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Anomalous multifractality in quantum chains with strongly correlated disorder
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We demonstrate numerically that a robust and unusual multifractal regime can emerge in a one-dimensional
quantum chain with maximally correlated disorder, above a threshold disorder strength. This regime is preceded
by a mixed and an extended regime at weaker disorder strengths, with the former hosting both extended and
multifractal eigenstates. The multifractal states we find are markedly different from conventional multifractal
states in their structure, as they reside approximately uniformly over a continuous segment of the chain, and
the lengths of these segments scale nontrivially with system size. This anomalous nature also leaves imprints
on dynamics. An initially localized wave packet shows ballistic transport, in contrast to the slow, generally
subdiffusive, transport commonly associated with multifractality. However, the timescale over which this ballistic
transport persists again scales nontrivially with the system size.

DOI: 10.1103/PhysRevB.106.L020201

Multifractal wave functions in quantum systems, which are
neither extended nor localized, are characterized by anoma-
lous statistics of their amplitudes [1]. While the effective
volume occupied by such states grows unboundedly with sys-
tem size, it is a vanishing fraction of the system volume; as
such, they are often dubbed nonergodic extended states. This
is reflected in the scaling of the moments of the wave-function
amplitudes with system size. For a wave function ψ (x) de-
fined on a discrete graph with L sites,

L∑
x=1

|ψ (x)|2q ∼
⎧⎨
⎩

L−(q−1) extended
L−Dq (q−1) multifractal
L0 localized,

where 0 < Dq < 1 is the so-called multifractal dimension [1].
In the context of short-ranged disordered systems in finite

dimensions, multifractality is often a feature of critical points,
such as Anderson transitions [1–12] and quantum Hall plateau
transitions [13–15], which are clearly fine-tuned points in pa-
rameter space. Multifractality is also realized, often robustly,
in several long-ranged disordered hopping models, and fully
connected random-matrix ensembles [16–29]. The presence
of long-ranged physics, either emergently via diverging corre-
lation lengths in the former, or explicitly via the structure of
the models in the latter, unifies the two contexts. An interest-
ing question thus arises: How can a robust multifractal phase
be realized in a quantum system with inherently short-ranged
interactions or hoppings? One possible avenue in a manifestly
out-of-equilibrium setting is the time-periodic modulation of
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a quasiperiodic system with a mobility edge or a localization
transition [30,31].

In this Research Letter, we demonstrate an alternative path-
way to robust multifractality in an inherently short-ranged
system, importantly in a time-independent Hamiltonian set-
ting. The central ingredient is strong (in fact maximal, as
clarified below) correlations in the disordered on-site poten-
tial of a one-dimensional chain. Interestingly, the origin and
resultant structure of the multifractal states in such a system
are markedly different from those of conventional multifractal
states, which are associated with both rare large peaks and
long polynomial tails of wave-function amplitudes. In con-
trast, the multifractal states we find in this Research Letter
reside over continuous segments of length � in the chain, and
crucially, within the segments, the wave-function intensities
are approximately uniform; |ψ (x)|2 ≈ 1/�, and 0 elsewhere.
Due to this structure, we refer to the states as tabletop states.
The multifractality of the wave functions is then encoded in
the scaling of these tabletop lengths with system size. The
anomalous nature of the multifractal states also has impli-
cations for dynamics. Multifractality of eigenstates is often
accompanied by slow dynamics [30,32–35]. However, in this
case, we find ballistic spreading of an initially localized wave
packet, but over timescales that scale nontrivially with the
system size.

