Archiv der Mathematik

Non-negative divisors and the Grauert metric

SAHIL GEHLAWAT D AND KAUSHAL VERMA

Abstract. Grauert showed that it is possible to construct complete Kähler metrics on the complement of complex analytic sets in a domain of holomorphy. In this note, we study the holomorphic sectional curvatures of such metrics on the complement of a principal divisor in \mathbb{C}^n , $n \geq 1$. In addition, we also study how this metric and its holomorphic sectional curvature behave when the corresponding principal divisors vary continuously.

Mathematics Subject Classification. 32T05, 32Q15.

Keywords. Grauert metric, Holomorphic sectional curvature, Non-negative divisors.

1. Introduction. While every domain of holomorphy admits a real analytic, complete Kähler metric according to Grauert [1], the converse is false in general. Indeed, in the same paper, Grauert writes down an explicit example of such a metric on $(\mathbb{C}^n)^* = \mathbb{C}^n \setminus \{0\}$ for $n \ge 1$. Since $(\mathbb{C}^n)^*$ is not a domain of holomorphy for $n \ge 2$, it follows that the property of being a domain of holomorphy is not always equivalent to admitting a real analytic, complete Kähler metric. The construction of such a metric can be carried over to a domain of the form $G \setminus A$, where $G \subset \mathbb{C}^n$ is a domain of holomorphy and $A \subset G$ is a complex anaytic set by pulling back the construction on $(\mathbb{C}^n)^*$ by means of the defining functions for A. A suitable metric can be added to it to remove any degeneracies that may occur in the pull-back metric.

The holomorphic sectional curvature encodes important information about a given hermitian metric and this point was addressed in [3]. We studied the holomorphic sectional curvature of such metrics in two prototype cases, namely, (i) $(\mathbb{C}^n)^*$, $n \geq 2$, and (ii) $\mathbb{B}^N \setminus A$, $N \geq 2$, where $A \subset \mathbb{B}^N$ is a hyperplane of codimension at least 2. We continue our study of this metric here.

SG is supported by CSIR-SPM Ph.D. fellowship.

The purpose of this note is to complete the picture by studying these metrics, which are constructed in the complement of a closed analytic set of codimension 1, i.e., a divisor. First, we study the holomorphic sectional curvatures of the metric that is obtained by this process on the complement Ω of a principal divisor D in \mathbb{C}^n , $n \geq 2$. The case n = 1 is studied in detail in the last section. Secondly, we show that if $U \subset \mathbb{C}^n$, $n \geq 1$, is a domain of holomorphy (or more generally, admits a complete Kähler metric) with $H^1(U, \mathbb{Z}) = 0$, then Grauert's construction applied to $U \setminus D$, where $D \subset U$ is a principal divisor, possesses an intrinsic continuity property when D varies in an appropriate sense.

To set things in context, recall that the set of divisors on a complex manifold ${\cal M}$ is

$$\mathcal{D}(M) = \left\{ \sum_{i \in I} n_i V_i : n_i \in \mathbb{Z} \right\}$$

where $\{V_i\}_{i \in I}$ is a locally finite system of irreducible analytic hypersurfaces in M and the support of a divisor $D \in \mathcal{D}(M)$ is the union of the hypersurfaces V_i – this will be denoted by |D|. The set of non-negative divisors $\mathcal{D}^+(M) \subset \mathcal{D}(M)$ consists of those divisors wherein $n_i \geq 0$ for all $i \in I$. The natural map

$$\mathsf{Div}: \mathcal{O}(M) \to \mathcal{D}^+(M)$$

defined by

$$\mathsf{Div}(f) = \sum_{i} \left(\operatorname{ord}_{V_i} f \right) V_i$$

assigns, to a holomorphic function, the divisor defined by its zero set; here, $\{V_i : i \in I\}$ are the irreducible components of $\mathcal{Z}(f)$, the zero set of a holomorphic function $f \in \mathcal{O}(M)$, and $\operatorname{ord}_{V_i} f$ is the order of $V_i \subset \mathcal{Z}(f)$. The set of *principal divisors* arises as the image $\operatorname{Div}(\mathcal{O}(M)) \subset \mathcal{D}^+(M)$ and this will be denoted by $\mathcal{D}^+_P(M)$.

Let $D \in \mathcal{D}_P^+(\mathbb{C}^n)$ be a principal divisor. Choose $f \in \mathcal{O}(\mathbb{C}^n)$ such that Div(f) = D. Recall that the Grauert metric on \mathbb{C}^* (see [1]) is a conformal metric defined by

$$g = \left(1 + |w|^2 u^2 (|w|^2)\right) |dw|^2, \qquad (1.1)$$

where $u: (0, \infty) \to \mathbb{R}$ is the function $u(t) = (t-1)/(t \log t)$ for $t \neq 1$, and u(1) = 1. It was shown in [3] that the curvature of g approaches -4 or 0 according as $|z| \to 0$ or $+\infty$ respectively, and is non-positive everywhere on \mathbb{C}^* . Consider the complete Kähler metric (see [4, p. 155]) on $\mathbb{C}^n \setminus |D|$ defined by

$$\phi(z,V) = f^*(g)(z,V) + |V|^2 = \left(1 + |f(z)|^2 u^2 \left(|f(z)|^2\right)\right) |df(z)(V)|^2 + |V|^2,$$
(1.2)

where $z \in \mathbb{C}^n \setminus |D|$ and $V \in \mathbb{C}^n$.

For $p \in \mathbb{C}^n \setminus |D|$ and $V \in \mathbb{C}^n$, denote the holomorphic sectional curvature of ϕ at (p, V) by K(p, V). Set $K^+(p)$ to be the supremum of K(p, V) as V varies in \mathbb{C}^n . For a non-singular vector field X near $p \in \mathbb{C}^n \setminus |D|$, consider the restriction

of ϕ to the leaf of the foliation defined by X passing through p. Thus, we get a conformal metric on the germ of a Riemann surface containing p. Let $\mathcal{K}^{X}(p)$ denote the Gaussian curvature of this metric at p.

