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The natural carbon dioxide (CO2) emission from the ecosystem, also termed as the
ecosystem respiration (Reco), is the primary natural source of atmospheric CO2. The
contemporary models rely on empirical functions to represent decomposition of litter with
multiple soil carbon pools decaying at different rates in estimating Reco variations and its
partitioning into autotrophic (Ra) (originating from plants) and heterotrophic (originating
mostly from microorganisms) respiration (Rh) in relation to variation in temperature and soil
water content. Microbially-mediated litter decomposition scheme representation are not
very popular yet. However, microbial enzymatic processes play integral role in litter as well
as soil organic matter (SOM) decomposition. Here we developed a mechanistic model
comprising of multiple hydro-biogeochemical modules in the soil and water assessment
tool (SWAT) code to explicitly incorporate microbial-enzymatic litter decomposition and
decomposition of SOM for separately estimating regional-scale Ra, Rh and Reco. Modeled
annual mean Reco values are found varying from 1,600 to 8,200 kg C ha−1 yr−1 in
2000–2013 within the boreal forest covered sub-basins of the Athabasca River Basin
(ARB), Canada. While, for the 2000–2013 period, the annual mean Ra, Rh and soil CO2

emission (Rs) are varying within 800–6,000 kg C ha−1 yr−1, 700–4,200 kg C ha−1 yr−1 and
1,200–5,000 kg C ha−1 yr−1, respectively. Rs generally dominates Reco with nearly 60–90%
contribution in most of the sub-basins in ARB. The model estimates corroborate well with
the site-scale and satellite-based estimates reported at similar land use and climatic
regions. Mechanistic modeling of Reco and its components are critical to understanding
future climate change feedbacks and to help reduce uncertainties particularly in the boreal
and subarctic regions that has huge soil carbon store.

Keywords: ecosystem respiration, soil respiration, root respiration, litter decomposition, respiration modeling,
SWAT (soil and water assessment tool)

INTRODUCTION

The natural carbon dioxide (CO2) emission from the ecosystem, also termed as the ecosystem
respiration (Reco) is the primary natural source of CO2 throughout the globe (Ciais et al., 2014). There
is an urgent need to completely understand the soil carbon conversion processes and the associated
land-surface gas exchange in estimating climate change feedback, which ultimately leads to the
release of soil carbon as CO2 to the atmosphere (Mitchard, 2018). In natural ecosystems, Reco can be

Edited by:
Jiang Helong,

Nanjing Institute of Geography and
Limnology (CAS), China

Reviewed by:
Hyung Eum,

Alberta Environment and Parks,
Canada

Marwan Fahs,
National School for Water and

Environmental Engineering, France

*Correspondence:
Soumendra N. Bhanja

soumendrabhanja@gmail.com
Roland Bol

r.bol@fz-juelich.de

†Present address:
Soumendra N. Bhanja,

Environmental Sciences Division, Oak
Ridge National Laboratory, Oak Ridge,

TN, United States

Specialty section:
This article was submitted to
Biogeochemical Dynamics,

a section of the journal
Frontiers in Environmental Science

Received: 17 March 2022
Accepted: 06 June 2022
Published: 28 June 2022

Citation:
Bhanja SN, Wang J and Bol R (2022)
Soil CO2 Emission Largely Dominates
the Total Ecosystem CO2 Emission at

Canadian Boreal Forest.
Front. Environ. Sci. 10:898199.

doi: 10.3389/fenvs.2022.898199

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8981991

ORIGINAL RESEARCH
published: 28 June 2022

doi: 10.3389/fenvs.2022.898199

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.898199&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full
http://creativecommons.org/licenses/by/4.0/
mailto:soumendrabhanja@gmail.com
mailto:r.bol@fz-juelich.de
https://doi.org/10.3389/fenvs.2022.898199
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.898199


partitioned into the soil heterotrophic respiration (Rh) that
mostly resulting from soil microorganisms and the autotrophic
respiration (Ra) resulting from plant species (both from
aboveground components and roots) (Hicks Pries et al., 2013;
Hicks Pries et al., 2016). Globally, Ra is the predominant
component of the terrestrial carbon budget with
photosynthetic carbon consumption rate of 54–71% (Ryan
et al., 1997). In permafrost regions, Ra accounts for 40–70% of
the total ecosystem respiration (Hicks Pries et al., 2013).

The Ra and Rh have different adaptation mechanisms in
response to climate change. For example, rising temperature
can accelerate microbial enzymatic activities and thus enhance
Rh and facilitate nutrient dynamics based on substrate availability
(Davidson and Janssens, 2006;Manzoni et al., 2008). On the other
hand, rising temperature has different influence in plant growth.
The aboveground component on Ra shows positive response
while root shows near neutral response (Hick Pries et al.,
2013). For example, 2.3°C warming of soil leads to 20%
increase in aboveground productivity at an Alaskan site
(Natali et al., 2012). With an increase of 2°C, root respiration
didn’t show any significant changes, while heterotrophic
respiration did 21% increase linked with increased microbial
activities (Wang et al., 2014). Therefore, quantifying the
distinct contributions of Reco, Ra, and Rh is necessary to
estimate climate feedbacks and sensitivity in the rapidly
changing subarctic regions but state of the art monitoring
techniques, such as eddy covariance and remote sensing
techniques, are still unable to directly partition Ra and Rh

from Reco (Davidson and Janssens, 2006; Konings et al., 2019).
In addition to the distinct characteristics and feedbacks to climate
change processes by Ra and Rh, respiration partitioning is
particularly important as it has been reported that global land
carbon sink has been increasing in recent years (Ciais et al., 2019).

Climate change-linked future projections of ecosystem
respiration are challenging because estimating litter and soil
organic matter (SOM) decomposition rates and anticipated
soil derived CO2 feedbacks resulting from anthropogenic
warming are both seen as being highly uncertain (Collins
et al., 2013; Crowther et al., 2016). Many experimental and
modelling studies have been performed to determine the Reco

and its partitioning and gross primary production (GPP) at
different land use types (Hardie et al., 2009; Hicks Pries et al.,
2013; Senapati et al., 2018). On the other hand, predicting the net
ecosystem exchange (NEE), and Reco require the development of
sophisticated land-surface models. These modeling approaches
can be categorized into: 1) agroecosystemmodels (models used to
simulate agricultural system functioning), and 2) the Earth
System Models (ESMs - that are used to simulate Earth
system processes). Both modelling approaches commonly use
empirical formula of multiple soil C pools decaying at different
rates to calculate Reco (Del Grosso et al., 2005; Davison and
Janssens, 2006; Oleson et al., 2010; Clark et al., 2011). The
CENTURY model used simplified functions of soil
temperature and moisture for estimating soil respiration and
its partition to autotrophic and heterotrophic components (Del
Grosso et al., 2005). The decaying module of multiple soil C pools
in Daily CENTURYmodel (DayCent) has also been incorporated

into Organising Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE) (Qiu et al., 2018) and Community Land Model
(CLMs) (Lawrence et al., 2019). The microbial processes in ESMs
are simplified into linear, empirical equations (Crowther et al.,
2014; Crowther et al., 2019). It is found that contemporary ESMs
cannot reproduce grid-scale variation in soil C due to missing key
processes and the predicted global carbon stocks in the fifth
Coupled Model Intercomparison Project (CMIP), leading to 6-
fold difference in predicted data (Todd-Brown et al., 2013).
Microbial activity responses (as reflected in soil heterotrophic
respiration) are expected to increase with warming (Karhu et al.,
2014; Walker et al., 2018). However, the relationship between
warming and soil carbon loss, as well as overall ecosystem
respiration, is not straightforward as the microbially mediated
litter and SOM decomposition processes are not linearly
correlated with temperature (Melillo et al., 2017). Additionally,
microbially-mediated decomposition of SOM is not only an
important biological-driven process for carbon conversion but
also play a major role in overall global nutrient dynamics
(Manzoni et al., 2008).

