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ABSTRACT

In this work we describe a novel approach for modeling, analysis

and verification of database-accessing applications that use the

ORM (Object Relational Mapping) paradigm. Rather than directly

analyze ORM code to check specific properties, our approach infers

a general-purpose relational algebra summary of each controller in

the application. This summary can then be fed into any off-the-shelf

relational algebra solver to check for properties or specifications

given by a developer. The summaries can also aid program under-

standing, and may have other applications. We have implemented

our approach as a prototype tool that works for ‘Spring’ based MVC

applications. A preliminary evaluation reveals that the approach is

efficient, and gives good results while checking a set of properties

given by human subjects.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation; Software functional properties; • Information sys-

tems→Web applications.
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1 INTRODUCTION

MVC (Model-View-Controller) frameworks are regularly used to

develop web applications and RESTful services [8]. An MVC ap-

plication consists primarily of a set of controllers, each of which

receives requests directed to a specific URL. Much of the core logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510148

1 @PostMapping ( " / s e tDe f au l t Paymen t " )

2 p u b l i c S t r i n g s e tDe f au l t Paymen t ( Long de fPay Id , Model

model , P r i n c i p a l p r i n c i p a l ) {

3 User u s e r = u s e r S e r v i c e . f indByUsername ( p r i n c i p a l .

getName ( ) ) ;

4 u s e r S e r v i c e . s e tUse rDe f au l t Paymen t ( de fPay Id , u s e r ) ;

5 . . .

6 }

7

8 U s e r S e r v i c e : : p u b l i c vo id s e tUse rDe f au l t Paymen t ( Long

de fPay Id , User u s e r ) {

9 L i s t <UserPayment > uPL i s t = uPRepo . f i n dA l l ( ) ;

10 f o r ( UserPayment u P I t e r : u PL i s t ) {

11 i f ( u P I t e r . g e t I d ( ) == de fPay I d ) {

12 u P I t e r . s e tDe f au l t Paymen t ( t r u e ) ;

13 uPRepo . save ( u P I t e r ) ;

14 } e l s e {

15 u P I t e r . s e tDe f au l t Paymen t ( f a l s e ) ;

16 uPRepo . save ( u P I t e r ) ;

17 }

18 }

19 }

Figure 1: Example controller

in these controllers tends to be focused on fetching or updating

data in databases. Therefore, MVC frameworks commonly include

ORM (Object Relational Mapping) APIs, which make database ac-

cess intuitive for programmers. The ORM idea is basically to let

the developer use imperative constructs such as loops, and access

or update a database table as if it were an in-memory collection

of entities, where entities are in-memory objects representing the

tuples in the database. ORM is frequently preferred by develop-

ers over embedded SQL (via ODBC APIs) as it avoids impedance

mismatch between SQL and imperative code as well as type- and

schema-related errors.

While the imperative flavor of ORM code is intuitive to many

developers, mechanically checking properties of imperative code is

more challenging than mechanically reasoning about SQL, which is

declarative in nature. We propose to bridge this gap by proposing

in this paper a novel approach that infers a declarative summary,

in relational-algebra form, of the database updates performed by a

controller and of the model attributes that it may return.
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1.1 Motivating Example

Figure 1 depicts a controller1 named setDefaultPayment from

an open-source book-store application [9] in Spring. The con-

troller in turn calls the method setUserDefaultPayment. This

method first retrieves all “user payment” entities from a table

named userPayment in Line 9. The repository variable ‘uPRepo’

corresponds to the table userPayment. Repository variables are

Spring’s interfaces to database tables; each repository variable im-

plicitly provides method calls to query the underlying table using

the fields of the table and to save tuples into the underlying table.

In the example, each ‘UserPayment’ entity represents a pay-

ment method (e.g., the information about a credit card). Each of

these entities contains a field ‘id’ (which is the primary key), a

boolean field ‘defaultPayment’, which encodes whether this pay-

ment method is the “default” payment method or not for its owning

user, and a field ‘type’, which encodes whether this paymentmethod

is a credit card, or a debit card, etc.

In the loop in Lines 10-18, each ‘UserPayment’ entity’s ‘default-

Payment’ field is set to true or false depending on whether this en-

tity’s ‘id’ field is equal or not to the given argument ‘defPayId’. These

updated entities are also saved back into the table userPayment.

A developer might want to check if the controller in Figure 1

satisfies certain properties. Consider the following example, which

we denote as Property (1): Does the controller set to true (resp.

false) the ‘defaultPayment’ field of a ‘UserPayment’ entity only

if the entity’s ‘id’ field is equal (resp. not equal) to the argument

‘defPayId’? This property is indeed satisfied by the code.

Automated checking of properties such as the ones above would

enable the production of reliable software, and this is the problem

we address in this paper. Automated property checking for ORM

controllers is a challenging problem, for a few different reasons. The

first is that in-memory collections are used to store specific subsets

of database tables, and these subsets typically need to be character-

ized with good precision by analysis techniques to find property

violations. Secondly, ORM code frequently uses imperative loops

to iterate over databases or collections. Generally, loops are known

to be challenging for automated property-checking approaches.

1.2 Our approach

In this paper we propose a static analysis approach to infer sum-

maries in relational algebra form from ORM controllers. A sum-

mary of a controller maps each database table that is updated in a

given controller and each return value from the controller to a rela-

tional algebra expression. For the controller ‘setDefaultPayment’

in Figure 1, in its inferred summary, the expression for the table

userPayment (which is mapped to the repository variable ‘uPRepo’)

would be as follows.

uPRepo ↦→ Πid,true,type (𝜎id=defPayId (uPRepo)) ∪

Πid,false,type (𝜎id≠defPayId (uPRepo))

(1)

Note, the occurrence of ‘uPRepo’ within the relational algebra ex-

pression to the right of the “ ↦→” refers to the incoming contents of

the table userPayment when the controller is invoked, while the

1The code shown is simplified in minor ways for ease of presentation. Also, while we
refer to each request-handling method as a “controller”, the general terminology is to
refer to a class that may contain several request handling methods as a controller.

for (〈itr〉 : 〈coll1〉) {

if (〈cond〉)

〈coll2〉.save(〈tuple1〉);

else

〈coll2〉.save(〈tuple2〉);

}

⇒

〈coll2〉 ↦→

〈coll2〉 - 〈coll1〉 ∪

Π 〈tuple1 〉 (𝜎 〈cond 〉 (〈coll1〉)) ∪
Π 〈tuple2 〉 (𝜎¬〈cond 〉 (〈coll1〉))

Figure 2: Code pattern based rewrite rule

occurrence to the left of ‘↦→’ denotes the updated contents when

the controller finishes execution. Also, throughout this paper we

use a generalized form of the projection operator ‘Π’ that allows
any tuple of expressions in its subscript, and not just a tuple of field

names.

Say we want to check Property (1) mentioned in Section 1.1. The

developer may specify this property as:

𝜎id≠defPayId ∧ defaultPayment≠false (uPRepo) = ∅ (2)

Now, an off-the-shelf relational algebra solver can be used to check

that the inferred summary shown in Equation (1) logically implies

the specification shown above2, and hence declare Property (1) as

holding.

Summarizing loops (such as the one in Figure 1) is similar to

inferring loop invariants. This is known to be a challenging problem

in program analysis, and would be especially so when loops iterate

over collections, copy entities from one collection to another under

some condition, etc. To circumvent this difficulty, we propose an

efficient pattern-based rewriting technique to infer summaries of

loops.

