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A B S T R A C T   

We construct certain higher order smooth positon and breather positon solutions of an extended nonlinear 
Schrödinger equation with the cubic and quartic nonlinearity. We utilize the generalized Darboux transformation 
method to construct the aforementioned solutions. The three well-known equations, namely nonlinear 
Schrödinger equation, Hirota equation, and generalized nonlinear Schrödinger equation, are sub-cases of the 
considered extended nonlinear Schrödinger equation. The solutions which we construct are more general. We 
analyze how the positon and breather positon solutions of the constituent equations get modified by the higher 
order nonlinear and dispersion terms. Our results show that the width and direction of the smooth positon and 
breather-positon solutions are highly sensitive to higher-order effects. Further, we carry out an asymptotic 
analysis to predict the behaviour of positons. We observe that during collision positons exhibit a time-dependent 
phase shift. We also present the exact expression of time-dependent phase shift of positons. Finally, we show that 
this time-dependent phase shift is directly proportional to the higher order nonlinear and dispersion parameters.   

1. Introduction 

Exploring the localized solutions of certain nonlinear integrable 
partial differential equations is an active field of research in optics, 
plasma physics, astrophysics, oceanography and so on [1–4]. The solu-
tions of nonlinear evolution equations, namely solitons, breathers, 
kinks, vortex solitons, dissipative solitons, oscillons, and rational solu-
tions, model many real-world phenomena such as tsunami waves, rogue 
waves, tidal waves, cyclonic waves, waves in nonlinear optical fibers, 
shallow water waves and so on [5,6]. In this direction, a new type of 
solution called positons is constructed for the Korteweg-de Vries (KdV) 
equation [7,8]. Positons exhibit similar structures as that of solitons in 
the long range. The positon solution for the KdV equation was obtained 
by imposing a positive eigenvalue (spectral parameter) in the general-
ized Darboux transformation (GDT) method [7]. For the negative ei-
genvalues, one obtains soliton and negaton solutions [9,10]. It has also 
been shown that positon solution can model shallow water rogue waves 
(extreme waves in oceanic circumstances) [11]. 

The positon solution of the KdV equation presented by Matveev had a 
spectral singularity [12]. Recently, for the KdV equation, Cen et al., have 
circumvented this singularity by relaxing the spectral parameter (λ) be 

complex [13,14]. Subsequently the resultant solutions are named as 
smooth positons or degenerated soliton solutions in the literature 
[15–17]. 

It is well known that during collision, solitons display constant phase 
shift. Differing from this, the smooth positons exhibit time-dependent 
phase shift when they collide with each other [18]. Due to this time- 
dependent phase shift, the positons exhibit different behaviour in 
short and long times. Positons travel simultaneously like a single 
component at small time scales and then they separate from each other 
and produce equal amplitude one soliton constituents with equal energy 
at large times [19]. As far as multi-solitons are concerned they split into 
different amplitude one soliton constituents with different speeds and 
energy. We mention here that it is not possible to obtain positon solu-
tions by imposing equal speed parameters in multi-soliton solutions. For 
small time scale, positons may model the well-known tidal bore phe-
nomenon [20]. Tidal bore phenomenon is nothing but in the river, many 
equal highest amplitude waves travel together for long distances say 
more than hundred kilometers. Since the positons do not exhibit energy 
exchange during collision one can prevent data loss. Hence the study of 
positons will also be useful for optics community [18,20]. 

The singular and smooth positon solutions have been constructed for 
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a class of integrable equations [21–32]. Breather-positons (b-p) are 
equal amplitude breathers (localized periodic waves on constant back-
ground) and they travel with equal speed [33–38]. The central region of 
the b-p solution exhibits a rogue wave like structure. The nonlinear 
Schrödinger equation and its higher order generalizations have been 
considered in several fields including fluid dynamics, birefringent op-
tical fiber, shallow water surfaces, Heisenberg spin systems and ocean 
waves [39–46]. In this work, we construct certain smooth positons and 
b-p solutions of an extended nonlinear Schrödinger equation (ENLSE) 
[47–50] with the cubic and quartic nonlinearity. 

More specifically, we consider the following ENLSE [51], 

iqt + qxx + 2|q|2q − iα
(
qxxx + 6qx|q|2

)
+ γ
(
qxxxx + 8|q|2qxx + 2q2q*

xx + 4q|qx|
2

+ 6q2
xq* + 6|q|4q

)
= 0,

(1)  

with q represents the wave envelope with x being the propagation var-
iable in the moving frame with time t. The coefficients α and γ are 
associated with the third order (qxxx) and fourth order dispersions (qxxxx)

