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A. Fabrication of devices

The fabrication of devices in this work starts with the preparation of heterostructure devices on

Si/SiO2 substrates. The Si substrates are p-type doped with a resistivity of 0.001− 0.005 Ω-cm

coated with 285nm of dry chlorinated thermal oxide. The heterostructures are prepared using

a using a dry Van der Waals transfer technique. First, thin flakes of NbSe2 and topological in-

sulator BiSbTe1.25Se1.75(BSTS) are exfoliated onto two separate pieces of 5mm×5mm silicon

wafers using commercially available Scotch Tape (3M). A transparent polymer stack consisting of

polypropylene-carbonate(PPC) spin-coated on polydimethylsiloxane(PDMS) films stuck to a glass

substrate is fixed to a micromanipulator stage. Using a custom-built transfer setup, the polymer

stack is used to ‘pick up’ a suitable NbSe2 flake from the SiO2 substrate. This flake is then aligned
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Figure S1: (a) Optical micrograph image of NbSe2/BSTS junction device. Note that the top NbSe2
layer is delaminated for our experiment, only the bottom NbSe2/BSTS junction is probed in the
main text. (b) Blue channel optical micrograph image showing an NbSe2/h-BN bilayer device.
Both devices are depicted prior to electrode deposition. Scale bar = 10µm

with micrometer precision to a suitable flake of BSTS. The glass substrate is lowered until the

NbSe2 and BSTS flakes are in contact. After desirable alignment and contact between the two

flakes is established, the polymer stack is heated at ∼ 80◦ C to melt the PPC layer which causes

the NbSe2 flake to ‘drop down’. The residual PPC is later removed by cleaning the sample in

chloroform and acetone. The entire exfoliation and transfer process is carried out within an Argon

glove box with <0.1 ppm of Oxygen, ensuring that surface contamination effects due to oxida-

tion and moisture are completely suppressed. Devices with other stacking configurations, such

as h-BN/NbSe2 are prepared using a similar protocol by suitably choosing the flakes of interest.

The devices are then immediately coated with a bilayer poly-methyl-methacrylate (PMMA) resist

consisting of PMMA-495 A4 (spun at 3000rpm for 30s) and PMMA-950 A2 (spun at 3000rpm for

30s). S1 depicts two of the devices reported in this work prior to contact deposition. This is fol-

lowed by e-beam lithography to define contact lines. Prior to deposition of metal lines, the samples

are milled in an Ar ion beam for 2 minutes to remove the native oxide that forms on the BSTS and

NbSe2 layers. Contact metal deposition of Cr/Au is then performed using e-beam evaporation.
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B. Characterization of NbSe2

NbSe2 single crystals as large as 2-5mm are grown by chemical vapour transport with iodine as the

transport reagent. NbSe2 flakes are obtained by scotch-tape exfoliation within an argon filled glove

box(<0.1 ppm of O2) and capped with insulating hexagonal Boron Nitride flake as shown in S2(a)

and (b). Samples are subsequently fabricated into devices by e-beam lithography and deposition of

Cr/Au(10nm/70nm) contact lines. S2(c) shows the resistance versus temperature measurement of

a typical NbSe2 device showing a sharp superconducting transition at Tc = 7.1K and a resistance

bump at Tcdw ' 33K due to charge density wave ordering. The sharpness of the superconducting

transition shown in S2(d) (δT ' 0.3K) and the presence of a clear charge-density wave transition

attest to high quality of our NbSe2 samples. Mangetoresistance measurements, shown in S2(e)

show an upper critical field Hc2 ' 4T which coincides with values reported in literature.

The residual resistivity ratio obtained as R(300)/R(7K) ' 16 shows that our samples are in the

low disorder regime. This is characteristic of the single crystalline nature of NbSe2 compared with

bulk superconductors like Nb, W and Al that have been previously used to study proximity effects

on topological insulators. Additionally, the layered nature of this material lends it an intrinsically

two-dimensional Fermi surface. This is also unlike bulk superconductors where the Fermi surface

is always three-dimensional. The two-dimensionality of the Fermi surface of NbSe2 matches well

with the intrinsically two-dimensional topological surface states, and provides an avenue towards

large wave-function overlap and strong proximity effects.

