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Counting statistics of energy transport across squeezed thermal reservoirs
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A general formalism for computing the full counting statistics of energy exchanged between “N” squeezed
thermal photon reservoirs weakly coupled to a cavity with “M” photon modes is presented. The formalism is
based on the two-point measurement scheme and is applied to two simple special cases: the relaxation dynamics
of a single mode cavity in contact with a single squeezed thermal photon reservoir and the steady-state energy
transport between two squeezed thermal photon reservoirs coupled to a single cavity mode. Using analytical
results, it is found that the short time energy exchange statistics is significantly affected by noncommutativity
of the initial energy measurements with the reservoirs’ squeezed states, and may lead to negative probabilities
if not accounted for properly. Furthermore, it is found that for the single reservoir setup, generically there is no
transient or steady-state Jarzynski-Wójcik energy exchange fluctuation theorem. In contrast, for the two reservoir
cases, although there is no generic transient energy exchange fluctuation theorem, a steady-state energy exchange
fluctuation theorem with a nonuniversal affinity is found to be valid. Statistics of energy currents are further
discussed.
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I. INTRODUCTION

Fluctuations of observables in physical systems are ubiq-
uitous. These fluctuations, seemingly arbitrary, carry a great
amount of information related to the underlying physical pro-
cesses. For example, fluctuations of observables in systems
at equilibrium are known to be related to their responses to
weak perturbations through the fluctuation-dissipation the-
orem. These relations are valid only for systems close to
equilibrium [1–4]. The past three decades of research have
shown that the fluctuations in physical systems, even far from
equilibrium, satisfy universal relations, dubbed fluctuation
theorems [5–8]. These fluctuation theorems have been demon-
strated for various nonequilibrium systems, such as heat and
charge transport in nanometer-sized junctions such as nano-
electronic quantum dot junctions, cavity photonic systems,
and nanosized hybrid electro-optical, and electromechanical
systems.

The fluctuation theorems are microscopic expressions of
the second law of thermodynamics [5–8]. Although generic
fluctuation theorems for the stochastic entropy production
can be obtained for systems prepared in generic initial
states [5,7,9], relating the stochastic entropy production to the
fluctuating physical observables of the system is generally not
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obvious. For the traditionally considered transport setups, the
stochastic entropy production can be related to the fluctuating
particle and energy fluxes [5,10]. For these setups, the entropy
production fluctuation theorems, referred to as the transient
and steady-state energy and particle exchange fluctuation the-
orems, are traditionally derived based on the assumptions that
the system’s initial state is a canonical (local) equilibrium state
and the dynamics is microreversible [5]. To our knowledge,
not much work has been done in exploring the existence of
such energy and particle exchange fluctuation theorems for
systems specially prepared in noncanonical initial states. One
such special class of noncanonical states of recent interest has
been squeezed thermal states of photons. Squeezed thermal
states of bosonic reservoirs have been used to enhance the
efficiencies of heat engines [11]. It was shown that quantum
heat engines with squeezed reservoirs can have efficiencies
that surpass Carnot efficiency [12–14], a universal efficiency
bound for engines working with thermal reservoirs, and al-
low work extraction even from a single reservoir [15]. Later
works have established generalized Carnot-type bounds on
the efficiencies of engines with squeezed reservoirs [16–19].
More recently, a non-Abelian generalization of the standard
linear-response transport theory is proposed for studying the
transport of energy and squeezing fluxes through squeezed
reservoirs [20]. Some of these predictions have been realized
in a recent experiment [21].

Although fluctuation theorems for the entropy produc-
tion are derived for systems prepared in noncanonical initial
states [22,23], it is not clear whether the transient or
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steady-state energy and particle exchange fluctuation theo-
rems [5–9], which are useful in establishing various universal
identities for out-of-equilibrium systems [24–28], are valid
for systems prepared in such initial states. Motivated by these
questions, in this work we study the statistics of energy trans-
port and explore the question of the existence of transient and
steady-state energy exchange fluctuation theorem in a simple
model system consisting of “M” photon modes of a cavity
coupled to “N” squeezed thermal photon reservoirs. It is to be
noted that the phase-decohered state of a single bosonic mode
prepared in a squeezed thermal state can be described by an
effective temperature [16]. Such an effective temperature also
appears in the definition of the thermodynamic affinity for the
energy transport through a qubit system coupled to a squeezed
thermal reservoir, for which an energy exchange fluctuation
theorem may be valid [18]. It is not clear if the existence of
an energy exchange fluctuation theorem is a generic feature
or a result of a special qubit system, for which the populations
in the qubit eigenbasis are decoupled from the coherences.
As we discuss in this work, the qubit system indeed is a pos-
sible exception. It is also to be noted that even for canonical
reservoirs and with microreversible dynamics, new fluctuation
theorems, different from the traditional ones, may emerge; for
example, particle exchange fluctuation theorems for supercon-
ducting systems coupled to normal metals [29].