respectively. Eq. (1) reduces to the standard normalized NLS equation 
when both the coefficients α and γ are zero [52–55]. If α ∕= 0, γ = 0 we 
obtain the Hirota equation [56,57] and for γ ∕= 0,α = 0 we get another 
well known generalized NLS equation [58]. Using the GDT, we construct 
second, third and fourth order smooth positons with zero seed solution 
and some higher order b-p solutions with plane wave seed solution. To 
the best of our knowledge, the solutions constructed in this paper are all 
new. Another aim of this work is to analyze how the higher order 
nonlinear terms affect the basic smooth positon and breather positon 
solutions. We investigate this aspect by varying the higher order 
nonlinear and dispersion parameters, namely α and γ and studying the 
outcome. Our investigations reveal that their variations produce large 
compression in the width of the waves. We also observe tilt and de-
viations in their orientations. While increasing the value of higher order 
nonlinear and dispersion parameters, the distance in-between the two 
waves decreases in higher order smooth positons and b-p solutions. 
Further, we carry out an asymptotic analysis on the second order smooth 
positon solutions in order to predict the behaviour of it at small and large 
time scales. We observe that in contrast to soliton solutions the smooth 
positons exhibit time dependent phase shift. Due to this time de-
pendency, the second order smooth positon moves as a single compo-
nent for small time and they split into two one solitons at long time 
which we also demonstrate graphically. The phase shift also depends on 
the higher order nonlinear and dispersion parameters. By increasing the 
values of these two parameters, α and γ, the phase shift also increases 
which we also demonstrate pictorially. 

The presentation is organized as follows. In Section 2, we derive Nth 
order DT solution formula of Eq. (1). We construct higher order smooth 
positon and b-p solutions through GDT method in Sections 3 and 4 
respectively and we also analyze the consequences of higher order 
nonlinear terms by varying the value of the parameters α and γ. In 
Section 5, we carry out the asymptotic analysis on the second order 
smooth positon solution and determine its time dependent displace-
ment. We present the outcome of our investigations in Section 6. 

2. Generalized Darboux transformation of Eq. (1) 

Darboux transformation (DT) is one of the well-known methods 
which is used to derive various kinds of solutions of integrable nonlinear 
partial differential equations [59]. It keeps the form of eigenvalue 
equations unchanged and establishes a relation between old and new 
potentials after appropriate transformation. Using DT method one can 
derive multi-soliton solutions, rogue wave solutions of different order 
and higher order breathers of integrable nonlinear evolution equations 

[60-66]. To derive positons and negatons of KdV equation, Matveev 
introduced the generalized DT (GDT) method [7]. In the GDT method, 
basic solutions of eigenvalue equations are expanded at a single eigen-
value using Taylor expansions. We can obtain multi-solitons, higher 
order breathers, positons, negatons and rogue wave solutions using GDT 
method. To derive GDT of Eq. (1) we consider the Lax pair of it as 

Ψx = LΨ,Ψt = GΨ, (2a)  

where 

L = λJ +U, G = 2λ2J + 2λU +B − αR+ γK, (2b)  

U =

( 0 q
− q* 0

)

, J =

(
− i 0
0 i

)

, B =

⎛

⎝
i|q|2 iqx

iq*
x − i|q|2

⎞

⎠,

M =

⎛

⎝
qq*

x − q*qx −
(
2|q|2q + qxx

)

2|q|2q* + q*
xx −

(
qq*

x − q*qx
)

⎞

⎠, K =

(
iK1 K2

− K*
2 − iK1

)

,

(2c)  

with 

R = 4λ3J + 4λ2U + 2λB + M,

K1 = 3|q|4 − |qx|
2
+ qq∗

xx + q∗qxx − 2iλ
(
q∗qx − qq∗

x

)
− 4λ2|q|2 + 8λ4,

K2 = 6i|q|2qx + iqxxx + 2λqxx + 4λ|q|2q − 4iλ2qx − 8λ3q.

(2d) 

Here, Ψ = (f , g)T is the vector eigenfunction and λ is the spectral 
parameter. The compatability condition of Eq. (2a), Lt − Gx + [L,G] = 0, 
gives Eq. (1). The DT formula of ENLSE has already been constructed for 
the breather and rogue wave solutions in [67]. Hence, we express only 
the explicit solution formula of Eq. (1) here. Solving the Lax pair Eq. (2a) 
with N-eigenvalues λi, i = 1,2,3,…,N, we can generate the eigenfunc-
tions Ψi, i = 1, 2, …, N. Then, Nth iteration of DT gives the solution 
formula of Eq. (1) in the form 

qN = q0 − 2i
|D1N |

|D2N |
, (3a)  

where q0 is the seed solution with 

D1N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1 λ2
1f1 λ2

1g1 ⋯ λN− 1
1 f1 λN

1 f1

− g∗
1 f ∗1 − λ∗1g∗

1 λ∗1f ∗1 − λ∗2
1 g∗

1 λ∗2
1 f ∗1 ⋯ − λ∗N− 1

1 g∗
1 − λ∗N

1 g∗
1

f2 g2 λ2f2 λ2g2 λ2
2f2 λ2

2g2 ⋯ λN− 1
2 f2 λN

2 f2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮
fN gN λNfN λNgN λ2

NfN λ2
NgN ⋯ λN− 1

N fN λN
NfN

− g∗
N f ∗N − λ∗Ng∗

N λ∗Nf ∗N − λ∗2
N g∗

1 λ∗2
N f ∗N ⋯ − λ∗N− 1

N g∗
N − λ∗N

N g∗
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(3b)  

and 

D2N =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1 λ2
1f1 λ2

1g1 ⋯ λN− 1
1 f1 λN− 1

1 g1

− g∗
1 f ∗1 − λ∗1g∗

1 λ∗1f ∗1 − λ∗2
1 g∗

1 λ∗2
1 f ∗1 ⋯ − λ∗N− 1

1 g∗
1 λ∗N− 1

1 f ∗1
f2 g2 λ2f2 λ2g2 λ2

2f2 λ2
2g2 ⋯ λN− 1

2 f2 λN− 1
2 g2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮
fN gN λNfN λNgN λ2