Apart from the environmental variables, the turnover of
organic material is directly controlled by soil microbes
(Crowther et al., 2019). As a result, there is a need to improve
microbial processes for global carbon modeling estimates
(Wieder et al., 2013; Crowther et al., 2019). Microbial
abundances are relatively larger in arctic and subarctic regions
(Serna-Chavez et al., 2013; Xu et al., 2013). They are also
responsible for biogeochemical cycling of nutrients (Crowther
et al., 2019). However, different types of microbes require
favorable soil redox conditions for their growth (DeAngelis
et al., 2010). Thus, soil redox condition is an essential measure
for the dynamics of nutrients as well as soil organic matter, which
microbes used as a substrate (Bhanja et al., 2019a; Bhanja et al.,
2019b). It has been found that nutrient availability directly
controls soil organic matter stock and terrestrial carbon sink
(Wieder et al., 2015). Alteration of hydrological processes has
profound impact in soil carbon mineralization (Anthony et al.,
2018). Therefore, integration of hydrological processes along with
redox/biogeochemical and microbial processes would definitely
improve model estimates (Bhanja et al., 2019a; Bhanja et al.,
2019b). Global-scale respiration studies continue to be sought for
further improving the modeling processes and soil respiration
estimates (Todd-Brown et al., 2013; Luo et al., 2016; Wang et al.,
2020; Wang et al., 2021). A decomposition feedback to warming
requires accounting explicitly for not only temperature but also
nutrient availability and microbial activities (Davidson et al.,
2012).

Substantial amount of soil organic carbon can be released due
to enhanced microbial activities associated with climate warming
in arctic, subarctic regions (Schuur et al., 2015). The arctic and
subarctic regions are the most sensitive regions to the combined
climate change impacts due to declining permafrost, glacial
retreat and change in freeze-thaw cycles on its ecosystems
(Bates et al., 2008). An abrupt thawing in lakes due to global
warming can lead to faster mobilization of deeper stored carbon
(Anthony et al., 2018). Therefore, in these regions, modeling the
carbon mobilization processes and their feedbacks are much
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sought after (Schuur et al., 2009). The present study describes the
development of a mechanistic model to separately simulate
regional-scale, autotrophic, heterotrophic and total ecosystem
respirations. This being achieved through an explicitly
integrated inclusion of microbially-mediated decomposition of
litter as well as SOM, redox processes and hydrological processes.
The model performance was assessed at the boreal forest covered
Athabasca River Basin (ARB), Canada (Fig. S1) using both site-
scale, as well as remote-sensing data.

METHODOLOGY

Model Description
The Soil and Water Assessment Tool (SWAT) is widely used for
simulating regional-scale hydrology due to its comparatively lower
computational requirements (Arnold et al., 1998). Integrated hydro-
biogeochemical modeling was performed at a daily time step. Our
microbial kinetics and thermodynamics (MKT) model is integrated
within SWAT framework, known as SWAT-MKT (Bhanja et al.,
2019a; Bhanja et al., 2019b; Bhanja and Wang, 2020). While the
SWAT calculates hydrological processes, MKT evaluates
microbially-mediated dynamics of biogeochemical processes in
soils. At daily time step, two models exchange data and update
their variables. In this process, MKT rely on daily soil moisture and
temperature simulation from SWAT and independently simulate its
biogeochemical processes. The oxygen diffusion and related
oxidizing reactions are also modelled. Oxygen diffusion processes
are described in supplementary information.

In order to simulate the processes of multiple chemical
reactions, microbial kinetics and thermodynamics are
simultaneously considered in SWAT-MKT model. The energy
balance and sequence of the chemical reaction to be simulated is
modeled through thermodynamics approach following the
Nernst equation. Considering a chemical reaction:

xA + yD � pA− + qD+ (1)
Where, A, A- are the normal and reduced form of the chemical

component modeled, respectively. D and D+ are the chemical
component that donate electron in the reaction and its oxidized
form, respectively. x, y, p and q, are the stoichiometric coefficients
of reactants and products.

The redox potential (Eh) dynamics was modeled following the
Nernst’s equation (Stumm and Morgan, 1996).

Eh � E0 + R.T
n.F

In( [A]x.[D]y
[A−]p.[D+]q ×

γxA.γ
y
D

γpA− .γqD+
) (2)

Where, Eh and E0 are the redox potential (mV) and the standard
electrode potential (mV), respectively. R is the universal gas
constant; T is the ambient temperature in Kelvin; n is the
number of electrons transferred in the chemical reactions; F
and Q are the Faraday’s constant and the reaction quotient,
respectively. ‘[ ]’ represents concentration in molality and ‘γ’ is
the activity coefficients in molality.

The chemical reactions in soil-water zone occur at a sub-daily
time step catalyzed by various microbes. Otherwise, if the

reactions would have happen in thermodynamic control only,
the rates would be much slower e.g. in microbe limiting
conditions, in groundwater systems. The microbes catalyzed
the reactions after taking energy from the system. We have
considered this non equilibrium condition by after computing
and removing the microbial energy requirement from the system
and updated the net redox potential at a daily time step (for
details, please check Bhanja et al., 2019a).

The mass balance of different chemical species is achieved
through modeling microbial kinetics for estimating the reaction
rates of individual reactions at a daily time step. Dual Michaelis-
Menten kinetics is followed here, the reaction rate can be
represented as:

R � Qmax.B.
[D]

KD + [D] .
[A]

KA + [A] (3)

Where, rate of the reaction is represented by R in molal/day;
specific microbial activity as Qmax in mol/mol of biomass per day;
B is the microbial biomass in mole biomass/l of water; [D] is the
concentration of the electron donor species in Eq (1) in molal; [A]
is the concentration of the electron acceptor species in molal, and
KD andKA are the half saturation constants for the electron donor
and acceptor species, respectively in mole/l. KD and KA are
otherwise termed as the Michaelis-Menten constants.

Major soil oxidation-reduction reactions considered in this
approach were given in Supplementary Table S1 and their
reaction quotient values are provided in Supplementary Table
S2. The reactions are shown in Supplementary Figure S3 and
further details are provided in Bhanja et al. (2019a); Bhanja et al.
(2019b) and Bhanja and Wang (2020).

New carbon cycle capabilities are incorporated into SWAT to
simulate ecosystem respiration components from litter
decomposition, root respiration, above ground respiration and
respiration component from the dissolved organic carbon
transformation by enzymatic processes (Supplementary
Figures S2, 3). The entire chemical processes considered in
the new version of SWAT-MKT are shown in Supplementary
Figure S3.