This work is organized as follows. After introducing the
model system in Sec. II, a description of the two-point mea-
surement protocol for energy exchange statistics and a formal
key result for the moment-generating function derived using
the weak-coupling master equation approach are presented in
Sec. III. These are then followed by the application of the
results obtained in Sec. III to two simple model systems in
Sec. IV. Finally, the conclusions are presented. Details of the
computations are relegated to the Appendix.

II. MODEL SYSTEM

The model system considered in this work consists of a
cavity having M photon modes, weakly coupled to N photon
reservoirs. The Hamiltonian describing the system is

H =
M∑

i, j=1

b†
SihSi jbS j︸ ︷︷ ︸
HS

+
N∑

α=1

∑
k∈α

εαkb†
αkbαk︸ ︷︷ ︸

Hα

+ i
N∑

α=1

∑
k∈α

M∑
i=1

gSiαk[b†
αkbSi − b†

Sibαk]

︸ ︷︷ ︸
HSα

. (1)

Here b†
Si (bSi) and b†

αk (bαk) are bosonic creation (annihi-
lation) operators for creating (annihilating) a photon in the
“ith” cavity mode and in the “kth” mode in the αth photonic
reservoir, respectively, and hSi j = εSiδi j . A schematic of the
model considered is displayed in Fig. 1.

Initially, at time t = 0, it is assumed that the cavity photon
modes and the photon reservoirs are not coupled and are
prepared in individual squeezed thermal states, i.e., the full
density matrix of the whole system at initial time is assumed

FIG. 1. Schematic of the model considered. The model consists
of an “M” mode cavity prepared in a squeezed thermal state coupled
to “N” reservoirs prepared in squeezed thermal states.

to be of the product (uncorrelated) form,

ρ (0) = ρS (0) ⊗N
α=1 ρα (0), (2)

where

ρα (0) = S†
α

e−βαHα

Tr[e−βαHα ]
Sα, (3)

for α = S, 1, . . . , N and Sα = e−(1/2)
∑

r∈α Zα [eiφα b†2
αr−e−iφα b2

αr ], be-
ing the squeezing operator [30–33]. For the sake of simplicity,
the squeezing amplitude, Zα � 0, and the phase, φα ∈
[−π,+π ), of each subsystem (i.e., system and reservoirs) are
assumed to be mode independent.

In order to study fluctuations of energy transfer from the
system into squeezed thermal reservoirs, in the next section,
we construct full distribution of energy transfer using the two-
point measurement scheme [5,6,34–36].

III. MOMENT-GENERATING FUNCTION

The cavity and the reservoirs prepared in uncorrelated
squeezed thermal states are coupled at time t = 0 (by turning
on HSα) leading to the flow of energy between the system
and the reservoirs. The joint probability distribution for the
amount of energy flowing, �e = (	e1 · · · 	eN )T , into
each of the reservoirs in time t , can be written as

P[�e, t ] = 1

(2π )N

∫
χ∈RN

dNχ Z[χ, t ]eiχT �e , (4)

where Z[χ, t ] is the moment-generating function, which
within the two-point measurement scheme [5,6,34–36] is ob-
tained as

Z[χ, t ] = 1

(2π )N

∫
λ∈RN

dNλ Z̃[χ,λ, t ], (5)

with

Z̃[χ,λ, t ] = TrS+B[e−(i/h̄)H [λ+χ/2]tρ (0)e(i/h̄)H [λ−χ/2]t ], (6)

where χ = (χ1 · · · χN )T keeps track of the energy
flow, �e, from the system into the reservoirs, and λ =
(λ1 · · · λN )T carries the information of the initial pro-
jective measurement of the reservoirs’ energies. The integral
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over λ in Eq. (5) is necessary because the initial density
matrices of the reservoirs do not commute with the initial
projective energy measurements on the reservoirs. This in-
tegral essentially projects out the initial coherences between
isolated reservoirs’ energy eigenstates which are destroyed
by the initial projective measurements on the reservoirs [37].
It is crucial to note that the above procedure of imple-

menting initial projections should be treated with caution,
as naively using Z̃[0,λ, t ] = 1 from Eq. (6) in Eq. (5)
leads to divergence. However, it can be made meaningful by
a physical limiting procedure discussed at the end of this
section.

