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A B S T R A C T

The Multi-dimensional Hawkes Process (MHP) is a class of self and mutually exciting point processes that
find many applications–from predicting earthquakes to modelling order books in high-frequency trading. This
paper makes two significant contributions; we first find an unbiased estimator for the gradient of the Hawkes
process’s log-likelihood estimator. The estimator enables the efficient implementation of the stochastic gradient
descent method for the maximum likelihood estimation. The second contribution is that we propose a specific
neural network for the non-parametric estimation of the underlying kernels of the MHP. We evaluate the
proposed model on synthetic and natural datasets and find the method has comparable or better performance
than existing estimation methods. The use of neural networks for modelling the excitation kernel ensures that
we do not compromise on the Hawkes model’s interpretability. At the same time, the proposed algorithm has
the flexibility to estimate any non-standard Hawkes excitation kernel.
1. Introduction

Development in technology has revolutionised the course and mech-
anism of financial trading. Analysis of market variations at a mi-
crostructure level facilitates constructive interpretation of events,
thereby making valuable decisions and recommendations in buying
or selling stocks. Combining historical data, one can seek correlations
between asset interactions to analyse how market processes affect its
variables and potentially project the asset performance into the future.
An extensive body of empirical literature employs point processes to
describe high-frequency data and trade arrival dynamics. In this paper,
we are concerned with discovering correlations among event streams
that cause or excite future events. A specialised case of the self-exciting
point process, called the Hawkes process, is thus a natural mathematical
model to govern the trade arrival activity.

Hawkes processes (Hawkes [1]) are temporal point processes in
which the intensity depends on the process history with an excitation
mechanism. It is well known for studying seismic events (Ogata [2]),
financial analysis (Filimonov and Sornette [3], and Bacry et al. [4]) and
modelling social interactions (Crane and Sornette [5], Blundell et al.
[6], and Zhou et al. [7]). Hawkes process is employed as an intensity-
based model for car accident losses and thereby computes automobile
insurance premia in Errais [8]. This self-affecting point process captures
the feedback effects of events and is computationally tractable. In the
field of biology, it is used to study genomic events along with DNA
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sequences (Reynaud-Bouret et al. [9]). The MHP has also been used
to model crime (Mohler et al. [10]) and studies the pattern of civilian
deaths in Iraq (Lewis et al. [11]). The primary concern in modelling
the Hawkes process is estimating the link function or the excitation
kernel. A common practice has been to assume a parametric form of
the excitation kernel, the most common being exponential and power-
law decay kernels, and then use maximum likelihood estimation (Ozaki
[12]) to determine the optimal values of the parameters.

Formally, the multi-dimensional Hawkes process is defined by a
𝐷-dimensional point process 𝑁𝑑

𝑡 , 𝑑 = 1,… , 𝐷, with the conditional
intensity for the 𝑑th dimension expressed as,

𝜆𝑑 (𝑡) = 𝜇𝑑 +
𝐷
∑

𝑗=1
∫

𝑡

0
𝜙𝑑𝑗 (𝑡 − 𝜏)𝑑𝑁 𝑗

𝜏 , (1)

where 𝜇𝑑 is the exogenous base intensity for the 𝑑th node and is
independent of the history. 𝜙𝑑𝑗 , 1 ≤ 𝑑, 𝑗 ≤ 𝐷 are called the excitation
kernels that quantify the magnitude of excitation of the base intensity
𝜇𝑑 of the 𝑑th node over time due to the past events from node 𝑗. These
kernel functions are positive and causal (their support is within R+).
Inferring a Hawkes process requires estimating the base intensity 𝜇𝑑
and its kernels functions 𝜙𝑑𝑗 , either by assuming a parametric form
for the kernels or in a non-parametric fashion. Recent developments
focus on data-driven, non-parametric estimations of MHP to capture the
general shape of the kernel and increase the flexibility of the model.
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In general, the kernels 𝜙𝑑𝑗 and the base intensity 𝜇𝑑 can be esti-
mated by maximising the associated log-likelihood function. However,
as will be discussed further in Section 3, the challenge is that the log-
likelihood function contains the integral of the intensity function, 𝜆𝑑 (𝑡),
hat depends on the values of the kernels over the whole time interval.
n this paper, we present an unbiased estimator for the gradient of the
og-likelihood function of the MHP, which makes the application of the
tochastic Gradient Descent (SGD) for maximum likelihood estimation
traightforward. As the log-likelihood function for the MHP is usually
on-convex in the parameter space, even for the basic exponential
ernels, the SGD or other optimisation methods do not guarantee a
lobal maximum. However, in our experiments, we observe that SGD,
ith ADAM (Kingma and Ba [13]) used for the adaptive learning rates,
ets sufficiently close to the optimal parameters in a few iterations.

The paper’s main contribution is developing a feed-forward neural
etwork-based non-parametric approach to estimate the kernels of the
HP. Specifically, each excitation kernel of the MHP is modelled as a

eparate feed-forward network with a single hidden layer. The weights
f the different networks are coupled in the likelihood function. The
ptimal weights are then determined using the batch SGD to maximise
he log likelihood. A shallow network is used to allow a closed-form
xpression for the time-integrated value of the excitation kernels. At the
ame time, by the universal approximation theorem, the network can
pproximate any excitation kernel with compact support to arbitrary
recision. In this paper, we only consider the excitation effect of new
rrivals (instead of inhibition effects), i.e., the excitation kernel’s output
anges in R+, and a fixed base intensity. We test our model against a

few state-of-the-art non-parametric estimation methods for MHP. The
method is tested against both synthetic as well as a real datasets. We
consider the high-frequency data of buy and sell market orders from
the Binance crypto exchange for the real dataset. We find that our
method’s performance, which we call the Shallow Neural Hawkes (SNH),
is comparable to or better than benchmark models. We observe a clear
self-excitation behaviour in the buy and sell BTC-USD trades at the
Binance exchange. The observed kernel for the self-excitation process in
our BTC-USD trade dataset differs from the commonly used parametric
kernels, i.e. exponential and power-law kernels. A distinct advantage of
our approach compared to recurrent neural networks used to model the
MHP is that we do not lose the interpretability of MHP by recovering
the underlying excitation kernels. Another advantage is that a closed-
form expression for the integrated kernel functions is obtained, which
for instance, histogram-based non-parametric methods would require
discrete-time approximations.