Various spatial and meteorological datasets are used to built-
up the SWAT model for the ARB. Shuttle Radar Topography
Mission (SRTM)-based Digital Elevation Model (DEM) data, at a
resolution of 90 m × 90 m, are obtained from the Consultative
Group on International Agricultural Research (CGIAR) (Jarvis
et al., 2008). Land-use data are obtained at 1 km × 1 km, from the
International Geosphere-Biosphere Programme, Data and
Information Systems (IGBP-DIS) initiative archived at USGS
(Loveland et al., 2000). The soil map is obtained from the
Agriculture and Agri-Food Canada at 1:1 million resolution
(SLC, 2010). Elevation ranges from 207 to 3,669 m in the
ARB. We have defined 320 soil classes and 11 land-use classes.
Watershed delineation through SWAT with a 200 km2 threshold
gives rise to 131 sub-basins within the ARB. Hydrologic Response
Units (HRU) are defined using four slope classes: 5, 10, 15 and
20%, and with 10, 5 and 10% thresholds for land-use, soil and
slope, respectively. A total of 1,370 HRUs are obtained through
this process in this the region. Meteorological data are used at a
daily scale for precipitation, minimum and maximum
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temperature, were obtained from the GoC (2016) database. Solar
radiation, relative humidity and wind speed data are obtained for
230 stations from CFSR (CFSR, 2016). Details on these data
processing and model built-up can be found in Shrestha et al.
(2017).

Soil Mineralization and Litter
Decomposition
The equations should be inserted in editable format from the
equation editor.

Soil mineralizationmodule is modeled considering two carbon
pools: active and passive. The active pool represents fraction of
active litter including microbial biomass (Fujita et al., 2014). We
used microbial enzymatic litter transformation approach that is
an advancement of the CENTURY model’s simple, first order
kinetics-based litter decomposition approach (Parton et al., 1987;
Parton et al., 1994; Fujita et al., 2014):

Rdi,C � ki,C × Ci (4)
Where, litter decomposition rate originally adopted in
CENTURY model: Rdi,C (gC kg−1 soil d−1). i represents the
substrate type i.e. active and passive. Ci (gC kg−1 soil) is the
carbon content within active or passive substrate. ki,C (d

−1) is the
first-order decomposition coefficient of Ci.

Litter decomposition can also be modeled through microbial
enzymatic approach following one-substrate Michaelis-Menten
kinetics (Fujita et al., 2014). Thus, the new decomposition rate
becomes:

Rdi,M � ki,M ×
Ci

Kmi + Ci
(5)

Where, Kmi is the half-saturation constant or Michaelis-Menten
constant. ki,M is the decomposition coefficient of Ci and can be
estimated separately for the active (AC) and passive (PA) substrates as:

kAC,M � kAC,C × (KmAC + 2Cb)
Cb

(6)

kPA,M � kPA,C × (KmPA + CT)
Cb

(7)

Where, kAC,C and kPA,C are decomposition coefficients used in
CENTURY model for the active and passive substrates,
respectively. KmAC is the half-saturation constant for active
substrate and is approximated as 0.3 g C kg−1 soil (Allison
et al., 2010). KmPA is the half-saturation constant for the
passive substrate and its value is taken as 600 g C kg−1 soil
(Allison et al., 2010). Cb (g C kg−1 soil) represents microbial
biomass and its value is approximated as the median microbial
biomass (0.87 g C kg−1 soil) from a global-scale study of
Cleveland and Liptzin (2007). CT represents total carbon stock
of soil and its value is approximated as the global total soil carbon
(46 g C kg−1 soil; Cleveland and Liptzin, 2007).

If considering microbial biomass being an active component
of the litter, microbial biomass decomposition can directly be
assumed to be proportional to the litter decomposition. The new
litter decomposition rate (Rdi,MM) becomes (Fujita et al., 2014):

Rdi,MM � ki,M ×
Ci

Kmi + Ci
× Cb (8)

Actual soil respiration rates (RLD) from litter transformation is
estimated as follows (Fujita et al., 2014).

RLD � ∑PA

i�AC(1 − ei,m) × Im,c × Rdi,MM + Om,c (9)
Where, ei,m represents the growth efficiency of microbes during
assimilation of either active or passive substrates and its value is
estimated as 0.45 (Fujita et al., 2014). Im,c is an decomposition
inhibition factor (its value varies from 0 for full to one for no
inhibition) and at present its value taken as one also resembles the
CENTURY model parameterization (Fujita et al., 2014). Om,c is
the overflow of carbon due to limiting nitrogen concentration and
its value is taken as 0 without proper data to represent the
processes.

Root Respiraton
Root respiration (Rr) is an essential component of soil respiration.
However, SWAT does not have the ability to simulate root
respiration. To simulate root respiration, we have developed a
new sub-module within SWAT following Li et al. (1994):

Rr � (Rn × Un + Rrg × BGr + Rrm × Blr) (10)
Where, CO2 produced by roots for nitrogen uptake: Rn
(13.8 mg C meq−1 N; Veen, 1981; Li et al., 1994). Nitrogen
uptake rates of plant is represented as Un (kg N ha−1 d−1).
CO2 produced by roots due to their growth: Rrg
(19.19 mg C g−1 dry matter; Veen, 1981; Li et al., 1994). Root
biomass growth at a day: BGr (g dry matter ha−1). CO2 produced
as a function of root maintenance: Rrm (0.288 mg C g−1 dry
matter d−1; Veen, 1981; Li et al., 1994). Blr is the living root
biomass (g dry matter ha−1).

Above-Ground Autotrophic Respiration
Above ground respiration (Rabv) is estimated following the
equation (Ryan et al., 1994):

Rabv � (Rabvf × BGabvf + Rabvw × BGabvw) (11)
Where, aboveground foliar biomass growth at a day: BGabvf (g dry
matter ha−1 d−1). CO2 produced as a function of aboveground
foliar biomass growth: Rabvf (1.767 mgC g−1 dry matter d−1; Ryan
et al., 1994). Aboveground woody biomass growth at a day:
BGabvw (g dry matter ha−1 d−1). CO2 produced as a function of
aboveground woody biomass growth: Rabvw (0.12 mgC g−1 dry
matter d−1; Ryan et al., 1994).

Satellite-Based Estimates of Autotrophic
Respiration
We used gross primary production (GPP) and net primary
productivity (NPP) data from the observation of the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors (Zhao
et al., 2005; Zhao et al., 2006; Zhao and Running, 2010). Annual
mean MOD17 products are used at a spatial resolution of 30
arcsec. MOD17 is the first satellite derived continuous data
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product for vegetation productivity at the global-scale (Zhao
et al., 2006). The algorithm includes several satellite derived
parameters such as the land cover, fractional
photosynthetically active radiation and leaf area index along
with the meteorological variables (Zhao et al., 2006). NCEP/
DOE reanalysis II outputs are used for meteorological parameters
(Zhao and Running, 2010). Detailed descriptions of the MOD17
products can be found in Zhao et al. (2005); Zhao et al. (2006).
Satellite-based Ra is estimated by subtracting NPP from the GPP
data (Bond-Lamberty et al., 2018).

Ra � GPP − NPP (12)

Assumptions and Limitations
In order to compute the total soil respiration, we only used the
heterotrophic and autotrophic components. Here, we have not
considered the geological CO2 emission (Andrews and
Schlesinger, 2001). Ecosystem respiration also includes animal
respiration. However, due to the cold climatic conditions and
presence of very low number of animals at the ARB (Weber et al.,
2015), the respiration from animals are not considered at present
in our approach. Other assumptions and limitations associated
with the basic version of the model can be obtained from Bhanja
et al. (2019a); Bhanja et al. (2019b) and Bhanja and Wang (2020).
In natural conditions, all of the soil microbes do not produce
enzymes or produce at a slower rate to take part in the

decomposition activities. These types of microbes restrict/slow
down the decomposition process (Kaiser et al., 2015).