A pattern-based rewrite rule that suffices for our example in

Figure 1 is depicted in Figure 2. The names within angle brackets

are meta-variables, which match actual expressions in the code. If a

rewrite rule’s LHS (left hand side) matches a loop, then, intuitively,

the summary is obtained by instantiating the RHS (right hand side)

pattern. That is, the meta-variables in the RHS are replaced with

their matching expressions as obtained from the LHS.

When the LHS of the pattern shown in Figure 2 is matched with

the loop in Figure 1, the meta-variable 〈itr〉 matches the iterator

variable ‘uPIter’, 〈coll1〉 matches the collection ‘uPList’, and so on.

After ‘uPList’ is determined to be equal to ‘uPRepo’ (using Line 9

in the code), the instantiated RHS becomes equal to the summary

shown in Equation (1).

Notwithstanding the simplified intuition mentioned above, the

rewriting process is not entirely syntactic or straightforward. For

instance, even though 〈tuple1〉 syntactically matches ‘uPIter’ in

Line 13 of the code, 〈tuple1〉 is replaced in the inferred summary

with “id, true, type”, rather than with any references to ‘uPIter’.

The transformations referred to above are performed by employing

static analysis to infer the values stored in variables. These transfor-

mations are necessary because the inferred summary should refer

to only the incoming database tables and arguments, and not to the

values of local variables or iterators.

2This can be done by replacing the ‘uPRepo’ in Equation (2) with the right-hand-side
of Equation (1) and then checking the validity of Equation (2).
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1.3 Contributions

Controller summarization. The primary contribution of this pa-

per is a novel approach for summarization of ORM controllers in

the form of relational algebra. Our approach is the first one to the

best of our knowledge that uses static analysis to infer functional

summaries for Java controllers.

Pattern based rewriting. As part of our approach, we introduce a

novel, efficient and effective pattern-based rewriting mechanism to

summarize a variety of ORM loops.

A related approach that also addresses the problem of summa-

rization of ORM code is by Bocić and Bultan [2]. Their approach

attempts to infer loop-invariants for ORM code without any pat-

terns, but is guaranteed to terminate only on certain classes of

loops, and abstracts away scalar operations and conditionals.

Reasoning on traces. We introduce an inductive and efficient tech-

nique to verify properties of all possible traces in a MVC application

that pass through specified controllers.

Prototype tool. We describe a prototype implementation of our

approach, which is a tool called ORMInfer. ORMInfer infers a sum-

mary for a given controller method. While our approach conceptu-

ally applies to any ORM mechanism, our implementation targets

Spring [24], which is the most popular MVC framework for Java,

and the third most popular backend development framework over-

all [21]. ORMInfer includes a DSL (domain specific language) to

specify pattern-based rewrite rules. Our core implementation in-

fers a relational algebra summary in a solver-independent form,

while a postpass translates the summary into the widely used Alloy

Language [18] in order to be further checked by the Alloy solver.

We have also implemented our trace-property checking approach

mentioned above as a tool MultiORM, and this tool is dependent on

ORMInfer to obtain summaries of the individual controllers that

the traces go through.

Evaluation. We applied our tool on six open-source Spring bench-

marks, and used the inferred summaries to check properties pro-

vided by a set of volunteer graduate students. Our approach identi-

fied correct results (pass/fail) on about 76% of the properties, and

also demonstrated itself as being very efficient.

The rest of this paper is structured as follows. Section 2 describes

our core contribution of summarizing a controller. Section 3 de-

scribes the trace-checking extension mentioned above. Section 4

gives an overview of our prototype implementation, while Section 5

presents our empirical evaluation. Section 6 discusses related work,

while Section 7 concludes the paper.

2 OUR APPROACH FOR CONTROLLER

SUMMARIZATION

In this section we present the core of our approach, which is a

syntax-directed technique to infer a relational algebra summary for

a given controller.

2.1 Flattening

Inferring summaries for updated repositories and return values

requires, as an intermediate step, summaries for local variables as

well as heap objects. Heap objects could potentially be modeled

using symbolic objects provided by points-to analysis. However,

points-to analysis is in general expensive, and can also reduce

precision by over-approximating information on which variables

point to which objects. In bug-detection settings like ours, high

precision is desired in order to minimize false positives.

Therefore, we adopt a flattening based approach that does not

use points-to or alias analysis. The idea intuitively is to model

the heap using a set of variables, whose types are primitives or

collections but not object references. For instance, if a variable v1

is an object reference, we replace v1 with a set of access paths of

the form v1.f, v1.g, etc., based on the fields declared in v1’s type.

If v1.f is itself an object reference, we further replace it with a set

v1.f.k, v1.f.l, and so on. We do this at all depths, and retain a

variable without further expansion only if its last field is a primitive

or a Java collection. This process can go into non-termination in

the presence of cyclic references. Therefore, to enforce termination,

we impose a length bound on access paths, and throw away any

access path that ends in an object reference and that already has as

many fields as the bound permits.

After the flattening mentioned above, we effectively treat each

access path as if it were a single (non object reference) variable. We

start referring to the access paths simply as variables from here

on, and correspondingly, use underscores instead of dots in their

representations.

Our next step is to replace each original assignment statement

with a set of statements that make use of the (flattened) variables

obtained above. For instance, a statement of the form “v1 = v2”

would be replaced with the set (actually, sequence) of statements

“v1_g = v2_g; v1_f_k = v2_f_k; v1_f_l = v2_f_l; . . .”, the statement
“v1.f = v3” would be replaced with “v1_f_k = v3_k; v1_f_l = v3_l;

. . .”, and so on.
The flattening approach mentioned above can potentially give

rise to incorrect summaries in the presence of arbitrary aliasing

between variables or access paths. However, it is our observation

that real-life Java controllers are very idiomatic, and do not normally

setup aliasing between access paths or use the heap in rich ways.

2.2 Summary inference for simple statements

The flattening mentioned above is done as a pre-pass. After the

flattening, the rest of the approach is syntax-directed. It essentially

performs a bottom-up traversal of the Abstract Syntax Tree (AST) of

the controller’s code, and generates the summary of each subtree

using the already generated summaries of the immediately nested

subtrees. In this part of the paper we discuss how summaries are

inferred for non-looping code fragments.

Figure 3 gives a set of rules for the process described above, one

rule per kind of statement. The notation “S 
 𝑒” means that 𝑒 is the
inferred summary of statement S, where 𝑒 is a mapping from access-

paths to relational algebra expressions. The subroutine mkcond

translates its argument syntactic condition into a condition in the

syntax of relational algebra. Type(𝑣) returns the name of the table
corresponding to the declared type of 𝑣 (which is an entity class),
while TypeElement(𝑣) returns the name of the table corresponding
to the entities declared to be stored in 𝑣 provided 𝑣 is a collection.

