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Symmetry-protected spectral topology in extended non-Hermitian quantum systems has interesting manifesta-
tions such as dynamically anomalous chiral currents and skin effect. In this paper, we study the interplay between
symmetries and disorder in a paradigmatic model for spectral topology—the nonreciprocal Su-Schrieffer-Heeger
model. We consider the effect of on-site perturbations (both real and purely imaginary) that explicitly break
the sublattice symmetry. Such symmetry-breaking terms can retain a nontrivial spectral topology but lead to
a different symmetry class. We numerically study the effect of disorder in on-site and nonreciprocal hopping
terms. Using a real-space winding number that is self-averaging and quantized, we investigate the impact of
disorder on the spectral topology and associated anomalous chiral modes under periodic boundary conditions.
We discover a remarkable robustness of chiral current and its self-averaging nature under disorder. The value of
the chiral current retains the clean system value, is independent of disorder strength, and is tracked completely
by the real-space winding number for class A which has no symmetries, and class AIII, which has a sublattice
symmetry. In class D†, which has PT -symmetric on-site gain and loss terms, we find that the disorder-averaged
current is not robust while the winding number is robust. We study the localization physics using the inverse
participation ratio and local density of states. As the disorder strength is increased, a mobility-edge phase with a
finite winding appears. The abrupt vanishing of the winding number marks a transition from a partially localized
to a fully localized phase. Under open boundary conditions, we similarly observe a series of transitions through
skin effect–partial skin effect–no skin effect phases. Further, we study the non-Hermitian Anderson skin effect
(NHASE) for different symmetry classes, where the system without skin effect develops a disorder-driven skin
effect at intermediate disorder values. Remarkably, while NHASE is present for different classes, the real-space
winding number shows a direct correspondence with it only when all symmetries are broken.
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I. INTRODUCTION

Non-Hermitian systems, both in classical and quantum set-
tings, have gained interest because of their physical relevance
and conceptual novelty [1–8]. Non-Hermitian concepts find
a wide range of applicability in fields such as optics, pho-
tonics, acoustics, mechanical metamaterials, and biological
open systems, to name a few—rapid experimental work is
being done to explore non-Hermitian aspects in these plat-
forms [5,9–12]. Non-Hermitian lattice models have gained
much importance in condensed-matter settings, having intro-
duced many interesting ideas such as complex eigenspectra,
non-Hermitian skin effect [13–28], complex energy gaps,
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broken bulk-boundary correspondence [29–34], and excep-
tional points [35–44], among others. In contrast to the band
topology in Hermitian systems, the complex energy spectrum
of non-Hermitian Hamiltonians is known to have a notion of
topological winding, which we term spectral topology. Skin
effect and chiral modes, among others, are manifestations of
this spectral topology. Much like band topology, it is protected
by antiunitary symmetries and has been thoroughly classified
under the Bernhard-Sinclair classification scheme [45–49].
The spectral topology and the accompanying features such as
the chiral modes and currents have already been probed in
experiments using photonic lattices [50–52].

On the other hand, disorder has always played a vital role in
condensed matter systems, ranging from the seminal works on
Anderson localization [53–57] to several works on disorder-
driven phase transitions in topological systems [58–65]. The
notion of non-Hermiticity and its interplay with disorder has
been a recent subject of wide-ranging interest. The effect
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of disorder on the inherently non-Hermitian Hatano Nelson
model [66–71] has been studied recently, where disorder has
been introduced in the hopping to obtain interesting physics,
such as disorder-driven phase transitions from an extended
phase to a bulk localized phase [72] and an non-Hermitian
Anderson skin effect (NHASE), where disorder gives rise to a
skin effect [73], and more. Some studies of the non-Hermitian
Su-Schrieffer-Heeger (SSH) model [74–80] have also been
performed, where disorder has been introduced in the hop-
ping to find a non-Hermitian topological (NH top) Anderson
insulating phase [81].

In this paper, we undertake a comprehensive study of
the interplay of disorder and symmetry classes in the
non-Hermitian SSH model. The point-gap topology in the
nonreciprocal SSH model is protected by the sublattice sym-
metry (SLS) and belongs to class AIII. We consider a more
general model with on-site terms that breaks the SLS. The
resulting system has no symmetry and belongs to class A,
which also has a corresponding point gap topology. In contrast
to the Hatano-Nelson model, which also belongs to the same
class, we find that in our case, for real on-site terms, there is
an extended region in the phase diagram with trivial winding
(see Sec. III D).

We then incorporate disorder, both real and imaginary, to
the above-mentioned model and numerically study its effects.
For convenience of the reader, we summarize our key findings
below:

(1) We introduce disorder in the on-site potential and
the nonreciprocal hopping. For periodic boundary conditions
(PBCs), we calculate the real-space winding number and the
current corresponding to the anomalous chiral mode associ-
ated with the spectral topology [82–84]. Both the winding
number and the chiral current are self-averaging. The value
of the chiral current retains its clean system value and is
remarkably independent of disorder strength, becoming zero
discontinuously when the winding number becomes trivial.
This is true for classes AIII and A. However, in class D†

the chiral current is zero on disorder averaging and shows no
equivalence to the winding number.