C. Blonder-Tinkham-Klapwijk fitting

The current Ins through a normal metal/superconductor(N/S) interface carries two components.

The first component refers to the process of normal reflection of electrons at the normal metal/superconductor

interface due to a lack of electronic states within the superconducting gap. The second component,

known as Andreev reflection describes the possibility that an electron impinging on the N/S in-

terface can get converted to a Cooper pair and gets retro-reflected back as a hole. This process is

not really a reflection, in that it can be though of as two coherent electrons on the normal metal
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Figure S2: (a) Scanning electron microscope image of device fabricated on NbSe2 flake capped
with hexagonal Boron Nitride. Scale bar = 2 µm (b) Optical micrograph image of the same device.
Scale bar = 20 µm (c) Resistance vs temperature of NbSe2 flake showing the charge density wave
and superconducting transitions (d) Width of the superconducting transition showing δT ' 0.3K
(e) Magnetoresitance at T = 2K showing upper critical field Hc2 ' 4T .

side combining to produce a Cooper pair on the superconducting side, and leads to enhanced

conductance. Depending upon the potential barrier that exists between the normal metal and the

superconductor, the current through the interface can either be blocked due to normal reflection or

enhanced due to Andreev reflection. This leads to the Blonder-Tinkham-Klapwijk(BTK)1 formula

where:

Ins(V ) =C
∫

∞

−∞

[ f (E)− f (E− eV )] [1+A(E)−B(E)]dE (1)

where V is the applied bias across the interface, E represents quasiparticle energy, f (E) is the

Fermi function, A(E) is the probability for Andreev reflection and B(E) is the probability for

normal reflection. The constant C depends on various factors including the contact area and density

of states of the normal metal which is assumed energy independent. The factors A(E) and B(E) are

expressed in terms of coherence factors u0 and v0, where inelastic effects due to finite temperature
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are incorporated by adding an imaginary decoherence term to the energy :

u2
0 =

1
2

[
1+

√
E + iγ)2−∆2

E + iΓ

]

v2
0 =

1
2

[
1−

√
E + iγ)2−∆2

E + iΓ

]

γ = u2
0 +(u2

0− v2
0)Z

2

a = u0v0/γ

b =−(u2
0− v2

0)(Z
2 + iZ)/γ

A = |a|2

B = |b|2

(2)

The results of fitting our experimental differential conductance data normalized with the data

at T = 10K is shown in S3. Best fits are obtained with a lead resistance of Rl ' 4000Ω. The

extracted superconducting gap ∆ ' 1.2meV which matches exactly with the superconducting gap

of NbSe2, ∆NbSe2 ' 1.1−1.2meV. With increasing temperature, the superconducting gap decreases

while the thermal smearing parameter Γ increases as shown in S3(k) and S3(l) respectively.

At this point, we note that the interface transparency factor Z = 3 derived from our fitting im-

plies that our BSTS/NbSe2 interface is not highly transparent.This implies that our superconductor-

TI junctions are not quite transparent.Yet, previous experiments, where other materials such as Nb

have been used as the superconducting lead,2,3 fail to produce any of the interesting features that

we have observed in our experiments. It is possible that the perfect two-dimensional interface be-

tween the two materials at the van der Waals junction, resulting in strongly coherent exchange of

Cooper pairs between the superconductor and the topological surface state, leads to a strong su-

perconducting proximity effect in our experiments. The role of clean epitaxial interfaces to obtain

strong proximity effects has been recently demonstrated in epitaxial Al-InAs nanowire junctions.4

Niobium, because of its inherent three-dimensional and granular nature, and its strong procliv-

ity towards bulk oxidation, is perhaps unable to form such clean two-dimensional interfaces with
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topological insulators.

There is an additional interesting point, that one must consider when trying to generate topo-

logical superconductivity by proximity effect. To induce strongest topological superconductivity, it

has been shown that there must be a balance between the strength of the superconducting proximity

effect and segregation of the semiconductor and the superconductor so that the inherent properties

of the semiconductor (such as strong spin-orbit coupling) are also retained. This criteria is sat-

isfied when the electron spends equal times in the semiconductor and the superconductor, and is

achieved by choosing an optimal value of barrier thickness separating the superconductor from the

semiconductor. In recent experiments on topological superconductivity induced on Al/InAs 2D

quantum wells,5 the Aluminum layer was separated from the 2DEG layer of InAs by an insulating

barrier of InGaAs. In these experiments, it was found that there is an optimal value of the thickness

of the insulating barrier that leads to maximum topological superconductivity. This criteria should

be applicable also to topological-insulator/superconductor junctions. Perhaps our devices are in

such a regime where these criteria are satisfied. Additional experiments, varying the transparency

between BSTS and NbSe2 will be required to confirm these effects, and is beyond the scope of the

present work.