2. Related work

In many real-world applications, the Hawkes process’s flexibility is
enhanced by using non-parametric models. The first non-parametric
model of the one dimensional Hawkes processes was proposed in Lewis
and Mohler [14], based on an ordinary differential equation (ODE). The
first extension of non-parametric kernels to the multi-dimensional case
was provided in Zhou et al. [7]. They developed an algorithm to learn
the decay kernels using Euler–Lagrange equations to optimise infinite-
dimensional functional space. Determined to model a large amount of
data, a non-parametric method based on solving the Wiener–Hopf equa-
tion using a Gaussian quadrature method was introduced in Bacry and
Muzy [15]. Motivated by the branching property of the Hawkes process
(Zhuang et al. [16]), an Expectation–Maximisation (EM) algorithm was
developed in Marsan and Lengline [17] for non-parametric estimation
of decay kernel and background intensity.

The methods close to our approach include the MEMIP (Markovian
Estimation of Mutually Interacting Processes) Lemonnier and Vayatis
[18] that uses polynomial approximation theory and self-concordant
analysis to learn the kernels and the base intensities. While the non-
parametric models in Lemonnier and Vayatis [18] and Zhou et al. [7]
represent excitation functions as a set of basis functions, a guidance
2

for the selection process of basis functions is provided in Xu et al.
[19]. Both Xu et al. [19] and Salehi et al. [20] express the excitation
kernels as the sum of Gaussian basis kernels; the former uses a sparse
group-lasso regulariser and is suitable for large datasets. In contrast,
the latter uses variational expectation–maximisation and is suitable
for a handful of datasets. The approach presented in this paper is
similar, as the excitation function is expressed as a non-parametric
function, specifically as the exponential of the sum of rectified linear
units (ReLUs).

In a relatively recent study of temporal point processes, the authors
in Du et al. [21] develop a recurrent neural network to model point pro-
cesses and learn influences from event history. The authors in Mei and
Eisner [22] develop a novel continuous-time LSTM to model the self-
modulating Hawkes processes. This setting can capture the exciting and
inhibiting effects of past events on the future and allow the background
intensity to take negative values corresponding to delayed response
or inertia of some events. Compared to expressing each excitation
kernel as a neural network, LSTM might be less desirable when there
is a greater focus on the interpretability of the MHP, for instance, for
learning the Granger causality graph. We also significantly simplify the
SGD formulation compared to Mei and Eisner [22], where one has to
rely on simulations to obtain the gradients, while in Du et al. [21]
numerical integration is needed to get the necessary gradients of the
log-likelihood.

The compelling rise in the cryptocurrency asset prices has natu-
rally gained consideration among investors, economists and market
researchers. Notably, Bitcoin, the world’s most renowned digital cur-
rency, has seen an unprecedented rise. In Koutmos [23], the author
investigates the extent to which market risk factors can explain Bit-
coin’s price behaviour. In another study on Bitcoin price dynamics
(Giudici and Polinesi [24]), the authors learn about the correlation of
Bitcoin prices from different exchanges. The authors in Akyildirim et al.
[25] compare four machine learning classification algorithms to predict
the direction of Bitcoin returns (upward or downward price moves).
Recently Goodell and Goutte [26] studied the co-movement between
COVID-19 levels and Bitcoin prices. Philippas et al. [27] study the
dependence between media attention and Bitcoin prices and find that
Bitcoin prices are partially driven by the momentum of media attention
on social networks.

Similarly, a growing literature is dedicated to studying point pro-
cesses to high-frequency financial data. In particular, due to the trading
activity’s correlated and clustered nature, the Hawkes processes are
used to model market order arrival dynamics. Bowsher [28] used a
continuous-time bivariate Hawkes process for modelling the arrival
times of market sell and buy orders. Recently, a bivariate Hawkes
process was proposed in Bacry et al. [29] to model the variations of
the asset prices and study the signature plot and the Epps effect.

3. Preliminary definitions

A 𝐷-dimensional MHP is a collection of 𝐷 univariate counting
processes 𝑁𝑑 (𝑡) , 𝑑 = 1,… , 𝐷. The realisation of the MHP over an
observation period [0, 𝑇 ) consists of a sequence of discrete events  =
{(𝑡𝑛, 𝑑𝑛)}, where 𝑡𝑛 ∈ [0, 𝑇 ) is the time-stamp of the 𝑛th event and 𝑑𝑛 ∈
{1,… , 𝐷} is the label of corresponding dimension in which the event
occurred. The conditional intensity process for the 𝑑−th dimension is
given by Eq. (1).

Often, the Hawkes kernels are assumed to have a parametric form
and the base intensity 𝜇𝑑 is assumed to be constant. Two widely used
parametric kernels include,

the exponential kernel: 𝜙𝑑𝑗 (𝑡) = 𝛼𝑑𝑗𝑒
−𝛽𝑑𝑗 𝑡, (2)

and

the power-law kernel: 𝜙 (𝑡) = 𝛼 (𝛿 + 𝑡)−𝛽𝑑𝑗 , (3)
𝑑𝑗 𝑑𝑗 𝑑𝑗
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where 𝑑 = 1,… , 𝐷, 𝑗 = 1,… , 𝐷, and 𝛼𝑑𝑗 , 𝛽𝑑𝑗 , 𝛿𝑑𝑗 ∈ R+ are the
djacency, decay, and the lag parameters respectively. In this paper,
e assume that 𝜙𝑑𝑗 ∶ R+ → R+ can be an arbitrary continuous function
ith compact support in R+. We also assume that 𝜇𝑑 is a positive

onstant.
We denote the parameters of the multi-dimensional Hawkes process

n a matrix form as 𝝁 = [𝜇1,… , 𝜇𝐷]⊤ for the base intensity, and 𝛷 =
(𝜙𝑑𝑗 ) for the excitation kernels. These parameters can be estimated by
optimising the log-likelihood over the observed events that are sampled
from the process. The log-likelihood for model parameters 𝛩 = {𝛷,𝝁}
of the Hawkes process can be derived from its intensity function (see
for instance Rubin [30], Daley and Vere-Jones [31]) and is given by,

(𝛩) =
𝐷
∑

𝑑=1

(

∫

𝑇

0
log

(

𝜆𝑑 (𝑢)
)

𝑑𝑁𝑑 (𝑢) − ∫

𝑇

0
𝜆𝑑 (𝑠) 𝑑𝑠

)

=
𝐷
∑

𝑑=1

(

∑

(𝑡𝑛 ,𝑑𝑛)∈

(

log
(

𝜆𝑑 (𝑡𝑛)
)

1{𝑑𝑛 = 𝑑}
)

− ∫

𝑇

0
𝜆𝑑 (𝑠) 𝑑𝑠

)

. (4)

For the application of the SGD, we need an unbiased estimator
for the gradient of  with respect to model parameters. Obtaining
an unbiased gradient estimator for ∫ 𝑇0 𝜆𝑑 (𝑠) 𝑑𝑠 is challenging. Mei and
Eisner [22] use a simulation-based approach for an unbiased estimate,
while Yang et al. [32] work with a time-discretised version of .
Both these approaches are computationally intensive. We propose the
following as an unbiased estimator for the gradient of the log-likelihood
function .

