πY (n)(c) =
∞
∑

s=γl

πZ(n)(Z
(n)
1 = γ1, . . . , Z

(n)
ℓ−1 = γℓ−1, Z

(n)
ℓ = s)

and applying formula (2.4), we obtain (2.7). �

We now prove the formula for the partition function.

Proof of Corollary 2.6: Fix a composition c = (γ1+1, . . . , γℓ+1) ∈ Cn and consider
the formula for πY (n)(c) given by formula (2.6). For any 1 ≤ k ≤ ℓ ≤ n, denote
by µk(c) the maximal power with which yk appears in the denominator of any
of the monomials in the formula for πY (n)(c). We will show that µk(c) ≤ n − k.
If k = ℓ = n, then this means that the composition c is equal to cn(1) and by
Corollary 2.8, we have µn(c) = 0. Assume next that k = ℓ < n. Then yℓ does not
appear in a monomial in the first sum, thus

µℓ(c) ≤ 1 + max
0≤s≤γℓ−1

max
A∈Hℓ(γ1,...,γℓ−1,s)

dk(A)

≤ 1 + γℓ − 1 +

ℓ−1
∑

j=1

γℓ−j

≤ n− ℓ.
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Finally, if 1 ≤ k ≤ ℓ− 1, then

µk(c) ≤ 1 + max

(

max
A∈Hℓ−1(γ1,...,γℓ−1)

dk(A), max
0≤s≤γℓ−1

max
A∈Hℓ(γ1,...,γℓ−1,s)

dk(A)

)

≤ 1 + max





k
∑

j=1

γℓ−j , γℓ − 1 +

k−1
∑

j=1

γℓ−j





≤ 1 + n− ℓ

≤ n− k.

On the other hand, by Corollary 2.8, for any 1 ≤ k ≤ n − 1, ck+1(n − k) is a
composition of n whose stationary probability consists of a single monomial, and
the power of yk in the denominator is equal to n−k. We conclude that the power of
yk in the least common multiple of the denominators of the stationary probabilities
of compositions of length n is equal to n− k. �

Remark 4.2. By analyzing the expression for µk(c), , one can show that if c =
(γ1 + 1, . . . , γℓ + 1) ∈ Cn:

• for any 1 ≤ k ≤ ℓ− 1,

µk(c) = max (γℓ−k + 1, γℓ) +
k−1
∑

j=1

γℓ−j,

• when k = ℓ,

µℓ(c) =

{

0 if γℓ = 0

n− ℓ if γℓ > 0
.

4.2. Grand coupling time. In this subsection we prove Proposition 2.10 giving an
expression for the grand coupling time associated with a given sequence of transi-
tions.

Proof of Proposition 2.10: We say a bin is recent (resp. ancient) if it is the leftmost
bin of the configuration at time 0 or if it is created after time 0 (resp. if it already
existed at time 0, but was not the leftmost bin at that time). It then follows that
effective (resp. ineffective) elements of the sequence are those that create a ball in
a recent (resp. ancient) bin. By looking at the two initial configurations (n) and
(1, n− 1), it is easy to see that one needs exactly n− 1 transitions to couple them.
Moreover, for any initial configuration, the leftmost bin contains at least one ball.
Therefore, once one knows how n − 1 balls have been added in recent bins, one
knows the entire configuration, regardless of what the initial configuration was. So
n− 1 effective elements are enough to couple any pair of initial configurations. �

4.3. Spectrum. The main idea of the proof of Theorem 2.11 is that Mn, when
written in a different basis, becomes block upper-triangular, with one of its diagonal
blocks being a diagonal matrix and the other one being Mn−1. In order to observe
this, we first need to define an order on the elements of Cn making it compatible
with that on Cn−1.
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We define the maps L and R from Cn to Cn+1 for any n ≥ 1 as follows. For any
c = (c1, . . . , cℓ) ∈ Cn,

L(c) := (c1, . . . , cℓ, 1),

R(c) := (c1, . . . , cℓ + 1).