(2) Next, considering the inverse participation ratio (IPR)
and local density of states (LDOS), we show two disorder-
induced transitions in the system under PBCs. As the disorder
strength is tuned, we encounter a mobility-edge phase where a
fraction of states are localized, though the complex spectrum
has a finite winding. With the disorder-induced jump in the
winding number from 1 to 0, the system undergoes a transition
from a mobility edge phase to a fully localized phase. The
mobility edge in classes A and AIII occurs with respect to the
real part of the energy, Re(E ), while for class D† it occurs as
a function of the imaginary part, Im(E ).

(3) Under open boundary conditions (OBCs), in all three
classes A, AIII, and D†, upon adding disorder, we again find
two disorder-induced transitions characterized by the LDOS.
Being a point-gapped topological system, in the clean case,
the skin effect is always present. However, as the disorder
strength is increased, we find a mixed-phase with a fraction of
states localized in the bulk. At a critical disorder strength, the
skin effect is fully destroyed, with states now localized in the
bulk. The real-space winding number computed deep within
the bulk also shows a transition to a trivial value at this point.

FIG. 1. Illustrating the model. Schematic of the non-Hermitian
SSH lattice model with hopping and on-site disorder. A and B cor-
respond to the two sublattices of the model while j is the lattice site
index. t1 and t2 are the intra- and intercell hopping strengths, respec-
tively. δ1,2 are the non-Hermiticity parameters making the intracell
hopping nonreciprocal. �1 and �2 are the on-site potentials added to
A and B sublattices, respectively.

The winding number is a good indicator to track the complete
localization of states in the system.

(4) We discover a NHASE for all the classes under OBCs
when we start introducing disorder around the critical line
δc = ±|1 + t1| (of the nondisordered system). The winding
number shows a direct correspondence to the NHASE, only
when all symmetries of the system are broken.

The rest of the paper is organized as follows: In Sec. II,
we describe the non-Hermitian SSH model and discuss its
symmetries under different on-site terms. In Sec. III, we
briefly summarize some features of the clean system without
disorder and present the real space formalism for winding
number. Here, we investigate the effects of adding a disorder-
free on-site potential and note the changes it causes in the
phase diagram. Finally, in Sec. IV, we present the numerical
results on introducing disorder, using real space calculations
of the winding number, chiral current, edge density, IPR, and
LDOS. Section V concludes by summarizing our results and
providing an outlook.

II. THE SYSTEM

A. Our model

We consider the generalized non-Hermitian SSH model,
which has been widely investigated for its point gap topol-
ogy [76,85–87]. Our generalized Hamiltonian has the form

H =
∑

j

[(t1 + δ1)c†
j,Ac j,B + (t1 − δ2)c†

j,Bc j,A

+ t2(c†
j,Bc j+1,A + c†

j+1,Ac j,B)

+ �1c†
j,Ac j,A + �2c†

j,Bc j,B]. (1)

Here, c† and c are the creation and annihilation operators,
while t1 and t2 are the intra- and intercell hopping strengths,
respectively (see Fig. 1). The summation over j runs over all
sites up to n, which is the total number of lattice sites. Special
cases of our Hamiltonian are the chiral symmetric (�1 =
�2 = 0) and PT symmetric (�1 = −�2 = iμ) versions of
this model, and have been studied in Refs. [75,88]. Here we
consider, δ1,2 = δ + δR

1,2, where δR
1 and δR

2 are the disorder
terms added to the non-Hermiticity parameter δ—this can also
be thought of as disorder in the forward and backward hopping
terms, respectively. Similarly, �1,2 = �0 + �R

1,2, where �0

is the disorder-free on-site energy, while �R
1 and �R

2 are the
disorder terms added to the on-site potential at A and B sub-
lattices, respectively. For our study, δR

1,2 = δRωδ1,2 , where δR is
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TABLE I. Symmetry classes of the SSH model. Classification
of the symmetry classes of the SSH model upon including an on-
site potential. Here, SLS refers to sublattice symmetry and PT is
parity-time symmetry. The symmetry classes are in accordance with
Refs. [45,47].

On-site potential Antiunitary symmetry Symmetry class

�1 = �2 = 0 SLS, σzHσ−1
z = −H AIII

�1 �= �2 �= 0 None A
�1 = iμ, �2 = −iμ PT , σxHσ−1

x = H∗ D†

the strength of disorder and ωδi is chosen randomly from the
disorder window [−1, 1]. Similarly, �R

1,2 = �Rω�1,2 , where
�R is the disorder strength and ω�i ∈ [−1, 1]. We next discuss
the symmetries of our model in the absence of disorder.

B. Symmetries

The non-Hermitian system described by the Hamiltonian
in Eq. (1) with �1,2 = 0 possesses a SLS given by [45]
σzHσ−1

z = −H (here σx,y,z are the Pauli spin matrices). There-
fore, it belongs to class AIII. SLS can be broken by on-site
terms. If we consider the non-Hermitian SSH model in mo-
mentum (k) space, our Hamiltonian with on-site energies �1,2

has the matrix form

H (k) =
(

�1 t2e−ik + t1 − δ2

t2eik + t1 + δ1 �2

)
. (2)

For SLS, we must have σzH (k)σz = −H (k). However, for
our Hamiltonian,

σzH (k)σz =
(

�1 −t2e−ik − t1 + δ2

−t2eik − t1 − δ1 �2

)

�= −H (k). (3)

Hence, any nonzero on-site term breaks the SLS of the
system. Further, on-site energy can be introduced in several
ways. Different choices of the on-site terms and the symmetry
classes they correspond to are presented in Table I. For the
present study, we focus on the following types of on-site
terms and corresponding disorder: (a) symmetric on-site dis-
order: �R

1 = �R
2 in Eq. (1). Such an on-site term explicitly

breaks SLS and places the system in class A. The symmetric
case satisfies the following constraint: σxHT σ−1

x = H , which
however is not an antiunitary symmetry. (b) random on-site
disorder: �R

1 �= �R
2 , which also belongs to class A. (c) PT -

symmetric on-site disorder: �R
1 = iμ and �R

2 = −iμ. This
establishes the symmetry σxHσ−1

x = H∗ and belongs to class
D† [47].