As a concrete model, we consider a disordered tight-
binding Hamiltonian on a chain of length L,

H = W
L∑

x=1

εx|x〉〈x| +
L−1∑
x=1

[|x〉〈x + 1| + |x + 1〉 〈x|], (1)

where W denotes the disorder strength and the on-site
potentials are drawn from a multivariate Gaussian distribu-
tion, �εx ∼ N (0, C), with zero mean. The correlations in the
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FIG. 1. Schematic of the three regimes of the model, Eq. (1),
as a function of disorder strength. For small disorder, all states are
extended, and for large enough disorder all states are multifractal. In
between these two phases is a mixed regime, where the disorder-
averaged spectrum hosts a mixture of extended and multifractal
states.

potential are encoded in the covariance matrix C. We take the
correlations in the potential to decay with distance as

C(r) ≡ [C]x,x+r = 〈εxεx+r〉 = f (r/L), f (0) = 1. (2)

The key point here is that the correlation is a function of
r/L, which implies that in the thermodynamic limit C(r) → 1
for all subextensive r, as limL→∞(r/L) → 0. In other words,
the potentials of two sites a subextensive distance r apart
are completely slaved to each other in the thermodynamic
limit. We refer to this as maximal correlations in the disorder
[36,37]. For specificity we choose f (r/L) = exp[−r/(λL)],
but emphasize that the specific functional form of f is im-
material [38]. In the following we set λ = 1. Note that the
limit of λ → 0 is singular, as there the model becomes the
conventional one-dimensional (1D) Anderson model with all
eigenstates exponentially localized [39,40].

The form of the correlations, Eq. (2), endows the disor-
dered potential with an extensive length scale (λL in this case),
such that the potential fluctuations on subextensive scales are
heavily suppressed and only those at extensive scales survive
for large L. This is already suggestive that the eigenstates
can be extended over length scales which scale nontrivially
with L, resulting in multifractality. In fact, as demonstrated
below, we find three distinct regimes as a function of W .
For sufficiently strong disorder a robust multifractal phase is
found, where the average or typical tabletop lengths scale as
Lα with α < 1; in contrast, for weak disorder we find α = 1
for all eigenstates, indicating an extended phase. For a range
of W between these two regimes a mixed phase is found,
where for a given energy some realizations host extended
states and some host multifractal states. Establishing these
robust multifractal and extended regimes with the intervening
mixed regime in a model with maximally correlated disorder
is the central result of this work and is summarized in Fig. 1.

Before delving into a detailed analysis of the statistics of
eigenstate tabletop lengths and the consequent multifractality,
in Fig. 2 we show explicitly the tabletop nature of eigenstates.
Operationally, we extract the tabletop edges for an eigenstate
by scanning the chain for sites where the |ψx|2 jumps from
zero (within numerical precision) and the tabletop length � is
then simply the distance between two such sites. It is evident
from Fig. 2 that the eigenstates are approximately uniform
over the tabletop segments. Hence it is natural to study the dis-
tribution of the tabletop lengths �, or equivalently of �̃ = �/L,
denoting these distributions by P� and P�̃, respectively. Since
we are interested, in particular, in how � scales with system
size L, we define the exponents αm and αt from the mean and
typical tabletop lengths as

�m ≡ 〈�〉 ∼ Lαm , �t ≡ exp[〈ln �〉] ∼ Lαt , (3)
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FIG. 2. For weak and strong disorder strengths W (top and bot-
tom, respectively), representative eigenstates are shown in blue and
yellow. In the former, tabletops span the entire chain, whereas in
the latter they span a subextensive segment. Black traces denote a
realization of the maximally correlated disorder potential (labels on
right axis) wherein short-distance fluctuations are visibly suppressed.

where 〈�〉 = ∫
d� �P�(�) and similarly for 〈ln �〉. In addition,

we also define the exponent α = ln �/ ln L and study its distri-
bution, which we denote by Pα .