NfN λ2
NgN ⋯ λN− 1

N fN λN− 1
N gN

− g∗
N f ∗N − λ∗Ng∗

N λ∗Nf ∗N − λ∗2
N g∗

N λ∗2
N f ∗N ⋯ − λ∗N− 1

N g∗
N λ∗N− 1

N f ∗N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3c) 

In Eqs. (3b) and (3c), fi’s and gi’s are eigenfunctions corresponding to 
the eigenvalues λi, i = 1, 2, 3…. Using the solution formula (3a) we can 
derive various kinds of solutions including soliton, breather and rational 
solutions of Eq. (1) with appropriate seed solutions. 
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We can construct degenerate solutions of the ENLSE by limiting the 
spectral parameters as λi = λ1 + ϵ, i = 2, 3…N, where ϵ is a small 
parameter. We construct the GDT of ENLSE by expanding the eigen-
functions in Taylor series at ϵ. The determinant representation of the 
solution formula (3a) can be generalized and rewritten in the following 
form to derive the degenerate solutions of the ENLSE, that is 

q[N] = q0 − 2i
D1[N]

D2[N]
, (4a)  

where 

Dk[N] =

⃒
⃒
⃒
⃒limϵ→0

∂Ni − 1

∂ϵNi − 1

(
D'

kN

)
⃒
⃒
⃒
⃒

2N×2N
, (4b)  

with D′

kN = (DkN)ij(λ1 + ϵ), k = 1,2 and Ni =
[i+1

2
]
, where [i] is the floor 

function. The explicit positon solutions of ENLSE can be obtained 
through the modified DT formulas (4a) and (4b) 

3. Smooth positon solutions of ENLSE 

3.1. Second order smooth positon solution 

Theorem 1. The explicit form of second order smooth positon solution of 
Eq. (1) is 

q2 =
Ω12

Ω22
, (5a)  

where   

Proof. By setting the spectral parameter λ = λ1 with vacuum seed so-
lution q0 = 0, we can show that the following eigenfunctions satisfy the 
Lax pair Eq. (2a), that is 

f1 = exp
(
− iλ1x −

(
2iλ2

1 − 4iαλ3
1 − 8iγλ4

1

)
t
)
, (6a)  

g1 = exp
(
iλ1x+

(
2iλ2

1 − 4iαλ3
1 − 8iγλ4

1

)
t
)
. (6b) 

The choice N = 2 in the solution formulas (4a) and (4b) provides 

q2 = q0 − 2i
|D12|

|D22|
, (7a)  

where 

D12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ2
1f1

− g*
1 f *

1 − λ*
1g*

1 − λ*2
1 g*

1

f2 g2 λ2f2 λ2
2f2

− g*
2 f *

2 − λ*
2g*

2 − λ*2
2 g*

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, D22

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1

− g*
1 f *

1 − λ*
1g*

1 λ*
1f *

1

f2 g2 λ2f2 λ2g2

− g*
2 f *

2 − λ*
2g*

2 λ*
2f *

2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (7b) 

Imposing the limit λ2 = λ1 + ϵ in Eqs. (7a) and (7b) and expanding 
the eigenfunctions f1 and g1 in Taylor series at ϵ, we obtain the following 
expressions for D12 and D22, namely 

lim
ϵ→0

D12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ2
1f1

− g*
1 f *

1 − λ*
1g*

1 − λ*2
1 g*

1

f1l
′

g1l
′

((λ1 + ϵ)f1l )
′ (

(λ1 + ϵ)2f1l
)′

− g*
′

1l f '*
1l −

( (
λ*

1 + ϵ
)
g*

1l

)′
−
((

λ*
1 + ϵ

)2g*
1l

)′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (8a)  

lim
ϵ→0

D22 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1

− g*
1 f *

1 − λ*
1g*

1 λ*
1f *

1

f1l
′

g1l
′

((λ1 + ϵ)f1l )
′

((λ1 + ϵ)g1l )
′

− g*
′

1l f *
1l

′

−
( (

λ*
1 + ϵ

)
g*

1l

)′ ( (
λ*

1 + ϵ
)
f *
1l

)′

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8b)  

with 

f1l = e− i(λ1+ϵ)x− (2i(λ1+ϵ)2 − 4iα(λ1+ϵ)3 − 8iγ(λ1+ϵ)4 )t,

g1l = ei(λ1+ϵ)x+(2i(λ1+ϵ)2 − 4iα(λ1+ϵ)3 − 8iγ(λ1+ϵ)4 )t, (8c)  

and prime in Eq. (8a), (8b), and (8c) represents differentiation with 
respect to ϵ. Substituting the above expressions (8a),(8b), and (8c) in Eq. 
(7a) we end up Eqs. (5a) and (5b).□ The second order smooth positon 
solution (5a) and (5b) and its corresponding contour plots are produced 
in Fig. 1. We investigate the effect of higher order odd and even 
nonlinear terms on the solution by varying the value of the parameters α 
and γ. In Fig. 1(a) we draw the second order smooth positon solution of 
the NLS equation (α = γ = 0). If we consider only the third order 
dispersion term and neglect the fourth order term, that is γ = 0 and α =