Theorem 1.1. Let (D, f, ϕ) be as above on \mathbb{C}^n , $n \geq 2$.

- (i) If $p \in \mathbb{C}^n \setminus |D|$ and $V \in \text{Ker}(df(p))$, then $K(p, V) \leq 0$. In particular, if Rank(df(p)) = 0, then $K^+(p) \leq 0$.
- (ii) If $p \in \mathbb{C}^n \setminus |D|$ and $f_{z_i}(p) = \frac{\partial f}{\partial z_i}(p) \neq 0$ for some $1 \leq i \leq n$, then there exists a non-singular holomorphic vector field X near p such that $X(p) \notin \operatorname{Ker}(df(p))$ and $\mathcal{K}^X(p) \leq 0$.
- $\begin{array}{l} X(p) \notin \operatorname{Ker}(df(p)) \ and \ \mathcal{K}^X(p) \leq 0. \\ \text{(iii)} \ If \ p \in |D| \ and \ f_{z_i}(p) = \frac{\partial f}{\partial z_i}(p) \neq 0, \ then \ there \ exists \ a \ non-singular \\ holomorphic \ vector \ field \ X \ near \ p \ such \ that \end{array}$

$$\lim_{z \to p} \mathcal{K}^X(z) = -4 < 0.$$

To summarize, for points away from the support of D, (i) shows that the curvature K(p, X) is non-positive along certain directions. On the other hand, though the conclusions of (ii) and (iii) are less precise, they show that the curvature of the restriction of ϕ to the leaves of a certain foliation is again non-positive.

It is natural to identify a non-negative divisor with the current of integration over it, namely:

$$D(\alpha) = \langle \alpha, D \rangle = \sum_{j} m_{j} \int_{V_{j}} \alpha$$

for each smooth compactly supported (n-1, n-1)-form α on X where $D = \sum_j m_j V_j$. Thus $\mathcal{D}^+(M)$ can be considered as a subset of the dual space of $D^{(n-1,n-1)}(M)$, the space of compactly supported (n-1, n-1)-smooth forms on M. Therefore $\mathcal{D}^+(M)$ inherits two natural topologies, namely, the relative weak* topology and the relative strong topology.

Weak* topology: A net $\{D_{\alpha}\}_{\alpha \in A}$ in $\mathcal{D}^+(M)$ converges to $D_0 \in \mathcal{D}^+(M)$ iff for every compactly supported smooth (n-1, n-1)-form ξ on M,

$$\lim_{\alpha \in A} \int_{D_{\alpha}} \xi = \int_{D_{0}} \xi.$$

Strong topology: A net $\{D_{\alpha}\}_{\alpha \in A}$ in $\mathcal{D}^+(M)$ converges to $D_0 \in \mathcal{D}^+(M)$ iff it converges in the weak^{*} sense and if, moreover, the convergence is uniform on bounded sets in the space $D^{(n-1,n-1)}(M)$.

There is another topology on $\mathcal{D}^+(M)$ introduced by Stoll [6] which is defined in function-theoretic terms:

Stoll's topology: A net $\{D_{\alpha}\}_{\alpha \in A}$ in $\mathcal{D}^+(M)$ converges to $D_0 \in \mathcal{D}^+(M)$ iff there is an open cover $\mathcal{V} = \{V_j\}_{j \in \mathbb{N}}$ of M such that for each $\alpha \in A$, there is an $f_{j\alpha} \in \mathcal{O}(V_j)$ such that $\mathsf{Div}(f_{j\alpha}) = D_{\alpha}|_{V_j}$ and $f_{j\alpha}$ converges uniformly on compacts in V_j to $f_{j0} \in \mathcal{O}(V_j)$, where $\mathsf{Div}(f_{j0}) = D_0|_{V_j}$.

Lupacciolu–Stout [5] have shown that on $\mathcal{D}^+(M)$, the above three topologies are equivalent. Using this equivalence they showed: For a complex-analytic

manifold M of dimension $n \geq 1$ satisfying $H^1(M, \mathbb{Z}) = 0$ and $H^1(M, \mathcal{O}) = 0$, there exists a continuous map $\psi : \mathcal{D}_P^+(M) \to \mathcal{O}(M)$ such that $\text{Div}(\psi(D)) = D$ for all $D \in \mathcal{D}_P^+(M)$. In [5], they also proved: If M is a domain in a Stein manifold N with the property $H^1(M, \mathbb{Z}) = 0$, then there exists a continuous map $\psi : \mathcal{D}_P^+(M) \to \mathcal{O}(M)$ such that $\text{Div}(\psi(D)) = D$ for all $D \in \mathcal{D}_P^+(M)$.

Let $U \subset \mathbb{C}^n$ be a domain of holomorphy or more generally a domain that has a complete Kähler metric Φ_U . Let $D \in \mathcal{D}_P^+(U)$ be a principal divisor and $f \in \mathcal{O}(U)$ be a holomorphic function such that D = Div(f). Define a pseudometric on $U \setminus |D|$ by $\tilde{\phi}_D := f^*(g)$, where g is the Grauert metric on \mathbb{C}^* . Therefore, $\phi_D = \tilde{\phi}_D + \Phi_U$ is a complete Kähler metric on $U \setminus |D|$.

The following statements clarify the dependence of the Grauert metric and its curvature as a function of the divisor D.

Theorem 1.2. Let $U \subset \mathbb{C}^n$, $n \geq 1$, be a domain as above, which also satisfies $H^1(U,\mathbb{Z}) = 0$. If $\{D_j\}_{j\in\mathbb{N}} \subset \mathcal{D}_P^+(U)$ is a sequence of non-negative principal divisors such that D_j converges to $D_0 \in \mathcal{D}_P^+(U)$ with respect to any of the equivalent topologies above, then

- (i) there exist a sequence of complete Kähler metrics {φ_j} and φ₀ on U \ |D_j| and U \ |D₀| repectively such that φ_j converges to φ₀ uniformly on compacts of U \ |D₀|.
- (ii) for a fixed complete Kähler metric on U \ |D₀| of the form ξ = f*(g) + Φ_U where D₀ = Div(f), we can choose a sequence of complete Kähler metrics {ξ_j} on U \ |D_j| such that ξ_j converges to ξ uniformly on compacts of U \ |D₀|.