Let {𝑡𝑑1 ,… , 𝑡𝑑𝑁𝑑 (𝑇 )}, be the ordered arrival times for the nodes 𝑑 =
1,… , 𝐷. We first focus on the integral of the intensity with respect to
time.

∫

𝑇

0
𝜆𝑑 (𝑠) 𝑑𝑠 = ∫

𝑇

0

(

𝜇𝑑 +
∑

𝑡𝑛<𝑠
𝜙𝑑𝑑𝑛 (𝑠 − 𝑡𝑛)

)

𝑑𝑠

= ∫

𝑇

0
𝜇𝑑 𝑑𝑠 + ∫

𝑇

0

(

∑

𝑡𝑛<𝑠
𝜙𝑑𝑑𝑛 (𝑠 − 𝑡𝑛)

)

𝑑𝑠 (5)

We can write the first part of the integral as

∫

𝑇

0
𝜇𝑑 𝑑𝑠 =

∑

𝑡𝑑𝑛<𝑇
∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜇𝑑 𝑑𝑠 (6)

The second part of the expression in Eq. (5) can be written as
follows,

∫

𝑇

0

∑

𝑡𝑛<𝑠
𝜙𝑑𝑑𝑛 (𝑠 − 𝑡𝑛) 𝑑𝑠 =

∑

(𝑡𝑛 ,𝑑𝑛)∈
∫

𝑡𝑛+1

𝑡𝑛

∑

𝑡𝑚<𝑡𝑛

𝜙𝑑𝑑𝑚 (𝑠 − 𝑡𝑚) 𝑑𝑠,

=
∑

(𝑡𝑛 ,𝑑𝑛)∈
∫

𝑇

𝑡𝑛
𝜙𝑑𝑑𝑛 (𝑠 − 𝑡𝑛) 𝑑𝑠,

=
∑

(𝑡𝑛 ,𝑑𝑛)∈
∫

𝑇−𝑡𝑛

0
𝜙𝑑𝑑𝑛 (𝑠) 𝑑𝑠,

=
𝐷
∑

𝑗=1

∑

𝑡𝑗𝑖<𝑇
∫

𝑇−𝑡𝑗𝑖

0
𝜙𝑑𝑗 (𝑠) 𝑑𝑠. (7)

The first equality above is from partitioning the interval [0, 𝑇 ) by
the arrival times; the second equality comes from the fact that the term
𝜙𝑑𝑑𝑛 (𝑠 − 𝑡𝑛) will appear in all integral partitions greater than 𝑡𝑛, while
a basic change of variable obtains the third equality. The final equality
is the outcome of the rearrangement of terms.

Finally, the following relation is obtained by rearranging the terms

𝐷
∑

𝑑=1

𝐷
∑

𝑗=1

∑

𝑡𝑗𝑖<𝑇
∫

𝑇−𝑡𝑗𝑖

0
𝜙𝑑𝑗 (𝑠) 𝑑𝑠 =

𝐷
∑

𝑑=1

𝐷
∑

𝑗=1

∑

𝑡𝑑𝑖 <𝑇
∫

𝑇−𝑡𝑑𝑖

0
𝜙𝑗𝑑 (𝑠) 𝑑𝑠. (8)

Substituting Eq. (6) and (8) into Eq. (3) gives us:

(𝛩) =
𝐷
∑

⎛

⎜

⎜

∑

(

log
(

𝜆𝑑 (𝑡𝑑𝑛 )
)

− ∫

𝑡𝑑𝑛

𝑡𝑑
𝜇𝑑 𝑑𝑠 −

𝐷
∑

∫

𝑇−𝑡𝑑𝑛

0
𝜙𝑗𝑑 (𝑠) 𝑑𝑠

)

⎞

⎟

⎟

.
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𝑑=1
⎝𝑡𝑑𝑛<𝑇 𝑛−1 𝑗=1

⎠

v

Table 1
The mean values of 𝜇11, 𝛼11 , and 𝛽11 estimated from the simulated data of the univariate
Hawkes process. The actual parameters used for simulation are in the order [𝜇11, 𝛼11,
𝛽11 ]. s.e. is the standard error computed using the outcome of 30 independent runs.
𝜇11 𝛼11 𝛽11 Actual parameters
(s.e.) (s.e.) (s.e.)

1.012 0.498 2.005 [1,0.5,2]
(0.044) (0.0211) (0.208)

2.05 3.07 9.57 [2,3,10]
(0.051) (0.037) (0.32)

0.489 186.1 585.38 [0.5,200,600]
(0.0128) (5.68) (10.24)

Therefore gradient of  is:

∇𝛩(𝛩) =
𝐷
∑

𝑑=1

⎛

⎜

⎜

⎝

∑

𝑡𝑑𝑛<𝑇

∇𝛩

(

log
(

𝜆𝑑 (𝑡𝑑𝑛 )
)

− ∫

𝑡𝑑𝑛

𝑡𝑑𝑛−1

𝜇𝑑 𝑑𝑠 −
𝐷
∑

𝑗=1
∫

𝑇−𝑡𝑑𝑛

0
𝜙𝑗𝑑 (𝑠) 𝑑𝑠

)

⎞

⎟

⎟

⎠

,

Which gives us the unbiased estimator.