D. Applicability of Blonder-Tinkham-Klapwijk fitting

Although we have used the BTK formalism to obtain reasonable fits to our experimental conduc-

tance data, we note that such a procedure cannot be fully justified. The fundamental objection to

such a fitting procedure is that the BTK formalism assumes that the N side of the N/S junction is

a three-dimensional metal. In our experiments, the metal is replaced with a topological insulator.

While bulk conducting TIs can indeed be approximated as good metals, the highly bulk insulating

nature of our samples precludes such a description. In fact, the topological surface states are not

only truly two-dimensional, but also they are semi-metallic featuring a linear dispersion around the

Dirac point.

More importantly, Andreev reflection at the TI/SC interface presents a fundamental problem.
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Figure S3: (a)-(j) BTK fitting of differential conductance data obtained at different temperatures
from 2K-6K. (k) ∆ and (l) Γ as a function of temperature

For an Andreev process to convert an electron into a singlet Cooper pair, it requires another elec-

tron moving with same momentum but with opposite spin. The spin-polarized surface state of a

TI obviously forbids such a possibility. The only way such a process can therefore occur is if the
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proximitized part of the TI/SC interface allows spin-triplet pairing, or if one considers that the elec-

tron with opposite spin-polarization is obtained from the bottom surface state where the chirality

of spin-momentum locking is reversed. Several theoretical works have tried to study these issues,

but the problem remains far from solved.

Finally, we note that although we obtain reasonably good fitting to the experimental data for

low bias values( S3(a)-(j)), at higher biases, the fit cannot capture the experimental data at all. In

fact, the intrinsic conductance asymmetry prevents a simultaneous fit to the both the coherence

peaks. The conductance ripples at large biases are obviously not captured.

E. Theoretical modeling

To model the proximity effect between a conventional s-wave superconductor and a topological

insulator, we evaluate the Bogoliubov-de Gennes Hamiltnonian and diagonalize it numerically to

obtain the quasiparticle spectrum. We chose the four orbital (|pBi,↑>, |pBi,↓>, |pSe,↑>, |pSe,↓>)

basis for representing the low-energy states of Bi2Se3. The corresponding particle Hamiltonian

h0(k) is taken from Zhang et al.6 The superconducting pair potential ∆(k) mixes the particle and

hole states (represented by −h∗0(−k)), giving the BdG Hamiltonian as follows:

HSC(k) =

h0(k) ∆(k)

∆†(k) −h∗0(−k)

 (3)

where the normal state Hamiltonian h0 for the topological insulator is given as:

h0(k) =



ε(k)+M(k) 0 A1(k) A−2 (k)

0 ε(k)+M(k) A+
2 (k) −A1(k)

−A1(k) A−2 (k) ε(k)−M(k) 0

A+
2 (k) −A1(k) 0 ε(k)−M(k)


(4)

with
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ε(k) = D1(2−2cos(kzc))+
4
3

D2

(
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(√
3

2
kxa

)
cos
(

1
2

kya
)

cos(kya)

)
−µ

A1(k) = A1 sin(kzc)

A±2 (k) =
2
3
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[
√
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(√
3

2
kxa

)
cos
(

1
2

kya
)
± i

(
cos

(√
3

2
kxa

)
sin
(

1
2

kya
)
+ sin(kya)

)]

M(k) = M0−B1 (2−2cos(kzc))−
4
3

B2

(
3−2cos

(√
3

2
kxa

)
cos
(

1
2

kya
)
− cos(kya)

)
(5)

In the four-orbital basis, the superconducting pair-potential is a 4×4 matrix that can allow

mixing between particle and hole states corresponding to any of the 16 pairs of basis states. This

includes inter-orbital pairing between Bi and Se orbitals, or triplet pairings between channels with

same spin. Fermi-Dirac statistics puts constraints on the allowed pair potential symmetries by

requiring ∆lm
σσ ′ = −∆ml

σ ′σ to maintain wave-function antisymmetry.7–10 This lead to four distinct

pairing symmetries as shown in Table. S1. The actual pairing symmetry realized in the material

will depend upon system dependent microscopic interactions.