Fix $p \in U \setminus |D_j|$ and a non-singular holomorphic vector field X near p. For a complete Kähler metric ϕ_j on $U \setminus |D_j|$, denote the Gaussian curvature of the metric ϕ_j restricted to the leaves of foliation induced by X by $\mathcal{K}_{\phi_j}^X(q)$ for points $q \in U \setminus |D_j|$ near p. For $V \in \mathbb{C}^n$, let $K_{\phi_j}(p, V)$ denote the holomorphic sectional curvature of the metric ϕ_j at (p, V).

Theorem 1.3. Let (U, ϕ_j, ϕ_0) be as in the above theorem and fix $p \in U \setminus |D_0|$. Then

- (i) for a non-singular holomorphic vector field X near p, there exists a neighburhood U_p of p in U \ |D₀| such that K^X_{φ_j}(q) → K^X_{φ₀}(q) for all q ∈ U_p
- (ii) $K_{\phi_0}(p, V) \leq \liminf_{j \to \infty} K_{\phi_j}(p, V) \text{ for all } V \in \mathbb{C}^n.$

2. Proof of Theorem 1.1. Fix a non-negative principal divisor $D \in \mathcal{D}_P^+(\mathbb{C}^n)$ and $f \in \mathcal{O}(\mathbb{C}^n)$ such that Div(f) = D. The corresponding complete Kähler metric on $\mathbb{C}^n \setminus |D|$ is given by:

$$\phi(z,V) = \left(1 + |f(z)|^2 u^2 \left(|f(z)|^2\right)\right) |df(z)(V)|^2 + |V|^2$$

where $z \in \mathbb{C}^n \setminus |D|$ and $V \in \mathbb{C}^n$.

For (i), let $p \in \mathbb{C}^n \setminus |D|$ and let X be a non-singular holomorphic vector field near p such that $X_p = X(p) \in \operatorname{Ker}(df(p))$. Note that since $n \geq 2$, we have $\dim \left(\operatorname{Ker} \left(df(p) \right) \right) \geq 2 - 1 = 1. \text{ For a disc } B(0, \epsilon) \subset \mathbb{C}, \text{ let } Z : B(0, \epsilon) \to \mathbb{C}^n \setminus |D|$ be a holomorphic parametrization of a germ of a leaf of X through p, i.e.,

$$Z'(T) = X(Z(T))$$

for all $T \in B(0, \epsilon)$ and Z(0) = p. We will write Z_T to denote Z(T), and just u, u', u'' instead of $u(|f(Z_T)|^2), u'(|f(Z_T)|^2), u''(|f(Z_T)|^2)$. Therefore

$$Z^{*}(\phi)(T) = \left\{ \left(1 + \left|f(Z_{T})\right|^{2} u^{2}\right) \left|df(Z_{T})\left(X(Z_{T})\right)\right|^{2} + \left|X(Z_{T})\right|^{2} \right\} |dT|^{2}$$

and this can be written as $Z^*(\phi)(T) = h(T) |dT|^2$, where

$$h(T) = \left(\left(1 + |f(Z_T)|^2 u^2 \right) \left| df(Z_T) \left(X(Z_T) \right) \right|^2 \right) + |X(Z_T)|^2.$$

Note that $\partial h(T) = \frac{\partial h(T)}{\partial T} = A_1(T) + A_2(T) + A_3(T)$, where

$$A_{1}(T) = \left(u^{2} + 2|f(Z_{T})|^{2} uu'\right) \left| df(Z_{T}) (X(Z_{T})) \right|^{2} \left\langle df(Z_{T}) (X(Z_{T})), f(Z_{T}) \right\rangle, A_{2}(T) = \left(1 + |f(Z_{T})|^{2} u^{2}\right) \left\langle \partial \left(df(Z_{T}) (X(Z_{T})) \right), df(Z_{T}) (X(Z_{T})) \right\rangle, A_{3}(T) = \left\langle dX(Z_{T}) (X(Z_{T})), X(Z_{T}) \right\rangle.$$

Using the fact that $\overline{h(T)} = h(T)$, it can be checked that $\overline{\partial}h(T) = \overline{\partial}h(T)$. Also $A_1(0) = A_2(0) = \overline{\partial}A_1(0) = 0$, and

$$\bar{\partial}A_2(T) = P(T) + \left(\left(1 + |f(Z_T)|^2 u^2 \right) \left| \partial \left(df(Z_T) \left(X(Z_T) \right) \right) \right|^2 \right),$$

$$\bar{\partial}A_3(T) = \left| dX(Z_T) \left(X(Z_T) \right) \right|^2,$$

where $P(T) = \bar{\partial} \left(1 + |f(Z_T)|^2 u^2 \right) \left\langle \partial \left(df(Z_T) \left(X(Z_T) \right) \right), df(Z_T) \left(X(Z_T) \right) \right\rangle$ satisfies P(0) = 0. Thus, we get that $h(0) = |X_p|^2$, $\partial h(0) = \left\langle dX(p) \left(X_p \right), X_p \right\rangle$, and $\bar{\partial} h(0) = \left\langle X_p, dX(p) \left(X_p \right) \right\rangle$, and

$$\bar{\partial}\partial h(0) = \left| dX(p) \left(X_p \right) \right|^2 + \left(1 + |f(p)|^2 u^2 (|f(p)|^2) \right) \left| \partial \left(df(Z_T) \left(X(Z_T) \right) \right) \right|_{T=0} \right|^2$$

$$\geq \left| dX(p) \left(X_p \right) \right|^2$$

and this implies that

$$h(0)\bar{\partial}\partial h(0) - \partial h(0)\bar{\partial}h(0) \ge |X_p|^2 |dX(p)(X_p)|^2 - |\langle dX(p)(X_p), X_p \rangle|^2 \ge 0$$

by the Cauchy–Schwarz inequality. Therefore, the Gaussian curvature of the leaves of the foliation induced by X at p is

$$\mathcal{K}^{X}(p) = -2(h(0))^{-3} \left\{ h(0)\bar{\partial}\partial h(0) - \partial h(0)\bar{\partial}h(0) \right\} \le 0.$$