RESULTS AND DISCUSSION

Heterotrophic, Autotrophic and Total
Ecosystem Respiration
Annual mean ecosystem respiration (Reco) did show spatial variability,
however, most of the predicted values for the 2000–2013 period are in
the range of 1,600–8,200 kgC ha−1 yr−1 (Figure 1). The Reco estimates
were compared with the available site-scale measurements from the
Canadian boreal forest locations data retrieved from FLUXNET 2015
(Pastorello et al., 2017). Most of the site-scale Reco values vary within
4,000–10,000 kgC ha−1 yr−1, but with values on three sites exceeding
11,000 kgC ha−1 yr−1 (Supplementary Table S3). The modeled Reco
estimates were in lower range compared to the other boreal forest Reco
observations shown inSupplementaryTableS3. These reported sites are
however located either atmore southernor the same latitude as our study
area. Therefore, overall the prevailing climatic conditions at the ARB are
morenudging towards a arctic-like climate,withmore limited respiration
rates. In general, the respiration values were lower duringwintermonths,
both climatic factors and the presence of deciduous trees do account for
these lower rates (Cumming, 2001). Themean heterotrophic respiration
(Rh) values did mostly vary from 700 to 4,200 kgC ha−1 yr−1 in
2000–2013 at the ARB (Figure 1). The data showed strong

FIGURE1 | Subbasin-wise, long-termmodeled (2000–2013) annual averagemaps of soil heterotrophic respiration (Rh), root respiration (Rr), autotrophic respiration
from above-ground autotrophic respiration (Rabv), autotrophic respiration (Ra), soil respiration (Rs), ecosystem respiration (Reco) in kg C ha−1 yr−1. The northernmost
regions are not modelled and are shown blank.
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seasonality with highest Rh values occurring during the summermonths.
Although, no actual measurements are available within Athabasca River
basin (ARB), estimates from other Canadian boreal forests are well
within the range of our modelled estimates in all of the studied locations
except the Quebec sites and one Saskatchewan site (Supplementary
Table S4) retrieved from the SRDB archives (Bond-Lamberty and
Thomson, 2010). The Quebec sites are located far southern areas
with little warmer climate and thus exhibiting higher Rh. Most of

these site-scale values varied between 1700 and 5,900 kgC ha−1 yr−1,
but on a few occasions (Quebec sites) with values of >10,000 kgCha−1

yr−1 were recorded (Supplementary Table S4). Mean root respiration
(Rr) values (300–2,800 kgCha−1 yr−1) were however found to be lower
than themeanRh values in our study atARB (Figure 1). In general, Rh is
found to be higher than Rr in global boreal sites (Bond-Lamberty and
Thomson, 2010) andat anAlaskan site (HicksPries et al., 2013).Rh is not
only contributing higher toward Rs, the contribution rate has been

FIGURE 2 | Maps of the average percentage (%) ratios of soil respiration (Rs) and heterotrophic respiration (Rh), autotrophic respiration (Ra) and ecosystem
respiration (Reco), Rs and Reco, respectively in 2000–2013. The northernmost regions are not modelled and are shown blank.

FIGURE 3 | Relationships between (A) annual mean soil heterotrophic respiration (Rh) and total soil respiration (Rs); (B) Rs and ecosystem respiration (Reco); (C)
autotrophic respiration (Ra) and Reco, respectively.
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increased from 54 to 63% over the years during 1990–2014 at a global
study (Bond-Lamberty et al., 2018). Annual mean autotrophic
respiration from above-ground vegetation components (Rabv) did
vary from 200 to 2,900 kgC ha−1 yr−1. In general, the combination of
Rr and Rabv that is the mean autotrophic respiration (Ra) is estimated to
be higher than the mean Rh (Figure 1). Annual mean Ra varies within
800–6,000 kgCha−1 yr−1 (Figure 1). Most of the ARB is covered by
forests (Bhanja et al., 2018),whichmay account for the highermagnitude
of autotrophic respiration compared to its heterotrophic counterpart.
Contribution of above-ground canopy respiration to Reco is significant at
boreal forests (Ryan et al., 1997) and at arctic climates (Hick Pries et al.,
2013). ThusRabv alongwith the Rr,makes Ra dominant overRh in forest.
The Ra dominancy was also observed in savanna and grasslands (Ma
et al., 2007), and in peatland ecosystems (Hardie et al., 2009). The
autotrophic and heterotrophic respiration estimates are well in line with
the data reported in Goulden et al. (2011) from Canadian boreal forests
with values reported for Ra was estimated at 2000–4,500 kgC ha−1 yr−1

andRh at ~2000 kgC ha−1 yr−1. Ra reported byRyan et al. (1997) at eight
Canadian boreal forest sites with values between 3,120 and
6,110 kgC ha−1 yr−1 are also matching our modelled estimates. Bond-
Lamberty et al. (2010) reported Rh within 200–6,000 kgC ha−1 yr−1 at
boreal locations and 100–900 kgC ha−1 yr−1 at arctic locations across the
globe. In general, mean soil respiration (Rs) also show spatial patterns
with values from 1,200 to 5,000 kgC ha−1 yr−1 at the ARB (Figure 1).
The lower values of Rs were mainly found at the Southern ARB sub-
basins dominated by mountains. The Rs values do also well comparable
with the site-scale estimates frommanyof the otherCanadianboreal sites
except those at Quebec (located in southern latitude with warmer
climate) and some Saskatchewan sites (Supplementary Table S4).

Relationships Between the Respiration
Components
Relationship between Rh and Rs shows near equal contribution of
soil autotrophic and heterotrophic respiration to total soil
respiration in most of the sub-basins (Figure 2). Root

contribution to total soil respiration (RC) values did varies
from 0.1 to 0.6 (occasionally 0.7). This generally matches the
field-scale estimates, which further increases our confidence in
the modelled estimates (Supplementary Table S4). The ratio of
Ra to Reco did show varying contribution of Ra to Reco from 30 to
80% in most of the sub-basins (Figure 2). The estimates are well
within the ranges reported in previous studies (40–80% in
Nowinski et al., 2010; 40–70% in Hicks Pries et al., 2013) at
similar eco-climatic regions. Rs contributes to nearly 60–90% of
Reco in most parts of the study area (Figure 2). Contribution of Rr

to Reco lies within 10–45%. Results are consistent with the
observation of Hicks Pries et al. (2013) at arctic climate
(15–35% contribution reported).

ARB is mostly covered by forest (Supplementary Figure S4)
and occurrence of comparatively lower annual mean soil
temperature (<2°C, Supplementary Figure S5) are the two
main reasons for the dominance of autotrophic respiration
toward the total ecosystem respiration (Ryan et al., 1997;
Hicks Pries et al., 2013; Crowther et al., 2016). The relative
proportions of Rh to Reco were also found to be consistent
with the values reported in previous studies (Hardie et al.,
2009; Schuur et al., 2009; Hicks Pries et al., 2013).