Ω12 = 4
(
λ1 − λ*

1

)(
e2ixλ1+4it(λ2

1 − 2αλ3
1 − 4γλ4

1+2λ*2
1 (2αλ*

1+4γλ*2
1 − 1))

(
4tλ1

(
3αλ1 − 1 + 8γλ2

1

)(
λ1 − λ*

1

)

+x
(
λ*

1 − λ1
)
− i
)
− e2iλ*

1(x+2tλ*
1(− 1+2αλ*

1+4γλ*2
1 )) ×

(
i + x

(
λ*

1 − λ1
)
+ 4t

(
λ1 − λ*

1

)
λ*

1

(
3αλ*

1 + 8γλ*2
1 − 1

) ))
,

Ω22 = e4ixλ*
1 − 2e2ix(λ1+λ*

1)+4it(λ2
1 − 2αλ3

1 − 4γλ4
1+λ*2

1 (2αλ*
1 − 1+4γλ*2

1 )) ×
(

2x2( λ1 − λ*
1

)2
− 1 + 32t2λ1

(
λ1 − λ*

1

)2

×λ*
1

(
1 + 9α2|λ1|

2
+ 64γ2|λ1|

4
+ 3α

(
λ1 + λ*

1

)
×
(
8γ|λ1|

2
− 1

)
− 8γ

(
λ2

1 + λ*2
1

))
− 8tx

(
λ1 − λ*

1

)2

×
(

3αλ2
1 + 8γλ3

1 − λ1 + λ*
1

(
3αλ*

1 + 8γλ*2
1 − 1

)))
+ e4ixλ1+8it(λ2

1 − 2αλ3
1 − 4γλ4

1+λ*2
1 (2αλ*

1+4γλ*2
1 − 1)).

(5b)   
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1, we arrive at the Hirota equation. The associated smooth positon so-
lution is drawn in Fig. 1(b). Here, we can observe a shrink in the width of 
two smooth positons accompanied by a decrease in the distance between 
them. As far as smooth positons are concerned we observe a slight shift 
towards right in their orientation. 

Now let us consider only the fourth order dispersion term in the 
picture, that is α = 0 and γ = 1. The underlying equation becomes the 
fourth order NLS equation. In this case, we can see a higher compression 
in the width of smooth positons and a drastic change in their orienta-
tions, see Fig. 1(c). It is clear that the fourth order nonlinear term (γ) 
produces more compression and directional changes in the smooth 
positons when compare to the third order nonlinear term (α). To observe 
the combined effect of both third and fourth order nonlinear terms, we 
set α = γ = 1 and analyze how these two higher order nonlinear and 
dispersion terms (α and γ) together effect the basic NLS positon solution. 
It is evident from Fig. 1(d) that these two higher order terms introduce a 
larger compression effect and appreciable changes in their orientations. 

3.2. Higher order smooth positon solutions 

To derive the third order smooth positon solution of ENLSE, we 
consider N = 3 in Eq. (3a) and impose a limit on the spectral parameters 
as λi = λ1 + ϵ, i = 2,3. The resultant determinant takes the form   

The third order smooth positon solution of Eq. (1) can be obtained by 
substituting the expressions (9a) and (9b) in Eqs. (4a) and (4b). The 
explicit form of the obtained solution is very lengthy and so we do not 
reproduce its explicit form here and present only the plot of third order 
smooth positon solution in Fig. 2. One can directly identify the third 
order smooth positon solution of the NLS equation from the constructed 
solution by setting α = γ = 0 in it. Restricting the parameters in the 
fashion α = 1, γ = 0 and α = 0, γ = 1, in the derived solution, we can 
visualize the third order smooth positon of the Hirota equation (Fig. 2 
(b)) and the fourth order NLS equation (Fig. 2(c)) respectively. To learn 
the higher order effect, we fix α = γ = 1 in the constructed solution. 
When we increase the value of third order dispersion term α, the position 

Fig. 1. Second order smooth-positon solution of ENLSE with the parameter values λ1 = 0.2+ 0.5i, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are corresponding contour illustration of figs. (a)–(d) respectively. 

lim
ϵ→0

D13 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1 λ2
1f1 λ3

1f1

− g*
1 f *

1 − λ*
1g*

1 λ*
1f *

1 − λ*2
1 g*

1 − λ*3
1 g*

1

f1l
' g1l

' ((λ1 + ϵ)f1l )
'

((λ1 + ϵ)g1l )
' (

(λ1 + ϵ)2f1l
)' (

(λ1 + ϵ)3f1l
)'