Our calculations show that the sublattice symmetric case
with only hopping disorder (class AIII; δR

1,2 �= 0,�R
1,2 = 0),

gives qualitatively similar results as the symmetric on-site
disorder case (class A; δR

1,2 = 0,�R
1 = �R

2 �= 0) (for a dis-
cussion, see Sec. IV C). Later, we will consider the case
of random on-site disorder and PT -symmetric disorder to
highlight new features of the disordered non-Hermitian SSH
system (Secs. IV D and IV F).

III. DISCUSSIONS FOR THE CLEAN SYSTEM

We first briefly revisit the clean system and discuss some of
its important properties. In this case, the disorder parameters
in Eq. (1) are set to zero to obtain the usual non-Hermitian
SSH model, i.e., δR

1,2 = �R
1,2 = 0.

A. Energy spectrum of clean system

The usual complex spectra of the non-Hermitian
SSH model without disorder can be classified into four
phases [4,47]—non-Hermitian topological phase (NH top),
Hermitian topological phase (H top), non-Hermitian trivial
phase (NH triv), and Hermitian trivial phase (H triv). The
different phases can be characterized by the spectral winding
number around different base energies. In k space, the spectral
winding number is given by [73]

W =
∫ π

−π

dk

2π i
∂k ln [det(H (k) − Eb)], (4)

where Eb is the base energy about which the winding
number is calculated and H (k) is the Bloch Hamiltonian of the
system in momentum space. The winding number is nontrivial
in the NH top phase with Eb = 0, since at this point the
spectrum shows a point gap [see Fig. 2(a)]. With nontrivial
winding around some complex base energy, there usually
occurs a nonzero chiral current in the system which we will
investigate in Sec. IV C.

B. Winding number in real space

Let us next summarize the real space formalism for the
winding number. First, we define a base energy, Eb, around
which we wish to calculate the winding. We then construct the
matrix H − EbI and perform a singular value decomposition
to get the form H − EbI = MSN†, where S is a diagonal
matrix with eigenvalues along the diagonal. Then, we define
Q = MN† and P = NSN†, such that H − EbI = QP. Now we
have obtained the polar decomposed form of the Hamiltonian
and we can write [73,89]

W = 1

L′ Tr′(Q†[Q, X ]). (5)

Here, X is the position operator denoting the position of
each lattice site. Before taking the trace, we need to eliminate
a sufficient number of lattice sites from both ends of the
one-dimensional lattice so the winding number is determined
solely by the bulk properties of the system. So, we define
a cut-off length, l , from both ends of the one-dimensional
lattice. The effective bulk length is then L′ = L − 2l (L is the
total length of the lattice). Here, Tr′, therefore, denotes that the
trace has been taken only over this bulk length. This formu-
lation gives a winding number which is quantized and robust
and allows us to definitively characterize the different phases
and identify phase transitions which may be parameter driven
or disorder driven. For our calculations, we fix l = 0.2L.

C. Chiral modes and non-Hermitian skin effect

The spectrum of the system under PBC in the non-
Hermitian topological phase, shown in Fig. 2, illustrates that
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FIG. 2. Non-Hermitian topological phase with disorder belonging to different symmetry classes. (a) The complex space energy spectrum
in the undisordered NH top phase in the presence of real on-site terms, which has a point gap at E = 0. In (b), we have added real hopping
disorder to the clean system with disorder strength δR = 2.0. This shows the NH top spectrum in class AIII. Panel (c) corresponds to class
A, where we have added random real on-site disorder to each sublattice with disorder strength �R = 2.0. In (d), we have included imaginary
on-site disorder of the form ±i�R to sublattices A and B, leading to class D†. Despite disorder, the NH top phase under all the symmetry
classes shows a point-gap topology up to a considerable disorder strength. Here we choose n = 200, t1 = 1.1, δ = 1.2. The chosen parameters
correspond to the NH top phase of the disorder-free system.

the spectrum accommodates point gaps. In such a point-
gapped spectrum, the complex energies for which its real part
of the spectrum Re(E ) is gapless, correspondingly, have both
positive and negative imaginary energy parts. These eigen-
values correspond to dynamically anomalous chiral modes
of the system [82–84]. Even though gapless modes come in
pairs of opposite chiralities as in a Hermitian system, the non-
Hermiticity stabilizes only one of these modes. The chirality
of the modes is determined by the spectral winding and only
one of them survives the longest on evolving through time.
To study the long-time dynamics of the system, it is sufficient
to study this chiral mode [90]. For example, in the NH top
phase [Fig. 2(a)], the chiral mode is located at Re(E ) = 0
at the top of the spectrum (shown in red). This chiral mode
is responsible for a chiral current, which is unidirectional in
nature and is an observable of the system. We develop the
formalism to calculate the chiral current in Sec. IV C.