Figure 4 illustrates the bottom-up summarization for our running

example in Figure 1. Since we are ignoringmethod calls at this point,
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assign: v1 := v2 
 {(𝑣1, 𝑣2)}

seqence:

𝑆1 
 VL 𝑆2 
 VR

S1; S2 
 {(𝑘, 𝑣) | 𝑣 = VR (𝑘) [VL (𝑔1)/𝑔1] .....[VL (𝑔𝑛)/𝑔𝑛]

if 𝑘 ∈ domain(VR),

n is the number of leaves in VR (𝑘)

𝑔1, 𝑔2 ...𝑔𝑛 are leaves in VR (𝑘)

𝑣 = VL (𝑘), if 𝑘 ∈ VL}

If-Then-Else:

𝑆1 
 VT 𝑆2 
 VE

if c then S1 else S2 
 {(𝑘, 𝑣) |𝑣 = (mkcond (c) ? VT (𝑘) : VE (𝑘))

if 𝑘 ∈ VT and 𝑘 ∈ VE
𝑣 = (mkcond (c) ?VT (k) : 𝑘)

if 𝑘 ∈ VT
𝑣 = (mkcond (c) ? 𝑘 : VE (𝑘))

if 𝑘 ∈ VE}

alloc: v = new T 
 {(𝑣,DefaultVal)}

CollAdd:

𝑓1 .....𝑓𝑛 are primitive columns in TypeElement (v)

v.add(w) 
 {(𝑣, 𝑣 ∪ (𝑤_𝑓1, ...,𝑤_𝑓𝑛))}

RepoSave:

𝑓1 .....𝑓𝑛 are primitive columns in Type(𝑣)

repo.save(v) 
 {(repo, repo − 𝜎𝑖𝑑=𝑣_𝑖𝑑 (repo) ∪

(𝑣_𝑓1, ..., 𝑣_𝑓𝑛))}

Delete: repo.deleteById(v) 
 {(repo, repo − 𝜎𝑖𝑑=𝑣 (𝑟𝑒𝑝𝑜))}

Figure 3: Inference rules for simple statements

we treat the method setUserDefaultPayment as if it is the con-

troller in this illustration (although method setDefaultPayment

is the actual controller). Also, we treat the getter and setter calls

in Lines 11, 12, and 15 as if they were inlined to yield direct field

references. Each row in Figure 4 depicts the inferred summary for

a certain AST subtree, which corresponds to the code region whose

line numbers are given in the first column. Each summary is in gen-

eral a mapping from variables that are modified in the code region

to their individual summaries, each of which is a relational algebra

expression. Relational algebra expressions use program variables,

repository variables or table names, and constants, as leaves.

The row for Line 12 in Figure 4 depicts how assignment state-

ments are modeled: the summary of the LHS variable is simply the

expression that occurs in the RHS. The summary for Line 13 uses

an extended relational algebra operator, namely, save. This operator

has two operands, namely, the repository (and underlying table) to

save into, and the tuple to save. Note that the single variable uPIter

in Line 13 in the code has become a tuple of variables at this point;

this happens because uPIter is an object reference, and has been

flattened. Another noteworthy point in Line 13 is that a variable

can occur on both sides of the ‘ ↦→’ symbol in a summary, with the

RHS (resp. LHS) occurrence denoting the incoming value into (resp.

outgoing from) the corresponding code region.

The entry for Lines 12-13 in Figure 4 illustrates summary in-

ference for statement sequences. The mappings (i.e., summaries)

corresponding to the two regions are basically composed; hence, in

the example, the second component in the tuple within the save

operation is now true (rather than uPIter_defaultPayment).

The entry for Lines 11-17 illustrates processing for if-then-else

constructs. A ternary “? :” operator is used in our extended relational

algebra to model this construct in a straightforward manner.

Spring ORM implicitly provides schema-specific query methods

on repository variables. Our approach converts calls to these meth-

ods to equivalent relational algebra. For instance, for the statement

in Line 9 in Figure 1, the summary we infer is “upList ↦→ upRepo”.

In cases where a query method returns a single element, summary

inference also accounts for flattening. For instance, a statement “v

= uPRepo.findById(x)” would result in a summary as depicted

below:
v_id ↦→ Πid (𝜎𝑖𝑑=𝑥 uPRepo)

v_defaultPayment ↦→ ΠdefaultPayment (𝜎𝑖𝑑=𝑥 uPRepo)

v_type ↦→ Πtype (𝜎𝑖𝑑=𝑥 uPRepo)
Spring ORM supports certain kinds of annotations to intro-

duce fields within entity declarations. These annotated fields

do not correspond to columns in the underlying table, but are

pointers that explicitly encode relationships with other entities.

Our summary inference approach for query method calls ac-

counts for these as well. For instance, consider a field declared

as “@OneToOne UserBilling uBilling” within the entity class

‘UserPayment’. Say name is a primitive column in the ‘userBilling’

table, and say paymentId is another column in the ‘userBilling’

table and is a foreign key into the ‘userPayment’ table. Say the

controller had a statement “payment = uPRepo.findById(x)”.

Our flattening approach treats OneToOne and ManyToOne fields

similar to pointers, and flattens through them. Therefore, the

statement above would yield a set of statements, one of which

would be “payment_uBilling_name = uPRepo.findById(x)”. Our

approach generates a summary for this statement in which

payment_uBilling_name is mapped to the relational algebra

expression Πname (ΠCols (userBilling) (𝜎id=paymentId (𝜎id=x (uPRepo) ×
userBilling))). In a similar manner, we handle ‘OneToMany’ and

‘ManyToMany’ annotations as well.

A set of formal inference rules to summarize query-method call-

ing statements is given in Figure 5. The bottommost two rules are

the root rules. In these rules’ consequents, the part before the ‘
’ is

the (flattened) statement that needs to be summarized, with accp

being a flattened access path. relExpFor is a subroutine whose im-

plementation is not shown; it is assumed to return the relational

algebra expression corresponding to its argument. The ‘�’ deriva-

tions are defined using the first three rules in Figure 5. 𝑒1 � 𝑒2 is a
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Line # Summary

12 uPIter_defaultPayment ↦→ true

13 uPRepo ↦→ save(uPRepo, (uPIter_id, uPIter_defaultPayment, uPIter_type))
12-13 uPIter_defaultPayment ↦→ true

uPRepo ↦→ save(uPRepo, (uPIter_id, true, uPIter_type))
15-16 uPIter_defaultPayment ↦→ false

uPRepo ↦→ save(uPRepo, (uPIter_id, false, uPIter_type))
11-17 uPIter_defaultPayment ↦→ (uPIter_id = defPayId) ? true : false

uPRepo ↦→ (uPIter_id = defPayId) ?

save(uPRepo, (uPIter_id, true, uPIter_type)) : save(uPRepo, (uPIter_id, false, uPIter_type))
10-18 uPRepo ↦→ (uPRepo - uPList) ∪ Πid,true,type (𝜎id=defPayId uPList) ∪ Πid,false,type (𝜎id≠defPayId uPList)

uPList ↦→ Πid,(id=defPayId)?true:false,type 𝑢𝑃𝐿𝑖𝑠𝑡

9-18 uPRepo ↦→ Πid,true,type (𝜎id=defPayId uPRepo) ∪ Πid,false,type (𝜎id≠defPayId uPRepo)
uPList ↦→ Πid,(id=defPayId)?true:false,type 𝑢𝑃𝑅𝑒𝑝𝑜

Figure 4: Illustration of summary construction

𝑓2 is a *ToOne field

〈𝑓2_𝑓3_𝑓4 ...,ΠCols (Type (𝑓2)) (relExp � Type(𝑓2))〉 � relExp1

〈𝑓1_𝑓2_𝑓3_𝑓4 ..., relExp〉 � relExp1

𝑓2 is a *ToMany field

〈𝑓1_𝑓2, relExp〉 � ΠCols (TypeElement (𝑓2)) (relExp � Type(𝑓2))

𝑓2 is a primitive field

〈𝑓1_𝑓2, relExp〉 � Π𝑓2 (relExp)

〈accp, relExpFor (repo.findByCol(X ))〉 � relExp

accp = repo.findByCol(X) 
 {(accp, relExp)}

accp = repo.findAll() 
 {(accp, relExpFor (repo.findAll()))}

Figure 5: Inference rules for query-method calls

join operation whose join predicate equates the foreign-key field

in 𝑒2 with the primary key field field in 𝑒1.