The maps L and R both add a single ball to the right of the configuration, either
in a new rightmost bin or in the current rightmost bin. We also define the map
D : Cn → Cn−1 which erases the rightmost ball: for any c = (c1, . . . , cℓ) ∈ Cn,

D(c) :=

{

(c1, . . . , cℓ − 1) if cℓ ≥ 2

(c1, . . . , cℓ−1) if cℓ = 1
.

We proceed by induction on n ≥ 1 to assign a rank to each composition in Cn. We

set s
(1)
1 := (1) and for any n ≥ 2 and 1 ≤ i ≤ 2n−2, we set

s
(n)
2i−1 := L(s

(n−1)
i ), (4.3)

s
(n)
2i := R(s

(n−1)
i ). (4.4)

These compatibility relations can be illustrated by the rooted plane binary tree on
Figure 4.4, where the order on Cn can be read from left to right on the n’th row.
By construction, we have for any n ≥ 2 and 1 ≤ i ≤ 2n−2,

D(s
(n)
2i−1) = D(s

(n)
2i ) = s

(n−1)
i . (4.5)

(1)

(1; 1) (2)

(1; 1; 1) (1; 2) (2; 1) (3)

L

L R

R

L R

Figure 4.4. Compatibility between the orders.

Remark 4.3. It is not hard to show that this order on Cn defined inductively is
actually the lexicographic order on Cn, where a composition c = (c1, . . . , cℓ) ∈ Cn

can be seen as a word of ℓ letters on the alphabet N equipped with its usual order.

We now define two bases on R
Cn . The first one is the basis Bn =

(e(s
(n)
i ))1≤i≤2n−1 , where each basis vector is indexed by a composition. The second

basis is B′
n = (f

(n)
1 , . . . , f

(n)
2n−2, g

(n)
1 , . . . , g

(n)
2n−2) where for any 1 ≤ i ≤ 2n−2, we define

f
(n)
i := e(s

(n)
2i )− e(s

(n)
2i−1), (4.6)

g
(n)
i := e(s

(n)
2i−1) + e(s

(n)
2i ). (4.7)
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Let un be the endomorphism of RCn whose matrix in the basis Bn is given by Mn.
Denote by M ′

n the matrix of un in the basis B′
n. Then we can find the eigenvalues

of Mn by induction on n, using the following result.

Lemma 4.4. For any n ≥ 2, write

M ′
n =

(

An,1 An,2

An,3 An,4

)

,

where the blocks An,i are all square matrices of size 2n−2. Then the following holds:

(1) An,1 is a diagonal matrix, where for every 1 ≤ j ≤ n − 1, the entry −yj
appears exactly

(

n−2
j−1

)

times as a diagonal element ;

(2) An,3 = 0 ;
(3) An,4 = Mn−1.

Proof of Theorem 2.11: Assuming Lemma 4.4, we have that M ′
n is a block upper

triangular matrix. By induction, we know that eigenvalues of Mn−1 are −yj with

multiplicity
(

n−2
j

)

for any 1 ≤ j ≤ n−2, and 0 with multiplicity 1. Thus, we deduce

that the eigenvalues of M ′
n are −yj with multiplicity

(

n−1
j

)

for any 1 ≤ j ≤ n− 1,

and 0 with multiplicity 1. It also immediately follows from Lemma 4.4 that for any
n ≥ 3, the matrix Mn is not diagonalizable : we easily check that the matrix M3

(see Example 2.13) is not diagonalizable and we conclude by induction, since Mn

appears as a block of the block triangular matrix M ′
n+1. �

To complete the proof of the theorem, it remains to prove Lemma 4.4.