The non-Hermitian skin effect is another unique property
of non-Hermitian systems where, as long as the spectrum
accommodates a point-gap topology under PBCs, all the
eigenstates under OBCs migrate to an edge determined by
the direction of the persistent current [16,84,91–93]. From
the spectral topology shown in Fig. 2, we see that the non-
Hermitian phase under different symmetry classes will show
a skin effect when we cut open the system under PBCs and
switch to OBCs. Interestingly, the non-Hermitian skin effect
can also occur starting from trivial winding and introducing
disorder, which we will elucidate later in Sec. IV F.

D. Introduction of real symmetric on-site energy

Next, to illustrate the effect of on-site terms on non-
Hermitian topological phases, we consider the simplest case
of �1 = �2 = �o. Figure 3 shows the evolution of the phase
diagram of the system with increasing values of such an
on-site energy �o. Figure 3(a) shows the well-studied phase
diagram [88] of the non-Hermitian SSH model with �o = 0,
where the nontrivial winding about Eb = 0 corresponds to
the non-Hermitian topological phase. The t1 = t2, δ = 0 is the
gapless point in between the two gapped Hermitian SSH topo-
logical phases. On addition of even a small non-Hermiticity
δ, the spectrum becomes complex and there is an anisotropy
introduced in the right and left movers, effectively resulting in

a chiral mode characteristic of the NH top phase. On introduc-
ing finite �0 at δ = 0 (which shifts the chemical potential such
that it is within a band), one has a window of gapless points
around t1 = t2. Now introducing non-Hermiticity δ over this
gapless window leads to the NH top phase as seen in Figs. 3(b)
and 3(c). For larger values of �o, the gapless window occurs
only at larger values of t1, as seen in Fig. 3(d).

E. Introduction of imaginary antisymmetric on-site energy

Here we look at the changes in the phase diagram on intro-
ducing an imaginary antisymmetric on-site energy, �1 = +iμ
and �2 = −iμ, such that the system retains PT symmetric
and belongs to the D† class. The phase diagram is shown in
Fig. 4 and is in agreement with those reported in Ref. [[47]].
Figure 4(a) shows the winding number as a function of δ and

FIG. 3. Phase diagram with real symmetric on-site potential.
Winding number as a function of parameters t1 and δ for different
values of on-site energy �o. The critical lines of the regular NH SSH
model can be seen in (a) where δc = ±|1 ± t1| shows a transition in
winding number. As the on-site energy increases [(b)–(d)] the NH
top region moves toward higher t1 values invading the former H triv
region. Here, t2 = 1, n = 100, and base energy Eb = 0.
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FIG. 4. Phase diagram with imaginary antisymmetric on-site po-
tential, �1,2 = ±iμ. (a) The winding number as a function of δ

and t1 for μ = 0.5. (b) The winding number as a function of μ

and t1 for δ = 0.5. The region with nontrivial winding number is
the non-Hermitian topological phase which is extended due to the
presence of μ. Here n = 100.

t1 when μ = 0.5 and Fig. 4(b) shows the winding number as
a function of μ and t1 when the non-Hermiticity parameter
δ = 0.5. The winding number has been calculated with re-
spect to base energy Eb = 0.0. Hence, the nontrivial winding
number corresponds to the non-Hermitian topological phase.
In both cases, we can see an extended region of the same due
to the introduction of nonzero μ.

IV. INTRODUCING DISORDER

Next, we introduce disorder in the system through the
hopping and the on-site energy terms. In this section, we
study how disorder affects various properties such as the chiral
current, winding number, and density of states. We compare
the effect of hopping and on-site disorder and also investigate
disorder-driven topological transitions as well as localization
transitions.

A. Energy spectra under disorder
in the different symmetry classes

We find that the point-gap topology of the different phases
of the clean system persists even in the presence of dis-
order for all classes A, AIII, and D†, up to considerable dis-
order strengths. This hints at a persistent nontrivial winding
number and a nonzero chiral current even in the presence of
disorder, which we elaborate on in the following subsections.
In Fig. 2, we show the non-Hermitian topological phase of the
clean system and the changes in the complex space spectra as
we introduce disorder transitioning the system between dif-
ferent symmetry classes. Figure 2(b) shows class AIII, where
disorder has been introduced in the hopping terms, while
Fig. 2(c) shows class A, where a random real on-site energy
has been added to each sublattice. Figure 2(d) corresponds
to class D†, where imaginary disordered on-site energy of
the form ±i�R has been introduced to sublattices A and B,
respectively. In all three disordered cases, the spectrum retains
its point-gap topology until the critical disorder strength.

B. Disorder induced localization in classes A and AIII

The interplay of localization and winding number has been
studied widely in the context of disorder and quasiperiodic

systems [94–97]. From our computations, we discover three
disorder-induced phases in the system under both PBCs and
OBCs. We characterize these using various measures, such as
the winding number, IPR, number of localized states (Nloc),
the LDOS, and the density of states at the edge (ρedge).
We briefly describe these quantities in the following: (1)
The measure of localization (of a state α with eigenvector
ψα) is calculated using the IPR, which is given by [55]

Iα =
∑

i |ψα (xi )|4
(
∑

i |ψα (xi )|2 )2 . Iα close to unity implies that the state is very
localized, while a very low IPR is indicative of a delocalized
state. (2) To evaluate the LDOS, we calculate

∑
α |ψα (xi )|2 at

each lattice site (xi). (3) We characterize a state as localized
if its IPR � 0.4. The number of such states gives us Nloc,
which we use to categorize the observed phases. (4) ρedge

gives us the density of states at the edge of the system,
where the edge has been quantified as the first two lattice
sites.