We turn now to numerical results, which unless stated
otherwise refer to band center states (results for other energies
remain qualitatively the same). For weak disorder, we find
that the tabletops span not only an extensive segment of the
chain, but the entirety of it, such that P�(�) = δ(� − L) or,
equivalently, Pα (α) = δ(α − 1) [Figs. 3(a) and 3(d)]. This is
the extended regime indicated in Fig. 1. On increasing W ,
the distribution P�(�) develops finite weight at subextensive �

while retaining the rest of the weight at extensive � [Figs. 3(b)
and 3(e)]. This is the mixed regime referred to in Fig. 1. Note
that it is important to distinguish the multifractal states with
subextensive � from those that occupy an extensive � = aL
with a � 1, and hence confirm the presence of the former.
That this is indeed the case is evidenced in Fig. 3(b), where the
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FIG. 3. (a)–(c) Distributions P�̃(�̃) of �̃ = �/L for representative
disorder strengths in the extended (W = 0.5), mixed (W = 2), and
multifractal (W = 8) regimes, for different system sizes L [indicated
in (f)]. Insets show the corresponding P�(�) distributions. (d)–(f)
Distributions Pα (α) for the corresponding W values. Statistics are
obtained over 20 000 disorder realizations.
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FIG. 4. Left: Exponents αm (circles) and αt (triangles), defined
in Eq. (3), as a function of disorder strength W . Right: Fits of �m and
�t vs L on logarithmic axes, used to extract the exponents. Data are
shown for W = 0.5, 2, 3, and 4.

weight of the distribution P�̃(�̃) at �̃ = 0 grows with increasing
L. Further clear evidence for the mixed regime is also seen
in Fig. 3(e) by the fact that Pα (α) retains weight at both
α = 1 and α < 1 as L → ∞. Finally, at strong disorder, the
system enters a regime where all states in the spectrum are
multifractal. As shown in Fig. 3(c), for finite �̃ the weight
in P�̃(�̃) ultimately decays with increasing L, suggesting that
there exist no states with extensive tabletop lengths. That all
states are indeed multifractal is further confirmed by the distri-
bution Pα (α) (which is well converged with L) having support
strictly on 0 < α < 1 as shown in Fig. 3(f). The vanishing of
the weight of Pα (α) at α = 1 and α = 0 implies the absence
of extended and localized states, respectively. We add that this
three-phase picture is also consistent with results for the scal-
ing of transmittances with L, obtained via a transfer-matrix
calculation [38].

Having established the presence of a multifractal regime,
along with an extended and a mixed regime, based on the
distributions P�̃ and Pα , we next present results for the scaling
of mean and typical tabletop lengths with L. In particular,
Fig. 4 shows results for αm and αt [defined in Eq. (3)] as
a function of W . For weak disorder we find both αm = 1
and αt = 1, consistent with the presence solely of extended
states. On increasing W and entering the mixed regime, αt and
αm decrease from 1, indicating the emergence of multifractal
states in the spectrum. Note that on entering the mixed regime,
αm deviates from 1 less markedly than αt . This is natural, as in
the presence of both extended and multifractal states the mean
�m is dominated by the extended states with � ∼ L, whence αm

is closer to 1 than αt . Finally, on increasing W further into the
regime where the spectrum has solely multifractal states, αm

and αt < αm continue to decrease monotonically.
We close our analysis of the multifractal statistics of

tabletop eigenstates with results of a standard probe of mul-
tifractality, the generalized inverse participation ratios (IPRs),
defined as Iq(ψ ) = ∑L

x=1 |ψ (x)|2q. We will be interested in
the scaling with L of both the mean and typical IPR,

Iq,m = 〈Iq〉 ∼ L−τq,m , Iq,t = exp[〈ln Iq〉] ∼ L−τq,t . (4)

Extended states have τq,m/t = q − 1, while for exponentially
localized states τq,m/t = 0 for q > 0. An intermediate behav-
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FIG. 5. (a) Exponents τq,m (circles) and τq,t (triangles), defined
in Eq. (4), for representative W in the three regimes. Black and
red dashed lines denote extended and localized behavior, respec-
tively. (b) Exponents τ2,m and τ2,t as a function of W . The inset
shows representative plots of 〈I2〉 vs L, used to extract τ2,m, for
W = 0, 1, 2, 3, 4, 5.