The counting-field-dependent Hamiltonian in Eq. (6) is
defined as

H[χ] =
M∑

i, j=1

b†
SihSi jbS j +

N∑
α=1

∑
k∈α

εαkb†
αkbαk + i

N∑
α=1

∑
k∈α

M∑
i=1

gSiαk[e−iεαkχα b†
αkbSi − eiεαkχα b†

Sibαk]. (7)

Z̃[χ,λ, t ] defined in Eq. (6) can be recast as

Z̃[χ,λ, t ] = TrS

[
ρ�

SI (t )
]
, (8)

with the counting-field-dependent system’s reduced density matrix [ρ�
SI (t )], in the interaction picture, defined as

ρ�
SI (t ) = e(i/h̄)HSt TrB[e−(i/h̄)H [λ+χ/2]t ρ (0)e(i/h̄)H [λ−χ/2]t ]e−(i/h̄)HSt .

Here the subscripts S and I of ρ�
SI (t ) represent that ρ�

SI (t ) is the system’s reduced density matrix in the interaction picture, and
the superscript � represents its dependence on the counting fields (χ and λ). We note that if the counting fields (χ and λ) are set
to zero, ρ�

SI (t ) is just the system’s reduced density matrix, whose trace is unity.
By invoking Born-Markov-secular approximations (and also neglecting the Lamb shifts), a counting-field-dependent gener-

alized Lindblad quantum master equation can be derived for ρ�
SI (t ) [30,38–43]. This is given as

∂

∂t
ρ�

SI (t ) = −
N∑

α=1

BT
S

{
eihS[λα+χα/2]�ασy

[
Dα + i

2
σy

]
σyeihS[λα−χα/2]

}
ρ�

SI (t )BS

+ 1

2

N∑
α=1

BT
S

{
eihS[λα+χα/2]�ασy

[
Dα − i

2
σy

]
σyeihS[λα+χα/2]

}
BSρ

�
SI (t )

+ 1

2

N∑
α=1

ρ�
SI (t )BT

S

{
eihS [λα−χα/2]�ασy

[
Dα − i

2
σy

]
σyeihS [λα−χα/2]

}
BS, (9)

where BS = (b†
S1 · · · b†

SM bS1 · · · bSM )
T

is a vector
of creation and annhilation operators of the system, hS =
σz ⊗ hS , σx,y,z = σx,y,z ⊗ IM×M , with σx,y,z being Pauli matri-
ces and IM×M being the M × M identity matrix, �α = I ⊗ �α

(for brevity I2×2 is denoted by I ) with the system-reservoir
coupling matrix elements defined as

�α i j =
{ 2π

h̄

∑
k∈α gSiαkgS jαkδ(εαk − εSi ) if εSi = εS j

0 if εSi �= εS j,

and Dα , which carries the information of the reservoirs’
states, is defined as Dα = −iσye−iSασy [nα (hS ) + 1

2 I]eiSασy

(I = I2M×2M ) with Sα = Zασze
iσzφα , nα (x) = (eβαx − 1)−1.

The solution of Eq. (9), supplemented with the initial
condition ρ�

SI (t )|t=0 = ρS (0), when used in Eq. (8), gives
Z̃[χ,λ, t ].