2.3 Summary inference for loops

In this part of the paper we discuss how we infer the summary of

a loop after having inferred the summary of the body of the loop

using pattern-based rewriting rules.

In Figure 2, for simplicity of presentation, the LHS of the rewrite

rule was shown as if it was a syntactic or code-based pattern.

However, in our system, actually, any rewrite rule 𝑖 is of the form
LHS𝑖 ⇒ RHS𝑖 , where both LHS𝑖 and RHS𝑖 are relational algebra

expressions. Both these expressions are patterns, and are hence

allowed to have meta variables, also known as pattern variables, at

leaf (i.e., operand) positions.

We made the important choice mentioned above for a couple

of reasons. Firstly, as our summary inference approach proceeds

bottom-up in the AST, the relational algebra expression for a loop’s

body would anyway be available by the time the loop’s summary

is to be inferred. Secondly, relational algebra summaries are free

of internal data flow through local variables, and are hence more

declarative. Thus, a pattern based on relational algebra is more

likely to successfully match a variety of different loop structures

that have the same semantics.

Algorithm 1 SummarizeLoop(body, coll, itr)

1: summ = ∅

2: for all variables 𝑣 in the domain of body, excluding variables
of the form itr_f do

3: Let expr1 = body(𝑣)
4: if exists a rewrite rule LHS𝑖 ⇒ RHS𝑖 such that match(LHS𝑖 ,

expr1, coll, itr, 𝑣) = v2e and v2e ≠ ⊥ then

5: Let expr2 be equal to subst(RHS𝑖 , v2e), and expr3 be equal
to expr2 with each itr_fi replaced with coll.𝑓𝑖 .

6: Add 𝑣 → expr3 to summ

7: else

8: Add 𝑣 → Unknown to summ

9: end if

10: end for

11: if any itr_fi is in the domain of body then

12: Let tuple be the tuple formed from the expressions that the

variables of the form itr_fi are mapped to in body. Add coll →

Πtuple (coll) to summ.

13: end if

14: return summ

The approach for summarizing a loop is depicted in Algorithm 1.

The argument body is the summary of the loop body alone, obtained

previously as part of the bottom-up traversal of the AST. In other

words, it is a mapping from each variable that is modified within

the loop body to the relational-algebra summary of the value that

is assigned to the variable in the loop body (i.e., intuitively, in

a single iteration of the loop). The argument coll is the name of
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the collection variable being iterated over in the loop, while the

argument itr is the name of the iterator variable. For the loop in

Figure 1, body is depicted next to Lines 11-17 in Figure 4, coll is

‘uPList’ and itr is ‘uPIter’. summ is the summary of the entire loop,

to be returned at the end.

The loop in Lines 2-10 in Algorithm 1 summarizes each variable

𝑣 one after the other. expr1 is the summary of the value assigned
to 𝑣 in the loop’s body. The function match is used to check if

the LHS of a rewrite rule matches expr1. The function checks the

following two conditions: (i) LHS𝑖 and expr1 are isomorphic as

trees, not counting the operand positions in LHS𝑖 where there

are meta variables, and (ii) at every position where the special

meta variables 〈coll〉/〈itr〉/〈lvar〉 occur in LHS𝑖 , the values of the

arguments coll/itr/𝑣 , respectively, occur in expr1. If the check passes,
match returns a mapping v2e, which maps every meta-variable

occurring in LHS𝑖 to its matching sub-expression in expr1. v2e

also maps 〈coll〉/〈itr〉/〈lvar〉 to the values in arguments coll/itr/𝑣 ,
respectively. match returns ⊥ if the conditions named above do

not hold. If the LHS’s of multiple rules match expr1, Line 4 in the

algorithm picks the earliest matching rule.

Lines 5-6 in the algorithm produce the summary of 𝑣 as far
the full loop is concerned; basically, this summary accounts for

the cumulative updates done to 𝑣 across all iterations of the loop.
The summary is produced by the function subst, which simply

replaces every occurrence of any meta variable𝑤 in RHS𝑖 with the

corresponding subexpression v2e(𝑤). Each occurrence of itr_fi is

finally replacedwith coll.𝑓𝑖 , as itr_fi is a local variable and represents
the value of the field 𝑓𝑖 in a single iteration.

2.3.1 Illustrations. Part (A) of Figure 6 illustrates the summariza-

tion of the loop in Figure 1. Row (b) depicts the LHS of a rewriting

rule, while Row (c) depicts the RHS. (These correspond to the LHS-

RHS shown informally as a code-pattern in Figure 2.) The variable

whose summary is being computed (𝑣 in Algorithm 1) is ‘uPRepo’.

Row (a) depicts body(uPRepo), which is the summary of ‘uPRepo’

as inferred from the loop’s body. The mapping v2e is represented

by the underbraces. Row (d) depicts the result of applying subst

on the RHS pattern in Row (c) using the mapping v2e referred to

above. This result is the final relational expression for ‘uPRepo’

in the loop’s summary (the same information is present against

Lines 10-18 in Figure 4). Intuitively, this rewrite rule is meant to

summarize the action of saving different tuples into a repository

across different iterations of a loop.

Lines 12-13 in Algorithm 1 basically produce the summary for

‘uPList’ that is shown against Lines 10-18 in Figure 4).

Rows (b) and (c) in Part (B) of Figure 6 depict another sample

rewrite rule. This rule is meant to summarize the action of delet-

ing specific tuples from a repository in each iteration of the loop.

Rows (a) and (d) show the pre-computed loop-body-summary and

the full-loop-summary inferred using the rewrite rule, respectively,

for the example loop that appears to the left in Part (B).

Finally, Part (C) follows a similar format as Part (B), and illustrates

a another sample rule, which infers a sum-aggregation operation

over a field of all entities in a collection. This rule can be generalized

easily to account for the situation where only certain entities in the

collection are selected for the aggregation.

2.4 Capabilities and limitations

Our approach handles nested loops naturally. We handle precisely

only loops that iterate over collections, as ORM programs primarily

use this type of loop. For other types of loops we conservativelymap

modified variables to ‘Unknown’ values. Our approach performs

inter-procedural analysis basically by simulating inlining. This

technique may not terminate in the presence of recursion, but

we have not come across recursion in application code in Spring

benchmarks that we have seen. The two limitations just mentioned

are also shared by closely related work [2].

In our approach, the summary of a controller not only includes

summaries for updated repositories, but also summaries for model

attributes, which are the return values sent by controllers to views.

Our approach is sound with regard to loop-free code fragments.

Soundness means that any property that is implied by a summary

is also satisfied by the code. Our approach is also complete with

regard to loop-free code fragments, in the sense that if relational

algebra suffices to capture the full semantics of a fragment of code,

our approach will infer such a summary. Both these claims are

conditional on no-aliasing between variables and on a sufficient

bound for flattening.

A limitation of our approach is that if a variable or access path

refers to a collection of entities, then the summary of this variable

or access path will be a ‘𝜎’ expression that contains information
about primitive fields but contains no information about Spring-

annotation fields within these entities. Capturing such information

in general needs nested relational algebra. Currently our inferred

summaries as well user-provided properties are restricted to flat

relational algebra (in which only primitive fields in collections are

referred to).