In Fig. 5, we present the characterization of the three
disorder-induced phases under PBCs. We have named them in
a manner similar to the disordered phases found in the Hatano-
Nelson model [72]. While the winding number is nontrivial,
we find the extended (or delocalized) phase (region I) and the
mobility-edge phase (region II). Region I is characterized by
all states being delocalized, hence Nloc is zero [Fig. 5(b)]. The
IPR is very low for all states [Fig. 5(c)] and the LDOS is
similar at all lattice sites [Fig. 5(d)]. Region II is characterized
by an intermediate, nonzero Nloc [Fig. 5(b)], high IPR for
some states beyond a certain Re(E ), and low IPR for other
states [Fig. 5(c)]. The LDOS fluctuates over the lattice sites
[Fig. 5(e)]. In this phase, extended and localized states coex-
ist [98]. Next, as soon as the winding number becomes trivial,
all the states in the system localize due to high disorder. In this
scenario, Nloc ∼ n [Figs. 5(a) and 5(b)]. The IPR of all states
starts to rise [Fig. 5(c)], and the LDOS shows localization of
all states in the bulk (region III) [Fig. 5(f)].

Next, we present the characterization of the disorder-
induced phases found under OBCs in Fig. 6. Figure 6(b)
shows the LDOS for the skin phase, in which all states are
localized at the edge of the lattice. Figure 6(c) shows the
mixed phase, where a fraction of states show skin effect, while
the remaining fraction of states move into the bulk. With a
further increase in disorder strength, the system transitions
to the bulk-localized phase (region III), where all the states
are localized in the bulk, as can be seen from the LDOS in
Fig. 6(d). The IPR is always relatively high as the states are
either localized at the edge or localized in the bulk of the
system. The three phases can be distinguished with the help
of ρedge and the winding number [Fig. 6(a)]. ρedge shows a
sharp fall as we enter the mixed phase from the skin phase and
subsequently goes to zero in the bulk-localized phase, accom-
panied by a winding number change from 1 to 0, demarcating
regions II and III.

It is important to note that under both PBCs and OBCs, a
change in winding number coincides with the transition from
a partially localized to a fully localized phase. We find that as
long as there is a finite nonzero winding, the system does not
transition to a fully localized phase. The chosen parameters in
the above discussion correspond to class A. We note that class
AIII shows the same qualitative features.
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FIG. 5. Characterizing the disorder-induced phases under PBC. (a) The winding number, W , as a function of disorder. (b) The number
of localized states (with IPR � 0.4) as a function of disorder, demarcating three regions corresponding to the different phases. (c) IPR as a
function of Re(E ) for the three regions, where I, II, and III correspond to �R = 0.0, 1.0, 4.5, respectively. The inset shows the zoomed-in plot
for region I (in brown). (d) LDOS for region I (�R = 0.0), which is the extended or delocalized phase, (e) region II (�R = 1.0), which is the
mobility-edge phase, and (f) region III (�R = 4.5), the bulk-localized phase. All IPR plots have been disorder-averaged. Winding number is
self-averaging. LDOS plots (shown only up to the 40th lattice site) are for a representative disorder configuration. Here, number of lattice sites
n = 400, t1 = 1.0, t2 = 1.0, δ = 0.3, �o = 0.0, symmetric on-site-disorder strength �R varies from 0 to 5 in steps of 0.05.

C. Chiral current

As mentioned in Sec. III C, the dynamically anomalous
chiral mode is on the characteristics of the spectral topology.
In our analysis of the disordered system, we use the current

FIG. 6. Disorder-induced phases under OBCs. (a) The density of
states at the edge (ρedge), which drops down from close to unity as the
skin effect disappears. This helps distinguish between regions I, II,
and III. The inset shows the change in winding number with disorder
which distinguishes between regions II and III. The LDOS for (b) re-
gion I (�R = 0.0); which is the skin phase; (c) region II (�R = 1.5),
which is the mixed phase, and (d) region III (�R = 4.5), which
is the bulk-localized phase. Here number of lattice sites, n = 400,
t1 = 1.0, t2 = 1.0, δ = 0.3, �o = 0.0, and symmetric on-site-
disorder strength �1 = �2 = �R varies from 0 to 5 in steps of 0.05.

due to the chiral mode, JC . The current operator is given
by [90,99]

JC = iL

2
[〈c†

j c j+1〉 − 〈c†
j+1c j〉], (6)

where the expectation value is taken with respect to the
chiral mode, i.e., the eigenvector with the maximum positive
imaginary energy at the real-gapless point. While the negative
imaginary counterpart is also a chiral mode, it decays over
long times. Here, j ∈ [1, L − 1]. If j is taken to be odd, JC

corresponds to the intracell current, while an even j yields the
intercell current. We note that JC is independent of the value
of j as the same chiral current flows through the entire lattice
under PBCs.