By [7, Lemma 4], there exists a non-singular vector field Y near p such that Y(p) = V and $K(p, V) = \mathcal{K}^{Y}(p)$. Since the above argument is true for all non-singular holomorphic vector fields near p which equal V at point p, it follows that

$$K(p,V) \le 0.$$

Now, if $\operatorname{Rank}(df(p)) = 0$ at some $p \in \mathbb{C}^n \setminus |D|$, then $\operatorname{Ker}(df(p)) = \mathbb{C}^n$ and therefore $K(p, V) \leq 0$ for all $V \in \mathbb{C}^n$. Thus

$$K^+(p) = \sup_{V \in \mathbb{C}^n} K(p, V) \le 0.$$

Note: The above proof is true more generally also. Indeed, let M be a complex manifold of dimension $n \geq 2$ equipped with a metric ϕ which has non-positive holomorphic sectional curvature. Let $f : M \to \mathbb{C}$ be a non-constant holomorphic map and assume that \mathbb{C}^* is equipped with a metric ψ . Then the metric $\Phi := f^*(\psi) + \phi$ defined on $M \setminus \{f = 0\}$ satisfies $K(p, V) \leq 0$ for all $p \in M \setminus \{f = 0\}$ and $V \in \text{Ker}(df(p))$.

Now let $p \in \mathbb{C}^n$ be such that $\operatorname{Rank}(df(p)) = 1$ and suppose that $f_{z_1}(p) = \frac{\partial f}{\partial z_1}(p) \neq 0$. Then $W(z) = (f(z), z_2, \ldots, z_n)$ defines a new coordinate system around p with

$$W^{-1}(w) = (\tilde{g}(w), w_2, \dots, w_n)$$

for a suitable holomorphic function \tilde{g} . Since $W \circ W^{-1} \equiv \text{Id}$, we see that $f_{z_1}(z)\tilde{g}_{w_1}(W(z)) \equiv 1$. For $V = (1, 0, \dots, 0) \in \mathbb{C}^n$,

$$((W^{-1})^*\phi)(w,V) = (1+|w_1|^2 u^2(|w_1|^2)) ((W^{-1})^* |df(z)(dz)|^2 (w,V)) + (W^{-1})^* (|dz|^2)(w,V)$$

and observe that

$$\left(W^{-1}\right)^* \left(\left| df(z)(dz) \right|^2 \right)(w,V) = \left| f_{z_1}(W^{-1}(w)) \right|^2 \left| \tilde{g}_{w_1}(w) \right|^2 \equiv 1$$

and $(W^{-1})^*(|dz|^2)(w,V) = |\tilde{g}_{w_1}(w)|^2 = |f_{z_1}(W^{-1}(w))|^{-2}$. Therefore, we get

$$\tilde{\phi}(w,V) := \left((W^{-1})^* \phi \right)(w,V) = \left(1 + |w_1|^2 u^2 (|w_1|^2) + |\tilde{g}_{w_1}(w)|^2 \right).$$

Consider the constant vector field $\tilde{X}(w) \equiv V$ near the point W(p). Take $X := W^*(\tilde{X})$ near point p and observe that $X_p = W^*(V) \notin \text{Ker}(df(p))$. Let $w = (w_1, w_2, \ldots, w_n) = W(z) \in \mathbb{C}^n$ and $Z_T = Z(T) = w + (T, 0, \ldots, 0)$ be a local parametrization of the leaf of \tilde{X} passing through w. We get

$$Z^*(\tilde{\phi})(T) = \left(\left(1 + |w_1 + T|^2 u^2 \right) + |\tilde{g}_{w_1}(Z_T)|^2 \right) |dT|^2 = \left(A(T) + B(T) \right) |dT|^2$$

where $A(T) = \left(1 + |w_1 + T|^2 u^2 (|w_1 + T|^2) \right)$ and $B(T) = |\tilde{g}_{w_1}(Z_T)|^2$.

For (ii), suppose that $p \in \mathbb{C}^n \setminus |D|$. Fix w = W(p) and observe that $A(T)|dT|^2$ is the Grauert metric restricted in a neighburhood of $0 \neq f(p) \in \mathbb{C}$, therefore the Gaussian curvature is non-positive by [3, p. 8]. It is straightforward to check that

$$\partial B(T) = \tilde{g}_{w_1w_1}(Z_T)\overline{\tilde{g}_{w_1}(Z_T)}, \ \bar{\partial}B(T) = \tilde{g}_{w_1}(Z_T)\overline{\tilde{g}_{w_1w_1}(Z_T)}, \text{ and } \\ \bar{\partial}\partial B(T) = \left|\tilde{g}_{w_1w_1}(Z_T)\right|^2,$$

which tells us that the metric $B(T)|dT|^2$ has curvature identically 0 near T = 0. Therefore, [2, p. 111] tells us that the Gaussian curvature of the metric $Z^*(\tilde{\phi})$ is non-positive near $0 \in \mathbb{C}$. Thus, we get $\mathcal{K}^X(p) \leq 0$. For (iii), suppose that $p \in |D|$ and let $w = W(z) \in \mathbb{C}^n$ be such that $w_1 \neq 0$. As we calculated in (ii), it is clear that

$$B(T) \ \bar{\partial}\partial B(T) - \bar{\partial}B(T) \ \partial B(T) \equiv 0$$
(2.1)

and $\tilde{g}_{w_1}, \tilde{g}_{w_1w_1}$ are bounded near W(p). Since $A(0) = (1 + |w_1|^2 u^2(|w_1|^2))$, it follows that $\lim_{w_1\to 0} A(0) = +\infty$, and

$$\lim_{w_1 \to 0} \frac{A(0)}{A(0) + B(0)} = 1.$$
(2.2)