A final point to note is that in the presence of loops our approach

does not have absolute soundness or completeness. Currently it

is up to developers to ensure that the rewrite rules they specify

are sound, i.e., semantically valid. Also, the extent to which loops

are summarized precisely depends on the sufficiency of the set of

rewrite rules provided.

3 CHECKING PROPERTIES OF TRACES

Generally, many interesting properties of controllers are in terms

of their incoming and outgoing database states (in addition to the

input arguments and returned model attributes). For instance, in an

open-source benchmark called ‘PetClinic’ [14] that we used in our

evaluations, there is a controller named ‘processCreationForm’. It

accepts a tuple of (primitive typed) input arguments corresponding

to an ‘Owner’ entity, such as (id, lastName, firstName, city), and

saves this tuple as an entity into a repository called ‘owRepo’. Say

the property that the developer has in mind is to check if this

controller indeed saves the given tuple into persistent state. To

write this as a single-controller property, the developer would first

need to guess that this controller would be saving its argument

tuple into some database table, and would secondly need to know

the name of repository it is saving into. We also refer the reader

to the sample property in Equation (2) in Section 1.2, which has a

similar flavor, and is in terms of the updated state of the repository

‘uPRepo’.

2345



Verification of ORM-based Controllers by Summary Inference ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(A)

(a) (uPIter_id = defPayId) ?︸�������������������������︷︷�������������������������︸ save(uPRepo, (uPIter_id, true, uPIter_type)) :︸����������������������������������������������������︷︷����������������������������������������������������︸ save(uPRepo, (uPIter_id, false, uPIter_type))︸���������������������������������������������������︷︷���������������������������������������������������︸
(b) 〈cond〉 ? save(〈lvar〉, 〈tuple1〉) : save(〈lvar〉, 〈tuple2〉)
(c) (〈lvar〉 − 〈coll〉) ∪ Π 〈tuple1 〉 (𝜎 〈cond 〉 〈coll〉) ∪ Π 〈tuple2 〉 (𝜎¬〈cond 〉 〈coll〉)

(d)

︷��������������������︸︸��������������������︷
(uPRepo − uPList) ∪

︷��������������������������������������������������������︸︸��������������������������������������������������������︷
Π uPList .id, true,

uPList .type

(𝜎uPList.id=defPayId 〈uPList〉) ∪
︷����������������������������������������������������︸︸����������������������������������������������������︷
Π uPList .id, false,

uPList.type

(𝜎uPList .id≠defPayId 〈uPList〉)

(B)

for (UType uItr: uColl) {

if (uItr.column1 = k) {

uRepo.deleteById(uItr.getId());

}

}

(a) (uItr_column1 = 𝑘) ?︸���������������������︷︷���������������������︸ uRepo : uRepo − 𝜎uRepo.id=uItr_id (uRepo)︸������������������������������������������������︷︷������������������������������������������������︸
(b) 〈cond〉 ? 〈lvar〉 : 〈lvar〉 − 𝜎 〈lvar 〉. 〈f 〉 = 〈exr 〉 (〈lvar〉)

(c) 〈lvar〉 − 𝜎 〈lvar 〉. 〈f 〉∈Π〈expr〉 (𝜎〈cond〉 ( 〈coll〉)) (〈lvar〉)

(d)
︷���︸︸���︷
uRepo −

︷�������������������������������������������������������︸︸�������������������������������������������������������︷
𝜎uRepo.id∈ΠuColl.id (𝜎 (uColl.column1=𝑘 ) (uColl)) (uRepo)

(C)

for (Long pItr: pIds) {

PType product = pRepo.findById(pItr);

total = total + product.price;

}

(a) total +︸�︷︷�︸ ΠpRepo.price (𝜎pRepo.id=pItr (pRepo))︸���������������������������������������︷︷���������������������������������������︸
(b) 〈lvar〉 + Π 〈repo〉. 〈f 〉 (𝜎 〈repo〉. 〈g〉=〈itr 〉 (〈repo〉))

(c) 〈lvar〉 + 𝐺sum( 〈repo〉. 〈f 〉) ( 𝜎 〈repo〉. 〈g〉∈〈coll〉 (〈repo〉))

(d)

︷����������������������������︸︸����������������������������︷
total + 𝐺sum(pRepo.price) (

︷����������������������︸︸����������������������︷
𝜎pRepo.id∈pIds (pRepo))

Figure 6: Sample loop-summarization patterns

Our observation in this section is that awareness of the database

schema and of the access relationships between controllers and

database tables may become unnecessary if properties are specified

in a different way – purely in terms of argument and return-value

behavior of pairs of related controllers. For instance, in the PetClinic

benchmark there is another controller named ‘processFindForm’,

which takes a lastName as argument, and returns (to a view) via a

model attribute the set of all Owner entities with the given lastName.

If one is aware of this controller and its I/O behavior as stated above,

one could write more natural (i.e., database independent) version of

the single-controller property mentioned in the previous paragraph

as follows:

If processCreationForm is invoked in a trace and then processFind-

Form is invoked next, if the lastName given to processFindForm is

equal to the lastName given to processCreationForm, then one of the

‘Owner’ entities returned by processFindForm agrees in all its fields

with the tuple of argument values given to processCreationForm.

3.1 Approach

Definition 3.1 (Trace property). A trace property wrt two con-

trollers 𝐶𝐴 and 𝐶𝐵 is a predicate 𝜓 (𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 ) on the variables

𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 , where 𝑖 𝑓 represents the tuple of input arguments to𝐶𝐴 ,
𝑜 𝑓 is the tuple of return values (i.e., model attributes) from𝐶𝐴 , and
𝑖𝑙 and 𝑜𝑙 are analogously defined and pertain to 𝐶𝐵 .

Definition 3.2 (Trace satisfaction). A trace 𝑡 (i.e., a run of the

application) is said to satisfy a trace property 𝜓 (𝑖 𝑓 , 𝑜 𝑓 , 𝑖𝑙 , 𝑜𝑙 ) wrt
two given controllers 𝐶𝐴 and 𝐶𝐵 and wrt a given set of controllers

notBetween if the following condition holds: If 𝑡 invokes 𝐶𝐴 at some

point with actual arguments 𝑖𝑎 and receives actual return values 𝑜𝑎 ,
and 𝑡 invokes 𝐶𝐵 at some later point with actual arguments 𝑖𝑏 and

receives actual values 𝑜𝑏 , and 𝑡 does not visit any controller in the set

notBetween between the aforementioned visits to 𝐶𝐴 and 𝐶𝐵 , then

𝜓 (𝑖𝑎, 𝑜𝑎, 𝑖𝑏 , 𝑜𝑏 ) holds.

Our problem statement is: Given two controllers 𝐶𝐴 and 𝐶𝐵

and a set of controllers notBetween and a trace-property𝜓 , check if
all traces of the application satisfy𝜓 .

Note that we have generalized our problem statement, in that𝐶𝐴
and𝐶𝐵 need not be invoked back to back. This generalization gives

a stronger guarantee about the application, as it reasons across a

potentially infinite set of traces of unbounded lengths.

We use the notation 𝐶 (𝑑𝑖 , 𝑑𝑜 , 𝑖𝑎, 𝑜𝑎) to denote the summary of a
given controller 𝐶 as inferred by the approach of Section 2. 𝑑𝑖 and
𝑑𝑜 are variables in the summary that denote the incoming data base
state and outgoing data base state, respectively, while 𝑖𝑎 and 𝑜𝑎
denote the input arguments to and return values from the controller,

respectively.