From Fig. 7, we can see that the winding number and the
chiral current show a correspondence for both on-site disorder
[Figs. 7(a) and 7(b)] and hopping disorder [Fig. 7(c) and 7(d)].
These correspond to classes A and AIII, respectively. Regions
I–III are the same disorder-induced phases found under PBCs
in Sec. IV B. The chiral current directly corresponds with
the winding number and is thus self-averaging, i.e., without
averaging over different disorder configurations, the current
approaches a unique mean value for large enough systems.
First, let us consider the value of the chiral current in the
disorder-free case. In momentum space, the Hamiltonian of
the disorder-free system can be written as H (k) = d(k).σ,

where |d(k)| = ±
√

t2
1 + t2

2 − δ2 + 2t1t2 cos k − 2it2δ sin k =
±ε(k). Then, the current in the system can be obtained as
j(k) ∼ ∇kε(k). We obtain

j(k) = i

2
(−e−ik/s + eiks), (7)

014207-6



INTERPLAY OF DISORDER AND POINT-GAP TOPOLOGY: … PHYSICAL REVIEW B 106, 014207 (2022)

FIG. 7. Correspondence between chiral current and winding
number. (a), (c) The winding number, W , as a function of disorder
under PBCs. (b), (d) The chiral current as a function of different
kinds of disorder in the same system. (a) and (b) correspond to the
effect of introducing a symmetric on-site disorder strength (class A)
with �1 = �2 = �R. (c) and (d) show the effect of hopping disorder
(class AIII). We find that the system is more robust to on-site disorder
rather than disorder in hopping and that there is a clear equivalence
between winding number and chiral current with disorder. Here
n = 400, t1 = 1.0, t2 = 1.0, δ = 0.3, and �o = 0.0.

where, s = −
√

(t1 + t2e−ik − δ)/(t1 + t2eik + δ). We identify
the chiral mode at a momentum kC . The chiral current is then
JC = j(kC ). The chiral mode in the non-Hermitian topological
phase of the nH-SSH model is found at kC = π and the value
of the current depends on the system parameters we choose.

Now, remarkably, on adding disorder we find that the
magnitude of the current is very robust even for substan-
tial disorder strengths up to a critical value where it goes
to zero. This is one of the important observations of our
paper. The symmetry-protected anomalous chiral current is
self-averaging and is extremely robust to disorder. We also
note that our numerical result is consistent with recent field
theoretical analysis[100], which showed that in the continuum
limit the response current at a real-gapless point is exactly
given by the winding.

It is important to note here that we obtain the same qual-
itative observations irrespective of whether we introduce a
disorder in hopping (δR

1,2; class AIII) or an on-site disorder
(�R

1,2; class A). However, the nontrivial phase characterized
by a nonvanishing chiral current and a finite winding number
is more robust to on-site disorder rather than hopping disorder.
The hopping disorder has the higher probability of impeding
the flow of chiral mode compared to the on-site terms. The
chiral current behaves differently in symmetry class D†, as
will be discussed in the following subsection.

D. Imaginary on-site disorder: Class D†

In this section, we discuss the effects of introducing an on-
site disorder of the form �1 = i�Rω�1 and �2 = −i�Rω�2 ,
such that ω�1 = ω�2 . This configuration of disorder leads us
to symmetry class D† which, unlike the other classes A and

FIG. 8. Disorder-induced properties under PBC in class D†.
(a) The winding number W as a function of PT-symmetric disorder
for the system under PBC. (b) The chiral current as a function of the
same disorder which varies from 0 to 5 in steps of 0.05. The chiral
current randomly fluctuates between −1 and 1, which when disorder
averaged becomes trivially zero (shown in the inset). (c) shows the
number of localized states for the same disorder, while (d) shows
the IPR at �R = 1.0 (region II), which has a mobility edge with
respect to the imaginary part of the eigenvalues. The figure shows
that for class D†, winding number tracks the complete localization
in the system demarcating regions II and III. Nloc helps demarcate
between the extended phase (region I), intermediate mobility edge
(region II), and the bulk localized phase (region III). The chiral
current does not show equivalence to the winding number anymore;
rather, it fluctuates between 1 and −1, averaging out to 0 on taking
a disorder average. The IPR, contrary to classes A and AIII, shows
a mobility edge as a function of Im(E ). Here, number of lattice sites
n = 400, t1 = 1.0, t2 = 1.0, δ = 0.3, �o = 0.0.

AIII (discussed earlier), includes antisymmetric imaginary
on-site terms chosen randomly from a window of disorder
of strength �R. Similar to the previous discussion, here too
we obtain three disorder-induced phases under both PBCs
and OBCs. However, as the disorder is now purely imaginary,
different features are found compared to classes A and AIII,
which we highlight here.

Figure 8 shows the disorder-induced phases under PBCs.
As before, region I is the extended phase where the number of
localized states, Nloc = 0 [Fig. 8(c)], region II is the mobility-
edge phase with an intermediate number of localized states,
and region III is the bulk-localized phase where all the states
are localized in the bulk (Nloc ∼ n). We find that the winding
number [see Fig. 8(a)] tracks the localization physics, showing
a sharp transition from 1 to 0 as soon as all the states in
the system get localized. Thus, it is effective in demarcating
between regions II and III. Interestingly, the chiral current
[shown in Fig. 8(b)] does not show an equivalence to the
winding number anymore, unlike in classes A and AIII. The
chiral current fluctuates between 1 and −1 at small values of
disorder and at sufficiently large values it stabilises to 0. On
disorder-averaging the chiral current over 100 configurations
of disorder, we found that JC is identically zero over the entire
disorder region [shown in the inset of Fig. 8(b)]. Thus, in class
D†, the chiral current is not robust to disorder nor equivalent
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FIG. 9. Winding number and edge density under OBCs in class
D†. (a) The winding number W as a function of PT-symmetric dis-
order for the system under OBCs. (b) The density of states at the
edge under the same disorder which varies from 0 to 5 in steps of
0.05. The winding number change from 1 to 0 tracks the complete
localization of the states into the bulk. The edge density ρedge shows
skin states in region I, an intermediary mixed phase with partial
localization and partial skin states (region II), and, finally, region III
where all the states are localized in the bulk. Here, number of lattice
sites n = 400, t1 = 1.0, t2 = 1.0, δ = 0.3, �o = 0.0.

