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Abstract—I discuss heat and momentum transport in a mesoscopic film of 3He, confined by rough walls in
the normal Fermi liquid state. Inelastic binary quasiparticle scattering mediated by elastic scattering from the
surface roughness gives rise to a coherent “mixed” scattering channel that drives anomalous transport over a
range of temperature. I calculate the thermal conductivity and viscosity of the film in this regime and derive
these in terms of the film thickness and autocorrelation function of the surface roughness, which enters the
formulation as an independent input. This calculation can be useful in understanding and isolating the effects
of confinement and surface roughness, especially in the context of exploring the superfluid state in the film.
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1. INTRODUCTION

The effect of boundaries on the behavior of physi-
cal systems is gaining in importance as systems shrink
in size. Restricted geometries in the mesoscopic and
nanoscales have become ubiquitous e.g., nanochan-
nels, quantum wires, thin films and quantum dots, to
name a few. Quantum mechanics kicks in at suffi-
ciently small confining lengths via quantization of var-
ious physical quantities characterizing the system,
referred to as the quantum size effect (QSE). The
influence on the system of surface roughness of con-
fining walls is a more complicated, but fundamentally
important problem. I address this problem and ana-
lyze transport properties of a Fermi liquid mesoscopi-
cally confined by rough walls.

Liquid 3He is a paradigm for Fermi liquids and
exhibits a rich superfluid phase diagram with a com-
plex order parameter having unconventional p-wave
pairing symmetry [1]. In the absence of an applied
magnetic field, there are two stable bulk superfluid
phases with triplet pairing. The B-phase is a time
reversal-invariant phase with an isotropic gap and is
the stable low-temperature phase. The A-phase is a
chiral phase with nodes in the gap and an intrinsic
nonzero pair angular momentum. Superfluid 3He is a
topological superfluid and the existence of edge cur-
rents and surface excitations have been predicted in
both A and B phases [2]. These Majorana states have
unique non-local properties that render them suitable
to applications in quantum computing [3]. The detec-
tion of these states has however been elusive [4].

Superfluid 3He provides a model system in which to
search for these states. With the development in the
fabrication of nanocavities suitable to study superfluid
3He, the search for the Majorana states in this system
has intensified in confined geometries more recently
[5, 6]. The study of confined liquid 3He has also been
fundamentally driven by the prediction of new phases
not present in the bulk [7]. Confinement and size
effects inevitably raise the questions of scattering con-
ditions at the surfaces and the effects of surface rough-
ness.

Earlier studies of the effect of surface roughness in
liquid 3He slabs have reported anomalous relaxation
rates of the Fermi liquid in a torsion oscillator [8]. In
this paper, I present a rigorous calculation of heat and
momentum transport of normal liquid 3He in a slab
geometry and obtain expressions for the viscosity and
thermal conductivity in this anomalous regime, as a
function of the surface roughness. These calculations
propose a method to characterize the normal state of
liquid 3He in a slab; a crucial step in unraveling the
mysteries of the confined superfluid phase diagram.
These results are analogously applicable to metallic
thin film systems, where the electronic Fermi liquid
can be expected to show anomalous behavior in trans-
port properties along the same lines as reported in this
paper.