Now

$$\begin{split} \mathcal{K}^{X}(z) &= \mathcal{K}^{\bar{X}}(W(z)) \\ &= -2\left(\frac{(A+B)(0)\bar{\partial}\partial(A+B)(0) - \bar{\partial}(A+B)(0)\partial(A+B)(0)}{(A(0)+B(0))^{3}}\right) \\ &= -2\frac{N(0)}{D(0)} \end{split}$$

where $D(0) = (A(0) + B(0))^3$ and

$$N(0) = (A\bar{\partial}\partial A - \partial A\bar{\partial}A)(0) + (B\bar{\partial}\partial B - \bar{\partial}B\partial B)(0) + (A\bar{\partial}\partial B + B\bar{\partial}\partial A - \bar{\partial}A\partial B - \partial A\bar{\partial}B)(0).$$

Lemma 5.2 in the last section (using k = 1) shows that

$$\lim_{w_1 \to 0} \frac{\bar{\partial} \partial A(0)}{(A(0))^3} = \lim_{w_1 \to 0} \frac{\partial A(0)}{(A(0))^3} = \lim_{w_1 \to 0} \frac{\bar{\partial} A(0)}{(A(0))^3} = 0.$$
(2.3)

Also, we have

$$-2\frac{\left(A\bar{\partial}\partial A - \partial A\bar{\partial}A\right)(0)}{\left(A(0)\right)^3} = K_g(w_1).$$
(2.4)

Therefore,

$$\lim_{z \to p} \mathcal{K}^X(z) = \lim_{w \to W(p)} \left(-2\frac{N(0)}{D(0)} \right) = \lim_{w \to W(p)} \left(-2\frac{N(0)}{\left(A(0)\right)^3} \right) \left(\frac{\left(A(0)\right)^3}{D(0)} \right).$$

Since $w \to W(p)$ is equivalent to $w_1 \to 0$, an application of (2.1), (2.2), (2.3), and (2.4) gives

$$\lim_{z \to p} \mathcal{K}^X(z) = \lim_{w_1 \to 0} K_g(w_1) + 0 = -4.$$

This completes the proof.

3. Proof of Theorem 1.2. Since $H^1(U, \mathbb{Z}) = 0$, [5] shows that there exists a continuous map $\psi : \mathcal{D}_P^+(U) \to \mathcal{O}(U)$ such that $\mathsf{Div}(\psi(D)) = D$ for all $D \in \mathcal{D}_P^+(U)$. Let Φ denote the complete Kähler metric on U. Now for any $D \in \mathcal{D}_P^+(U)$ and $f \in \mathcal{O}(U)$ such that $\mathsf{Div}(f) = D$, we have the following complete Kähler metric on $U \setminus |D|$

$$\phi_D(z) = f^*(g)(z) + \Phi(z) = \left(1 + |f(z)|^2 u^2(|f(z)|^2)\right) f^*(|dw|^2) + \Phi(z).$$

Observe that $f^*(|dw|^2)(z) = \sum_{i,k=1}^n \frac{\partial f}{\partial z_i}(z) \overline{\frac{\partial f}{\partial z_k}(z)} dz_i d\overline{z_k}$, and therefore

$$\phi_D(z) = \left(\sum_{i,k=1}^n \left(1 + |f(z)|^2 u^2(|f(z)|^2)\right) \frac{\partial f}{\partial z_i}(z) \overline{\frac{\partial f}{\partial z_k}(z)} dz_i d\overline{z_k}\right) + \Phi(z).$$

We are given a sequence of non-negative principal divisors $D_j \in \mathcal{D}_P^+(U)$ such that $D_j \to D_0 \in \mathcal{D}_P^+(U)$.

For (i), define $f_j := \psi(D_j)$ and $f_0 = \psi(D_0)$. Therefore, we get a sequence of holomorphic functions $\{f_j\}_{j \in \mathbb{N}} \subset \mathcal{O}(U)$ such that $f_j \to f_0$ uniformly on compacts of U with $\mathsf{Div}(f_j) = D_j$, $\mathsf{Div}(f_0) = D_0$. This gives us corresponding complete Kähler metrics $\phi_j = f_j^*(g) + \Phi$ and $\phi_0 = f_0^*(g) + \Phi$ on $U \setminus |D_j|$ and $U \setminus |D_0|$ respectively. Explicitly

$$\phi_j(z) = \sum_{i,k=1}^n \left(1 + |f_j(z)|^2 u^2 (|f_j(z)|^2) \right) \frac{\partial f_j}{\partial z_i}(z) \overline{\frac{\partial f_j}{\partial z_k}(z)} dz_i d\overline{z_k} + \Phi(z),$$

$$\phi_0(z) = \sum_{i,k=1}^n \left(1 + |f_0(z)|^2 u^2 (|f_0(z)|^2) \right) \frac{\partial f_0}{\partial z_i}(z) \overline{\frac{\partial f_0}{\partial z_k}(z)} dz_i d\overline{z_k} + \Phi(z).$$

Since $f_j \to f_0$ uniformly on compacts of U, all derivatives of f_j will also converge uniformly to the corresponding derivative of f_0 on compacts of U. Since $u : (0, \infty) \to \mathbb{R}$ is real analytic, it follows that $u(|f_j|^2) \to u(|f_0|^2)$ uniformly on compacts of $U \setminus |D_0|$. Therefore, $\phi_j \to \phi_0$ uniformly on compacts of $U \setminus |D_0|$.