We solve for ρ�
SI (t ) using the Wigner phase-space repre-

sentation, which is used to obtained an analytical expression
for Z̃[χ,λ, t ]. The final result of the detailed computations
presented in the Appendix is

Z̃[χ,λ, t ] = e(1/2)Tr[� ]t√
Det[U11(t ) + U12(t )DS]

. (10)

Here � = ∑N
α=1 �α , Uxy(t ) are 2M × 2M matrices defined

as the 2 × 2 blocks of U (t ), defined as

U (t ) =
(
U11(t ) U12(t )
U21(t ) U22(t )

)
= e−H�t , (11)

with the standard symplectic matrix defined as � = iσy ⊗
I2M×2M and the (2 × 2 block partitioned) complex symmetric
matrix H defined as

H=1

2

N∑
α=1

V [χα, λα]T [σx ⊗ �α+(I − σz ) ⊗ (�αDα )]V [χα, λα],

(12)

with

V [χ , λ] = eiσz⊗hSλ

{
I ⊗ cos

[
1

2
hSχ

]

− 1

4

(
5σx − 3iσy

)⊗
(

σy sin

[
1

2
hSχ

])}
. (13)

Finally, DS , the covariance matrix of the Wigner function cor-
responding to the system’s initial squeezed thermal state [44],
is defined as DS = −iσye−iSSσy [nS (hS ) + 1

2 I]eiSSσy , with SS =
ZSσze

iσzφS and nS (x) = (eβSx − 1)−1.
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The above expression for Z̃[χ,λ, t ], Eq. (10), can be
considered as the dissipative generalization of the Levitov-
Lesovik-Klich formula [45,46].

We note that in Ref. ([47]), a method, similar in spirit
as here, was developed for computing long-time statistics of
fluxes through quantum harmonic networks. It is to be em-
phasized that the presented approach allows one to compute
statistics at all times. Furthermore, the approach is based on
the microscopic master equation and the two-point measure-
ment scheme applied to the measurements of the reservoirs’
energies, whereas Ref. [47] is based on the counting of
quantum jumps [48] of a system described by a generic phe-
nomenological master equation. For the master equations of
the type considered in this work, Eq. (14) [a special case of
Eq. (9)] with the counting fields set to zero, if quantum jump
unraveling is performed in the generalized squeezed basis, as
is done in Ref. [23], each quantum jump can be interpreted
as leading to a quanta of entropy flowing into or out of
the reservoirs. However, it is not clear how to unravel such
master equations, where the populations and coherences in
the system’s energy eigenstate basis are coupled into quantum
trajectories for studying statistics of energy exchange with the
reservoirs.

It is important to note that for χ = 0, U12(t ) [defined in
Eq. (11)] reduces to a 2M × 2M null matrix and U11(t ) =
e(1/2)[I ⊗� ]t , and thus Eq. (10) gives Z̃[0,λ, t ] = 1. This indi-
cates that Z[0, t ] [defined in Eq. (5)] is a divergent quantity.
This divergence of Z[0, t ] is not an artifact of the Markov
approximation used here. As already pointed out, it can be
seen from the initial definition of Z[χ, t ] [Eq. (5)] by using
Z̃[0,λ, t ] = 1. Furthermore, it turns out that for the sim-

ple models discussed in the next section, Z[χ, t ], for χ �=
0, itself diverges as a result of the Markov approximation
used here [49]. For it to represent a meaningful moment-
generating function, we have to renormalize it, so that the
resultant probability function is normalized and meaningful.
This renormalization can be achieved by dividing the value
of Z[χ, t ] by Z[0, t ]. Since both these quantities diverge,
this renormalization is performed after regularizing Z[χ, t ]
by introducing a cutoff on the λ integral and taking the cutoff
to infinity after division. This introduced cutoff can be thought
of as arising physically, by working with reservoirs with mode
frequencies that are equally spaced with a small spacing (ε̄)
(for which initial projection can be implemented by λ integrals
with an ultraviolet cutoff |λk| � π

ε̄
), which is sent to zero

eventually. This renormalization is done case by case in the
following.

In the next section, we apply the general results obtained
in this section to two special cases, both with the single cavity
mode coupled either to a single reservoir or to two reservoirs.

IV. APPLICATION TO SIMPLE MODELS

We now specialize to the case of a cavity with a single pho-
ton mode, i.e., we apply the results presented in the previous
section to the case M = 1.

For this case hS , �α , and IM×M become scalars and hS , SS ,
DS , Sα , and Dα become 2 × 2 matrices, U (t ) and � reduce to
4 × 4 matrices and, hence, Uxy(t ) are 2 × 2 matrices.