The approach we propose for our problem is basically to check

the following two properties using any relational algebra solver.

∀𝑑1, 𝑑2, 𝑑3, 𝑖𝐴, 𝑖𝐵, 𝑜𝐴, 𝑜𝐵

𝐶𝐴 (𝑑1, 𝑑2, 𝑖𝐴, 𝑜𝐴) ∧𝐶𝐵 (𝑑2, 𝑑3, 𝑖𝐵, 𝑜𝐵)

⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵)

(A)

Intuitively, Property (A) above checks that𝜓 is satisfiedwhenever

controller 𝐶𝐵 is invoked directly after 𝐶𝐴 in any trace.

∀𝐶𝑋 ∉ notBetween

∀𝑑1, 𝑑2, 𝑑3, 𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵, 𝑑𝑋 , 𝑖𝑋 , 𝑜𝑋 , 𝑖4, 𝑜4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝐶𝐵 (𝑑1, 𝑑2, 𝑖𝐵, 𝑜𝐵) ⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖𝐵, 𝑜𝐵)

)
=⇒⎧⎪⎪⎨

⎪⎪⎩
𝐶𝑋 (𝑑1, 𝑑𝑋 , 𝑖𝑋 , 𝑜𝑋 )

∧

𝐶𝐵 (𝑑𝑋 , 𝑑3, 𝑖4, 𝑜4)

⎫⎪⎪⎬
⎪⎪⎭

⇒ 𝜓 (𝑖𝐴, 𝑜𝐴, 𝑖4, 𝑜4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(I)

Property (I) is actually a template for a set of properties, one for

every𝐶𝑋 ∉ notBetween. The property above basically checks that if
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a trace ends at 𝐶𝐵 and the trace satisfies𝜓 , then upon inserting an
invocation to 𝐶𝑋 just before 𝐶𝐵 the resultant trace also satisfies𝜓 .
That is, an invocation to𝐶𝑋 does not interfere with the satisfaction

of the property.

Intuitively, the approach solves our problem in a sound manner

for the following reason. Property (A) above is the base case, and

discharges correctness for traces that don’t visit any controller

between𝐶𝐴 and𝐶𝐵 . Property (I) is the inductive case, and basically

implies that any sequence of visits to controllers that are not in

notBetween can be inserted between𝐶𝐴 and𝐶𝐵 without interfering

with the property. A detailed proof of soundness is included in a

supplementary document other-details.pdf [7] associated with this

paper.

3.1.1 Illustration. If 𝐶𝑅 denotes the controller processCreation-

Form and 𝐶𝐹 denotes processFindForm, then the inferred sum-

maries would be as follows:

𝐶𝑅 (owRepo, owRepo’, (id, lastName, firstName, city), _) ≡

owRepo’ = save(owRepo, (id, lastName, firstName, city))

𝐶𝐹 (owRepo, owRepo, lastNameX, ret)) ≡

ret = 𝜎lastNameX=owRepo.lastName (owRepo)

Note, we use owRepo’ to refer to the outgoing state of this repos-

itory in order to treat the summary as a formula rather than as a

mapping.

The trace property given by the developer could be:

𝜓 ((id, lastName, firstName, city), _, lastNameX, ret) ≡

(lastName = lastNameX )⇒

(id, firstName, lastName, city) ∈ ret

The developer may indicate notBetween to contain all controllers

that they believe do not delete or update any ‘Owner’ entity in the

persistent state.

3.2 Capabilities and limitations

To our knowledge, our proposal above is the first one to use an

efficient, inductive approach to check properties of all traces in

a web application without bounding the lengths of traces. The

number of properties checked by the approach using calls to the

solver is linear in the number of controllers in the application.

Our approach is sound if the individual controller summaries

are sound; i.e., the approach will not declare a property that does

not hold as holding. The approach can suffer from false positives.

The fundamental cause is that the approach ignores the effects due

to views, which can restrict the order in which controllers may

be invoked, and can also restrict what data flows in as arguments

to a controller. Currently, the given property 𝜓 can refer to two

controllers 𝐶𝐴 and 𝐶𝐵 . An extension to more than two controllers

(but a fixed number of them) is conceptually straightforward, and

provided in our supplementary document other-details.pdf [7].

4 IMPLEMENTATION

We have implemented our controller summarization approach (de-

scribed in Section 2) as a prototype tool called ORMInfer. The tool

is implemented using the Soot bytecode analysis framework [26].

Our summary-construction code is based on the DBridge [5] code,

with many additional features added (which are summarized in

Section 6). The default flattening length bound in our tool (see

Section 2.1) is three (i.e., three underscores). We have identified a

subset of commonly used library functions, and translated them

directly into relational algebra during summary inference. Any

other library calls, if encountered, are treated, in the interest of

efficiency, as if they return arbitrary values.
One of the major new components in our implementation over

DBridge is the one that accepts pattern-based rewrite rules, and
applies them during analysis time. Our tool provides a simple cus-
tom DSL (domain specific language) for specifying these rewrite
rules. For instance, for a simplified version of the rewrite rule in
Figure 6(A), the corresponding rule in the DSL would be as follows:

(loop (bodyexpr (? <cond> (save <lvar> <tuple1>)

(save <lvar> <tuple2>))) <lvar> <coll> <itr>)

(union (- <lvar> <coll>)

(union (pi (select <coll> <cond>) <tuple1>)

(pi (select <coll> (= <cond> 0)) <tuple2>)))

The DSL uses a Lisp-like prefix notation, with keywords/operators

preceding operands. The first two lines above encode the LHS;

actually, the sole operand of bodyexpr keyword represents the LHS

pattern. The three names towards the end of the loop construct are

the names of the special meta variables introduced in Section 2.3

(these meta variable names are not fixed, and can be chosen by the

pattern specifier). The last three lines above represent the RHS of

the pattern. We include five specific rewrite rules with the tool, and

more can be added by users. We provide these five patterns in the

supplementary document other-details.pdf [7].

We currently use Alloy [18] as our backend tool for checking

properties. To this end, we have implemented a postpass that takes

a relational algebra summary of a controller (in memory) and trans-

lates it into an Alloy model. Since Alloy itself is based on relational

algebra, the translation is defined quite naturally. Every variable

in the domain of a controller’s summary (i.e., updated repositories,

assigned model attributes) becomes a “sig” in the Alloy model, and

the model contains facts that are translations of the relational alge-

bra expressions that the variables are mapped to. Assertions can

subsequently be added to the Alloy model by users. The assertions

can refer to the “sig”s mentioned above, and can be checked by the

Alloy tool. Currently, we abstract away any scalar arithmetic that

may be present in the summary and replace these subexpressions

with unconstrained values.

We have also implemented the trace-property checker described

in Section 3 as a toolMultiORM. This tool uses the relational algebra

summaries inferred by ORMInfer for the individual controllers to

emit the Property (A) and a set of Property (I)’s in Alloy form for

each given trace property.

5 EMPIRICAL EVALUATION

This section describes the initial empirical evaluations we have

performed using our prototype tools to evaluate their usefulness,

precision, and efficiency.