Transport in the bulk quantum fluid, 3He is well-
understood within the framework of Landau’s Fermi
liquid theory [9] for temperatures less than a few hun-
dred millikelvin. The relevant excitations of the system
that determine the physics in the Fermi-liquid regime
are quasiparticles with well-defined momentum,1 The article is published in the original.
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pF and energy, εF (Fermi momentum and energy,
respectively). At temperatures below 100 mK (for T ≪
εF/kB ~ 1 K for liquid 3He), the quasiparticles form a
system of degenerate fermions with effective mass m
i.e., εF = /2m with Fermi-liquid interactions
described in terms of well-known Landau parameters
[10, 11]. Quasiparticles scatter with each other through
inelastic binary quasiparticle collisions with a scatter-
ing rate T2. Transport of heat and momentum is medi-
ated by this quasiparticle scattering mechanism and
the viscosity ηb ∝ T–2 and the thermal conductivity
κb ∝ T–1 in bulk liquid 3He. The inelastic mean free
path,  ∝ T–2 and ranges from a few nanometers at
high temperatures up to tens of microns at low tem-
peratures. As the size of the system reduces and
becomes comparable to , transport properties enter
the Knudsen regime. For liquid 3He, since  spans
three orders of magnitude on cooling, a wide range of
system sizes can be sampled in the Knudsen limit. For
smaller systems, the QSE operates in this limit and the
roughness of the confining surfaces begins to play a
role in the physics. Inelastic quasiparticle scattering
events are fewer and are mediated by elastic scattering
off the rough surface. On approaching the Knudsen
limit, quasiparticles maintain coherence while under-
going both scattering processes and transport is deter-
mined by quasiparticles experiencing a coherent
“mixed” scattering channel. This is the regime of
interest in the rest of this paper.

When Fermi liquid 3He is confined to a thin slab of
thickness L, size quantization in the transverse direc-
tion splits the quasiparticle spectrum into a set of
bands εn(q), with quasiparticles in each band moving
freely with longitudinal (in-plane) momentum q. For
L ≲ , this modifies the phase space available for
inelastically scattered quasiparticles and hence the
binary quasiparticle scattering rate. For a rough sub-
strate surface with small roughness given by a height
profile, h(x, y), (z being the confinement direction),
quasiparticles experience a local confinement spec-
trum that varies in the longitudinal direction. For
h/L ≪ 1, they may be viewed as free quasiparticles
making transitions between quantized bands as they
move along their trajectory, . This picture can be
formalized in terms of a virtual disorder potential in
the bulk, that drives these transitions in a system with
flat walls. Such a transformation was suggested inde-
pendently by Tesanovic et al. [12] and by Trivedi and
Ashcroft [13] and employed to formulate a theory for
a layered system by Meyerovich and coworkers [14–
16]. The scattering off the virtual disorder potential is
found to be (h/L)2 ≪ kBT, the excitation energy of a
quasiparticle. Hence, it may be assumed that the elas-
tic scattering off the roughness does not affect the
intermediate states that mediate the inelastic quasi-
particle collisions. The phase space available for scat-
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tered quasiparticles undergoing binary inelastic colli-
sions, is given by the quasiparticle density of states,
which can be expanded in h/L for h/L ≪ 1, and for a
randomly rough surface with 〈h(x, y)〉(x, y) = 0 (angular
brackets denotes surface average). The scattering rate
for inelastic collisions in this system is found to be T,
and can be expressed [17] in terms of the surface
roughness power spectrum 〈h(q)h(q')〉(x, y) ≡ ζ(q – q'),
often referred to as the autocorrelation function of the
surface roughness. This anomalous linear temperature
dependence of the relaxation rate has been measured
[8] in a torsional oscillator for 3He films of thickness a
few hundred nanometers and interpreted successfully
by the Meyerovich formulation [18]. Consequently,
transport properties are expected to exhibit this anom-
alous temperature dependence and have been investi-
gated theoretically in this paper.

The calculation presented here predicts an anoma-
lous temperature dependence of the thermal conduc-
tivity and viscosity of 3He in thin films with thickness
in the range of 100 nm to ~1 μm. The transport coef-
ficients are given by expressions derived using the for-
mulation discussed above, and can be calculated
numerically for given surface roughness autocorrela-
tion function. The latter can be independently deter-
mined experimentally using scanning probe tech-
niques, and goes into the calculation as an ab initio
input. The calculation of transport coefficients in
these terms is especially effective in resolving the
effects of confinement versus the effects of surface
roughness, and has not been done before.