Table S1: Superconducting pair potentials with different symmetries

Gap type Pair potential values Parity
∆1 ∆11

↑↓ =−∆11
↓↑ = ∆22

↑↓ =−∆22
↓↑ Even

∆2 ∆12
↑↓ =−∆12

↓↑ = ∆21
↑↓ =−∆21

↓↑ Odd
∆3 ∆12

↑↓ = ∆12
↓↑ =−∆21

↑↓ =−∆21
↓↑ Odd

∆4 ∆12
↑↑ = ∆12

↓↓ =−∆21
↑↑ =−∆21

↓↓ Odd

In S4, we present tight-binding results for the quasiparticle spectrum of a thin TI slab with

the four different superconducting pair potentials described before. S4(a) shows the starting band-

structure of the TI slab showing the gapless topological surface states along with five closely spaced

bulk bands. S4(b) shows the quasiparticle excitation spectrum with chemical potential µ = 1,

but no superconductivity. Now we turn on superconductivity in our system and observe that the

different pairing potentials produce different gap profiles. As shown in S4(c) and S4(e), the pair
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Figure S4: (a) Band-structure for a thin TI slab with 5 layers (b) Particle-hole excitation spectrum
with ∆ = 0. Excitation spectra for proximitised TI slab with superconducting pair potentials given
by (c) ∆1 (d) ∆2 (e) ∆3 and (f) ∆4. Green solid box indicates finite energy level anti-crossings
between the topological surface state band and bulk derived bands. Parameters used for simulation:
A1 = 1,A2 = 1.5,B1 =−0.5,B2 =−0.75,D1 = D2 = 0,M =−0.8,µ = 1,∆ = 0.1

potentials ∆1 and ∆3 open up a topological surface state gap with no mid-gap states. Also, no finite

energy gaps due to avoided level crossings are observed.

On the other hand, S4(d) and S4(f) depict the formation of states within the superconducting

gap at E = 0. These states are the surface Andreev bound states that exhibit a linear spectrum as

expected for two-dimensional Majorana fermions. Symmetry constraints require the in-gap Majo-

rana modes to continuously connect with the topological surface states at finite energy leading to a

twisted quasiparticle dispersion known as thebutterfly spectrum. While this feature has described

in theoretical works before,8,10 what has apparently eluded notice is the simultaneous presence of

avoided level crossing as finite energies. These are marked as the ‘green’ solid boxes in S4(d)

and S4(f). The avoided crossings appear only when the spectrum shows Majorana zero modes, and

thereby provides a robust signature to ascertain the presence of topological superconductivity. In

experiments where zero bias signatures of topological superconductivity are difficult to separate
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from more trivial effects, the observation of finite energy gaps in density of states measurements

can provide robust signatures of unconventional superconducting orders.

To aid comparison with experiment, we must evaluate the local density of states(LDOS) at the

TI-SC interface which directly determines the differential conductance spectra. To evaluate the

surface LDOS, we calculate the Green’s function for the top surface of the superconducting TI

slab.11,12 This is performed by first considering an infinite crystal slab in the z direction, and then

assuming a finite potential barrier for z≥ z0. The lattice point z1, just next to z0 > z1 represents the

surface of the slab. The surface Green’s function is then obtained from the bulk Green’s function

as follows:

Gb(z,k||,ω) =
1
Nz

∑
kz

Gb(k||,kz,ω)eikzz (6)

where the bulk Green’s function is given as:

Gb(k||,kz,ω) = (ω + iη−H(k))−1 (7)

The surface Green’s function can now be obtained as:

Gs(k||,ω) = Gb(0;k||,ω)−Gb(a;k||,ω)
{

Gb(0;k||,ω)
}−1 Gb(−a;k||,ω) (8)

The full spectral function and local density of states are therefore given as:

A(k||,ω) =− 1
π

∑
σ=1−8

Im
{

Gs(k||,ω)
}

σσ

ρ(ω) =
1

N2
x
∑
k||

A(k||,ω)
(9)

In S5 we depict the full spectral function and the density of states evaluated for pair potentials

∆1 and ∆2 respectively. The spectral function for ∆1 potential( S5(a)Left panel) shows a full gap at

zero energy, while the topological surface state crosses the bulk derived bands without any mixing.