For (ii), suppose we are given a complete Kähler metric on $U \setminus |D_0|$ of the form $\xi = \tilde{f_0}^*(g) + \Phi$ where $\mathsf{Div}(\tilde{f_0}) = D_0$. Let $f_0 = \psi(D_0)$ and observe that $h(z) := \tilde{f_0}(z)/f_0(z) \in \mathcal{O}^*(U)$ since $\mathsf{Div}(f_0) = \mathsf{Div}(\tilde{f_0}) = D_0$. Define

 $\tilde{\psi}: \mathcal{D}_P^+(U) \to \mathcal{O}(U)$

by $\tilde{\psi}(D)(z) := h(z)[\psi(D)(z)]$. Clearly $\tilde{\psi}$ is continuous and $\tilde{\psi}(D_0) = h\psi(D_0) = hf_0 = \tilde{f}_0$. Also,

$$\mathsf{Div}\left(\tilde{\psi}(D)\right) = \mathsf{Div}\big(h\psi(D)\big) = \mathsf{Div}\big(\psi(D)\big) = D$$

for all $D \in \mathcal{D}_P^+(U)$. So we can define $\tilde{f}_j := \tilde{\psi}(D_j)$. Here $\tilde{f}_j \to \tilde{f}_0$ uniformly on compacts of U and $\mathsf{Div}(\tilde{f}_j) = D_j$. So the corresponding complete Kähler metrics $\xi_j := \tilde{f}_j^*(g) + \Phi$ converge uniformly to the metric $\xi = \tilde{f}_0^*(g) + \Phi$ on compacts of $U \setminus |D_0|$.

4. Proof of Theorem 1.3. We are given complete Kähler metrics $\phi_j = f_j^*(g) + \Phi$ and $\phi_0 = f_0^*(g) + \Phi$ on $U \setminus |D_j|$ and $U \setminus |D_0|$ respectively, where $f_j, f_0 \in \mathcal{O}(U)$ are such that $f_j \to f_0$ uniformly on compacts of U.

(i) Let $p \in U \setminus |D_0|$. Since $D_j \to D_0$, choose a neighburhood U_p of p relatively compact in $U \setminus |D_0|$ such that $\overline{U}_p \subset U \setminus |D_j|$ for large enough j. Let X be a non-singular holomorphic vector field near p. For $q \in U_p$, consider a parametrization

 $Z: B(0,\epsilon) \to U_p$ such that Z(0) = q, $Z_T = Z(T)$, and $dZ(T)/dT = X(Z_T)$. Then $Z^*(\phi_j) = h_j(T)|dT|^2$ and $Z^*(\phi_0) = h_0(T)|dT|^2$, where

$$h_j(T) = \sum_{i,k=1}^n \left(1 + |f_j(Z_T)|^2 u^2 (|f_j(Z_T)|^2) \right) \frac{\partial f_j}{\partial z_i} (Z_T) \overline{\frac{\partial f_j}{\partial z_k}} (Z_T) \overline{X_i(Z_T)} \overline{X_k(Z_T)} + \tilde{h}(T)$$

and

$$h_0(T) = \sum_{i,k=1}^n \left(1 + |f_0(Z_T)|^2 u^2 (|f_0(Z_T)|^2) \right) \frac{\partial f_0}{\partial z_i} (Z_T) \overline{\frac{\partial f_0}{\partial z_k} (Z_T)} X_i(Z_T) \overline{X_k(Z_T)} + \tilde{h}(T)$$

with $\tilde{h} = Z^* \Phi$. Further, recall that

$$\mathcal{K}^X_{\phi_j}(q) = -2(h_j(0))^{-3} \left(h_j(0)\partial\bar{\partial}h_j(0) - \partial h_j(0)\bar{\partial}h_j(0) \right).$$

Since $f_j \to f_0$ uniformly on compacts of U, $\partial^i \bar{\partial}^k f_j(Z_T) \to \partial^i \bar{\partial}^k f_0(Z_T)$ for all T in a neighburhood of $0 \in \mathbb{C}$ and for all $i, k \geq 0$. Similarly, $|f_j(Z_T)|^2$, $u(|f_j(Z_T)|^2)$, and their higher derivatives also converge uniformly on a neighburhood of $0 \in \mathbb{C}$. Thus

$$\partial^i \bar{\partial}^k h_i(T) \to \partial^i \bar{\partial}^k h_0(T)$$

for all $0 \leq i, k \leq 1$ and for all T in a neighburhood of $0 \in \mathbb{C}$. Therefore, $\mathcal{K}^X_{\phi_j}(q) \to \mathcal{K}^X_{\phi_0}(q)$ for all $q \in U_p$.

(ii) Let $p \in U \setminus |D_0|$ and $V \in \mathbb{C}^n$. Clearly $p \in U \setminus |D_j|$ for large enough j. Let X be a non-singular vector field near p such that X(p) = V and $K_{\phi_0}(p, V) = \mathcal{K}_{\phi_0}^X(p)$. By (i), $\mathcal{K}_{\phi_j}^X(p) \to \mathcal{K}_{\phi_0}^X(p)$. Therefore, for $\epsilon > 0$, there exists $N \ge 1$ such that

$$\mathcal{K}^X_{\phi_0}(p) \le \mathcal{K}^X_{\phi_j}(p) + \epsilon \le K_{\phi_j}(p, V) + \epsilon$$

for all $j \geq N$ and this gives $K_{\phi_0}(p, V) \leq K_{\phi_j}(p, V) + \epsilon$. Hence, $K_{\phi_0}(p, V) \leq \liminf_{j \to \infty} K_{\phi_j}(p, V) + \epsilon$ for all $\epsilon > 0$ and consequently, $K_{\phi_0}(p, V) \leq \liminf_{j \to +\infty} K_{\phi_j}(p, V)$.

5. The case n = 1. For a non-constant holomorphic function $f : \mathbb{C} \to \mathbb{C}$, consider the complete Kähler metric on $\mathbb{C} \setminus \{f = 0\}$ given by $\phi(z) = f^*(g) + |dz|^2$. We have

$$\phi(z) = h(z)|dz|^2 = \left(|f'(z)|^2 \left(1 + |f(z)|^2 u^2(|f(z)|^2)\right) + 1\right)|dz|^2.$$

Denote the Gaussian curvature of the metric ϕ by K.

Theorem 5.1. Let (f, ϕ, K) be as above and $p \in \mathbb{C}$.