− g*
1l

' f *
1l

'
−
( (

λ*
1 + ϵ

)
g*

1l

)' ( (
λ*

1 + ϵ
)
f *
1l

)'
−
((

λ*
1 + ϵ

)2g*
1l

)'
−
((

λ*
1 + ϵ

)3g*
1l

)'

f1l
'' g1l

'' ((λ1 + ϵ)f1l )
''

((λ1 + ϵ)g1l )
'' (

(λ1 + ϵ)2f1l
)'' (

(λ1 + ϵ)3f1l
) )''

− g*
1l

'' f *
1l

''
−
( (

λ*
1 + ϵ

)
g*

1l

)'' ( (
λ*

1 + ϵ
)
f *
1l

)''
−
((

λ*
1 + ϵ

)2g*
1l

)''
−
((

λ*
1 + ϵ

)3g*
1l

)''

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9a)  

lim
ϵ→0

D23 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 g1 λ1f1 λ1g1 λ2
1f1 λ2

1g1

− g*
1 f *

1 − λ*
1g*

1 λ*
1f *

1 − λ*2
1 g*

1 λ*2
1 f *

1

f1l
' g1l

' ((λ1 + ϵ)f1l )
'

((λ1 + ϵ)g1l )
' (

(λ1 + ϵ)2f1l
)' (

(λ1 + ϵ)2g1l
)'

− g*
1l

' f *
1l

'
−
( (

λ*
1 + ϵ

)
g*

1l

)' ( (
λ*

1 + ϵ
)
f *
1l

)'
−
((

λ*
1 + ϵ

)2g*
1l

)' ((
λ*

1 + ϵ
)2f *

1l

)'

f1l
'' g1l

'' ((λ1 + ϵ)f1l )
''

((λ1 + ϵ)g1l )
'' (

(λ1 + ϵ)2f1l
)'' (

(λ1 + ϵ)2g1l
)''

− g*
1l

'' f *
1l

''
−
( (

λ*
1 + ϵ

)
g*

1l

)'' ( (
λ*

1 + ϵ
)
f *
1l

)''
−
((

λ*
1 + ϵ

)2g*
1l

)'' ((
λ*

1 + ϵ
)2f *

1l

)''

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9b)   
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of the smooth positon changes, the distance between the positons de-
creases and the width of the positons get reduced. By increasing the 
value of the parameter γ, one can visualize more compression and also 
appreciable changes in their orientation. The net effect observed in this 

case is higher than the one produced solely by the nonlinear term α. 
When we increase the value of both the parameters α and γ the positons 
move close to each other which is depicted in Fig. 2(d). Considering N =
4 in Eq. (3a) and imposing the spectral parameters be λi = λ1 + ϵ, i =

Fig. 3. Fourth order smooth-positon solution of ENLSE with parameter values λ1 = 0.2+ 0.5i, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d) respectively. 

Fig. 4. Second order b-p solution of ENLSE with the parameter values λ1 = 0.4i and c = 0.5, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d) respectively. 

Fig. 2. Third order smooth-positon solution of ENLSE with the parameter values λ1 = 0.2+ 0.5i, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d) respectively. 
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2,3, 4, we can derive the fourth order smooth positon solution of Eq. (1). 
We have also analyzed the effect of higher order nonlinear and disper-
sion terms with the help of this solution as we have done in the second 
and third order smooth positon cases. Our investigations reveal that the 
fourth order positon solution also exhibits a similar behaviour as that of 
lower order positon solutions which can be confirmed from Fig. 3. 

4. Breather positon solutions 

In Section 3, we discussed about the higher order smooth positon 
solutions of Eq. (1). Now, we construct the b-p solutions of the ENLSE. 

4.1. Second order b-p solution of ENLSE 

Upon solving the Lax pair Eq. (2a) with the plane wave solution q0 =

ce2ic2(1+3γc2)t as seed solution, where c is an arbitrary real parameter, we 
obtain the following eigenfunctions, namely 

f1 = A1eic2(1+3γc2)t; g1 = A2e− ic2(1+3γc2)t, (10a)  

where 

A1 =
cM1

i
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√

+λ1

)eη +
cM2

i
(

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√

+λ1

)e− η,A2 =M1eη +M2e− η,

(10b)  

with 

M1 =

ic + 2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√

+ λ1

)

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√ , M2 =

− ic + 2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√

− λ1

)

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√

η = i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√ (
x + 2

(
λ1 − 2αλ2

1 − 4γλ3
1 + c2(α + 2γλ1)

)
t
)
.