The respiration partitioning and their ratio show some
interesting facts. Our work shows that the relationships
between Rs and Reco and Ra and Reco follow linear relationship
(r2 > 0.74, p < 0.001, Figures 3B, C). Relationship between Rh and
Rs follow linear pattern (r2 = 0.61, p < 0.001, Figure 3A). Similar
relationships are also observed by Bond-Lamberty et al. (2004) in
different locations across the globe.

Global anthropogenic CO2 emissions (combination of fossil
fuel and land use change) has been increased from 4.5 to
11 Gt C yr−1 from 1960–1969 to 2009–2018 (Friedlingstein
et al., 2019). Global terrestrial ecosystem carbon sink has
increased from 1.3 to 3.2 Gt C yr−1 from 1960–1969 to
2009–2018 and subsequently slowing down the atmospheric
CO2 concentration increase (Friedlingstein et al., 2019).

FIGURE 4 | (A) Mean annual total autotrophic respiration (root and above ground biomass) from satellite-based estimates [Ra (Satellite)] in 2000–2013. (B)
Relationship between autotrophic respirations from satellite and modeled estimates in kg C ha−1 yr−1 at ARB during 2000–2013.
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Terrestrial ecosystems are acting as a carbon sink for
approximately 29% annual anthropogenic CO2 emissions
during the last decade (2009–2018) and the magnitude is
higher than the ocean sink rates (~23%) (Friedlingstein et al.,
2019). Although the direct link is unclear, it has been reported
that atmospheric CO2 concentration is also sensitive to terrestrial
water storage change at global-scale with declining values
associated with rapid increase of CO2 concentration
(Humphrey et al., 2018).

Modelled Estimates Comparison With
Remote Sensing Data
Satellite-based estimates of Ra (Figure 4A) show similar spatial
patterns on comparing with the modeled Ra (Figure 1). Satellite-
based Ra varies from 800 kg C ha−1 yr−1 to as high as 3,943 kg C ha−1

yr−1 across the sub-basins of ARB. In general, modeled Ra is aligned
with the satellite-based Ra in the mid-Ra region
(1,500–4,000 kg C ha−1 yr−1; Figure 4B). The dissimilarity, in
lower and higher Ra ranges are result of various well known
issues with the satellite-based approach. Several studies have
reported erroneous satellite-based NPP estimates (~15% less
estimates comparing the observations). These were found to be
associated with the interference from the autotrophic respiration
estimation from the neighboring areas (Ito, 2011). This make the
satellite-based Ra value smaller than its real value. The GPP and NPP
database developed using different available meteorological datasets
are also showing an overestimation of the indices when comparing
with the GPP (~30% higher GPP reported using NCEP data) and
NPP (15–20% higher NPP using NCEP data) developed using
observed meteorological data (Zhao et al., 2006). The NCEP/DOE
reanalysis IImeteorological data were used to develop the global-scale
GPP and NPP products (Zhao and Running, 2010)—this can also be
a further reason for the overestimation. Turner et al. (2006) reported
overestimation of MODIS NPP and GPP products at regions with
comparatively lower productivity e.g. Boreal forest regions.

CONCLUSION

Although the terrestrial ecosystem respiration is one of main
components of climate change feedbacks, the sign and the
magnitude of this feedback is highly uncertain in future. Our
approach using a new integrated hydro-biogeochemical model
show reasonable estimates of regional-scale Reco and its
subsequent partitioning into Ra and Rh on comparing with the
available data at the boreal forest covered Athabasca river basin,
Canada. Annual mean Reco ranging between 1,600 and
8,200 kg C ha−1 yr−1 in 2000–2013. The Rs was dominated and
contributed 60–90% toward Reco. The model estimates are in line
with the site-scale measurements reported at similar land use and
climatic regions. Satellite-based estimates of Ra also show similar
patterns as of the modeled estimates.

Reasonable performance of our model for simulating regional-
scale Reco and its components show that the bottom-up approach
performs good for estimating the respiration components.
Anthropogenic CO2 emission is a magnitude lower than the
global ecosystem respiration. The accurate quantification of
respiration components warrants better understanding of their
feedbacks associated with the anthropogenic warming. Separate
estimation of the respiration components is getting more
attention here due to their differential responses to warming.
It would be interesting to integrate the microbial enzymatic
kinetics-based approach with widely used ESMs as a core
module of soil greenhouse gas emissions.

DATA AVAILABILITY STATEMENT

This paper used open-source data from FLUXNET (https://
fluxnet.org, last accessed on 1 August, 2020) and SRDB
network (https://daac.ornl.gov/SOILS/guides/SRDB_V5.html,
last accessed on 1 August, 2020). Satellite-based GPP and NPP
MOD17 data were retrieved from MODIS land team (https://
modis.gsfc.nasa.gov/data/dataprod/mod17.php, last accessed on
1 August, 2020). The raw data supporting the conclusion of this
article will be made available by the authors, without undue
reservation.

AUTHOR CONTRIBUTIONS

SB acquired the data, developed the model code and completed
the analyses with inputs from JW and SB wrote the manuscript
with inputs from JW and RB.

ACKNOWLEDGMENTS

This is a short text to acknowledge the contributions of specific
colleagues, institutions, or agencies that aided the efforts of the
authors. SB. acknowledges support from the Indian Institute of
Science in the form of C. V. Raman Postdoctoral Fellowship for
partly carrying out the study. JW. would like to thank the Alberta
Economic Development and Trade for the Campus Alberta
Innovates Program Research Chair (No. RCP-12-001-BCAIP).
The authors acknowledge FLUXNET and SRDB network for
making their data available to public. We appreciate the MODIS
land team for the MOD17 GPP and NPP data.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/
full#supplementary-material

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8981998

Bhanja et al. Estimating Ecosystem CO2 Emission

https://fluxnet.org
https://fluxnet.org
https://daac.ornl.gov/SOILS/guides/SRDB_V5.html
https://modis.gsfc.nasa.gov/data/dataprod/mod17.php
https://modis.gsfc.nasa.gov/data/dataprod/mod17.php
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.898199/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


REFERENCES

Allison, S. D., Wallenstein, M. D., and Bradford, M. A. (2010). Soil-carbon
Response to Warming Dependent on Microbial Physiology. Nat. Geosci. 3,
336–340. doi:10.1038/ngeo846

Andrews, J. A., and Schlesinger, W. H. (2001). Soil CO2 Dynamics, Acidification, and
Chemical Weathering in a Temperate Forest with Experimental CO2 Enrichment.
Glob. Biogeochem. Cycles 15, 149–162. doi:10.1029/2000gb001278

Anthony, K. W., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A.,
Daanen, R., et al. (2018). 21st-century Modeled Permafrost Carbon Emissions
Accelerated by Abrupt Thaw beneath Lakes. Nat. Commun. 9, 3262. doi:10.
1038/s41467-018-05738-9

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R. (1998). Large Area
Hydrologic Modeling and Assessment Part I: Model Development. J. Am.
Water Resour. Assoc. 34, 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

Bates, B., Kundzewicz, Z., and Wu, S. (2008). Climate Change and Water. Geneva:
Intergovernmental Panel on Climate Change Secretariat.