2. TRANSPORT THEORY
Consider Fermi liquid 3He confined to an infinite

slab of thickness L, with one rough wall having surface
roughness power spectrum ζ(q – q'), the second wall
being smooth. For isotropic randomly rough surfaces,
ζ = ζ(|q – q'|). This is the autocorrelation of the surface
roughness viz., if the height profile of the surface
roughness is h(x, y) ≡ h(s), then

(1)

q and s are two-dimensional in-plane vectors in the
momentum and real spaces, respectively (xy plane as
shown in Fig. 1). As discussed in the preceding para-
graphs, scattering of 3He quasiparticles off the surface
roughness can be formulated in terms of scattering off
a virtual disorder potential in the bulk in a geometric
system with f lat walls [12]. This is achieved by a coor-
dinate transformation, first suggested by Trivedi and
Ashcroft [13] which applies for inhomogeneities large
on the scale of the quasiparticle wavelength, kFh ≫ 1
and small on the scale of system size, h ≪ L. For weak
roughness, h ≪  in the Knudsen regime and the sys-
tem can be treated in the continuum limit kFL ≫ 1. Of
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Fig. 1. Film geometry.
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course, the mapping transformation applies when the
stretching of coordinates as effected by the transfor-
mation is such that h is smaller than the distance over
which 3He quasiparticles maintain coherence, or the
length over which quasiparticle decohere, given by the
thermal rate /kBT, i.e., h ≪ /kBT ~ 50 nm at P =
0 bar and T = 10 mK.

The relaxation rate is given by [17]

(2)

to order ϑ((h/L)2), the leading term in a h/L ≪ 1
expansion. Here τb is the bulk relaxation rate including
inelastic scattering processes, j, j ' are the band indices
for the quantized minibands in the z-direction of con-
finement, and εF is the Fermi energy. S is the total
number of minibands that is chosen to be summed
over. The scattering probability is given by

(3)

Here, m is the quasiparticle mass. For a slab with both
surfaces being randomly rough, another term of simi-
lar form with the surface roughness power spectrum ζ2
of the second surface adds to the probability in the
expression above. If the surface roughnesses of both
surfaces are in turn correlated, then the simple formu-
lation above no longer holds. This regime is much more
complicated and has been addressed by Meyerovich [12].
However, all following arguments assume uncor-
related surface roughness away from this “quantum
resonance” regime.

In the normal state, on application of a thermal
gradient ∇T or f luid f low u, the Fermi liquid density of
states remains unchanged and the quasiparticle distri-
bution function responds to the applied gradient/flow
by a change δnpσ. The linearized Boltzmann-Landau
transport equation for the distribution function npσ
may be used for quasiparticles of momentum p and
spin σ, in the steady state viz.,

(4)

The driving term, I[npσ] is the collision integral given
by inelastic scattering as well as scattering from the vir-
tual disorder potential at a rate set by Eq. (3). Consider
linear deviations from equilibrium viz.,
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the Fermi distribution function. Therefore,

(8)

Here χ = (ε – εF)/kBT. Define a function Φi such that

(9)

The left hand side of the Boltzmann Eq. (4) can now
be worked out using Eqs. (7)–(9), and with the colli-
sion integral derived in the following section, the
Boltzmann equation reduces to an equation for Φi.

2.1. Collision Integral
The right hand side of the Boltzmann equation is

the driving term given by the collision integral. Con-
sider the roughness-induced term viz., the second
term in Eq. (2) in order to formulate the collision inte-
gral. The first term in Eq. (2) is the bulk term and is
added onto the wall-driven term using a relaxation
time approximation viz., , and sim-
ilarly for the thermal conductivity. Linearizing the col-
lision integral, using Eq. (3) and going to the contin-
uum limit (as discussed in [17]) viz., pzL ≫ 1 and j ≫ 1,

(10)

with χ =  and pz = . Using Eqs. (8) and (9),

the right hand side of the Boltzmann equation above
can be worked out in terms of Φi. The deviation δnpσ
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can then be worked out by solving the Boltzmann-
Landau equation for Φpσ.

