
Stability analysis of high power, octave 
spanning, continuous-wave supercontinuum 
sources based on cascaded Raman scattering 
in standard telecom fibers 
S. ARUN,1,2 VISHAL CHOUDHURY,1 V. BALASWAMY,1 and  
V. R. SUPRADEEPA,1,* 
1Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India 
2aruns@iisc.ac.in 
*supradeepa@iisc.ac.in 

Abstract: Long term spectral and temporal stability of a recently proposed high power, 
continuous-wave, supercontinuum source has been characterized. The supercontinuum laser, 
based on telecom fibers as the nonlinear medium and delivering >35W of CW power over an 
octave spanning bandwidth (880 to >1900nm), was operated continuously for extended 
periods of time to investigate its spectral stability. The dependence of stability on various 
parameters such as the wavelength of pumping and output power was studied by pumping the 
supercontinuum at 3 different wavelengths and at 3 different output power levels. The RMS 
value of the difference spectrum (spectral change) was used as the metric for comparison. The 
spectrum was stable with <1 dB variation over a duration of 60 minutes of continuous 
operation. This small variation is attributed to heating of the fiber and can be further reduced 
by properly heat sinking the fiber. When the fiber was cooled down to ambient temperature 
during power cycling tests, the change in spectrum was ~0.4dB. The supercontinuum output 
power fluctuations were characterized using a fast photo detector and was measured to be 
within ± 3% in nanosecond time-scales. The stability measured by these experiments 
demonstrates the efficacy of the source for a variety of applications. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Supercontinuum laser sources with optical fiber as the nonlinear medium have gained 
immense popularity in the last two decades. The demonstration of Photonic Crystal Fiber 
(PCF) based supercontinuum by Ranka et al. [1], showed unprecedented bandwidth, spectral 
flatness and brightness, rendering it useful for a variety of applications like spectroscopy, 
imaging and instrumentation [2–4]. The wave-guiding capability of optical fiber confines 
light at high intensities and propagate over long lengths resulting in enhanced optical 
nonlinearities, which is uncommon in the case of supercontinuum generation processes 
associated with bulk media. And the specialty fibers like PCF can offer very high optical 
nonlinearity that can generate ultra-broadband supercontinuum that spans over VIS-NIR 
range [5]. However majority of the supercontinuum sources demonstrated and available in the 
market so far, are based on pulsed laser sources as the pump, because it is easier to generate 
sufficient nonlinearity with high peak power pump pulses [6,7]. This results in low spectral 
density, which is a limitation for most linear measurements. However, CW supercontinuum 
sources which are pumped using high power pump laser sources like CW fiber lasers, provide 
higher power spectral density (PSD) over the bandwidth which is a consequence of its high 
average power. In addition to this, in CW supercontinuum the availability of output light is 
not limited by pulse repetition rate (always on) in contrast to the case of pulsed 
supercontinuum sources, which can be useful in applications where fast time domain 
measurements are needed. 
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The major hurdle in developing CW supercontinuum sources was the lack of appropriate 
high power pump laser sources whose emission profile matches with the zero dispersion 
wavelength (ZDW) of the medium. But PCF offers the freedom to tailor its dispersion profile 
and bring the ZDW within the Yb laser emission window. This enabled pumping of PCF 
directly with high power CW Yb laser sources and CW supercontinuum ~56W was generated 
[8]. However, the aspects of loss, cost and difficulty in splicing with conventional silica fiber 
became bottlenecks and hindered the prospects for power scaling of CW supercontinua in 
PCF [9]. 