to the winding number. Even though the current can be finite
for a given disorder configuration, random fluctuations in the
equal gain and loss terms destroy the current when disorder
averaged. Turning to localization physics, the mobility edge
phase in region II, is distinct from the mobility edge found
for classes A and AIII. Here, the mobility edge occurs with
respect to Im(E ) rather than Re(E ), as for the other symmetry
classes. This is understandable since the disorder we add here
is purely imaginary, contrary to the other symmetry classes.
The mobility edge phase is well characterized by the IPR as a
function of Im(E ), as shown in Fig. 8(d).

To characterize the phases under OBCs, we use the wind-
ing number and the edge density of states (ρedge) as reliable
indicators. Figure 9 shows the disorder-induced phases un-
der OBCs for class D†. Here, region I is the skin phase,
where ρedge ∼ 1, i.e., all the states are localized at the skin
[Fig. 9(b)]. Region II is the mixed phase with an intermediate
edge density, indicating a mixture of skin states and bulk
states. Region III is the bulk localized phase, where ρedge ∼ 0,
indicating no skin states. Here too, the winding number tracks
the complete localization of the system, clearly demarcating
regions II and III.

E. Disorder around phase boundaries under PBCs

After investigating the effect of disorder in various classes,
next we consider the effect of disorder on a system sitting
on the critical lines in the phase diagram of the nonrecip-
rocal SSH model without on-site terms. In the phases with
a nonzero winding number W , on the introduction of either
hopping (δR) or symmetric on-site disorder (�R) or both, W
changes from 1 to 0 at a certain parameter-dependent critical
disorder strength. Interestingly, starting from the set of crit-
ical lines: δc = ±|1 + t1|, demarcating the NH triv and NH
top phases, W shows a 0 → 1 → 0 transition. This behavior
persists irrespective of the different disorder configurations
and even for choice of parameters slightly displaced from
the critical line. Figure 10 shows the winding number as
a function of disorder strengths δR and �R, when one is
positioned on the critical line δc = |1 + t1| under PBCs and

FIG. 10. Winding number as a function of disorder from a criti-
cal line under PBC. Plot of winding number as function of on-site
symmetric disorder and hopping disorder showing a 0 → 1 → 0
transition when we sit on the critical line δc = |1 + t1|. Here, param-
eter values t1 = 1.1, δc = 2.1, �o = 0.0 and n = 100.

introduces disorder. As we have established that there exists
a correspondence between the winding number and the chiral
current for the concerned symmetry classes A and AIII, such a
phase diagram indicates that we can start from a system with
no chiral current and tune it using either hopping or on-site
disorder (or both) to obtain a nonzero chiral current. At the
critical lines, δc = ±|1 − t1|, which lie between the NH top
and H triv phases, W shows a 1 → 0 transition.

F. Non-Hermitian Anderson skin effect

Starting at or around any critical point on the line
δc = 1 + t1, under OBCs, where there is no skin effect, we
find that by introducing disorder in hopping or on-site energy
(or both), a skin effect develops and subsequently disappears
at high disorder strengths. This disorder-induced appearance
of the skin effect has been dubbed the NHASE [81] and was
also found recently in the Hatano-Nelson model by Claes
and Hughes [73], upon introducing disorder in the hopping
potential.

Remarkably, the NHASE in our system occurs irrespective
of the presence or absence of symmetries such as SLS, PT ,
or particle-hole symmetry, i.e., the NHASE can be seen for
classes A and AIII as well as D†. This anomalous behavior as
a function of disorder is presented in Fig. 11(b), which shows
that a skin effect occurs at intermediate disorder values and
vanishes at large disorder. Here, δR and �R are the disorder
strengths of hopping and on-site real disorder, respectively.
The same observations hold if we chose �1 = �2 (class A
with a constraint) or �1,2 = ±i�Rω (class D†) and �1,2 = 0,
which corresponds to class AIII. The behavior of the edge
densities in Figs. 11(b) and 12(b) are illustrative of this,
though their relation to the winding number warrants special
attention.

In Figs. 11(a) and 12(a), we can see that the winding num-
ber shows a similar behavior as the corresponding edge den-
sity. This direct correspondence between the winding number
and the NHASE occurs only if we break all the symmetries
in the system by taking a random on-site disorder, such that
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FIG. 11. The NHASE under OBCs. (a) The winding number as a
function of hopping disorder strength δR and random on-site disorder
strength �R which vary from 0 to 4 in steps of 0.05. (b) The density
of states at the edge of the lattice as a function of both δR and
�R. A system with no skin effect initially develops a skin effect
under the effect of disorder which subsequently disappears. Here,
�1,2 = �Rω�1,2 such that ω�1 �= ω�2 ⇒ �1 �= �2. When there is no
symmetry in the system, the figure shows that the winding number
and density of edge states show the same variation with disorder.
Here, n = 100, t2 = 1.0, t1 = 1.1, δ = 2.1, �o = 0.0.