2.2. Viscosity
Let the f luid (f low) velocity, u be along the x-direc-

tion, i.e., u = u(z) . The geometry is illustrated in
Fig. 1. Clearly, x and y are equivalent directions. The
momentum flux tensor is given by the dissipative part
of the stress tensor σxz

(11)

where η is the f low viscosity. With the f luid f low,

(12)

Plugging this into the Boltzmann Eq. (4), and using
Eq. (8),

(13)

for spin independent scattering. Putting Eqs. (8) and
(9) in the collision integral (Eq. (10)),

(14)

where Nf is the density of states at the Fermi level, Nf =

mpF/2π2 . Assume the momentum and energy
dependences are separable and let

(15)
This is a standard assumption in the linear regime of
the Boltzmann equation and is justified considering
the evolution of the distribution function and its devi-
ations from its equilibrium momentum-independent
form. Use the ansatz

(16)

and the Boltzmann equation reduces to an integral
equation for ϕ(p),

(17)

with p = (q, pz) = (psinθcosφ, psinθsinφ, pcosθ) and
analogously for p'(θ', φ'). Here, dΩ' = d(cosθ')dφ' and
the integral is over the direction . Define
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The solution for the viscosity is then given by the fol-
lowing equation, accompanied with a self-consistency
equation for  (from Eq. (17)).

(19)

(20)

Expand  in the spherical harmonics Ylm:

(21)
and

(22)

using the orthogonality of the spherical harmonics.
Putting this back in Eq. (19),

(23)

is the expression to be evaluated for η along with the
self-consistency Eq. (20) for .

Examining the symmetry (with respect to lm) of
the Boltzmann equation, the only nonzero compo-
nents of both sides of the equation for , viz., Eq. (17),
are the l = 2; m = ±1 components. Examining the
angular moments in the integral on both sides of
Eq. (17), the formulas in Appendix D can be used to
deduce  = 0; m ≠ ±1 and  = 0  ≠ 2, 4, 6.
Therefore, a complete expansion of  to all orders is
given by

(24)

If this expression is truncated after the first two
terms, the viscosity is given by the following expres-
sion,

(25)

with τb = τ0(P)/T2, P being pressure,  =  is a

numerical constant, and ϖ is a geometric factor given
by various components of the roughness structure fac-
tor, ζ (Appendix B). By symmetry (and trivially by
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explicit calculation), σxz = σyz = σ|| and the result for η
in both parallel directions are identical.

2.3. Thermal Conductivity

The thermal conductivity is calculated from the
Boltzmann Eq. (4), with the collision integral given by
the scattering off the surface roughness, Eq. (10). As in
the case of viscosity, use the function Φ as defined in
Eq. (9), with Φ(p) = ϕ(p)ψ(χ). Of course, the func-
tions ϕ(p) and ψ(χ) are different from their values cal-
culated in the viscosity case. For this case, try the
ansatz

(26)

Consider a temperature gradient in the parallel
direction, ∇T|| . This is the case of natural physical
interest with the temperature gradient being in the
plane of the slab, viz., the xy plane. The thermal con-
ductivity  is the linear response to a thermal gradient
defined thus

(27)

In this case,

(28)

Plugging this into the Boltzmann equation, obtain an
integral equation for ,

(29)

with ϕ(p) =  ⋅ κxx is given by
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Expanding  in spherical harmonics as in Eq. (21)
before, evaluate
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Equations (29) and (32) need to be solved simultane-
ously to get κxx. The driving term in the equation for 
is the first term on the right hand side of Eq. (29). For
the κ-case, this term has l = 1, m = ±1 symmetry and
hence, only lm = 1 ± 1 components of both right and
left hand side terms will be nonzero. Examining the
moments in the integral on both sides,  = 0; m ≠ 1
and  = 0  ≠ 1, 3, 5. Therefore, a full and com-
plete expansion of  to all orders is