Moreover, the counting-field-dependent Lindblad master
equation can be written as

∂

∂t
ρ�

SI (t ) =
∑

α=1,2

�α

2

{
Nα

[
2eiχαεb†ρ�

SI (t )b − {bb†, ρ�
SI (t )}]+ (1 + Nα )

[
2e−iχαεbρ�

SI (t )b† − {b†b, ρ�
SI (t )}]

−	αe−i(2λαε−φα )
[
2bρ�

SI (t )b − e−iχαεbbρ�
SI (t ) − eiχαερ�

SI (t )bb
]

− 	αei(2λαε−φα )
[
2b†ρ�

SI (t )b† − eiχαεb†b†ρ�
SI (t ) − e−iχαερ�

SI (t )b†b†
]}

, (14)

with Nα = cosh(2Zα )(nα + 1
2 ) − 1

2 and 	α = sinh(2Zα )(nα + 1
2 ) with nα = (eβαε − 1)−1 (α = 1, 2, and S). Further, b ≡ bS1

and ε1 ≡ ε.
Below we consider two simple cases: the first one consisting of only one photon reservoir, while the second case is with two

photon reservoirs.

A. Single mode coupled to a single reservoir

For a single photon mode cavity coupled to a single squeezed thermal photon reservoir, i.e., the case N = 1 and M = 1, the
explicit expression for the auxiliary-generating function, Z̃[χ1, λ1, t], for the energy flow from the cavity into the reservoir can
be obtained as [a more formal expression is given in Eqs. (A21) and (A22) of the Appendix]

Z̃[χ1, λ1, t] = e�1t /2

{∏
x=±

(
cosh

[
�1t

2

]
+ sinh

[
�1t

2

]
�S

x [χ1]

)
+ 4[1 − e−�1t ]	1	S[(eiεχ1 − 1)

+(e−iεχ1 − 1)] sin2

[
ελ1 + φ1 − φS

2

]}−1/2

, (15)

with

�S
±[χ1] = 1 − 2{[N1 ± 	1][(1 + NS ) ± 	S](eiεχ1 − 1) + [(1 + N1) ± 	1][NS ± 	S](e−iεχ1 − 1)}. (16)
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The moment-generating function for energy released from
the system into the reservoir in time t is then given by inte-
grating over λ1 [defined in Eq. (5)] as

Z[χ1, t] = 1

2π

∫ +∞

−∞
dλ1Z̃[χ1, λ1, t]. (17)

Since Z̃[χ1, λ1, t] in Eq. (15) is a periodic function of λ1 with
period 2π

ε
, i.e., Z̃[χ1, λ1 + 2π

ε
, t] = Z̃[χ1, λ1, t], Z[χ1, t] be-

comes divergent. To make sense of it as a moment-generating
function, we have to renormalize it. As discussed at the end
of Sec. III, this is done by introducing a cutoff, |λ1| � π

ε̄
, and

renormalizing Z[χ1, t] by Z[0, t] and taking the limit ε̄ → 0
as

Z[χ1, t] = lim
ε̄→0

1
2π

∫ +π/ε̄

−π/ε̄
dλ1Z̃[χ1, λ1, t]

1
2π

∫ +π/ε̄

−π/ε̄
dλ1Z̃[0, λ1, t]

= ε

2π

∫ +π/ε

−π/ε

dλ1Z̃[χ1, λ1, t]. (18)

To arrive at the second equality, we have used the periodic
property of Z̃[χ1, λ1, t] and Z̃[0, λ1, t] = 1. The λ1 inte-
gral in the second equality can be analytically performed for
Z̃[χ1, λ1, t] given in Eq. (15). This gives Z[χ1, t] in terms of
complete elliptic function of the first kind with the argument
which is a complicated function of χ1. Since this expression
is not amenable to further analysis, we do not provide it here.
However, we note that, for the case when the initial states
of system and reservoir are thermal, i.e., Z1 = ZS = 0, this
expression for Z[χ1, t] agrees with the expressions previously
reported in the literature [42,50,51] and the probability dis-
tribution function for the energy flow from the system into
the reservoir satisfies the Jarzynski-Wójcik energy exchange
fluctuation theorem [52].