(10c) 

The second order b-p solution of the ENLSE can be identified by 
imposing the same limit on the spectral parameter λ2, that is λ2→λ1 + ϵ. 
Substituting the above eigenfunctions (Eq. (10a)) in Eq. (7a), we obtain 

q[b− p]
2 = ce2ic2(1+3γc2)t − 2i

⃒
⃒
⃒D[b− p]

12

⃒
⃒
⃒

⃒
⃒
⃒D[b− p]

22

⃒
⃒
⃒
. (11) 

The 3-D plot of the second order b-p solution is shown in Fig. 4 (the 
explicit expression of Eq. (11) is very lengthy and so we do not print 
them here). In Fig. 4(a), we depict the second order b-p solution of the 

NLS equation (α = γ = 0). In this figure, one may observe that the 
central region resembles the pattern of second order rogue wave. To 
examine the effect of higher order nonlinear and dispersion terms, first 
we choose the parameters in the fashion α = 1, γ = 0 whose outcome is 
produced in Fig. 4(b). We observe a compression in the width of b-p and 
a change in their orientation. Further, as we visualize the second order b- 
p gets tilted and the distance between two b-p also get decreased. As far 
as the fourth order NLS equation is concerned, that is α = 0, γ = 1, the b- 
p solution exhibits larger compression and deviations in their orienta-
tion when compared to the previous case, see Fig. 4(c). For α = γ = 1, 
the width of the b-p including the central region is highly compressed 
and they come very near to each other. The drastic changes in their 
orientation and tilt in the pulses by the nonlinear terms on the second 
order b-p solution are shown in Fig. 4(d). 

The dynamical changes in the structure of waves can be observed by 
adding an arbitrary constant s0ϵ, that is s0 = s0r + is0i in the exponential 
function η given in Eq. (10b). By choosing s0r = 25 and s0i = 0, the rogue 
wave like structure in the central region forms a triangular pattern of 
three single breather pulses (Fig. 5(a)). Analogously, we observe that the 
higher order nonlinear and dispersion terms exhibit the same charac-
teristics that we observed in the second order b-p case. The in-
vestigations reveal that the higher order parameters produce a 
compression in the width of smooth positons, appreciable changes in 
their direction and they also tilt the pulses which can all be visualized 
from Fig. 5. 

4.2. Higher order b-p solutions 

By considering N = 3 in Eq. (3a) with the eigenfunctions given in Eq. 
(10a) and restricting the spectral parameters in the same manner as λi→ 
λ1 + ϵ, i = 2,3, we can derive the third order b-p positon solution of the 
ENLSE. Since the explicit expression is quite cumbersome we present 
only the plots of the third order b-p solution in Fig. 6. The third order RW 
structure can be seen in the central region of the third order b-p solution. 
From Fig. 6, one may observe that the higher order nonlinear and 
dispersion terms produce the same effect on third order b-p solution 
which we come across earlier in the second order b-p case. To analyze 
the changes in the structure of b-p solution, we introduce two arbitrary 

constants, say s0ϵ and s1ϵ in Eq. (10c), that is η = i
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2
1 + c2

√ (
x + 2

(
λ1 −

2αλ2
1 − 4γλ3

1 + c2(α + 2γλ1)
)
t + s0ϵ + s1ϵ2 ) with s1 = s1r + is1i. Upon 

introducing this, the central region splits up into six separate b-p pulses 
and forms a triangular pattern as shown in Fig. 7 for the values s0r =

s1r = 0 and s1r = 25, s1i = 0. If we consider s1r = s1i = 600, the central 
region forms a circular structure which is illustrated in Fig. 8. Higher 

Fig. 5. Second order triplet b-p solution of ENLSE with the parameter values λ1 = 0.4i and c = 0.6, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 
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Fig. 6. Third order b-p solution of ENLSE with the parameter values λ1 = 0.5i and c = 0.7, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 

Fig. 7. Third order triplet b-p solution of ENLSE with the parameter values λ1 = 0.4i and c = 0.7, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 

Fig. 8. Third order circular b-p solution of ENLSE with the parameters λ1 = 0.85i and c = 0.9, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 
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Fig. 9. Fourth order b-p solution of ENLSE with the parameter values λ1 = 0.5i and c = 0.7, (a) α = γ = 0, (b) α = 1; γ = 0, (c) α = 0; γ = 1, (d) α = γ = 1. 
Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 

Fig. 10. Fourth order triangular b-p solution of ENLSE with the parameter values λ1 = 0.5i and c = 0.7, (a) α = γ = 0, (b) α = 0.5; γ = 0, (c) α = 0; γ = 0.5, (d) 
α = γ = 0.5. Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 

Fig. 11. Fourth order circular b-p solution of with the parameter values λ1 = 0.5i and c = 0.7, (a) α = γ = 0, (b) α = 0.5; γ = 0, (c) α = 0; γ = 0.5, (d) α = γ =

0.5. Figs. (e)–(h) are the corresponding contour illustration of figs. (a)–(d). 
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compression effect and a change in their orientation is observed in the 
central region of the triangular and circular patterns for larger values of 
α and γ. 

These outcomes are demonstrated in Figs. 7 and 8. The arbitrary 
nonlinear parameter α is the main cause to produce the tilt in the b-p 
solution. Finally, we plot the fourth order b-p solution (N = 4) in Fig. 9 
and here also we observe the same behavioural changes (See also 
Figs. 10 and 11). From the above outcome, we conclude that the width 
and direction of smooth positon and b-p solutions are highly sensitive to 
higher order effects. 