(33)

If the expression above is truncated after the first two
terms, the thermal conductivity is given by the follow-
ing expression

(34)

with τb = τ0(P)/T2 as before,  =  is a numerical

constant and ϖκ is a geometric factor given by various
components of the roughness structure factor, ζ
(Appendix C). The microscopic processes responsible
for heat transfer are the processes of quasiparticle scat-
tering and scattering off the virtual disorder potential.
Since these processes are isotropic at each scattering
event, the transverse components of heat transfer can-
cel and κxz = κxy = 0. If ∇T|| , by symmetry (and triv-
ially by explicit calculation), κxx = κyy ≡ κ|| and κyz =
κxz = κyx = 0.

2.4. Low Temperature Limit

As T → 0, the inelastic scattering freezes out and
consequently, the scattering process considered in the
calculation discussed above freezes out. In this limit,
scattering is purely from the roughness and this is a
strictly elastic channel that has not be included in the
considerations thus far. It is temperature-independent
and the elastic scattering rate,  ~ /  where

 is a characteristic length set by the surface
roughness, estimated by Tesanovic et al. [12]. 
arises from residual roughness scattering and for a
white noise autocorrelation function with rms rough-
ness Δh ~ 10 nm,  ~ 10–5 m. Clearly,  ≫

, the inelastic mean free path in the bulk. As T → 0,
ηT → 0 ~ 3 × 10–4 kg m–1 s–1 at P = 0 and saturates to a
value of this order at low temperatures. This is the
residual viscosity. The residual κT → 0 ∝ T. These resid-
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ual values depend upon pressure and roughness as do
the cross-over temperatures to the residual behavior in
the low temperature limit.

The residual value of the transport comes from the
quantum size effect and has no classical analogue. In
the classical limit, the transport vanishes in the low
temperature limit as a beam of ballistic quasiparticles
can propagate in parallel through the film with zero
effect from the roughness in the absence of any bulk
relaxation mechanism. However, in the quantum-
mechanical case, the quantum mechanical zero-point
motion excludes strict two dimensional confinement
in the film plane and gives rise to nonzero transport in
the residual limit. In general  is the length scale
that corresponds to the relaxation rate from surface
scattering only i.e., in the absence of all other scatter-
ing channels at T = 0. It is the mean free path of the
residual scattering rate arising from quantum size
effects and surface roughness scattering. It sets a
length scale over which the quasiparticle wave func-
tion decoheres in this limit.

2.5. Crossovers
If the inelastic quasiparticle scattering rate is very

large, then inelastic processes dominate and wash out
the anomalous effect that arises when inelastic events
are mediated by elastic scattering off the virtual disor-
der potential. Bulk behavior dominates at tempera-
tures T > T* = kBτ0(P)/  ~ 200 mK at P = 0.

If the inelastic scattering rate is very small and
≫ , where  is the characteristic length scale

for elastic scattering (mediated by inelastic events) off
the virtual disorder potential, then inelastic quasipar-
ticle scattering events are no longer mediated by elastic
events and the scattering will be dominated by the
scattering from surface roughness. The anomalous
effect disappears then for T < T*' ~ τ0(P)kF(h/L) ~
1 mK at P = 0.

Therefore, the anomalous effect only exists in a
regime T*' < T < T*, where the limiting values depend
on pressure, slab thickness and roughness.