Using Z[χ1, t], the cumulants of the energy flow from the
system into the reservoir can be obtained. The average energy
flow in time t is given as

〈	e1〉 = (1 − e−�1t )[NS − N1]. (19)

When the squeezing of the system and the reservoir are absent
(Z1 = ZS = 0), i.e., the system’s initial state and the reser-
voir’s state are thermal states, then 〈	e1〉 = (1 − e−�1t )[nS −
n1]. Comparing Eq. (19) with this allows us to define an
effective (inverse) temperature in the presence of squeezing
as

β̃α = 1

ε
ln
(
N−1

α + 1
)
. (20)

We note that the above effective temperature coincides with
the effective temperature for a phase-averaged state of a single
bosonic mode prepared in a squeezed thermal state [16]. As
Nα � nα and ln(x) is a monotonically increasing function,
β̃−1

α � β−1
α . Hence, it is tempting to attribute the effect of

squeezing to the enhancement of the effective temperature of
the reservoir. Using Eq. (20), the energy flow in the presence
of squeezing can be expressed as 〈	e1〉 = (1 − e−�1t )[ñS −
ñ1] with ñα = (eβ̃αε − 1)−1.

If the system’s and reservoir’s states could be described by
thermal states (after initial energy projective measurement)

with effective temperatures, then the energy flow from the
system into the reservoir would satisfy the Jarzynski-Wójcik
transient energy exchange fluctuation theorem in terms of
the same effective temperatures. However, it turns out from
the following discussion that the fluctuation theorem for the
energy flow is absent. Although the average energy flow can
be described in terms of effective temperatures, the same is not
true for the fluctuations. For instance, the second cumulant of
the energy flow in time t is given by〈
	e2

1

〉 − 〈	e1〉2 = (1 − e−�1t )2[(NS − N1)2 + 	2
S + 	2

1

]
+ (1 − e−�1t )[NS (1+ N1)+ N1(1+ NS )],

(21)

and cannot be expressed in terms of the effective tem-
perature in the form 〈	e2

1〉 − 〈	e1〉2 = (1 − e−�1t )2[(ñS −
ñ1)2] + (1 − e−�1t )[ñS (1 + ñ1) + ñ1(1 + ñS )], as obtained for
the thermal case. This should be contrasted with a qubit cou-
pled to a squeezed thermal reservoir, where it is possible to
define an effective temperature such that the fluctuations of
energy flow are of the same form as that of the thermal case
and the energy exchange fluctuation theorem holds with an
effective temperature [18].

Note that, in the long-time limit (�1t → ∞), as the system
reaches the same state as that of the reservoir, the energy
ceases to flow from the system into the reservoir and hence
the energy flow and its fluctuations saturate to finite values.
As a consequence, Z̃[χ1, λ1, t], given in Eq. (15), becomes
independent of time, indicating that the statistics of the energy
flowing from the system into the reservoir becomes inde-
pendent of time. This is a generic feature of a finite system
coupled to a single reservoir.

Owing to the periodicity, Z[χ1 + 2π
ε

, t] = Z[χ1, t]
[Eq. (15) along with Eq. (18)], the probability function for the
energy flow from system into the reservoir acquires a Dirac
comb structure, i.e., P[	e1, t] = ∑

n∈Z p[n, t]δ[	e1 − nε ],
with p[n, t] = 1

2π

∫ +π

−π
dχ1Z[χ1

ε
, t]eiχ1n . p[n, t] is the

probability of n quanta of energy transferred from the
system to the reservoir.

The λ1 dependence in Z̃[χ1, λ1, t], which is integrated out
to obtain the moment-generating function in Eq. (18), contains
information of the initial energy projective measurement on
the reservoir. This λ1 integral has two important roles. Firstly,
this makes Z[χ1, t] independent of the initial reservoir’s and
system’s squeezing phases, φ1 and φS , respectively. Hence
the energy flow statistics is independent of these phases. This
can be seen by performing a change of variables, λ1 → λ1 −
( φ1−φS