∇𝛩

(

log(𝜆𝑑𝑛 (𝑡𝑛)) − ∫

𝑡𝑛

𝑡−𝑛
𝜇𝑑𝑛 𝑑𝑠 −

𝐷
∑

𝑗=1
∫

𝑇−𝑡𝑛

0
𝜙𝑗𝑑𝑛 (𝑠) 𝑑𝑠

)

, (9)

where (𝑡𝑛, 𝑑𝑛) ∈  and 𝑡−𝑛 ∶= max𝑡𝑚{𝑡𝑚|𝑡𝑚 < 𝑡𝑛 ∧ 𝑑𝑚 = 𝑑𝑛}, i.e. 𝑡−𝑛 is the
imestamp of the event that occurred just prior to the event at 𝑡𝑛 for
ode 𝑑𝑛. A challenge in efficiently utilising Eq. (9) in the SGD method
s that we need a closed-form expression for computing ∫ 𝜙𝑑𝑗 (𝑠) 𝑑𝑠.

hen a parametric form for the excitation kernel is assumed, usually
losed-form expression for this integral exists. In Section 3.1 we present
esults for parameters inferred using SGD for exponential kernels and
ind that the results are close to the true parameter values. However,
n Section 4, we present a non-parametric approach, which is general
nough to infer any continuous excitation kernel and has closed-form
xpression for the integrated excitation kernel.

.1. Parameter estimation for MHP using SGD

The kernels of the Hawkes process are often assumed to have a
arametric form, and the parameters are typically estimated by min-
mising the negative log-likelihood over the observed events. However,
ven for the basic exponential Hawkes process, whose kernels are given
y Eq. (2), the log-likelihood function is non-convex in the parameter
pace. Most methods fix the value of the decay 𝛽𝑑𝑗 (where 𝑑 = 1,… , 𝐷,
nd 𝑗 = 1,… , 𝐷) and optimise upon the 𝛼𝑑𝑗 (see for instance [33]). One
hen needs to try several fixed values for the decay parameter 𝛽𝑑𝑗 and
inally select the decay and adjacency combination that resulted in the
owest negative log-likelihood.

On the other hand, the SGD method is well suited for non-convex
ptimisation. We use the batch SGD method to estimate the univariate
nd the bivariate exponential Hawkes process parameters. The unbi-
sed estimate of the gradient of the log-likelihood function with respect
o the parameters, 𝛼𝑑𝑗 , and 𝛽𝑑𝑗 is computed following Eq. (9).

We first consider the univariate exponential Hawkes process. The
rrival times are simulated using Ogata’s thinning algorithm [34] for
hree choices of parameter values as given in column Actual Parameters
f the Table 1. We simulate the process for a period of [0, 5000).
he initial guess for the parameter values is drawn from a uniform
istribution between 0 and 1. We use ADAM for adaptive learning rates,
ith the learning rate set to 0.01 and a batch size of 32 used for the
GD.

Table 1 shows the mean value and standard errors (from 30 trials)
f the estimated parameters using the SGD. We find that the estimated
arameters are close to the parameter values used for the simulation.
ven when the actual parameters have large adjacency and decay

alues, the method can accurately estimate them.
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Fig. 1. Synthetic data experiment results for univariate Hawkes processes (a) The estimated rectangular kernel. (b) The estimated error for the rectangular kernel. (c) The
convergence plot of negative log-likelihood for the rectangular kernel estimation in the SNH model.
Table 2
Estimated 𝝁, 𝜶, and 𝜷 matrix for the exponential MHP. The actual parameters used for
simulation are 𝜇𝑑 = 0.5, 𝛼𝑑𝑗 = 200, 𝛽𝑑𝑗 = 600, where 1 ≤ 𝑑, 𝑗 ≤ 2.

𝝁 𝜶 𝜷
[

0.514
0.528

] [

185.03 192.35
186.48 195.09

] [

589.24 561.29
555.92 572.37

]

Table 2 shows the corresponding parameter values estimated for a
bivariate exponential Hawkes Process using the batch SGD to minimise
the negative log-likelihood in the parameter space. The choice of hyper-
parameters is the same as that for the 1-D case, and the initial guess
for the parameter values is again drawn from uniform random between
0 and 1. We see that using the unbiased gradient estimator, given
by Eq. (9), both the decay and adjacency parameter values can be
simultaneously estimated using the SGD method. These experiments
also validate that we have obtained the correct expression for the
unbiased estimator.

4. Proposed model

A feed-forward network with a single hidden layer, a sufficiently
large number of neurons, and an appropriate choice of the activation
function is known to be a universal approximator Hornik et al. [35].
We, in the proposed method, model each excitation kernel 𝜙𝑑𝑗 (𝑡), 1 ≤
𝑑, 𝑗 ≤ 𝐷 of the MHP using a separate feed-forward network with a
single hidden layer. As we consider only excitation kernels, the output
of each of these neural networks should be in R+. The weights of the
different networks are coupled together in the likelihood function. We
use the batch stochastic gradient descent to maximise the log-likelihood
over the parameter space. The unbiased estimates of the gradient of the
log-likelihood are obtained using Eq. (9). For efficient calculation of the
gradient, as discussed in Section 3 ideally, there should be a closed-
form expression for the time-integrated value of the approximated
excitation kernel. Based on these criteria, a) a positive output for the
approximated excitation kernel and b) a closed-form expression for its
integral, we developed a specific architecture for our neural network.

In order to approximate 𝜙𝑑𝑗 (𝑡), 1 ≤ 𝑑, 𝑗 ≤ 𝐷 we use a feed-forward
network 𝜙𝑑𝑗 ∶ R → R+ of the form

𝜙𝑑𝑗 ∶= 𝜓◦𝐴2◦𝜑◦𝐴1

where 𝐴1 ∶ R → R𝑝 and 𝐴2 ∶ R𝑝 → R are affine functions of the form,

𝐴1(𝑥) = 𝐖1𝑥 + 𝐛1 for 𝑥 ∈ R, 𝐖1 ∈ R𝑝×1,𝐛1 ∈ R𝑝,

and

𝐴 (𝐱) = 𝐖 𝐱 + 𝑏 for 𝐱 ∈ R𝑝, 𝐖 ∈ R1×𝑝, 𝑏 ∈ R.
4

2 2 2 2 2
𝜑 ∶ R𝑗 → R𝑗 , 𝑗 ∈ N is the component-wise ReLU activation function
given by:

𝜑(𝑥1,… , 𝑥𝑗 ) ∶=
(

max(𝑥1, 0),… ,max(𝑥𝑗 , 0)
)