5. Asymptotic analysis 

In this section, we study the asymptotic behaviour of the smooth 
positons of ENLSE. The behaviour of two positon solution in the 
asymptotic regime t→ ± ∞ becomes trivial since in the denominator the 
variable t appears both in exponential and polynomial forms (see Eqs. 
(5a) and (5b)). Hence we adapt the procedure followed by Cen et al. 
[18,19] to investigate the asymptotic behaviour of second order smooth 

positon solution of the ENLSE. In this analysis, we compare the 
maximum of one soliton solution with the shifted multi positon solutions 
in the asymptotic limits. 

Theorem 2. The time dependent displacement between two positon, after 
collision, is 

Δ(t) =
1
a
log
[
4a2|t|

̅̅̅
κ̂

√ ]
, (12a)  

where 

κ̂ = a2α2 +(1+3bα)2
+4
(
a2 − 3b2+b

(
a2 − 9b2)α

)
γ+4

(
a4 − 2a2b2 +9b4)γ2.

(12b)   

Proof. First we obtain one soliton solution of Eq. (1), by imposing the 
restrictions N = 1 and λ = (ia − b)/2, a, b ∈ ℝ, in Eq. (3b). As a result, we 
obtain 

q1(x, t) = aeizsech
[
a
(
x+ t

(
− 2b+

(
a2 − 3b2)α − 4bγ

(
a2 − 2b2) ) ) ], (13a)  

where 

z = bx+ t
(
a2 − b2 + α

(
3a2 − b2)+ γ

(
a4 − 6a2b2 + b4) ). (13b) 

The absolute value of one soliton solution (13a) is 

|q1(x, t) | =
2aea(x+a2 tα− 3b2 tα+4b3 tγ− 2b(t+2a2 tγ))

1 + e2a(x+a2 tα− 3b2 tα+4b3 tγ− 2b(t+2a2 tγ) )
. (14) 

To track a distinct point on the one soliton, we choose a reference 
frame by fixing the wave coordinate. From Eq. (14), we can determine 
the maximum point as 

x̃ = t
(
3b2α − a2α − 4b3γ + b

(
2+ 4a2γ

) )
. (15) 

Substituting this value back in Eq. (14), we can obtain the maximum 
amplitude of one soliton solution (14) as 

|q1(x̃, t) | = a. (16) 

The explicit expressions of the second order smooth positon solution 
is given in Eqs. (5a) and (5b). To find the asymptotic limit of this second 
order smooth positon solution, we replace x→x̃+ Δ, where Δ is a con-
stant in the two positon solution. At t→ ± ∞, the solution becomes zero 
since the variable ∣t∣ appears as a polynomial in the denominator. To 
obtain a finite value at t→ ± ∞, we introduce a logarithmic term with 

time dependence in the function Δ, that is [19]. 

Δ(t) = (1/a)log(κ|t| ), (17)  

where κ is an undetermined constant. We then collect the dominant 
terms of ∣t∣ in both the numerator and denominator in the absolute value 
of the two positon solution. The resultant action yields 

|q2(x̃+Δ(t) , t) | =
A1

A2
, (18a)  

where  

To determine the value of κ, we equate Eq. (18a) with the maximum 
of one soliton given in Eq. (16). Doing so, we find   

The time dependent shift tracks the stable one soliton within the 
absolute two positon solution. Substituting Eq. (19) in Eq. (17) we can 
obtain the time dependent displacement as given in Eqs. (12a) and 
(12b).□ 

Theorem 3. In the asymptotic limits, the modulus of the shifted two positon 
solution is equal to the amplitude of one soliton solution. 

Proof. Let us rewrite the two positon solution (5a) and (5b) in the form 
q2 = q2r + iq2i. The real (q2r) and imaginary parts (q2i) of this solution 
relies on the function z(x, t), given in Eq. (13b), which appears in the 
arguments of the sine and cosine functions. The internal oscillations are 
produced for different values of z(x, t) which makes it unfeasible to track 
the constant amplitude [14]. To obtain a constant amplitude for the two 

A1 = 8a3κ
(
1 − 36b3αγ + 4γ2( a4 + 9b4)+ a2( α2 + 4γ

)
+ 2bα

(
3 + 2a2γ

)
+ b2( 9α2 − 4γ

(
3 + 2a2γ

) )1/2, (18b)  

A2 = 64a8γ2 + 16a4( 1 + 3bα − 6b2γ
)2

+ 16a6
(

α2 + 4bαγ + 4γ
(
1 − 2b2γ

))
+ κ2. (18c)   

κ = 4a2( a2α2 + (1 + 3bα)2
+ 4
(
a2 − 3b2 + b

(
a2 − 9b2)α

)
γ + 4

(
a4 − 2a2b2 + 9b4)γ2)1/2. (19)   
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positon solution with the same overall speed, we consider only the 
enveloping function by fixing z(x, t) = z (a constant). Implementing this, 
we find 

q2r(x, t) =
Ω12r

Ω22r
, (20a)  

with  

A similar expression can also be found for the imaginary part of the 
two positon solution. Since the time dependent shift has been deter-
mined, we take x→x̃ ± Δ(t) in the two positon solution and collect the 
dominant terms of ∣t∣. The real part of the two positon solution yields 

lim
t→±∞

q2r (̃x+Δ(t))=∓
a̅
̅̅
κ̂

√

(

a(α − 4bγ)cos[z]+
(
1+3bα+2a2γ − 6b2γ

)
sin[z]