The corresponding density of states( S5(a) Right panel) shows a full superconducting gap at zero
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Figure S5: Spectral function(Left panel) and surface density of states(right panel) for a TI slab
with superconducting pair potentials (a) ∆1 and (b) ∆2

energy and no features are visible above the coherence peaks at E '±∆ =± 0.1eV. On the other

hand, ∆2 potential leads to an ungapped topological state at zero energy and prominent level anti-

crossing at finite energy as shown in S5(b) Left panel. The corresponding density of states fully

captures this effect as shown in the right panel of S5(b). Apart from a superconducting gap-

like feature at zero energy, there are several mini-gaps at biases that are significantly larger than

the superconducting pair potential(E '±∆ =±0.1eV). These gaps correspond exactly to the gaps

opened up by level anti-crossing between the topological surface states and the bulk derived bands.

Similarly, as shown in S6, potential ∆3 produces a fully gapped state with no Majorana modes and

the finite energy gaps are also absent. On the other hand, ∆4 produces a Majorana mode at zero

energy and also the associated finite energy gaps in the local density of states.

12



-1 -0.5 0 0.5 1

E(eV)

0

0.5

1

1.5

2

2.5

3

3.5

(1
/e
V
)

-1 -0.5 0 0.5 1

E(eV)

0.5

1

1.5

2

2.5

3

(1
/e
V
)

a

b

Δ3

Δ4

Figure S6: Spectral function(Left panel) and surface density of states(right panel) for a TI slab
with superconducting pair potentials (a) ∆3 and (b) ∆4

F. Variation of ripple structure with superconducting gap amplitude

The positions of the dips and peaks of the ripples depend not only on the sub-band structure of

BSTS and the local gap that opens up at the avoided crossing, but also the primary superconduct-

ing gap that opens up at zero energy. Intuitively, the opening of the primary superconducting gap

at zero energy pushes out the bulk sub-band energy levels away from the gap. As the value of the

superconducting gap amplitude is diminished, for example, with increasing temperature, the sub-

band energy levels are drawn closer to zero energy. This shifts the entire peak-dip structure closer

towards zero energy with increasing temperature. This is simultaneously accompanied by the de-

crease of the local gap amplitude at the avoided crossings brings the two peaks associated with the

dip closer together. However, since the gap amplitude at the avoided crossing is much smaller than
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the primary superconducting gap amplitude, the overall effect is the shift of the super-gap peak-dip

structures towards zero energy with increasing temperature, as observed in our experiment.

To illustrate this point, we provide simulations with model parameters as before chosen for

theoretical convenience and clarity of understanding. We use the following model parameters:

A1 = 1,A2 = 1.5,B1 = −0.5,B2 = −0.75,D1 = D2 = 0,M = −0.8,µ = 14, TI slab of thickness

N = 5 layers, pairing potential of type ∆4 and vary the superconducting gap amplitude ∆ from

0.05eV to 0.2eV and study the variation of the positions of the peak-dip structure of the super-gap

ripples. The results are depicted in S7(a).

Our simulations reveal that the super-gap ripples not only decrease in depth with decreasing gap

amplitude, but also shift progressively towards zero energy because of the collapse of the primary

superconducting gap. Specifically, the peaks P1 and P2, and the associated dip, D1, (dotted box in

S7(a)) all move towards zero energy. The shift in the positions of the P1, P2 and D1 is depicted

in S7(b). As a function of the superconducting gap amplitude ∆, the positions of the peaks and

dips decrease almost linearly as shown in S7(c). This behavior is in complete agreement with our

experimental observation that the positions of the ripples observed in our experiment progressively

move towards zero energy as the primary superconducting gap collapses.

G. Estimation of energy scale of super-gap ripples in a realistic BSTS/NbSe2 junc-

tion

It is evident from the discussion in the previous section that the appearance of ripples at energy

values larger than the superconducting energy gap do not admit a simple analytical formula that

can be used to derive their exact positions. In fact, the positions of the conductance ripples are

determined by the overlap of the topological surface state bands with the 2D bulk-like bands.