- (i) If $p \in \mathbb{C} \setminus \{f = 0\}$, then $K(p) \leq 0$. In addition, if f'(p) = 0, then K(p) = 0 if and only if f''(p) = 0.
- (ii) If $p \in \{f = 0\}$, then

$$\lim_{z \to p} K(z) = -4.$$

The proof relies on the following observations.

Lemma 5.2. For an integer $k \ge 1$, consider the metric

$$\phi_k(z) = k^2 |z|^{2(k-1)} \left(1 + |z|^{2k} u^2(|z|^{2k}) \right) |dz|^2 = h_k(z) |dz|^2$$

on \mathbb{C}^* . The Gaussian curvature of this metric K_k satisfies $K_k(z) = K_g(z^k)$ for $z \in \mathbb{C}^*$ and

$$\lim_{z \to 0} K_k(z) = -4$$

Also, the function h_k satisfies $\lim_{z\to 0} h_k(z) = +\infty$ and

$$\frac{\partial h_k(z)}{\left(h_k(z)\right)^3}, \frac{\partial h_k(z)}{\left(h_k(z)\right)^3}, \frac{\partial \partial h_k(z)}{\left(h_k(z)\right)^3} \to 0$$

 $as \ z \to 0.$

Proof. Note that the conclusion $K_k(z) = K_g(z^k)$ for $z \in \mathbb{C}^*$ can be made by using the fact that $\phi_k(z) = (z^k)^* g$, and the map $z \to z^k$ is a local biholomorphism on \mathbb{C}^* . But we will prove it in a different way because we need to make some observations from the calculations.

Since $\phi_k(z) = h_k(z)|dz|^2$, the curvature is given by

$$K_k(z) = -2\left(\frac{h_k(z)\bar{\partial}\partial h_k(z) - \partial h_k(z)\bar{\partial}h_k(z)}{\left(h_k(z)\right)^3}\right)$$

for $z \in \mathbb{C}^*$. We will write just u instead of $u(|z|^{2k})$. Observe that

$$\begin{aligned} \partial h_k(z) &= \bar{\partial} h_k(z) \\ &= k^2 \bar{z} \left((k-1) |z|^{2k-4} + (2k-1) |z|^{4k-4} u^2 + 2k |z|^{6k-4} uu' \right), \\ \bar{\partial} \partial h_k(z) &= |z|^{2k-4} \left(k^2 (k-1)^2 + k^2 (2k-1)^2 |z|^{2k} u^2 + 2k^3 (5k-2) |z|^{4k} uu' + 2k^4 |z|^{6k} \left((u')^2 + uu'' \right) \right). \end{aligned}$$

Upon simplification, we get

$$h_k(z)\bar{\partial}\partial h_k(z) - \partial h_k(z)\bar{\partial}h_k(z) = k^6 |z|^{6k-6} M(|z|^{2k})$$

where $M: (0, +\infty) \to \mathbb{R}$ is given by

$$M(t) = u^{2} + 6tuu' + 2t^{2}(u')^{2} + 2t^{2}uu'' + 2t^{2}u^{3}u' - 2t^{3}u^{2}(u')^{2} + 2t^{3}u^{3}u''.$$

Now [3, concluding remarks on p. 8] tells us that

$$K_g(z) = -2 \frac{M(|z|^2)}{\left(1 + |z|^2 u^2(|z|^2)\right)^3}$$

for $z \in \mathbb{C}^*$. Now note that

$$K_k(z) = -2 \frac{k^6 |z|^{6k-6} M(|z|^{2k})}{k^6 |z|^{6k-6} \left(1 + |z|^{2k} u^2(|z|^{2k})\right)^3} = -2 \frac{M(|z^k|^2)}{\left(1 + |z^k|^2 u^2(|z^k|^2)\right)^3} = K_g(z^k).$$

This shows that for $k \in \mathbb{N}$, $z \in \mathbb{C}^*$, $K_k(z) = K_g(z^k)$ and

$$\lim_{z \to 0} K_k(z) = \lim_{z \to 0} K_g(z^k) = -4.$$

To focus on the function $h_k(z)$, observe that

$$\lim_{z \to 0} h_k(z) = \lim_{t \to 0^+} k^2 t^{k-1} \left(1 + t^k u^2(t^k) \right) = \lim_{t \to 0^+} \frac{k^2 t^{2k-1} (t^k - 1)^2}{t^{2k} (\log t^k)^2}$$
$$= \lim_{t \to 0^+} \frac{k^2 (t^k - 1)^2}{t (\log t^k)^2} = +\infty.$$

Now substituting for u, u', u'', simplifying the resulting expression, and using the fact that $\lim_{t\to 0^+} t(\log t) = 0$, we get

$$\frac{|z|^{2k-4}}{(h_k(z))^3}, \frac{|z|^{4k-4}u^2}{(h_k(z))^3}, \frac{|z|^{6k-4}uu'}{(h_k(z))^3}, \frac{|z|^{8k-4}\left((u')^2 + uu''\right)}{(h_k(z))^3} \to 0$$

as $z \to 0$. It is now evident that

$$\lim_{z \to 0} \frac{\partial h_k(z)}{(h_k(z))^3} = \lim_{z \to 0} \frac{\bar{\partial} h_k(z)}{(h_k(z))^3} = \lim_{z \to 0} \frac{\bar{\partial} \partial h_k(z)}{(h_k(z))^3} = 0.$$

 \square

Now we can prove Theorem 5.1.