3. SURFACE ROUGHNESS
The roughness of confining walls can be deter-

mined by high resolution surface microscopy tech-
niques. The structure factor of roughness is treated as
known for purposes of this work and goes into the cal-
culation as a fixed input derived from experiment. For
purposes of discussing results of the theoretical pre-
dictions, we use three varied autocorrelation func-
tions. The first is a Gaussian autocorrelation function

with ζ(q)G = 2πl2R2 , where l and R refer to
Gaussian parameters reflecting height and correlation
length of inhomogeneities. The second line shape is
that of a fractal autocorrelation function, ζF(q) =

surface,

�

in, el, el,

− 2 2| | Re q
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(Δh)2/|q|H of a self-affine fractal, Δh being the rms
roughness and H the fractal exponent. The third type
of roughness used is the white noise spectrum ζWN =

(Δh)2/ , with Δh being the rms roughness. These
autocorrelation function types have been chosen to
match with those that are found on real rough surfaces
[19]. The values of the parameters chosen illustrate the
typical values that correspond to smooth polished sur-
faces as may be used in a typical 3He slab experiment.

4. RESULTS AND DISCUSSION

The calculated values of viscosity in the tempera-
ture range where anomalous behavior is expected are
shown in Fig. 2. For weaker roughness (ζWN and ζF in
Fig. 2), the crossover from bulk ηb ∝ 1/T2 to the linear
regime η|| ∝ 1/T is noticeable in the temperature range
of validity of the formulation discussed. For rougher
surfaces, (e.g., ζG in Fig. 2), the wall-component
dominates and the η|| ∝ 1/T behavior spans a large
temperature range. The shape of the autocorrelation
function plays a significant part in determining the
strength of roughness in a sense, as can be seen by
comparing ζWN and ζG with the same rms roughness in
Fig. 2. The shape of ζ enters the expression for η
implicitly via the  function, in Eq. (23), and reflects
the dependence of the spatial form of roughness cor-
relation (or lack of it) on momentum transfer. Wall
scattering events that mediate inelastic quasiparticle
collisions enhance momentum transfer in the parallel
direction and lead to a reduction in viscosity with
respect to the bulk.

The calculated values for heat transport in a similar
temperature range are also shown in Fig. 2. Wall scat-
tering events that mediate quasiparticle collisions sup-
press heat transfer and on cooling, the thermal con-
ductivity saturates to a less effective value compared to
the bulk.

5. SUMMARY

I have presented theoretical calculations of the vis-
cosity and thermal conductivity in a regime where
transport is dominated by a coherent “mixed” scatter-
ing channel of inelastic quasiparticle collisions medi-
ated by elastic scattering events off the surface rough-
ness of confining walls. Thermal conduction which is
highly effective in bulk 3He is suppressed and saturates
to a residual value in this regime. Momentum transfer
is rendered more effective in this regime and the vis-
cosity is suppressed with respect to the bulk. The
crossover to this regime on cooling from the bulk is a
function of pressure, film thickness and surface
roughness, with both the size and form of the autocor-
relation function of roughness being considerable in
this context. This anomalous transport should be
observable in films of thickness of a few hundred

2
Fk

ϕ
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Fig. 2. (Color online) (a) Calculated values of viscosity and
(b) thermal conductivity for a film of thickness L = 700 nm
and at pressure P = 0 bar. The dotted line shows the bulk
value, ηb ∝ T–2 or respectively, κb ∝ T–1. Bulk values,
including τ0(P) are derived from [18]. The dashed lines
show the calculated values with the “mixed” scattering
channel. The solid lines show the effective values including
both bulk and calculated contributions. The saturation at
low temperatures to the wall-induced component is clear
in the fractal case, where we have used rms roughness Δh =
3 nm and fractal exponent H = 2. For white noise rough-
ness with rms roughness Δh = 10 nm, the saturation from
the bulk to the wall-component is pushed to lower tem-
peratures. For rougher surfaces, the wall-induced term
dominates. Gaussian roughness with height l = 10 nm and
correlation length R = 25 nm is used in the figure shown.
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nanometers in the temperature range ~10–200 mK,
the effects being more pronounced at higher tempera-
tures in thinner films. The effect of residual scattering
at low temperatures might affect the phase diagram in
the superfluid state.