Bhanja, S. N., andWang, J. (2020). Estimating Influences of Environmental Drivers
on Soil Heterotrophic Respiration in the Athabasca River Basin, Canada.
Environ. Pollut. 257, 113630. doi:10.1016/j.envpol.2019.113630

Bhanja, S. N., Wang, J., Shrestha, N. K., and Zhang, X. (2019a). Microbial Kinetics
and Thermodynamic (MKT) Processes for Soil Organic Matter Decomposition
and Dynamic Oxidation-Reduction Potential: Model Descriptions and
Applications to Soil N2O Emissions. Environ. Pollut. 247, 812–823. doi:10.
1016/j.envpol.2019.01.062

Bhanja, S. N., Wang, J., Shrestha, N. K., and Zhang, X. (2019b). Modelling
Microbial Kinetics and Thermodynamic Processes for Quantifying Soil CO2

Emission. Atmos. Environ. 209, 125–135. doi:10.1016/j.atmosenv.2019.04.014
Bhanja, S. N., Zhang, X., andWang, J. (2018). Estimating Long-Term Groundwater

Storage and its Controlling Factors in Alberta, Canada. Hydrol. Earth Syst. Sci.
22, 6241–6255. doi:10.5194/hess-22-6241-2018

Bond-Lamberty, B., Wang, C., and Gower, S. T. (2004). A Global Relationship
between the Heterotrophic and Autotrophic Components of Soil Respiration?
Glob. Change Biol. 10, 1756–1766. doi:10.1111/j.1365-2486.2004.00816.x

Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., and Vargas, R. (2018).
Globally Rising Soil Heterotrophic Respiration over Recent Decades. Nature
560, 80–83. doi:10.1038/s41586-018-0358-x

Bond-Lamberty, B., and Thomson, A. M. (2010). A Global Database of Soil Respiration
Measurements. Biogeosciences 7, 1321–1344. doi:10.5194/bg-7-1915-2010

CFSR (2016). Global Weather Data for SWAT. Climate Forecast System Reanalysis.
Available at: http://globalweather.tamu.edu/ (Accessed January 31, 2019).

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2014).
“Carbon and Other Biogeochemical Cycles,” in Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change (New York, NY, USA:
Cambridge University Press), 465–570.

Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S.-L., et al. (2019). Five
Decades of Northern Land Carbon Uptake Revealed by the Interhemispheric CO2

Gradient. Nature 568, 221–225. doi:10.1038/s41586-019-1078-6
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., et al.

(2011). The Joint UK Land Environment Simulator (JULES), Model
Description - Part 2: Carbon Fluxes and Vegetation Dynamics. Geosci.
Model Dev. 4, 701–722. doi:10.5194/gmd-4-701-2011

Cleveland, C. C., and Liptzin, D. (2007). C:N:P Stoichiometry in Soil: Is There a
“Redfield Ratio” for the Microbial Biomass? Biogeochemistry 85 (3), 235–252.
doi:10.1007/s10533-007-9132-0

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P.,
et al. (2013). “Long-term Climate Change: Projections, Commitments and
Irreversibility,” in Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Editors T. F. Stocker, D. Qin,
G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Cambridge,
United Kingdom and New York, NY, USA: Cambridge University Press).

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C.,
Machmuller, M. B., et al. (2016). Quantifying Global Soil Carbon Losses in
Response to Warming. Nature 540, 104–108. doi:10.1038/nature20150

Crowther, T. W., Van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L.,
et al. (2019). The Global Soil Community and its Influence on Biogeochemistry.
Science 365 (6455), eaav0550. doi:10.1126/science.aav0550

Crowther, T. W., Maynard, D. S., Crowther, T. R., Peccia, J., Smith, J. R., and
Bradford, M. A. (2014). Untangling the Fungal Niche: the Trait-Based
Approach. Front. Microbiol. 5, 579. doi:10.3389/fmicb.2014.00579

Cumming, S. G. (2001). Forest Type and Wildfire in the Alberta Boreal
Mixedwood: what Do Fires Burn? Ecol. Appl. 11, 97–110. doi:10.1890/1051-
0761(2001)011[0097:ftawit]2.0.co;2

Davidson, E. A., and Janssens, I. A. (2006). Temperature Sensitivity of Soil Carbon
Decomposition and Feedbacks to Climate Change. Nature 440, 165–173.

Davidson, E. A., Samanta, S., Caramori, S. S., and Savage, K. (2012). The Dual
Arrhenius and Michaelis-Menten Kinetics Model for Decomposition of Soil
Organic Matter at Hourly to Seasonal Time Scales. Glob. Change Biol. 18,
371–384. doi:10.1111/j.1365-2486.2011.02546.x

DeAngelis, K. M., Silver, W. L., Thompson, A. W., and Firestone, M. K. (2010).
Microbial Communities Acclimate to Recurring Changes in Soil Redox Potential
Status. Environ. Microbiol. 12, 3137–3149. doi:10.1111/j.1462-2920.2010.02286.x

Del Grosso, S. J., Parton,W. J., Mosier, A. R., Holland, E. A., Pendall, E., Schimel, D.
S., et al. (2005). Modeling Soil CO2 Emissions from Ecosystems.
Biogeochemistry 73 (1), 71–91. doi:10.1007/s10533-004-0898-z

Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G.
P., et al. (2019). Global Carbon Budget 2019. Earth Syst. Sci. Data 11,
1783–1838. doi:10.5194/essd-11-1783-2019

Fujita, Y., Witte, J.-P. M., and van Bodegom, P. M. (2014). Incorporating Microbial
Ecology Concepts into Global Soil Mineralization Models to Improve
Predictions of Carbon and Nitrogen Fluxes. Glob. Biogeochem. Cycles 28,
223–238. doi:10.1002/2013gb004595

GoC (2016). Environment and Natural Resources; Weather, Climate and Hazard.
Available at: http://climate.weather.gc.ca/ (Accessed January 31, 2019).

Goulden,M. L.,Mcmillan, A.M. S.,Winston, G. C., Rocha, A. V.,Manies, K. L., Harden,
J.W., et al. (2011). Patterns ofNPP,GPP, Respiration, andNEPduring Boreal Forest
Succession. Glob. Change Biol. 17, 855–871. doi:10.1111/j.1365-2486.2010.02274.x

Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J., and Rowland, A. P.
(2009). Bomb-14C Analysis of Ecosystem Respiration Reveals that Peatland
Vegetation Facilitates Release of Old Carbon. Geoderma 153, 393–401. doi:10.
1016/j.geoderma.2009.09.002

Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G. (2013). Thawing
Permafrost Increases Old Soil and Autotrophic Respiration in Tundra:
Partitioning Ecosystem Respiration Using δ13C and Δ14C. Glob. Change
Biol. 19, 649–661. doi:10.1111/gcb.12058

Hicks Pries, C. E., Schuur, E. A. G., Natali, S. M., and Crummer, K. G. (2016). Old
Soil Carbon Losses Increase with Ecosystem Respiration in Experimentally
Thawed Tundra. Nat. Clim. Change 6, 214–218. doi:10.1038/nclimate2830

Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., and
Seneviratne, S. I. (2018). Sensitivity of Atmospheric CO2 Growth Rate to
Observed Changes in Terrestrial Water Storage. Nature 560, 628–631.
doi:10.1038/s41586-018-0424-4

Ito, A. (2011). A Historical Meta-Analysis of Global Terrestrial Net Primary
Productivity: Are Estimates Converging? Glob. Change Biol. 17, 3161–3175.
doi:10.1111/j.1365-2486.2011.02450.x

Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E. (2008).Hole-filled SRTM for the
Globe Version 4. Montpellier, France: CGIAR. Available from the CGIAR-CSI
SRTM90m Database http://srtm.csi.cgiar.org.