5.1 Benchmarks and Properties

We selected six open-source benchmarks for our evaluations. Key

statistics about the benchmarks are summarized in Table 1. Our

key criteria for choosing a benchmark were that it should use

Spring ORM features for data access, and should not use third-party

libraries or frameworks extensively. Many of the benchmarks in
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Benchmark Cont- Ent- Java Github URL

rollers ities LOC Stars

PetClinic 17 6 2762 4955 [14]

Spring Boot Blog 14 4 1204 131 [12]

Employee Directory 5 1 375 0 [10]

Imagine 22 4 3538 17 [11]

Spring Coffee Shop 6 3 372 7 [13]

Bookstore 24 12 2892 0 [9]

Table 1: Benchmark statistics

our list were created by the Spring community to illustrate the ideal

usage of Spring features to build realistic applications.

Our next step was to obtain a set of properties for evaluation.

Since the benchmarks come with almost no assertions in the code,

we approached volunteers we knew and asked them to understand

the benchmarks and provide us properties (or specifications) for us

to check. These volunteers were either PhD students or post-docs,

were experienced in programming, and had good familiarity with

notions such as property checking, first-order logic, relational alge-

bra, etc. However, they were unfamiliar with our work and with

the abilities of our approach. There were a total of four volunteers.

We requested each volunteer to supply properties for three bench-

marks, so each benchmark had properties from two volunteers. We

asked each volunteer to give us single-controller properties, e.g.,

similar to Property (1) in Section 1.1, as well as trace properties, e.g.,

similar to the ‘𝜓 ’ in Section 3.1.1, for all their benchmarks.
In order to make the work of the volunteers easier, we gave

them various resources, such as: (i) database schemas, to enable

them to write single-controller properties, (ii) hosted instances

of the applications, to enable them to use the applications and

come to understand them well, and (iii) a few sample properties

(of both types). The volunteers did not look at the source codes

of the benchmarks. An important guideline given to them was

to write properties based on expected behavior from the end-user

perspective, even if any bugs in the applications resulted in non-

expected behavior.

We asked the volunteers to give us each property in English

wording. We decided that asking them to formally state the proper-

ties might prove too burdensome and might disincentivize them. In

the remainder of this section we present the results from our evalu-

ations. We have made available a virtual machine image [7] that

contains our tools, scripts to run them, as well as inputs necessary

to reproduce all results given in this section.

5.2 Performance on single-controller

properties

We first went through the given single-controller properties to

translate them manually to Alloy assertions using our best judg-

ment. We had to “reject” 14 of the given properties – four because

they were too vague, five because they were trivially implied by

the constraints of the schema, and the remaining five for one-off

reasons that would need more space to explain. We also ignored

“repeat” properties – i.e., essentially duplicates of properties pro-

vided by other volunteers. What remained were 59 properties. We

Category Single Trace

True Neg. 44 28

True Pos. 2 7

False Pos. 1 7

Unexpressed 12 4

TOTAL: 59 46

Table 2: Usefulness and precision results

inferred summaries in Alloy form for the controllers to which these

properties pertained using ORMInfer, and then used the Alloy tool

to check if the summaries implied the properties. The results are

summarized in the “Single” column of Table 2.

A negative means the property was found to pass by the tool (i.e.,

the Alloy assertion did not fail), while a positive is the converse.

True means the tool’s decision agrees with our understanding of

the application’s behavior, while a False means the converse. “Unex-

pressed” means that although the summary (and its corresponding

Alloy model) were generated by the tool, the summary did not

contain certain elements that are necessary to translate the prop-

erty into an Alloy assertion. Note, we did not notice any cases of

unsoundness, and hence there is no row titled “False Negative”.

Overall, the performance of our approach is very good. 46/59

properties (78%) are in the True categories. Note that 44/59 proper-

ties hold. Two properties (which were on the same controller) actu-

ally did not hold: the volunteer expected this controller, which saved

a given ‘Employee’ entity into a database, to check for uniqueness

of the given email ID and non-emptyness of other fields. However,

it was not doing these checks.

There was only one false positive. It was due to constraints on

incoming arguments imposed by preceding views, which were not

encoded in the summaries. 7/12 of the “unexpressed” assertions

were not expressible because the summary had no information on

collection-typed fields which were themselves inside collections;

as discussed in Section 2.4, one needs nested relational algebra to

represent such summaries. The remaining 5 unexpressed properties

were due to other one-off reasons that cannot be explained due to

space constraints.

Our approach turns out to be very efficient. On four of the six

benchmarks, the maximum analysis time per controller, including

summary inference time and assertion checking time using Alloy,

was 3 seconds. With ‘Bookstore’ the maximum was 10 seconds and

average was 3 seconds, while with ‘Imagine’ the maximum time

was 104 seconds and average was 17 seconds. In our all runs of the

Alloy tool we used a universe of 20 elements.

5.3 Performance on trace properties

We followed a similar process as above, beginning with a manual

translation of the given English-language properties into Alloy as-

sertions. In this case, we had to “reject” 17 of the given properties.

The prevalent reason (accounting for 12/17 properties) was that

the property was referring to three different controllers that the

trace had to go through. The current limit of our tool is two con-

trollers (see Section 3.2), although in principle it is not difficult to

extend our tool to process 3-controller properties. After ignoring

“repeat” properties as well, there remained 46 properties that we
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handled using our tool. We used our MultiORM tool to generate

Alloy facts and assertions corresponding to the Property (A) and

the set of Property (I)’s for each given trace property, and checked

all these generated assertions using the Alloy tool. The results are

summarized in the “Trace” column of Table 2.

Overall, the performance of our approach is very good. 35/46

properties (76%) are in the True categories. Seven of the properties

failed as per the tool, and truly did not hold in our opinion. Our

manual analysis revealed that all these were actually due to the

result of oversight or misunderstanding by the volunteers. A preva-

lent reason was volunteers not putting all the controllers that can

indeed be expected to affect the return value from 𝐶𝐵 in the set

notBetween. Note that if a human subject expects a property to hold

and it actually does not hold and the tool reports it as not hold-

ing, then it really is a true positive irrespective of the fact that the

subject’s expectation was due to a limitation in their understanding.

There are relatively larger number of false positives (7/46) in

this part of our evaluation. The reasons are varied, and hard to

present in detail. Imprecise handling of certain complex Spring

idioms and library calls account for many of these cases. Two of

the “Unexpressed” cases were because a field of a result entity was

not present in the summary due to its dependence on arithmetic,

while two were due to the need for nested relational algebra.

The average time spent by Alloy to check a trace property was 5

seconds, while the maximum was 54 seconds.

5.4 Ability to find bugs

In this part of our study we wish to answer a natural question,

namely, whether a reasonably large set of assertions if written

apriori would be useful in detecting bugs, including bugs that may

get introduced in the future. Since our benchmarks did not possess

many bugs at all, we decided to seed mutations in our benchmarks.

This is a common practice by researchers who wish to evaluate bug-

detection approaches. For this, we used the automated production-

quality tool PIT (https://pitest.org).

Since this study involved some time-consuming effort, we fo-

cused our attention on two benchmarks, namely, PetClinic and

Bookstore. From our single-controller study (Section 5.2), we iden-

tified all 16 passing (i.e., True Negative) assertions, and applied PIT

on the controllers tested by these assertions as well as their callees.

PIT suggested a total of 33 separate mutations. We applied these

mutations one by one in the benchmark codes, and ran our tool

separately on each mutated version of the benchmark. 6 of the

mutations could not be handled by our tool, because there is cur-

rrently a limitation in the tool that prevents it from analyzing callee

methods that contain an explicit “return null” statement (these

statements got introduced due to the mutations). Of the 27 mutated

versions that were analyzed by our tool, 15 caused at least one of

the provided assertions to fail (i.e., 15 were “killed”).