ior for τq indicates multifractal states [1]. Figure 5(a) shows
results for τq,m and τq,t , for representative W values in each
of the three regimes. For the weakest disorder, which lies
in the extended regime, we indeed find τq,m/t = q − 1. The
presence of multifractal states upon increasing W is borne
out by 0 < τq,m/t < q − 1 for q > 1. In Fig. 5(b), we focus
on τ2,m/t as a function of W . Note that on increasing W and
entering the mixed regime, τ2,m deviates from the ergodic
value of 1 more markedly than τ2,t , reflecting the fact that the
mean IPR is dominated by the small fraction of multifractal
states which have qualitatively larger IPRs than the extended
ones.

An explanatory comment is in order regarding the lack of
energy resolution between extended and multifractal states
in the mixed regime. The density of states (DoS) for the
model (1) with the correlated disorder (2) can be shown to
fluctuate strongly across disorder realizations [38]. For each
realization we choose to refer energies relative to the center
of the spectrum (tantamount to H → H − Tr[H]). However,
the fluctuations in all higher moments of the DoS also remain
finite in the thermodynamic limit. As a result, whether an
eigenstate at a given energy (relative to the center of the
spectrum) is extended or multifractal depends on the specific
disorder realization (though for any given realization, mul-
tifractal and extended states do not of course coexist at the
same energy). Averaging over disorder realizations therefore
smears out any energy resolution in the mixed regime, thereby
precluding the traditional notion of a mobility edge in the
averaged DoS.

So far, we have focused on “static” properties of the
model. Since multifractality often goes hand in hand with
slow dynamics [30,32–34], it is worth asking what imprint
the anomalous multifractal states leave on the dynamics in the
present case. In order to answer this question, we consider the
spreading of an initially localized wave packet, in particular,
its second moment defined as

X 2(t ) =
〈

L∑
x=1

x2|ψ (x, t )|2 −
[

L∑
x=1

x|ψ (x, t )|2
]2〉

, (5)
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FIG. 6. Dynamics of an initially localized wave packet in the
multifractal regime, for W = 6. Left: Ballistic transport of the wave
packet as X 2(t ) [defined in Eq. (5)] initially grows as t2. Right:
The saturation value, X 2(t → ∞) ∼ L2β , plotted as a function of L,
with β 
 0.85. The inset shows the scale-collapsed form X 2(t ) =
L2βg(t/Lβ ), with g(y) ∼ y2 for y � 1.

with ψ (x, t = 0) = δx,L/2. The simplest expected behavior for
X 2(t ) is

X 2(t ) ∼
{

t2z, t � t∗
L2β, t 
 t∗,

(6)

with crossover scale t∗ ∼ Lβ/z. For example, z, β = 1 would
correspond to ballistic transport until the wave packet spans
the entire system; in contrast, for localized states, z, β = 0, in-
dicating the absence of transport. Conventionally, multifractal
states lead to 0 < z, β < 1 [30,32–34].

Figure 6 shows results for the maximally correlated model
in the pure multifractal phase. Remarkably, the transport is
ballistic with z = 1, but the saturation of X 2(t ) scales as L2β

with exponent β < 1. In fact, the inset in Fig. 6 shows the
scale-collapsed behavior X 2(t ) = L2βg(t/Lβ ) with g(y) ∼ y2

for y � 1, which confirms the ballistic spreading and subex-
tensive saturation of the wave packet. We now show how a
toy model of the anomalous multifractal states qualitatively
rationalizes the above dynamics.