Proof. For $z \in \mathbb{C} \setminus \{f = 0\}$, the curvature is given by

$$K(z) = -2\left(\frac{h(z)\partial\bar{\partial}h(z) - \partial h(z)\bar{\partial}h(z)}{(h(z))^3}\right).$$

For (i), suppose that $f'(p) \neq 0$. Let \hat{g} be a local inverse of f near p, that is $\hat{g} \circ f(z) = z$ for z in a neighburhood U_p around p. It can be checked that $\hat{g}'(w) = (f'(\hat{g}(w)))^{-1}$ and $\hat{g}''(w) = -f''(\hat{g}(w))(f'(\hat{g}(w)))^{-2}$. In these new coordinates, we have

$$\hat{g}^{*}(\phi)(w) = \left(1 + |\hat{g}'(w)|^{-2} \left(1 + |w|^{2} u^{2}(|w|^{2})\right)\right) |\hat{g}'(w)|^{2} |dw|^{2}$$
$$= \left(|\hat{g}'(w)|^{2} + \left(1 + |w|^{2} u^{2}(|w|^{2})\right)\right) |dw|^{2} = \phi_{1}(w) + \phi_{2}(w)$$

where $\phi_2(w)$ is the Grauert metric on \mathbb{C}^* and $\phi_1(w) = |\hat{g}'(w)|^2 |dw|^2$. By [3], $K_g(w) \leq 0$ for all $w \in \mathbb{C}^*$ and note that K_1 , the curvature of the metric ϕ_1 , satisfies $K_1 \equiv 0$. Now [2] tells us that the curvature of the sum of these two metrics is also non-positive in U_p , that is $K(p) \leq 0$.

To continue, note that if f'(p) = 0, then h(p) = 1. Also

$$\partial h(z) = \left(|f'(z)|^2 \partial \left(1 + |f|^2 u^2\right) + f''(z)\overline{f'(z)} \left(1 + |f|^2 u^2\right) \right),$$

$$\bar{\partial} \partial h = \left(\bar{\partial} \left(|f'|^2 \partial (1 + |f|^2 u^2) \right) + f'' \overline{f'} \bar{\partial} \left(1 + |f|^2 u^2\right) + |f''|^2 \left(1 + |f|^2 u^2\right) \right)$$

which gives us $\partial h(p) = \bar{\partial} h(p) = 0$ and $\bar{\partial} \partial h(p) = |f''(p)|^2 \left(1 + |f(p)|^2 u^2 (|f(p)|^2)\right)$. Therefore we get

$$K(p) = -2 \left| f''(p) \right|^2 \left(1 + \left| f(p) \right|^2 u^2 \left(\left| f(p) \right|^2 \right) \right),$$

and hence K(p) = 0 if and only if f''(p) = 0.

For (ii), let $p \in \mathbb{C}$ be such that f(p) = 0. By a translation, assume that p = 0. Let $k = \operatorname{Ord}_0(f)$. Then there exists a holomorphic map f_1 such that $f_1(0) \neq 0$ and $f(z) = z^k f_1(z)$. Now since $f_1(0) \neq 0$, there exist a holomorphic map f_2 defined near $0 \in \mathbb{C}$ such that $f_2(0) \neq 0$ and $f_1(z) = (f_2(z))^k$. So for z in a neighburhood of $0 \in \mathbb{C}$, we get

$$f(z) = \left(zf_2(z)\right)^k.$$

Define $W(z) = zf_2(z)$ for z near the origin and observe that $W'(0) = f_2(0) \neq z$ 0, that is, W is a biholomorphism on a neighburhood around $0 \in \mathbb{C}$. Therefore there exists a holomorphic function q_1 defined near $0 \in \mathbb{C}$ such that $q_1(0) =$ 0 and $W^{-1}(w) = g_1(w)$. Since $f'(z) = k(W(z))^{k-1}W'(z)$, it follows that $f'(W^{-1}(w)) = kw^{k-1} ((W^{-1})'(w))^{-1}$. Now

$$((W^{-1})^*\phi)(w) = \left(1 + k^2 |w|^{2(k-1)} |g_1'(w)|^{-2} \left(1 + |w|^{2k} u^2(|w|^{2k})\right)\right) |g_1'(w)|^2 |dw|^2$$

= $\left(|g_1'(w)|^2 + k^2 |w|^{2(k-1)} \left(1 + |w|^{2k} u^2(|w|^{2k})\right)\right) |dw|^2.$

Therefore, $((W^{-1})^*\phi)(w) = |g_1'(w)|^2 |dw|^2 + h_k(w)|dw|^2$. Observe that $\left|q_{1}^{\prime}(w)\right|^{2}|dw|^{2}$ has identically vanishing Gaussian curvature. Now using Lemma 5.2 and the fact that $g'_1(w), g''_1(w)$ are bounded in a neighburhood of $w = 0 \in \mathbb{C}$, we get

$$\lim_{z \to 0} K(z) = \lim_{w \to 0} -2\left(\frac{h_k(w)\bar{\partial}\partial h_k(w) - \partial h_k(w)\bar{\partial}h_k(w)}{\left(h_k(w) + |g_1'(w)|^2\right)^3}\right) = \lim_{w \to 0} K_k(w) = -4.$$

This completes the proof.

This completes the proof.

Acknowledgements. The authors would like to thank the referee for carefully reading the article and giving suggestions to improve the previous version of this manuscript.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Grauert, H.: Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik. Math. Ann. 131, 38–75 (1956)
- [2] Grauert, H., Reckziegel, H.: Hermitesche Metriken und normale Familien holomorpher Abbildungen. Math. Z. 89, 108–125 (1965)
- [3] Gehlawat, S., Verma, K.: On Grauert's examples of complete Kähler metrics. Proc. Amer. Math. Soc. 150(7), 2925–2936 (2022)
- [4] Jarnicki, M., Pflug, P.: First Steps in Several Complex Variables: Reinhardt Domains. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2008)
- [5] Lupacciolu, G., Stout, E.L.: Continuous families of nonnegative divisors. Pacific J. Math. 188(2), 303-338 (1999)

Non-negative divisors and the Grauert metric

- [6] Stoll, W.: Normal families of non-negative divisors. Math. Z. 84, 154–218 (1964)
- [7] Wu, H.: A remark on holomorphic sectional curvature. Indiana Univ. Math. J. 22(11), 1103–1108 (1973)

SAHIL GEHLAWAT AND KAUSHAL VERMA Department of Mathematics Indian Institute of Science Bangalore 560 012 India e-mail: sahilg@iisc.ac.in

KAUSHAL VERMA e-mail: kverma@iisc.ac.in

Received: 1 April 2021

Revised: 16 February 2022

Accepted: 29 May 2022.