Kaiser, C., Franklin, O., Richter, A., and Dieckmann, U. (2015). Social Dynamics
within Decomposer Communities Lead to Nitrogen Retention and Organic
Matter Build-Up in Soils. Nat. Commun. 6, 8960. doi:10.1038/ncomms9960

Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B.
K., et al. (2014). Temperature Sensitivity of Soil Respiration Rates Enhanced by
Microbial Community Response. Nature 513, 81–84. doi:10.1038/nature13604

Konings, A. G., Bloom, A. A., Liu, J., Parazoo, N. C., Schimel, D. S., and Bowman,
K. W. (2019). Global Satellite-Driven Estimates of Heterotrophic Respiration.
Biogeosciences 16 (11), 2269–2284. doi:10.5194/bg-16-2269-2019

Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., and Bonan, G. (2019).
The Community Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth
Syst.. doi:10.1029/2018MS001583

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8981999

Bhanja et al. Estimating Ecosystem CO2 Emission

https://doi.org/10.1038/ngeo846
https://doi.org/10.1029/2000gb001278
https://doi.org/10.1038/s41467-018-05738-9
https://doi.org/10.1038/s41467-018-05738-9
https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
https://doi.org/10.1016/j.envpol.2019.113630
https://doi.org/10.1016/j.envpol.2019.01.062
https://doi.org/10.1016/j.envpol.2019.01.062
https://doi.org/10.1016/j.atmosenv.2019.04.014
https://doi.org/10.5194/hess-22-6241-2018
https://doi.org/10.1111/j.1365-2486.2004.00816.x
https://doi.org/10.1038/s41586-018-0358-x
https://doi.org/10.5194/bg-7-1915-2010
http://globalweather.tamu.edu/
https://doi.org/10.1038/s41586-019-1078-6
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.1007/s10533-007-9132-0
https://doi.org/10.1038/nature20150
https://doi.org/10.1126/science.aav0550
https://doi.org/10.3389/fmicb.2014.00579
https://doi.org/10.1890/1051-0761(2001)011[0097:ftawit]2.0.co;2
https://doi.org/10.1890/1051-0761(2001)011[0097:ftawit]2.0.co;2
https://doi.org/10.1111/j.1365-2486.2011.02546.x
https://doi.org/10.1111/j.1462-2920.2010.02286.x
https://doi.org/10.1007/s10533-004-0898-z
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.1002/2013gb004595
http://climate.weather.gc.ca/
https://doi.org/10.1111/j.1365-2486.2010.02274.x
https://doi.org/10.1016/j.geoderma.2009.09.002
https://doi.org/10.1016/j.geoderma.2009.09.002
https://doi.org/10.1111/gcb.12058
https://doi.org/10.1038/nclimate2830
https://doi.org/10.1038/s41586-018-0424-4
https://doi.org/10.1111/j.1365-2486.2011.02450.x
http://srtm.csi.cgiar.org
https://doi.org/10.1038/ncomms9960
https://doi.org/10.1038/nature13604
https://doi.org/10.5194/bg-16-2269-2019
https://doi.org/10.1029/2018MS001583
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Li, C., Frolking, S., and Harriss, R. (1994). Modeling Carbon Biogeochemistry in
Agricultural Soils. Glob. Biogeochem. Cycles 8, 237–254. doi:10.1029/94gb00767

Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L. W. M. J.,
et al. (2000). Development of a Global Land Cover Characteristics Database and
IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 21 (6-7),
1303–1330. doi:10.1080/014311600210191

Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N.,
et al. (2016). Toward More Realistic Projections of Soil Carbon Dynamics
by Earth System Models. Glob. Biogeochem. Cycles 30, 40–56. doi:10.1002/
2015gb005239

Ma, S., Baldocchi, D. D., Xu, L., andHehn, T. (2007). Inter-annual Variability in Carbon
Dioxide Exchange of an Oak/grass Savanna and Open Grassland in California.
Agric. For. Meteorology 147, 157–171. doi:10.1016/j.agrformet.2007.07.008

Manzoni, S., Jackson, R. B., Trofymow, J. A., and Porporato, A. (2008). The Global
Stoichiometry of Litter Nitrogen Mineralization. Science 321, 684–686. doi:10.
1126/science.1159792

Melillo, J.M., Frey, S.D.,DeAngelis, K.M.,Werner,W. J., Bernard,M. J., Bowles, F. P., et al.
(2017). Long-term Pattern and Magnitude of Soil Carbon Feedback to the Climate
System in a Warming World. Science 358, 101–105. doi:10.1126/science.aan2874

Mitchard, E. T. A. (2018). The Tropical Forest Carbon Cycle and Climate Change.
Nature 559, 527–534. doi:10.1038/s41586-018-0300-2

Natali, S. M., Schuur, E. A. G., and Rubin, R. L. (2012). Increased Plant Productivity
in Alaskan Tundra as a Result of Experimental Warming of Soil and
Permafrost. J. Ecol. 100, 488–498. doi:10.1111/j.1365-2745.2011.01925.x

Nowinski, N. S., Taneva, L., Trumbore, S. E., and Welker, J. M. (2010).
Decomposition of Old Organic Matter as a Result of Deeper Active Layers
in a Snow Depth Manipulation Experiment. Oecologia 163, 785–792. doi:10.
1007/s00442-009-1556-x

Oleson, K.W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence,
P. J., et al. (2010). Technical Description of Version 4.0 of the Community Land
Model (CLM). Boulder, CO: NCAR Tech. Note NCAR/TN-478+STR. doi:10.
5065/D6FB50WZ

Parton, W. J., Ojima, D. S., Cole, C. V., and Schimel, D. S. (1994). A General Model
for Soil Organic Matter Dynamics: Sensitivity to Litter Chemistry, Texture and
Management. Quantitative Model. soil Form. Process. 39, 147–167.

Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S. (1987). Analysis of
Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands.
Soil Sci. Soc. Am. J. 51, 1173–1179. doi:10.2136/sssaj1987.
03615995005100050015x

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D. A., Canfora, E., et al.
(2017). A New Data Set to Keep a Sharper Eye on Land-Air Exchanges. Eos,
Trans. Am. Geophys. Union 98. doi:10.1029/2017eo071597

Qiu, C., Zhu, D., Ciais, P., Guenet, B., Krinner, G., Peng, S., et al. (2018).
ORCHIDEE-PEAT (Revision 4596), a Model for Northern Peatland CO2,
Water, and Energy Fluxes on Daily to Annual Scales. Geosci. Model Dev. 11,
497–519. doi:10.5194/gmd-11-497-2018

Richardson, A. D., Hollinger, D. Y., Aber, J. D., Ollinger, S.V., and Braswell, B. H.
(2007). Environmental Variation is Directly Responsible for Short- but not
Long-Term Variation in Forest-Atmosphere Carbon Exchange. Global Change
Biol. 13, 788–803. doi:10.1111/j.1365-2486.2007.01330.x

Ryan, M. G., Linder, S., Vose, J. M., and Hubbard, R. M. (1994). Dark Respiration of
Pines. Ecol. Bull. 43, 50–63.