Therefore, to aid meaningful comparison of our theory with experiments ,we now provide an en-

ergy scale estimation of the positions of the super-gap dI-dV ripples observed in our experiment.

The flakes of BSTS studied in this work are Nz ∼50 quintuple layers thick. While considering the

band-structure of a BSTS/NbSe2junction, we must take into account the work-function mismatch
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Figure S7: (a) Surface density of states for a TI slab (N=5 layers) with superconducing gap ampli-
tude ∆ varied from 200meV to 50meV (b) Shift of super-gap peaks P1 and P2 and associated dip
D1 towards zero energy with decrease in superconducting gap amplitude (c) Positions of P1, P2
and D1 as a function of decreasing ∆

between the two materials, that decides the position of the chemical potential within the BSTS

laer. The work-function of NbSe2 is φSC =5.6-5.9 eV13,14 whereas the work-function of BSTS is

estimated to be φT I =5.0-5.1 eV.15 This leads to p-type doping of the BSTS layer with a large bias

' φSC− φT I = 0.5− 0.9eV. This potential difference is accommodated by pushing the chemical

potential in BSTS close to the valence band maximum where the Fermi level gets pinned, and the

15



excess electrostatic potential is balanced by bulk-like carriers. We must therefore consider the sub-

band structure near the valence band of BSTS, and estimate the separation between the sub-band

energy levels for a 50 quintuple layer thick BSTS sample. This energy scale would then roughly

correspond to the energy scale of the ripples in our experiment.

An accurate simulation of the BSTS band-structure is not possible, even through density func-

tional theory because of the alloyed nature of the material. However, from band-structure cal-

culations on the parent topological insulator Bi2Se3, it is known that the valence band is com-

posed of J=1/2 Se atomic p-type orbitals, with each Bi2Se3 unit cell (corresponding to 1 QL)

contributing one state (the two equivalent Se, +1/2 and Se, -1/2 orbitals contribute 2 states that

are degenerate, effective leading to 1 energy state per QL). The bandwidth of the Se(1/2) valence

bands is known to be ∆V B ' 200 meV with a strong concentration of sub-bands near the valence

band maxima (VBM) from both theoretical calculations16 and our own ARPES experiments on

single crystals of BiSbTe1.25Se1.75 reported in Ref.17 . Ignoring the concentration of sub-bands

near the VBM, we obtain a lower limit on the energy spacing between neighboring sub-bands as

∆SB'∆V B/Nz' 4meV where Nz = 50 is the number of quintuple layers of the TI slab. This estima-

tion of the energy scale is in solid agreement with the experimentally measured energy separation

of ripples of the order 2-5meV.

H. Bogoliubov-de Gennes spectrum of a realistic BSTS/NbSe2 junction

To provide a quantitative estimation of the sub-band spectrum, we first tune our BHZ model pa-

rameters6 for the normal state Hamiltonian h0 to match our experimentally measured ARPES

spectrum of BSTS,17 especially near the valence band where our chemical potential lies as de-

picted in S8(a). We fit the parameters to match the experimentally measured bulk-valence band

width ('200meV), the position of the valence band maximum (kx ' 0.15), the energy separation

between the Dirac point and the Valence Band maxima ('50 meV), and the velocity at the Dirac

point (0.25 eV-). We obtain the following parameters for our model: A1 = 35meV; A2 = 50meV,

B1 =−100meV; B2 =−50 meV; and M0 =−50 meV. The theoretically calculated band-structure
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Figure S8: (a) ARPES image taken at photon energy 35eV near the chemical potential indicated
by zero energy (b) Energy dispersion curve corresponding to the ARPES data presented in (a).
(c) Tight-binding simulation of the BHZ model to simulate the experimentally observed band-
structure near the valence band. Figures (a) and (b) are obtained from Lohani et al.17 published
under the Creative Commons Attribution 4.0 International License found here

is depicted in S8(c). Note that in the calculations we set the Dirac point to zero energy whereas

for the experimentally measured spectrum, the chemical potential is defined to be zero energy.