Our takeaway is that a set of general-purpose assertions written

apriori without any regard to any specific bugs still has the potential

to find a significant proportion of bugs that could be introduced in

the future (based on the 56% kill rate in the evaluation above).

5.5 Comparison with a baseline

Finally, we wished to comparatively evaluate our approach with a

baseline tool. There are no comparable controller summarization

tools for Java that we are aware of. The closest matching family of

tools is symbolic execution tools, as they can automatically check

assertions. We decided to use the widely-used tool Java Pathfinder

(JPF), https://github.com/javapathfinder. JPF is not directly meant

to test Spring controllers, so we made some manual changes to

the benchmarks to make them amenable to analysis by JPF. The

main changes were to initialize the database tables with tuples

that contained symbolic values in order to enhance the coverage of

JPF, to call each controller like a normal method, and to write the

assertions in Java.

Since this study also needed significant manual effort, we decided

to focus only on the 16 assertions mentioned in Section 5.4 above.

JPF also found all 16 of these assertions to pass. It took 7 seconds

for one of the assertions, and around 1 second each for the rest. As

JPF explores execution traces in-depth, we expect it to also declare

as passing most of our false-positive assertions.

In other words, JPF is efficient and effective at checking asser-

tions, provided one puts in the manual work as discussed above.

However, the utility of our approach is not just in checking asser-

tions, but in producing general-purpose summaries of controllers

that are amenable to various different downstream analyses. For

instance, the trace-checking application was easily enabled using

our summaries. With JPF, only a finite number of traces, of bounded

lengths, can be checked.

5.6 Manual intervention during

experimentation

It is to be noted that in the studies reported above involving our

tool, we manually added some facts (i.e., constraints) to the Alloy

models of some of the controllers to improve precision. The con-

straints were on incoming arguments to the controllers, and were

meant to either encode knowledge about these arguments derived

from preceding views or controllers, or prune out paths within

the controller that throw exceptions on ill-formed arguments, etc.

Eighteen of the 44 true negative properties in the single-controller

experiments and nine of the 28 true negative properties in the trace

property experiments needed such manually added constraints. We

believe that in real usage, developers would be willing to add such

constraints in order to get maximum benefit from the tool.

A limitation of our currently implemented Alloy generation

postpass is that “sig”s and fields are emitted only for those parts of

the database schema that are actually referred to in the controller.

However, assertions sometimes need to refer to schema elements

that are not referred to in the controller. This limitation can be

removed from the tool in the future, but for now we manually add

such required information from the schema into the Alloy models

on demand.

Finally, for the trace-checking study (Section 5.3) alone, we mod-

ified the benchmarks to simplify two specific idioms that can ob-

struct the precision of our analysis: Replaced substring matching

using “LIKE” with equality in embedded SQL wherever it is present,

and replaced calls to Spring that return the currently logged in

username with a constant username.
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6 RELATEDWORK

The closest related work to our work is that by Bocić and Bultan [2].

Their approach actually infers a verification condition for checking

a property for a controller, but it can be seen as inferring a sum-

mary as well. Their summary is represented in FOL (First Order

Logic). They use FOL without scalars or arithmetic, so arithmetic

operations are abstracted away, as are all conditionals. This results

in imprecision. Our core summary inference approach (described

in Section 2) is based on relational algebra, and precisely represents

scalars, arithmetic, conditionals, as well as aggregations over loops.

Our current translation of the summaries to Alloy does result in ab-

stracting away of arithmetic, but non-arithmetic based conditionals

(such as the one in the running example in Figure 1) are retained,

and such conditionals did play a major role in enhancing precision

as per our evaluations.

The technique employed by their approach to summarize loops

is fully automated, and does not use patterns. However, their ap-

proach is efficient and terminates in practice only when there are

no loop-carried data flows [3]. With patterns we do not have this

restriction, and we are able to summarize precisely loops with loop-

carried flows, e.g., ones that add up values from a collection. Also,

our approach emits its summaries in Alloy, which is both human

readable and amenable to a variety of downstream analysis-based

applications.

It was not possible to directly apply their tool on our bench-

marks, as their work targets Ruby on Rails applications. They have

reported in their paper a significantly lower rate of false positives

and “unexpressed” properties than we do. However, it appears that

their properties were written by the authors themselves, whereas

our properties were provided by volunteers who were not involved

in our work. We studied the ten loops that occur across our six

benchmarks, and found that our approach infers precise summaries

for six of them.Whereas, upon a conceptual and manual application

of their approach on our ten loops, we found that their approach

would be able to infer a precise summary for only one of the ten

loops.

There exists a rich body of work on inferring SQL from imper-

ative code fragments using program analysis, primarily focusing

on loops that read from databases [4, 5, 15, 17, 28]. The objective

of these works is generally to optimize loops by replacing them

with SQL, which can be optimized by query optimizers. The closest

work from this body to our work is DBridge [5]. Their approach

performs bottom-up summarization of ASTs, and this aspect of

our implementation is in fact borrowed from their implementation.

They address a fixed set of looping idioms in code. We have gener-

alized this aspect of their work into a generic rewrite system for

loops based on developer specified patterns. The use of flattening to

address heap references is new in our approach, as is the handling

of various Spring-specific features. On the ten loops that we had

referred to earlier in this section, DBridge is able to infer precise

SQL for just two of them.

A key difference between the approaches mentioned above and

ours is our focus on representing all the effects of a controller,

including database updates and model attributes returned, into

the summary, and then using the summary for property-checking

purposes. A couple of recent approaches [19, 23] perform black-

box analysis of a querying code or query to infer equivalent SQL,

with the objective of program understanding, reconstruction, or

migration.

Logical methods have been used by researchers to reason about

database accessing applications. The work of Itzhaky et al. [16]

focuses on computing weakest preconditions in a simple loop-free

scripting language that allows embedded SQL. The work of Wang

et al. [27] is about proving equivalence of two database-accessing

programs written in an intermediate language.

A number of papers propose techniques for automated test-

case generation or symbolic execution to find bugs in database-

accessing applications [6, 20, 22, 25]. These approaches do not

produce summaries of code, but rather explore paths in the code in

an attempt to find bugs. The work of Athaiya et al. [1] is orthogonal

to ours, in that it focuses on inferring summaries of views rather

than controllers.

7 CONCLUSIONS AND FUTUREWORK

We presented in this paper a novel, pattern-based approach for sum-

marization of ORM controllers. We explored in-depth applications

of the inferred summaries to property checking for controllers. Our

implementation of our approach was very efficient, and showed

promising precision, with around 78% of the properties processed

with correct results. We not only checked properties of individual

controllers using our summaries, but also showed an application

or extension of these summaries to check all possible traces in the

application to see if they satisfy a specific kind of trace property.

Our work opens up several ideas for future work. We could

expand the set of controllers that get summarized precisely by in-

corporating nested relational algebra, and by incorporating features

such as “group by” and “having”. Constraints on incoming argu-

ments to controllers could be inferred from preceding views and

preceding controllers. Checking soundness (i.e., semantics preser-

vation) of a given rewrite rule could be a very interesting problem.

We could potentially make use of points-to analysis in order to

eliminate the potential for unsoundness in the current flattening

approach in the presence of aliasing. Finally, we suggest that other

applications of the inferred summaries be explored, such as auto-

mated comparison or merging of different versions of the same

controller’s code, automated test input generation, etc.
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