Supporting Information

Impact of Average, Local and Electronic Structure on Visible Light

Photocatalysis in Novel BiREWO₆ (RE = Eu & Tb) Nanomaterials

Pradeep P. Shanbogh ^{a,b}, Rajamani Raghunathan ^{c,d}, Diptikanta Swain ^d, Mikhail Feygenson ^{e,f} Joerg Neuefeind ^f, Jasper Plaisier ^g, Chandrabhas Narayana ^h, Ashok Rao ^{b,i}, and Nalini G. Sundaram^{* a}

^a Functional Energy Nanomaterials Group, Materials Sciences Division, Poornaprajna Institute of Scientific Research, Bengaluru 572064, India.

^b Manipal Academy of Higher Education, Manipal, Karnataka

^c UGC-DAE Consortium for Scientific Research, DAVV Campus, Khandwa Road, Indore - 452001

^d Solid State and Structural Chemistry Unit, Indian Institute of Science, Benagluru-560012

^e Forschungszentrum Jülich, JCNS, D-52425 Jülich, Germany

^f Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

^g MCX Beamline, Elettra - Sincrotrone Trieste S.C.p.A., ss 14 km 163,5, 34149 Basovizza, Trieste, Italy.

^h Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru-560064

ⁱ Department of Physics, Manipal Institute of Technology, Manipal-576104, Karnataka

E-mail: nalini@poornaprajna.org

Figures

Figure S1. P-XRD patterns of hydrothermal synthesized Bi_2WO_6 which is matching with the LT- Bi_2WO_6 (orthorhombic) Phase.

Figure S2. P-XRD patterns of hydrothermal synthesized BiEuWO₆ and Calcined BiEuWO₆ for 20 hours

Figure S3. Energy Dispersive Absorption X-ray Spectrum of (a) $BiEuWO_6$ (b) $BiTbWO_6$ nanomaterials synthesized by hydrothermal method. Approximate composition of the materials is calculated as $Bi_1Eu_1WO_6$ and $Bi_{1.1}Tb_{0.9}WO_6$.

Figure S4: Observed (green), Calculated (red) and difference plot (indigo) obtained by Neutron data Rietveld refinement of (a). BiEuWO₆ Ordered model (b) BiEuWO₆ disordered model (c). BiTbWO₆ Ordered model (d). BiTbWO₆ Disordered model.

Figure S5: Observed (black), Calculated (red) and difference plot (green) obtained for PDF data of BiEuWO₆ (a). Short range (1.5 to 5Å) fit with Ordered model [$R_{wp} = 9.9\%$]. (b). Short range (1.5 to 5Å) fit with Disordered model [$R_{wp} = 11.8\%$]. (c) Medium range (1.5 to 11Å) fit with Ordered model [$R_{wp} = 21.7\%$]. (d). long range (1.5 to 11Å) fit with Ordered model [$R_{wp} = 32.47\%$].

Figure S6: Crystal structure of BiTbWO₆ nanomaterial representing connectivity between Bi_2O_2 layer and edge shared WO6 octahedra.

Room Temperature Steady State Photoluminescence (PL) Spectroscopy:

Room Temperature steady state photoluminescence (PL) spectra of photocatalyst nanomaterials were recorded using Agilent Cary Eclipse fluorescence spectrophotometer. With a photomultiplier tube voltage of 600 V and a 150 W Xe lamp was used as the excitation source. Excitation and emission slit width was set as 5 nm. Corresponding room temperature excitation and emission spectra of LT- $Bi_2WO_6^{-1}$, BiEuWO₆² and BiTbWO₆³ are recorded according to literature (Figure S7), from which it is observed that Bi_2WO_6 has the fluorescence emission at 525 nm when excited at 378 nm, while BiTbWO₆ has an emission at 545nm when excited at 386 nm. Similarly BiEuWO₆ has an emission at 613 nm for 486 nm excitation.

Figure S7: Room temperature steady state fluorescence excitation and corresponding emission spectra of (a) Bi_2WO_6 , (b) $BiTbWO_6$ and (c) $BiEuWO_6$ nanomaterials.

Figure S8: Time Resolved Fluorescence Spectra of (a) Bi_2WO_6 excited at 405 nm, (b) $BiTbWO_6$ excited at 405 nm and (c) $BiEuWO_6$ excited at 469 nm

BET surface area analysis:

Nitrogen sorption measurements of the catalysts were performed at 77 K using a BELSORP mini II instrument. The specific surface areas of the samples were calculated by using the Brunauer–Emmett–Teller (BET) method in the relative pressure (P/P_0) range of 0.05 to 0.25.

Figure S9: BET surface area analysis of Bi₂WO₆, BIEuWO₆ and BiTbWO₆ nanomaterials.

Figure S10: DFT-PDOS of Bi₂WO₆-monoclinic Phase.

S-10

Figure S11: (Top) Electronic band structure of BiEuWO6 and BiTbWO6 compounds along various symmetry directions, for $U_W=9.5 \text{ eV}$, $U_{Eu/Tb}=7.5 \text{ eV}$ and $U_O=5 \text{ eV}$. (Bottom). Valence ((a) - Eu; (c) - Tb) and Conduction band (((b) - Eu; (d) - Tb) charge densities for Eu and Tb compounds at R point in the band structure plot.

References:

S-11

(1) Zhang, Y.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Identification of Bi 2 WO 6 as a Highly Selective Visible-Light Photocatalyst toward Oxidation of Glycerol to Dihydroxyacetone in Water. *Chemical Science* **2013**, *4* (4), 1820-1824.

(2) Kirby, A. F.; Richardson, F. Optical Excitation and Emission Spectra of Europium(3+) in Microcrystalline Samples of Trigonal Na3[Eu(ODA)3].2NaClO4.6H2O. *The Journal of Physical Chemistry* **1983**, *87* (14), 2557-2563.

(3) Xia, F.; Liu, S.; Wang, Y.; Mao, J.; Li, X.; Wang, Y.; Chen, G. Fast and Intense Green Emission of Tb 3+ in Borosilicate Glass Modified by Cu+. *Scientific reports* **2015**, *5*, 15387.