,

while 𝜓 ∶ R → R+, is exponential function

𝜓(𝑥) ∶= 𝑒𝑥

With a choice of 𝑝 neurons for the hidden layer, the dimension
of the parameter space for the network will be 3𝑝 + 1. For a 𝐷-
dimensional Hawkes process we would need 𝐷2 networks. Writing
𝐖1 ∶= [𝑎11,… , 𝑎𝑝1]

⊤, 𝐖2 ∶= [𝑎12,… , 𝑎𝑝2], 𝐛1 ∶= [𝑏11,… , 𝑏𝑝1]
⊤, the approxi-

mate kernel can be written as:

𝜙𝑑𝑗 (𝑥) = exp

(

𝑏2 +
𝑝
∑

𝑖=1
𝑎𝑖2 max

(

𝑎𝑖1𝑥 + 𝑏
𝑖
1, 0

)

)

The choice of exponential function for the output layer is to ensure
that the output is in R+ as required by excitation kernels. As the ReLU
activation function is not a polynomial everywhere, the network will
be a universal approximator (Leshno et al. [36]). The other advantage
of this particular choice of network architecture is that a closed-form
expression for ∫ 𝑡0 𝜙𝑑𝑗 (𝑢) 𝑑𝑢 can be readily evaluated. It turns out that it
is a linear combination of 𝜙𝑑𝑗 as discussed in Section 4.1. The optimal
parameters for the MHP, i.e. 𝛩 = {𝛷,𝝁}, where 𝛷 is the set of weights
of all the 𝐷2 networks, are obtained using batch SGD, where we use
ADAM for the adaptive learning rates.

4.1. Integrated shallow excitation kernel

The SNH models each excitation kernel 𝜙𝑑𝑗 (𝑡), as

𝜙𝑑𝑗 (𝑡) = exp

(

𝑏2 +
𝑝
∑

𝑖=1
𝑎𝑖2 max

(

𝑎𝑖1𝑥 + 𝑏
𝑖
1, 0

)

)

, (10)

Where 𝑝 is the number of neurons used in the hidden layer. The
unbiased estimator in Eq. (9) requires us to compute the gradient of
the integrated excitation kernel, i.e.

∫

𝑡

0
𝜙𝑑𝑗 (𝑠) 𝑑𝑠.

Integrating 𝜙𝑑𝑗 (𝑡) involves integrating a function of max functions
(as given in Eq. (10)). Let 𝐗 ≡ {𝑥1,… , 𝑥𝑝} be the sequence of inflection
points obtained for the 𝑝 neurons, where the inflection point of the 𝑖th
neuron is obtained by solving,

𝑎𝑖1𝑥𝑖 + 𝑏
𝑖
1 = 0

𝑥𝑖 = −
𝑏𝑖1
𝑖 .
𝑎1
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We re-index the sequence 𝐗 in monotone increasing order as 𝐒 ≡
{𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑝}. Let 0 ≤ 𝑠𝑙 ≤ ⋯ ≤ 𝑠𝑢 ≤ 𝑇 , where 1 ≤ 𝑙 ≤ 𝑢 ≤ 𝑝 be
he largest subsequence of the sorted sequence 𝐒 of inflection points,
.e. all the inflection points that lie in the range [0, 𝑇 ]. Between any two
djacent inflection points, 𝜙𝑑𝑗 (𝑡), is an exponential of a linear function
n 𝑡, which can be readily integrated. Therefore, we write the above
ntegral as,

∫

𝑡

0
𝜙𝑑𝑗 (𝑠) 𝑑𝑠 = ∫

𝑠𝑙

0
𝜙𝑑𝑗 (𝑠) 𝑑𝑠 +⋯ + ∫

𝑇

𝑠𝑢
𝜙𝑑𝑗 (𝑠) 𝑑𝑠, (11)

here the solution of the definite sub-integral between consecutive
orted inflection points, 0 < 𝑠𝑚 < 𝑠𝑛 < 𝑇 , is given by:
𝑠𝑛

𝑠𝑚
𝜙𝑑𝑗 (𝑠) 𝑑𝑠 =

1
∑𝑝
𝑖=1 𝑎

𝑖
1𝑎
𝑖
21

{

lim𝑥→𝑠−𝑛 𝑎
𝑖
1𝑥 + 𝑏

𝑖
1 > 0

}

×
(

𝜙𝑑𝑗 (𝑠𝑛) − 𝜙𝑑𝑗 (𝑠𝑚)
)

.

5. Experiments and results

5.1. Synthetic data

In this section, we demonstrate the performance of the Shallow Neu-
ral Hawkes model by fitting various forms of kernels and by comparing
it against the state-of-the-art non-parametric models, including the EM
method given in Lewis and Mohler [14] and the Wiener–Hopf (WH)
model described in Bacry and Muzy [15]. All simulations are performed
using the thinning algorithm described in Ogata [34]. We also use a
large set of tools from the tick library, Bacry et al. [33], that facilitates
efficient parametric and non-parametric estimations. We first conduct
numerical experiments for the univariate case of the Hawkes process
and then report the findings for the bivariate case.

5.1.1. Univariate case
We consider the univariate Hawkes process with the following

kernels:

1. the exponential kernel, given by Eq. (2), with parameters [𝛼, 𝛽, 𝜇]
= [1, 4, 0.05],

2. the power-law kernel, given by Eq. (3), with parameters [𝛼, 𝛽, 𝛿,
𝜇] = [1, 4, 1, 0.05],

3. and the rectangular kernel, given by Eq. (12), with parameters
[𝛼, 𝛽, 𝛿, 𝜇] ∶= [0.7, 0.4, 1, 0.05],

for our study.