Ryan, M. G., Lavigne, M. B., and Gower, S. T. (1997). Annual Carbon Cost of
Autotrophic Respiration in Boreal Forest Ecosystems in Relation to Species and
Climate. J. Geophys. Res. 102, 28871–28883. doi:10.1029/97jd01236

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D.
J., et al. (2015). Climate Change and the Permafrost Carbon Feedback. Nature
520, 171–179. doi:10.1038/nature14338

Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and Osterkamp,
T. E. (2009). The Effect of Permafrost Thaw onOld Carbon Release andNet Carbon
Exchange from Tundra. Nature 459, 556–559. doi:10.1038/nature08031

Senapati, N., Chabbi, A., and Smith, P. (2018). Modelling Daily to Seasonal Carbon
Fluxes and Annual Net Ecosystem Carbon Balance of Cereal Grain-Cropland
Using DailyDayCent: A Model Data Comparison. Agric. Ecosyst. Environ. 252,
159–177. doi:10.1016/j.agee.2017.10.003

Serna-Chavez, H. M., Fierer, N., and Van Bodegom, P. M. (2013). Global Drivers
and Patterns of Microbial Abundance in Soil. Glob. Ecol. Biogeogr. 22,
1162–1172. doi:10.1111/geb.12070

Shrestha, N. K., Du, X., andWang, J. (2017). Assessing Climate Change Impacts on
Fresh Water Resources of the Athabasca River Basin, Canada. Sci. Total
Environ. 601-602, 425–440. doi:10.1016/j.scitotenv.2017.05.013

SLC (2010). Soil Landscapes of Canada Version 3.2. Agriculture and Agri-Food
Canada. Available at: http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html
(Accessed January 31, 2019).

Stumm, W., and Morgan, J. J. (1996). Aquatic Chemistry: Chemical Equilibria and
Rates in Natural Waters. Wiley.

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C.,
Schuur, E. A. G., et al. (2013). Causes of Variation in Soil Carbon Simulations
from CMIP5 Earth System Models and Comparison with Observations.
Biogeosciences 10, 1717–1736. doi:10.5194/bg-10-1717-2013

Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M.,
et al. (2006). Evaluation of MODIS NPP and GPP Products across Multiple
Biomes. Remote Sens. Environ. 102, 282–292. doi:10.1016/j.rse.2006.02.017

Veen, B. W. (1981). “Relation between Root Respiration and Root Activity,” in
Structure and Function of Plant Roots (Dordrecht: Springer), 277–280. doi:10.
1007/978-94-009-8314-4_53

Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W.,
Woebken, D., et al. (2018). Microbial Temperature Sensitivity and Biomass
Change Explain Soil Carbon Loss with Warming. Nat. Clim. Change 8,
885–889. doi:10.1038/s41558-018-0259-x

Wang, J., Li, Y., Bork, E. W., Richter, G. M., Eum, H.-I., Chen, C., et al. (2020).
Modelling Spatio-Temporal Patterns of Soil Carbon and Greenhouse Gas
Emissions in Grazing Lands: Current Status and Prospects. Sci. Total
Environ. 739, 139092. doi:10.1016/j.scitotenv.2020.139092

Wang, J., Shrestha, N. K., Delavar, M. A., Meshesha, T. W., and Bhanja, S. N.
(2021). Modelling Watershed and River Basin Processes in Cold Climate
Regions: A Review. Water 13 (4), 518. doi:10.3390/w13040518

Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., et al. (2014). Soil Respiration
under Climate Warming: Differential Response of Heterotrophic and Autotrophic
Respiration. Glob. Change Biol. 20, 3229–3237. doi:10.1111/gcb.12620

Weber, M., Hauer, G., and Farr, D. (2015). Economic-ecological Evaluation of
Temporary Biodiversity Offsets in Alberta’s Boreal Forest. Envir. Conserv. 42,
315–324. doi:10.1017/s0376892915000181

Wieder, W. R., Bonan, G. B., and Allison, S. D. (2013). Global Soil Carbon
Projections Are Improved by Modelling Microbial Processes. Nat. Clim.
Change 3, 909–912. doi:10.1038/nclimate1951

Wieder, W. R., Cleveland, C. C., Smith, W. K., and Todd-Brown, K. (2015). Future
Productivity and Carbon Storage Limited by Terrestrial Nutrient Availability.
Nat. Geosci. 8, 441–444. doi:10.1038/ngeo2413

Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W. (2005). Improvements
of the MODIS Terrestrial Gross and Net Primary Production Global Data Set.
Remote Sens. Environ. 95, 164–176. doi:10.1016/j.rse.2004.12.011

Zhao, M., and Running, S. W. (2010). Drought-induced Reduction in Global
Terrestrial Net Primary Production from 2000 through 2009. Science 329,
940–943. doi:10.1126/science.1192666

Zhao, M., Running, S. W., and Nemani, R. R. (2006). Sensitivity of Moderate
Resolution Imaging Spectroradiometer (MODIS) Terrestrial Primary
Production to the Accuracy of Meteorological Reanalyses. J. Geophys. Res.
111, G01002. doi:10.1029/2004jg000004

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bhanja, Wang and Bol. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 89819910

Bhanja et al. Estimating Ecosystem CO2 Emission

https://doi.org/10.1029/94gb00767
https://doi.org/10.1080/014311600210191
https://doi.org/10.1002/2015gb005239
https://doi.org/10.1002/2015gb005239
https://doi.org/10.1016/j.agrformet.2007.07.008
https://doi.org/10.1126/science.1159792
https://doi.org/10.1126/science.1159792
https://doi.org/10.1126/science.aan2874
https://doi.org/10.1038/s41586-018-0300-2
https://doi.org/10.1111/j.1365-2745.2011.01925.x
https://doi.org/10.1007/s00442-009-1556-x
https://doi.org/10.1007/s00442-009-1556-x
https://doi.org/10.5065/D6FB50WZ
https://doi.org/10.5065/D6FB50WZ
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1029/2017eo071597
https://doi.org/10.5194/gmd-11-497-2018
https://doi.org/10.1111/j.1365-2486.2007.01330.x
https://doi.org/10.1029/97jd01236
https://doi.org/10.1038/nature14338
https://doi.org/10.1038/nature08031
https://doi.org/10.1016/j.agee.2017.10.003
https://doi.org/10.1111/geb.12070
https://doi.org/10.1016/j.scitotenv.2017.05.013
http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html
https://doi.org/10.5194/bg-10-1717-2013
https://doi.org/10.1016/j.rse.2006.02.017
https://doi.org/10.1007/978-94-009-8314-4_53
https://doi.org/10.1007/978-94-009-8314-4_53
https://doi.org/10.1038/s41558-018-0259-x
https://doi.org/10.1016/j.scitotenv.2020.139092
https://doi.org/10.3390/w13040518
https://doi.org/10.1111/gcb.12620
https://doi.org/10.1017/s0376892915000181
https://doi.org/10.1038/nclimate1951
https://doi.org/10.1038/ngeo2413
https://doi.org/10.1016/j.rse.2004.12.011
https://doi.org/10.1126/science.1192666
https://doi.org/10.1029/2004jg000004
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Soil CO2 Emission Largely Dominates the Total Ecosystem CO2 Emission at Canadian Boreal Forest
	Introduction
	Methodology
	Model Description
	Soil Mineralization and Litter Decomposition
	Root Respiraton
	Above-Ground Autotrophic Respiration
	Satellite-Based Estimates of Autotrophic Respiration
	Assumptions and Limitations

	Results and Discussion
	Heterotrophic, Autotrophic and Total Ecosystem Respiration
	Relationships Between the Respiration Components
	Modelled Estimates Comparison With Remote Sensing Data

	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