�R
1 �= �R

2 , where �R could, in general, be real or imaginary.
We show that starting from a system with zero winding num-
ber, as we introduce a random disorder in either hopping or
on-site energy or both, the system acquires a nontrivial wind-
ing at a critical disorder strength, and as soon as the winding
number changes to 1, the NHASE develops in the system.
Figure 11 shows this correspondence between the winding
number and the density of states at the edge of the lattice as
we introduce hopping or on-site disorder. The density of states
at the edge is the number of states localized at the edge as a
fraction of the total number of eigenstates of the system.

It is important to note that our findings demonstrate that the
origin of skin effect in non-Hermitian systems is the point-gap
spectral topology under PBCs [45], irrespective of having triv-
ial or nontrivial winding. The occurrence of a nonzero current
in the system is a consequence of nontrivial winding [100]. On
the other hand, only when we break SLS (σzHσ−1

z = −H),
PT symmetry (σxHσ−1

x = H∗), can we expect a direct rela-
tionship between NHASE and winding, but the NHASE is
nevertheless present irrespective of presence or absence of
symmetries. The winding number, which is effective in track-
ing the localization physics in all symmetry classes A, AIII,

FIG. 12. The winding number and NHASE under OBCs in for
imaginary disorder. (a) The winding number as a function of disorder
strength δR for hopping and disorder strength �R for imaginary
on-site terms. Both vary from 0 to 4 in steps of 0.05. (b) The
density of states at the edge of the lattice as a function of both
δR and �R. Here, �1,2 = ±i�Rω�1,2 such that ω�1 �= ω�2 . Here
too, the winding number corresponds to the occurrence of anoma-
lous edge states. The parameter values here are: n = 100, t2 = 1.0,

t1 = 1.1, δ = 2.1, �o = 0.0.

and D† is unable to track the Anderson skin effect (NHASE)
when there is any underlying symmetry or constraint present
in the system.

V. SUMMARY AND CONCLUSIONS

In view of studying the interplay between symmetry-
protected spectral topology in non-Hermitian systems and
disorder, we have considered the addition of both real and
imaginary on-site potentials to the non-Hermitian SSH model.
We have systematically investigated the effect of different
kinds of disorder in different symmetry classes by numerically
computing the real-space winding number, localization char-
acteristics, and the chiral current associated with dynamically
anomalous chiral mode. We found a correspondence between
the chiral current and winding number in classes A and AIII.
The chiral current is self-averaging under disorder and is
remarkably robust, retaining its clean-system value up to sig-
nificant disorder strengths and dropping to zero only beyond a
critical disorder strength. This robustness of the chiral current
may be of value in technological applications. Localization
transitions due to disorder have been probed under both PBCs
and OBCs, where the system exhibits three distinct phases.
We found that a nontrivial winding persists up to significant
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disorder strengths, resisting a complete localization of all
the states. We have also demonstrated the occurrence of the
NHASE in all three symmetry classes (A, AIII, and D†),
where starting from the disorder-free system, which has no
skin effect, the system develops a non-Hermitian skin effect
on introducing disorder. One of our striking observations
is that the correspondence between the real-space winding
number and the NHASE holds only when all symmetries are
broken.

We note that the non-Hermitian effective Hamiltonian is
valid for short timescales before the jump processes occur
and the steady-state dynamics of non-Hermitian systems re-
quires the consideration of jump operators and a Lindbladian
approach. One can incorporate non-Hermitian gain and loss
as well as nonreciprocal hopping into the SSH model us-
ing these jump operators, as has been discovered in Ref.
[[18]]. For systems connected to a suitably generic bath,
where the Hamiltonian is quadratic in Fermi operators, the
system dynamics can be expressed by a quadratic Lindbla-
dian whose diagonalization gives the complex eigenvalues
of the system [101]. In such a case, following the Lindbla-
dian formalism, one can infer the eigenspectrum for a set of
parameter values and hence possibly calculate the winding
number which will determine the topological phase. Disorder
can be incorporated into the model as a fluctuation in these
parameters. A deeper understanding of the effect of disorder,
its resilience, and the time dynamics is an interesting direction
for future work.

Our formalism is general in terms of the Hamiltonian,
winding number, chiral current, and the other indicators we
use. Hence, we expect our analysis of disorder, non-Hermitian
skin effect, and the single mode (chiral) current to hold for
bosonic cases as well. When considering bosonic or fermionic
statistics particularly, one would have to be careful in the way
one constructs the many-body state. The filling factor and
interaction terms would be crucial quantities in the differing
physical manifestation of bosons and fermions. Consequences
of a bosonic or fermionic system with disorder is a very
interesting topic for future studies.

There have already been breakthroughs in experimental
realization and probing of non-Hermitian physics in opti-
cal photonic and mechanical systems [102–109]. Our results
could be corroborated in these settings. On the other hand,
further theoretical analyses is required toward understand-
ing the disorder-induced topological transitions, criticality,
and localization in non-Hermitian systems. This could pos-
sibly be done under the field theoretical framework of recent
works [100,110]. The self-averaging nature of quantities such
as the localization length are understood well in terms of
transfer matrices in disordered Hermitian systems. The self-
averaging nature of the winding number and the chiral current
needs to be addressed in non-Hermitian systems. Many-body
effects in non-Hermitian systems have gained significant at-
tention very recently [90,95,111–113]. It would be interesting
to study the interplay of symmetry classes, disorder, and
many-body effects. Another important direction would be
studying the different symmetry classes and disorder directly
in open quantum systems.
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