𝜙(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝛼𝛽, if 𝛿 < 𝑡 < 𝛿 + 1
𝛽

0, otherwise
(12)

The arrival times are simulated from [0, 60000] for all the cases. We
et 𝑁𝑇 = 3972, 4442, and 10196 events for the above three cases. Once
he arrival times have been simulated, we use the SNH to infer the
xcitation kernel for each case.
Experiment setup: We use 100 neurons to model each kernel, the

nitial weights are drawn from a uniform distribution in the range
f [0, 0.5]. In all our initialisations, we find that positive weights for
he inner layer and negative weights for the outer layer help faster
onvergence of the method. We use the ADAM optimiser (Kingma and
a [13]) for adaptive learning rates, with a learning rate of 10−2 and
× 10−3 used for the inner and outer layer, respectively. We use a

earning rate of 10−3 for determining the optimal 𝜇 value. A batch
ize of 50 is used to compute the gradient for the SGD, and we train
he network up to 30 epochs. To avoid over-fitting, early-stopping
riteria can be used, where the algorithm terminates when the updated
arameters have not improved the best-recorded validation error for
5

ome pre-specified number of iterations [37].
The learned kernels from the Shallow Neural Hawkes model are
hen compared to kernels determined by the parametric sum of the
xponential kernels (SE) method, the non-parametric EM, and the WH
odel. The reference models are implemented using the tick library

Bacry et al. [33]). We choose the kernel support for the non-parametric
M estimation as 5 and a kernel size of 20. For the WH method, we
et the number of quadratures as 50 and use linear sampling for the
xponential kernels. The linear sampling method performs poorly in the
ower-law kernel and the rectangular kernel. Hence we use the semi-
og sampling approach with the maximum kernel support of 1000 and
maximum lag of 100.
Experiment results: Using the sampled arrival times, the SNH

ethod can closely recover all the three cases of the excitation kernels.
he recovered kernels from the SNH method are closest to the true
ernels for the exponential and the power-law Hawkes process. The
esults for these two cases are discussed in the Appendix. Fig. 1
eports the results for the univariate Hawkes process with a rectangular
ernel. First, we compare the performance of the models based on the
ernel estimation. The EM model is a histogram-based estimator with
discrete function kernel, whose performance critically depends on

he bins’ choice. The WH model also has a strong dependency on the
rid’s choice in the kernel estimation process Morzywolek [38]. We find
hat while the non-parametric methods, SNH, WH, and the EM, can
easonably recover the kernel, the sum of the exponential approach has
he poorest fit. Fig. 1(b) reports the L1 error of the recovered kernels
or the four methods. The SNH errors are lowest except at the edges,
here the EM method performs better. Fig. 1(c) shows the negative

og-likelihood values achieved by the SNH at different epochs. Within
few epochs, the negative likelihood values obtained by the SNH are

easonably close to the value obtained using the true kernel.

.1.2. Bivariate case
For the bivariate analysis, we simulate using the tick library a bi-

ariate Hawkes process with non-standard kernels. While not reported
ere, we also study the performance of the SNH in fitting the bivariate
xponential and power-law kernel. We get similar outcomes as the
nivariate case, where the SNH outperforms the EM, WH, and SE. We
ocus here on the non-standard kernels that test the versatility of the
roposed method
Experiment setup : The non-standard kernels are simulated using

he class TimeFunction from the tick library, which uses several types
f interpolation to determine the function value between two points
n [0,∞) Bacry et al. [33]. The kernel function 𝜙(0,0)(𝑡) is defined using

=
[

0.0 1.0 1.5 2.0 3.5
]

, 𝑦 =
[

0.0 0.2 0.0 0.1 0.0
]

and the y-values are extended to the right. Next, we have 𝜙(0,1)(𝑡) =
𝑠𝑖𝑛(𝑡)
4

for 0 < 𝑡 < 𝑇 . We then generate a zero kernel 𝜙(1,0)(𝑡) = 0.
Finally, we simulate a non-standard form kernel for 𝜙(1,1)(𝑡) using

𝑥 =
[

0.0 0.7 2.5 3.0 4.0
]

, 𝑦 =
[

3.0 0.03 0.03 0.2 0.0
]

.

The baseline intensity is set to

𝜇 =
[

0.05
0.05

]

.

Fig. 2 illustrates the four kernels used in the bivariate Hawkes process.
The arrival times are simulated in the sample period [0, 60000). To
recover the non-standard kernels using the SNH model, we use the
same initialisation technique for the network weights as used in the
univariate case. Also the same learning rates are used as the univariate
case for the ADAM algorithm. We train the network for 100 epochs and
use a batch size of 50 for computing the necessary gradients.

Experiment results : The SNH model’s performance in recovering the
non-standard kernels is shown in Fig. 2. We see that the kernel setting
in 𝜙0,0(𝑡) is advantageous to the EM (as the underlying histograms are
rectangular). As expected, the EM reports the best recovery for 𝜙 (𝑡).
0,0
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Fig. 2. Synthetic data experiment results for bivariate Hawkes processes with the non-standard kernels. Theoretical value corresponds to the kernel values used for simulating
the arrival times. The recovered kernel values from the SNH, WH, and the EM are reported for the four kernels.
Fig. 3. Plot of estimated negative log-likelihood for varied number of neurons (a) The case of exponential kernels (b) The case of rectangular kernels.
In the case of kernels 𝜙0,1(𝑡), 𝜙1,0(𝑡), 𝜙1,1(𝑡), the SNH model achieves
better results when compared to other models (see Fig. A.9 for the
corresponding errors in recovering the kernels). This experiment proves
that the SNH can simultaneously recover the kernels of an MHP, the
errors in the recovered kernels are lower or comparable to the other
state-of-the-art methods, and it can recover non-standard kernels.

5.1.3. Choice of hyper-parameters
We extend our analysis for the univariate Hawkes process described

in Section 5.1 to study the effect of hyper-parameter choices for the
SNH. We first study the impact on the performance of the SNH model
with a varied number of neurons. Fig. 3 shows the estimated negative
log-likelihood values with an increasing number of neurons used in the
SNH for the exponential form of the kernel. As expected, we find that
fewer neurons are sufficient to achieve convergence. Next, we perform
a similar analysis on the rectangular kernel described in Section 5.1,
and Fig. 3 illustrates the corresponding results. In this case, it is evident
6

that optimal performance is achieved by using neurons in the range
32 to 128 in the SNH architecture.

We investigate the SNH model’s performance based on different
initial learning rates. We use the univariate Hawkes process with a
rectangular kernel as described in Section 5.1 for this analysis. From the
study, we conclude that a higher initial learning rate for the outer layer
compared to the inner layer helps in faster convergence (see Tables 3
and 4).