Using these band-structure parameters we perform Green’s function based calculation of the

Bogolubov-de Gennes spectrum of a realistic BSTS/NbSe2 junction. The value of the chemical

potential is set to the position of the valence band maxima µ = 40 meV below the Dirac point, and

the superconducting gap is set as a ∆2-type pairing potential with ∆ = 2.0meV. The results for the

obtained surface spectral function and surface density of states for a TI slab with Nz = 50 quintuple

layers is presented in Fig. 5 of the main text. Here we provide additional simulations performed

on TI slabs with thicknesses Nz = 20 and Nz = 35 quintuple layers as depicted in S9(a) and S9(b)

respectively.

In all our simulations, we observe clear signatures of density of states oscillations that appear

because of avoided crossings between the topological surface state and the 2D bulk sub-bands. For

Nz = 20, the energy spacing between ripples is '4-5meV wheras for Nz = 35 the energy spacing

is ' 2-3meV. This is in complete agreement with the arguments presented in Sec.H where we had

estimated that the energy spacings of the dI-dV ripples scale as ∝
1
Nz

.
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I. Raw differential conductance data

In the main text, we have provided the differential conductance data as a function of the DC bias

voltage where the voltage drop across the un-proximitized part of the topological insulator lead is

taken into account by estimating the lead resistance Rl . Error in the estimation of Rl can lead to

a shift of the voltage bias positions of various features obtained in the dI-dV data and also lead

to a change in their amplitude. To account for this ambiguity, we provide the raw differential

conductance data as a function of the DC bias corrected and the uncorrected DC bias voltage.

In S10, S11 and S12 we provide the raw differential conductance data measured as a function

of the DC bias current.

In S13 and S14 we provide the raw differential conductance data as a function of the DC bias

voltage obtained by integrating the DC current biased differential conductance data.
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Figure S9: (Left-panel) Surface spectral function evaluated for a realistic interface between NbSe2
and BSTS and (Right-panel) corresponding density of states showing oscillations arising as a con-
sequence of topological superconductivity for (a) 20 QL and (b) 35 QL thick slab of BSTS. The 2D
Majorana type surface Andreev bound state are clearly visible at zero energy. The white boxes in
the left panels depict the avoided crossings between the topological surface state and bulk derived
2D sub-bands
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Figure S10: (a) 2D color plot of differential conductance as a function of temperature and source-
drain DC current bias ISD (b) Normalized differential conductance G(2K)/G(10K) showing a two-
gap structure. The black and red dots track the evolution of coherence-like peak A1(A2) and
B1(B2) respectively (c) Differential conductance ripples ∆1 and ∆2 that exist at biases larger than
the superconducting gap. Black dots trace their evolution with increasing temperature. (d) Evolu-
tion of the width and intensity of peak A1 with increasing temperature (e) Evolution of position of
the conductance dip at ∆1 with increasing temperature.
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Figure S11: (a) 2D color plot of normalized differential conductance G(2K)/G(10K) vs ISD as a
function of in-plane magnetic field. (b) Evolution of G(2K)/G(10K) showing the breakdown of
asymmetry with increasing in-plane magnetic field. The super-gap ripples at ∆1 and ∆2 marked as
blue dots also disappear. (c) Zero bias conductance Gzb as a function of in-plane magnetic field.
(d) Evolution of bias position of dip at ∆1 with B||. (e) Evolution of normalized coherence peak
intensity at A1 and A2 with B||.
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Figure S12: (a) 2D color plot of differential conductance as a function of out-of-plane magnetic
field from 0T to 8T and DC current bias ISD (b) Low field(0T-2T) evolution of differential conduc-
tance spectrum showing several ripples at super-gap biases marked by vertical solid lines
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Figure S13: (a) Raw differential conductance data as a function of uncorrected source-drain bias
voltage VSD, showing ripples ∆1 and ∆2 that exist at biases larger than the superconducting gap.
Black dots trace their evolution with increasing temperature.(b) Normalized differential conduc-
tance G(2K)/G(10K) showing a two-gap structure. The black and red dots track the evolution of
coherence-like peak A1(A2) and B1(B2) respectively
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Figure S14: (a) Evolution of normalized differential conductance G(2K)/G(10K) as a function
of uncorrected source-drain voltage bias VSD showing the breakdown of differential conductance
asymmetry with increasing in-plane magnetic field. (b) Evolution of differential conductance spec-
trum as a function of perpendicular magnetic field showing several ripples at super-gap biases
marked by vertical solid lines
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