For simplicity, let us assume that in a given realization the
initially localized wave packet lies at the center of a tabletop
segment of length �. Approximating the eigenstates therein as
fully extended over the segment, the wave packet spreads as a
truncated Gaussian

|ψ (x, t )|2 = 
(� − 2|x|)e−x2/t2
/(t

√
πErf(�/2t )), (7)

where we have absorbed the velocity into the units of time.
X 2(t ) for the wave packet (7) behaves in time as

X 2
� (t ) = 1

2 t2[1 − e−�2/4t2
(�/t )/(

√
πErf(�/2t ))]. (8)

Averaging over disorder is equivalent to integrating over the
probability distribution of the initial site residing in a tabletop
of length �, denoted by ��(�, L). Thus

X 2(t ) = 1
2 t2

[
1 − 2√

π

∫
d���(�, L)

�e−�2/4t2

2tErf(�/2t )

]
. (9)

For timescales much smaller than a typical tabletop length,
the second term in Eq. (9) is negligibly small, and the bal-
listic behavior X 2(t ) ∼ t2 is recovered. In the opposite limit
where t is much larger than typical tabletop lengths [such that

�/2t � 1 in (9)], the wave-packet spreading saturates, and
X 2 
 ∫

d���(�, L)�2, which scales nontrivially with L due
to the scaling of ��(�, L). In the Supplemental Material, we
provide numerical evidence for the essential validity of this
heuristic argument [38].

Finally, we provide a simple heuristic argument for the
physics underlying the emergence of the multifractal regime.
Note that with the form of the correlations, C(r) = e−r/L , the
sequence of site energies . . . , εi, εi+1, . . . is readily shown to
be a martingale. Thus, given εi, εi+1 is a Gaussian random
number with mean e−1/Lεi and variance 
 2/L. This leads to
the site energies of nearby sites being very close to each other
with high probability, to which we attribute the approximately
uniform |ψ (x)|2 across the tabletop segment. However, since
the conditional distribution P(εi+1|εi) is a Gaussian, it has un-
bounded support. As a result, with very low probability, there
can be neighboring sites where the site energies are wildly
different. The break in the tabletops may be attributed to such
rare regions. Moreover, as the sequence of site energies is
a martingale, the probability of a tabletop terminating at a
site is independent of the energies of the sites prior to it. It
is then intuitively natural to regard the tabletop breaks as a
Poisson process. This in turn implies P�(�) ∼ e−γ �, where γ

is the density of tabletop breaks, which decays with increasing
L [41]. An exponential P�(�) with a rate that decays with
L is indeed consistent with the numerical results shown in
Fig. 3(c) in the strong-disorder regime. Obviously, however,
obtaining the precise multifractal exponents would require a
theory which takes into account the fluctuations of |ψ (x)|2
within the tabletop length.

In summary, we demonstrated numerically that a one-
dimensional quantum chain (1), with maximally correlated
disorder (2), hosts a robust multifractal regime. These
multifractal eigenstates are strikingly unusual. They reside
approximately uniformly over segments of the chain whose
lengths scale nontrivially with L, whence the multifractal
statistics arise. Such an anomalous structure also leaves
imprints on the dynamics—in the multifractal phase an ini-
tially localized wave packet spreads ballistically, but over
timescales that scale as Lβ with β < 1, beyond which the
expansion saturates.

We note that the behavior found here differs radically
[42] from the same model considered on a tree with con-
nectivity K � 2 [37], which hosts localized states but not a
multifractal phase. The present work is also very different
from earlier studies [43–45] of 1D Anderson localization with
long-ranged, power-law (and hence scale-free) disorder cor-
relations. These models too do not host a robust multifractal
regime. This suggests that the system-size-dependent scale
introduced by the correlations (2), along with the martingale
nature of the site energies, is responsible for the robust mul-
tifractal regime in the 1D model with maximally correlated
disorder.

Finally, it is interesting to note that the effective Fock-
space disorder in a many-body localized system is likewise
maximally correlated [36], and the many-body localized
eigenstates indeed exhibit multifractality on the Fock space
[46–49]. Whether a concrete connection between maximal
disorder correlations and multifractality exists, and if so under
what conditions, remains an open question.
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