5.2. Self and cross excitation effects in the bitcoin market order arrivals at
the binance exchange

This paper investigates the Shallow Neural Hawkes model’s perfor-
mance on BTC-USD order book data (from the Binance exchange) to
understand this critical cryptocurrency’s microstructure. We streamed
the Binance exchange order book data, as several popular cryptocur-
rencies are traded in this exchange, and the exchange has high trade
volumes. The data includes the tick-by-tick buy and sell market order
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Fig. 4. Experiment results of Bitcoin data as bivariate Hawkes processes. Estimated 𝜇1 (base rate for sell trade) is 1.2 × 10−3, 9 × 10−4, 2 × 10−4 for the SNH, the EM, and the WH
respectively. Estimated 𝜇2 (base rate for buy trade) is 1.1 × 10−3, 7 × 10−4, 2 × 10−4 for the SNH, the EM, and the WH respectively. The negative log-likelihood values are 5.2 × 106,
5.4 × 106, and 7.5 × 106 for the SNH, the EM, and the WH respectively.
Table 3
Estimated negative log-likelihood for different learning rates of the outer layer of SNH
model performed for 30 epochs (Lr of inner layer = 5 × 10−3).

Lr of outer layer Neg loglik

0.0001 37113
0.005 20244
0.001 20562
0.05 20765
0.01 20201

Table 4
Estimated negative log-likelihood for different learning rates of the inner layer of SNH
model performed for 30 epochs (Lr of outer layer = 10−2).

Lr of inner layer Neg loglik

0.00001 21369
0.00005 20483
0.0005 20350
0.0001 20321
0.005 20587
0.01 22346

arrival times for the Bitcoins (BTC-USD pair). Markets are made of
makers and takers. As the Binance APIs explain, the makers create
buying or selling orders that are not carried out immediately, thereby
creating liquidity for that cryptocurrency. On the other hand, people
that buy or sell instantly are called the takers. The trade arrival data
consists of limit orders, which are orders placed with a limit price and
market orders, which are orders placed to buy or sell at the current
available price. The limit orders are executed when the market prices
reach the set limit, and on the other hand, market orders are executed
instantly at the current best market price. The Binance trade-stream
data displays the timestamp of these orders’ arrival, with price and
volume features and a unique ID for the buyer/seller. A particular
7

Fig. 5. TimeSeriesSplit function on bivariate Bitcoin dataset (buy and sell data) with
𝑁𝑇 = 4, 785, 363 and number of splits = 5.

market order might require several limit orders to fill the demanded
volume, resulting in several trades recorded with a common ID. Hence
we cleaned the dataset by filtering the data for common IDs to include
only the unique trade events. Finally, depending upon whether the
buyer is a market maker or taker, the dataset was marked as buy or
sell market orders.

Our goal is to examine the dependence between these events, sug-
gesting self-excitation or cross excitation or both between the arrival
of buy and sell market orders for the BTC-USD pair. Unlike the experi-
ments in the previous synthetic data section, the shape of the excitation
function of BTC trades is unknown and such is the case for all real-
world events. This necessitated developing a non-parametric approach
to estimate the underlying Hawkes model.
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5.2.1. Experiment setup
We use the BTC-USD pair data traded in the Binance cryptocurrency

exchange. The full dataset consists of nearly 7,002,171 intraday market
orders, as recorded from 12 May 2020 at 12:00 AM to 21 May at
11:00 PM (UTC). Identical sell and buy trade orders were removed
from the dataset. We performed univariate analysis separately on the
arrival times of buy orders (N = 2, 485, 932) and the arrival times of sell
orders (N = 2, 295, 554). Using the univariate analysis, we can conclude
whether the arrival of a market order results in self-excitation.

Bivariate analysis is performed jointly on the buy and sell trade data
to learn their interactions, specifically if there is any cross-excitation
between the buy and the sell market orders. For the SNH network
architecture, we use the same initial settings as in the synthetic data
instance. With 𝑁𝑇sell +𝑁𝑇buy = 4, 781, 486, we train the network in 30
epochs.

We perform non-parametric analysis on the Bitcoin dataset using the
EM and the WH models to facilitate comparison. We choose the kernel
support for the EM estimation as 6 and a kernel size of 100. We set the
number of quadratures for the WH method at 200.

5.2.2. Experiment results
In Fig. 4, we plot the kernels estimated by the SNH, the EM, and the

WH methods. It is evident that the two events are not mutually exciting
but exhibit self-exciting behaviour. The negative log-likelihood values
recorded from the SNH, the EM and the WH models are 5.2× 106, 5.4×
106, and 7.5 × 106, respectively. The SNH model achieves competitive
negative log-likelihood compared to the EM and the WH models. The
WH method exhibits consistently poor results, while the performances
of the EM and the SNH methods are comparable. To further validate the
SNH method, we perform the k-fold test on the arrival data as described
below.

5.2.3. K-fold cross validation of real data
Cross-validation is one of the most widely used methods for evalu-

ating learning algorithms. Ideally, we divide the dataset into a training
set, cross-validation set, and test set to optimise the parameters, eval-
uate each algorithm and finally test the successful algorithm with the
least error. However, when the data is scarce or limited, we are left
with fewer samples in the training set. As a solution to this problem,
we use the k-fold cross-validation method Friedman et al. [39] to test
our model’s performance. In this method, we divide the dataset into k-
groups, and for each group, we split the training and test set to evaluate
the score. The performance measure is the average of the evaluated
scores of the k-groups, given as,

𝐶𝑉 (𝛩) = 1
𝐾

𝐾
∑

𝑘=1
(𝛩) (13)

For the dataset in our experiment, we use the TimeSeriesSplit func-
tion provided by Scikit-learn [40]. Unlike non-time series data where
the dataset is randomly split, this function divides the dataset along the
sequence. Successive training sets are supersets of those that come be-
fore them. Due to the dependence on history in the Hawkes processes,
we modify the split function to evaluate the negative log-likelihood
collectively on training and test samples (rather than just test sam-
ples). The Fig. 5 demonstrates the time-series cross-validation split
on bivariate Bitcoin data, for K = 5 groups. Training sets and their
corresponding test dataset sizes are given in Table 5. The estimated
score, i.e. the negative log-likelihood values for the SNH, the EM and
the WH models are 3.5 × 106, 3.8 × 106 and 4.8 × 106, respectively.