Proof of Lemma 4.4: Recall that the map Tj : Cn → Cn is given for any 0 ≤ j ≤
n− 1 by

Tj(c) =











(1, c1, . . . , cℓ−1, cℓ − 1) if j = 0,

(c1, . . . , cj−1, cj + 1, cj+1, . . . , cℓ−1, cℓ − 1) if 1 ≤ j ≤ ℓ− 1,

c if j ≥ ℓ.

The action of endomorphism un on the basis Bn is given by

un(e(s
(n)
i )) =

n−1
∑

j=0

xj

(

e(Tj(s
(n)
i ))− e(s

(n)
i )

)

(4.8)

for any 1 ≤ i ≤ 2n−1. Fix 1 ≤ i ≤ 2n−2. Denote by ℓ the length of the composition

s
(n)
2i . Then by construction, the composition s

(n)
2i−1 has length ℓ + 1. Pick 1 ≤ j ≤

n− 1. The following equalities hold.

Tj(s
(n)
2i−1) = Tj(s

(n)
2i ) if j ≤ ℓ, (4.9)

Tj(s
(n)
2i−1) = s

(n)
2i−1 if j ≥ ℓ+ 1, (4.10)

Tj(s
(n)
2i ) = s

(n)
2i if j ≥ ℓ. (4.11)

Combining equations (4.8), (4.9), (4.10) and (4.11), we deduce that

un(f
(n)
i ) = −yℓf

(n)
i . (4.12)

Thus for any 1 ≤ i ≤ 2n−2, f
(n)
i is an eigenvector of un, and the corresponding

eigenvalue is −yℓ, where ℓ is the length of the composition s
(n)
2i . Using the map R
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as a length-preserving bijection from Cn−1 to the subset
{

s
(n)
2i

}

1≤i≤2n−2
of compo-

sitions of n of even rank, we deduce the number of compositions of n of even rank
that have length ℓ equals the number of compositions of n− 1 that have length ℓ,
which is well-known to be

(

n−2
ℓ−1

)

. Statements 1 and 2 of the lemma follow.

Combining equations (4.8), (4.9), (4.10) and (4.11) again, we obtain that

un(g
(n)
i ) =

ℓ−1
∑

j=0

xj

(

2e(Tj(s
(n)
2i ))− g

(n)
i

)

+ xℓf
(n)
i . (4.13)

It is not hard to see that for any 0 ≤ j ≤ ℓ− 1,

D(Tj(s
(n)
2i )) = Tj(D(s

(n)
2i )) = Tj(s

(n−1)
i ). (4.14)

Thus for any 0 ≤ j ≤ ℓ− 1,

Tj(s
(n)
2i ) ∈

{

L(Tj(s
(n−1)
i )), R(Tj(s

(n−1)
i ))

}

.

If for any 0 ≤ j ≤ ℓ− 1, we call τj(i) the integer such that

Tj(s
(n−1)
i ) = s

(n−1)
τj(i)

,

then

2e(Tj(s
(n)
2i )) = g

(n)
τj(i)

± f
(n)
τj(i)

.

Thus

un(g
(n)
i ) =

ℓ−1
∑

j=0

xj

(

g
(n)
τj(i)

− g
(n)
i

)

+

ℓ−1
∑

j=0

±xjf
(n)
τj(i)

+ xℓf
(n)
i .

Observing that the matrix An,4 is obtained by considering the projection of un(g
(n)
i )

on the subspace spanned by
{

g
(n)
k

}

1≤k≤2n−2
and comparing with the fact that

un−1(e(s
(n−1)
i )) =

ℓ−1
∑

j=0

xj

(

e(Tj(s
(n−1)
i ))− e(s

(n−1)
i )

)

=

ℓ−1
∑

j=0

xj

(

e(s
(n−1)
τj(i)

))− e(s
(n−1)
i )

)

,

we conclude that statement 3 holds true. �

As an immediate consequence of Theorem 2.11, we obtain the relaxation time
and the spectral gap.

Corollary 4.5. The spectral gap of the chain is given by (x0 + x1)/yn and the
relaxation time is yn/(x0 + x1).
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