APPENDIX A

Autocorrelation Function

The autocorrelation function, ζ is a two-dimen-
sional quantity that depends on two-dimensional in-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
plane vectors, q and q'. With φ being the azimuthal
angle, ζ may be expanded as Σmζm(θ, θ')eimφe–imφ'. With
the in-plane isotropy of ζ in two dimensions, it is sim-
ply an expansion in φ – φ'. The coefficients of this
expansion depend upon the magnitudes of q and q',
viz., on θ and θ'. By the trivial symmetry of the func-
tion perpendicular to the surface (since ζ is specified
as the autocorrelation function only on the surface),
the aforementioned coefficients can be expanded in a
complete set of polynomials in θ and θ'. This expan-
sion is sufficient and is a complete representation of
the ζ in this case. However, since the 's may be
expanded in spherical harmonics (21) and appear in
the expressions for the transport coefficients, an
expansion of ζ in terms of the spherical harmonics
would be most convenient in computing η, κ. With
this objective, an extrapolation of the two-dimen-
sional function ζ(q, q') is made to a function in three
dimensions, viz. ζ(p, p'). This extrapolation is not
unique and it is possible to choose one that is conve-
nient for the purposes of this calculation. Since p and
p' are independent vectors, θ and θ' dependencies are
independent and we can hence assume, separable.
Hence, consider the particular expansion

(35)

Here, Plm are the associated Legendre polynomials.
The particular choice of the same indices (l, m) on
Plm(θ) and Pl' = l; m' = m(θ') is one of convenience. While
all choices l ' ≠ l; m' ≠ m would yield the correct phys-
ical projection ζ in two-dimensions, the choice l ' = l is
one of convenience. m = m' is dictated by the isotropy
of the function in two-dimensions viz., ζ(φ, φ') =
ζ(φ – φ'). This expansion is a more general, yet com-
plete, expansion for ζ in three dimensions and the for-
mer expansion is a projection of this one. Consider a
more general ζ of the form above, or equivalently,

(36)

Here, Ylm are the spherical harmonics (Appendix D).
The calculations simplify by generalizing ζ in this
fashion. Clearly, the solution certainly includes the
particular ζ of the rough surface in question and is the
correct solution for it. Moreover, the Plm are a set of
complete orthogonal polynomials and with θ and θ'
dependences being separable, offer a correct expan-
sion of ζm(θ, θ').

APPENDIX B

Calculation of Viscosity

The truncated expansion for  is

(37)

ϕ

φ − φ

ζ θ θ φ φ
= Σ ζ θ θ '

( , ', , ')

( ) ( ') .im im
lm lm lm lmP P e e

ζ θ θ φ φ = Σ ζ θ φ θ φ*( , ', , ') ( , ) ( ', ').lm lm lm lmY Y

ϕ

− −ϕ θ φ = ϕ θ φ + ϕ θ φ2,1 2,1 2, 1 2, 1( , ) ( , ) ( , ).Y Y
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Projecting the (θ, ϕ) component of Eq. (19), and
using the properties (Appendix C) of the spherical
harmonics,

(38)

Along the same lines, we get by projecting the (θ, φ))
component of Eq. (19),

(39)

Putting  in Eq. (23), we get Eq. (25) for the viscos-
ity, with

(40)

APPENDIX C

Calculation of Thermal Conductivity

The truncated expansion for  is

(41)

Projecting out  components of Eq. (29), we get

(42)

Putting these is Eq. (32), we get Eq. (34) for κxx with
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(43)

APPENDIX D

Properties of Spherical Harmonics

We use spherical harmonics defined as

(44)

with normalization thus

(45)

where  is the associated Legendre polynomial.
Now, as worked out in [20], there is a relation

(46)

Using Eq. (46) recursively,

(47)

where the constants s are defined thus:

(48)

Define

(49)

and with Eq. (44) and z ≡ cosθ, Eq. (47) becomes
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