5.2.4. Why is it essential to accurately recover the kernels of the Hawkes
process?

Accurate estimation of the underlying kernels of the Hawkes process
8

is desirable as it provides:
Table 5
Sizes of train-test dataset.

k = 1 k = 2 k = 3 k = 4 k = 5

Train 796,916 1, 593, 830 2, 390, 744 3, 187, 658, 3, 984, 572
Test 1, 593, 830 2, 390, 744 3, 187, 658 3, 984, 572 4, 781, 486

• an accurate description of the self and cross interactions between
arrival processes,

• it helps in the development of better predictive models.

We explain the above points in the context of the market order
arrival times for the BTC-USD pair, previously discussed in Section 5.2.
The recovered kernels in Fig. 4 provide some descriptive information
about the trade order arrival process. The first obvious inference is
that the arrival of a buy (sell) market order increases the intensity of
the arrival of the next buy (sell) market order; in other words, there
is an observable self-excitation behaviour. One can also clearly infer
that a buy (sell) market order arrival has no impact on the intensity of
the sell (buy) order arrival; i.e., there is no observable cross excitation
between the buy and sell market orders. The self-excitation kernel,
𝜙0,0(𝑡), shows that a sell order arrival rapidly increases the intensity of
he next sell order arrival. This increased intensity quickly decays but is
ollowed by subsequent minor peaks at an interval of roughly 100 ms.

e make similar observations about the self-excitation behaviour of
he buy market orders. Such insights could be valuable for algorithmic
rading as it gives information on possibly the required latency for
xecuting the market orders.

Accurate inference of the kernels is essential for developing a better
redictive model for the arrival process. For instance, a trading algo-
ithm is based on predicting, with a 90% confidence, the time before

which the next market order will arrive. If the prediction model is
accurate, one would expect nearly 90% of the predictions would be
correct, and for roughly 10% of the cases, the order would arrive after
the predicted time. If the model always makes an accurate prediction
(does not fail for 10% of the cases), then the predictions are overly
conservative, i.e., the predicted time is set too far in the future. On the
other hand, if more than 10% of the predictions fail, the predicted time
is closer than expected. Therefore, if the trading algorithm requires
a prediction with 𝑄% certainty, an accurate prediction model should
have 𝑄% of correct outcomes. The accuracy of such a prediction model
can be visualised using the QQ plot.

For the BTC-USD market order arrival times, we would first like
to compare the predictive ability of a fitted parametric (exponential
and power-law) Hawkes process with a fitted homogeneous Poisson
process. We also study if a non-parametric estimation of the Hawkes
process results in better predictions when compared with the para-
metric Hawkes process. To evaluate the accuracy of the predictions
in the test dataset, we make the QQ plots for each model. Fig. 6
illustrates the QQ plots for the sell and buy market orders for the
BTC-USD pair. We see that the homogeneous Poisson process has the
lowest accuracy and can conclude that the model’s predictions for the
next arrivals are sooner than that from an ideal model. Between the
parametric models, the exponential Hawkes process performs better
than the Hawkes process with the power-law kernels. Also, the SNH
performs better when compared with the parametric models, as its QQ
plot is closest to the 45-degree line (the QQ plot for the ideal model).

We can also compare the three non-parametric models, the SNH,
the EM, and the WH using the QQ plots. Fig. 7 clearly illustrates that
the three models are comparable, with a slightly poor outcome for the
WH method.

6. Conclusion, limitation and future directions

We have developed a non-parametric kernel estimation method for

the MHP, called the Shallow Neural Hawkes. The SNH models the
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Fig. 6. The QQ plots for the arrival time of (a) sell and (b) buy market orders for the BTC-USD pair. The prediction models are the homogeneous Poisson process, the exponential,
the power-law, and the Shallow Neural Hawkes process.

Fig. 7. The QQ plots for the arrival time for (a) sell and (b) buy market orders for the BTC-USD pair. The non-parametric prediction models used are the SNH, EM, and the WH
method.

Fig. A.8. Synthetic data experiment results for univariate Hawkes processes.
(a) The estimated Exponential kernel. (b) The estimated error for Exponential kernel. (c) The negative log-likelihood values for the Exponential kernel estimation in the SNH model
for increasing number epochs. (d) The estimated Power Law kernel. (e) The estimated error for the Power Law kernel. (f) The convergence plot of negative log-likelihood for the
Power Law kernel estimation in the SNH model.
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Fig. A.9. Synthetic data experiment results for bivariate Hawkes processes with the non-standard kernels: the estimated error for the kernels.
excitation kernel as a feed-forward network with a single hidden layer.
We arrive at a specific network architecture to ensure that we can
efficiently determine the optimal parameters using the SGD and that
the kernels are excitation kernels. The excitation kernel then translates
to an exponential of the sum of the ReLU functions. The network
parameters are obtained using a batch SGD with log-likelihood as the
objective to maximise. We provide an unbiased estimator for the gradi-
ent of the log-likelihood function required for the efficient application
of the SGD. The method is tested with both synthetic and real dataset.
The real dataset consists of tick-by-tick buy and sell market orders for
BTC-USD pairs traded on the Binance cryptocurrency exchange. The
performance of our method is consistently compared with the best in
all the examples considered.

Interestingly, the cryptocurrency exchange’s buy and sell trade or-
der arrival process has a self-excitation feature. The observed self-
excitation kernel does not follow the commonly used exponential or
power-law based parametric kernels. In our dataset, we observed no
cross-excitation effects between the buy and the sell orders, i.e. arrival
of a buy order would not affect the intensity of arrival of a sell order
(or vice-a-versa).

A future extension to our approach would be incorporating time-
varying base intensities into the model. The desired extension would
also include kernels that capture the negative dependencies of market
events, i.e. inhibitive effects. Overall, the results presented here encour-
age further research on using neural networks in self-exciting point
processes for modelling and making efficient statistical inferences of
trading events.
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Appendix. Additional results

Fig. A.8 compares the kernel fits obtained using the sum of the
exponential, the EM and the WH method with the SNH method for the
exponential and the power-law Hawkes process. While all the methods
can accurately recover the true kernel shapes, the most significant
error is observed for the EM method. While the sum-of-exponential can
accurately estimate the kernel for the exponential Hawkes process, it
does not perform equally well for the power-law case. The SNH method
achieves the best fit within ten epochs for both cases.

Fig. A.9 reports the L1 error, |𝜙𝑑𝑗 (𝑡) −𝜙𝑑𝑗 (𝑡)|, in the recovery of the
bivariate Hawkes kernels for the case considered in Section 5.1.2.
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