)

,

(21a)  

lim
t→±∞

q2r(x̃ − Δ(t))=±
a
̅̅̅
κ̂

√

(

a(α − 4bγ)cos[z] −
(
1+3bα+2a2γ − 6b2γ

)
sin[z]

)

(21b) 

For the imaginary part of the two positon solution, we find 

lim
t→±∞

q2i(x̃+Δ(t))=±
a̅
̅̅
κ̂

√

(
(
1+3bα+2a2γ − 6b2γ

)
cos[z] − a(α − 4bγ)sin[z]

)

,

(21c)  

lim
t→±∞

q2i(x̃ − Δ(t))=±
a
̅̅̅
κ̂

√

(
(
1+3bα+2a2γ − 6b2γ

)
cos[z]+a(α − 4bγ)sin[z]

)

(21d) 

The modulus of the shifted two positon solution in all the above four 
asymptotic limits yield the same value, that is 

lim
t→±∞

⃒
⃒qa,b

2 (x̃±Δ(t) )
⃒
⃒ = a. (22) 

□ 

From the above result, we conclude that the individual one soliton 
constituents of the two positon solution are same in both the limits t→ ±

∞ which can also be confirmed from Fig. 13. Therefore the two one 
solitons have interchanged their positions with an overall displacement 

2Δ(t). If γ→0 in Eqs. (12a) and (12b), we obtain the time dependent 
displacement of the Hirota equation. The obtained expression exactly 
coincides with the one reported recently in [18] for the Hirota equation. 
Interestingly, in the limit α, γ→0, the time dependent displacement 
expression which we found above also matches with the one obtained 
through inverse scattering method carried out for the NLS equation 
[68]. The time dependent displacement for the smooth positon solution 
depends on the higher order nonlinear and dispersion parameters α and 

γ. While increasing the value of α and γ, the time dependent shift in-
creases which can be seen in Fig. 12. By tuning certain parameters, the 
asymptotic limit of Eqs. (21a)–(21d) agrees exactly with the result ob-
tained in [18] for γ→0. If α = 0 in Eqs. (21a)–(21d) and (12a), then the 
resultant value admits the expression for asymptotic limit of two positon 
solution and time dependent displacement of the fourth order NLS 
equation respectively. It will be interesting to investigate the conserved 
quantities associated with positons. It has been shown that the energy of 
two positon solution will be twice of energy of one positon, that is 
E(q[2] ) = 2E(q[1] ). In general, for N-positon solutions, E(q[N] ) =

NE(q[1] ). We plan to investigate this aspect numerically in near future. 

Ω12r = − 4aea(x− x̃){[ − 1 + 2abt − ax − 3a3tα + 3ab2tα + 12a3btγ − 4ab3tγ + e2a(x− x̃)( − 1 + 3a3t(α − 4bγ)
+a
(
x − 2bt − 3b2tα + 4b3tγ

))]
cos[z] + 2a2( 1 + e2a(x− x̃) )t

(
1 + 3bα + 2a2γ − 6b2γ

)
sin[z]

}
,

Ω22r = 1 + e4a(x− x̃) + 2e2a(x− x̃){1 + 32a8t2γ2 + 2a6t2( 9α2 − γ
(
24bα + 16

(
1 + 3b2γ

) ) )

+2a2( x − 2bt − 3b2tα + 4b3tγ
)2

+ 4a4t
(
3x(α − 4bγ) + t

(
2 + 6bα + 9b2α2 − 24b3αγ + 24b4γ2) )

}
,

(20b)   

Fig. 12. Time dependent displacement Δ(t) for the values a = 0.2 and b = 0.5.  
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6. Conclusion 

In this work, we have derived higher order degenerate soliton solu-
tions for the ENLSE (1). Using GDT method, we have constructed smooth 
positons and b-p solutions of various orders (second, third and fourth). 
We have demonstrated that from the constructed solution one can 
deduce the smooth positon and b-p solutions of NLS, Hiorta and a fourth 
order NLS equation. We have analyzed the effect of higher order odd and 
even nonlinear terms on the basic smooth positon and b-p solutions. Our 
investigations reveal that the higher order nonlinear terms impose 
greater compression effect and these two parameters also tilt the waves. 
The central region of the b-p solution exhibits a similar structure as that 
of rogue waves. By introducing certain parameters in the b-p solution, 
we have explored triangular and circular pattern of waves in the central 
region of the b-p solutions. In addition to the above, we have studied the 
behaviour of two positon solution in the asymptotic limits and demon-
strated that they exhibit time dependent phase shift during collision. We 
have also derived the expression for time dependent displacement. Since 
positon solutions do not exhibit energy exchange during collision they 
prevent data loss in nonlinear optical fiber systems. Moreover, multi- 
positons travel like a single component and therefore they can model 
the tidal bore phenomenon in which equal amplitude waves travel 
simultaneously for several kilometers. Hence, the results which we have 
presented in this paper will be helpful for both the optics and water wave 
research community. 
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