At the same time, CW supercontinuum sources were also demonstrated using more 
conventional silica specialty fibers called as Highly Nonlinear Fibers (HNLF) as the nonlinear 
medium [10]. HNLF’s can have a ZDW close to 1.5 um while also having enhanced optical 
nonlinearity than the regular silica fibers [11]. Lack of appropriate pump laser sources was 
again an issue with the HNLF because the only rare earth doped fiber laser that operates in 
the ZDW wavelength range near 1.5um is Erbium based laser systems. However it is very 
difficult to achieve higher output power from these Erbium based laser systems with high 
brightness (single-moded operation) because of high quantum defects associated with 
conventional pumping at 976nm and the parasitic lasing by Ytterbium ions at higher powers 
in the case of lasers based on ErYb co-doped fibers [12]. Hence HNLF based supercontinuum 
sources are generally pumped using Raman lasers with Yb laser as the pump source [13,14]. 
Recently, output power of over 30W was demonstrated using HNLF based CW 
supercontinuum sources [15]. Generally, the bandwidth of the supercontinuum in HNLF is 
decided by the longer wavelength cutoff that happens near 2um due to Silica losses present in 
the fiber. Four-wave mixing (FWM) that happens between the pump at ZDW and the longer 
wavelength cut-ff decides the shorter wavelength cut-off and thus, the total band width of the 
supercontinuum [16]. Since the ZDW of the HNLF shifts to longer wavelengths due to 
increased (negative) waveguide dispersion, the short wavelength cut-off also tends to move 
towards longer wavelength. This limits the bandwidth in the case of HNLF silica fibers. One 
straightforward way to enhance the bandwidth is to use a different Silica fiber with a smaller 
ZDW. We had earlier demonstrated a simple module based on standard telecom fiber which 
could generate a 34W CW supercontinuum at an efficiency of 44%. The total bandwidth of 
the supercontinuum extends over 1000nm spanning from 880nm to >1900nm with a PSD of 
>1mW/nm from 880 to 1350 nm and >50mW/nm from 1350 to 1900nm with single mode 
output [17]. This was enabled by its ZDW near 1300nm. Since we have used standard silica 
fiber and telecom components for building the supercontinuum laser, they can be easily 
fusion spliced using the standard splicing machines with negligible losses, and integrated in 
an all fiber architecture enabling power scaling. Due to the use of low-cost telecom optical 
fiber as the nonlinear medium, the overall cost of the laser system also is substantially 
reduced. In addition, the demonstrated supercontinuum sources were color-blind to the input 
pump wavelengths originating from the Yb fiber laser and could be pumped using any high 
power Yb doped fiber laser. 

In addition to the output power and bandwidth, the stability and repeatability of spectrum 
in short and long term operation is very important. The temporal output power stability is also 
important. In this paper, we rigorously characterize the spectral and temporal stability of the 
supercontinuum laser as a function of output power, pump wavelength and power cycling, 
over an extended duration of continuous operation. Our results demonstrate the robustness of 
this simple architecture and should potentially strengthen the case for its efficacy in a variety 
of applications. 

2. Architecture and mechanism behind supercontinuum generation 
The mechanism behind CW supercontinuum generation has been understood well with 
simulations and experiments [18]. It starts with the process of modulation instability (MI) 
when we pump the nonlinear medium, in this case telecom fiber, at its ZDW. MI leads to 
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3%, when measured over several seconds of acquisition, using Keysight DSO 9104A 
Infiniium digital storage oscilloscope with an acquisition rate of 2 billion samples per second. 
The output of photodetector at different time scales (along with a zoomed in image) is shown 
in Fig. 7. This indicates that for even relatively fast measurement in the microsecond time-
scales, the supercontinuum source is temporally stable with no extreme or noisy events 
observed. This temporal behavior was found to be similar for all pump wavelengths at the 
three different power levels investigated. 

4. Conclusion 
We have investigated the spectral and temporal stability of the supercontinuum for extended 
period of operation (~60min) and also studied the dependence of pumping wavelength and 
output power on the supercontinuum stability. It was observed that the supercontinuum 
spectrum was very stable (~1 dB or lower RMS value for spectral change) for different 
pumping wavelengths, over the entire duration of operation. This highlights the robustness of 
the telecom fiber based supercontinuum, in terms of using an Yb fiber laser operating at any 
wavelength to pump the supercontinuum without compromising on the stability. The small 
variation in the spectral profile with time was attributed to the heating of fiber. However, the 
spectral profile reverted back to its original shape when the fiber was allowed to cool down to 
the ambient temperature. Therefore by appropriate heat sinking of the optical fiber, spectral 
stability can be improved much better over extended duration of operation. In addition, we 
demonstrated that, even without the heat-sinking, after a warm-up period, the supercontinuum 
spectra becomes very stable over extended durations of operation. The standard deviation for 
fluctuation in output power with time was also measured using a fast photodetector. The 
standard deviation was measured to be ~ ± 3%, when measured over several seconds of 
acquisition, measured with a 150MHz photodetector. With these measurements the SMF 
based CW supercontinuum has demonstrated excellent long term spectral and temporal 
stability and reliability. 
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