2ε
), in the λ1 integral appearing in Eq. (18) along with

the expression for Z̃[χ1, λ1, t] given in Eq. (15). Secondly,
the λ1 integral is crucial for probability function p[n, t] to be
meaningful. If we set λ1 = 0 to obtain Z[χ1, t] = Z̃[χ1, 0, t],
which is equivalent to the assumption that the initial energy
projection commutes with the initial state of the reservoir,
which is not the case here, we observe that the resulting
moment-generating function Z[χ1, t] may lead to negative
probabilities, p[n, t], for certain events (n values). This is
evident from the plots shown in the upper panel (and the inset)
of Fig. 2, where negative probabilities are clearly evident
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FIG. 2. Probability distribution function for the number of
quanta of energy released from the system into the reservoir in
time t for a range of �1t . The plot in the upper panel is obtained
using Z̃[χ1, 0, t] as the moment-generating function (i.e., ignoring
the noncommutativity of the initial projection and the initial reser-
voir’s state) with the inset showing the region where p[n, t] becomes
negative. The plot in the lower panel is obtained using Z[χ1, t]
(i.e., properly accounting for the initial projection) with the plots in
the inset displaying ln([p[n, t]/p[−n, t]) vs n. Black curves in both
plots and their insets correspond to �1t → ∞. Parameters used are
β1ε = 10.0, βSε = 20.0, Z1 = 2.0, ZS = 1.0, and φ1 − φS = π .

for short timescales. The weight of negative probabilities de-
creases as time increases. In the long-time limit (�1t → ∞),
it can be shown that Z[χ1, t] = Z̃[χ1, λ1, t] = Z̃[χ1, 0, t],
making the long-time statistics of energy flow independent of
the initial energy projection, as it should be since the system
reaches a well-defined state, the same as that of the reservoir.
More precisely, the initial noncommutativity of the reservoir’s
density matrix with energy projective measurements does not
affect the long-time statistics. The figure in the lower panel
uses the proper moment-generating function, Z[χ1, t], ob-
tained by accounting for the initial energy projection of the
reservoir and gives the correct positive semidefinite distribu-
tion function p[n, t] for all times. The negative probabilities
observed previously in the statistics of charge flow between
superconductors [53–55] were attributed to the interference of
transition amplitudes corresponding to different realizations
(quantum trajectories) leading to the same energy and or par-
ticle change of the reservoir, but starting in different initial
states [56–62]. These negative probabilities were also recently
discussed in the works attempting to go beyond the standard
two-point measurement scheme used here [63–65]. Finally, it
is important to note that for the case when either the system’s
initial state or the reservoir’s state is not squeezed, i.e., ZS = 0

or Z1 = 0, Z̃[χ1, λ1, t] given in Eq. (15) becomes independent
of λ1. Hence for this case, as expected, the statistics of energy
flow is not affected by the noncommutative nature of the reser-
voir’s density matrix with the initial projective measurement
of the reservoir’s energy.

The inset in the lower panel of Fig. 2 shows a nonlinear
relationship between ln(p[+n, t]/p[−n, t]) and n, indicating
that the stochastic energy flow generically does not satisfy the
Jarzynski-Wójcik energy exchange fluctuation theorem [52]
both at finite times as well as in the �1t → ∞ limit. However,
for a special choice of parameters,

Z1 = ln[1 + 2n1]

2
and ZS = ln[1 + 2nS]

2
, (22)

for which 	1 = N1 and 	S = NS , the long-time (�1t →
∞) moment-generating function [obtained using Eq. (15) in
Eq. (18)],

Z[χ1,∞] = {1 − 4 × [N1(1 + 2NS )(eiεχ1 − 1)

+ (1 + 2N1)NS (e−iεχ1 − 1)]}−1/2, (23)

exhibits the Jarzynski-Wójcik energy exchange fluctuation
theorem, p[n,∞]

p[−n,∞] = eα1Sεn, as a result of the Gallavotti-
Cohen symmetry, Z[−χ1 − iα1S,∞] = Z[χ1,∞] [5], with
the affinity α1S = 1

ε
ln NS (1+2N1 )

(1+2NS )N1
.

B. Single mode coupled to two reservoirs

Here, we consider a system with a single photon mode
coupled to two squeezed thermal photon reservoirs, i.e., we
discuss the M = 1 and N = 2 case. Unlike the N = 1 case,
this allows one to study the fluctuations of energy flux in the
nonequilibrium steady state.

Explicit expression for the auxiliary-generating function
[Z̃ [χ,λ, t] with χ = (χ1 χ2)T and λ = (λ1 λ2)T ] for the
energy flow into two reservoirs at arbitrary times (transients
and steady state) are given in Eqs. (A23)–(A27) of the Ap-
pendix. Similar to the last section, Z̃ [χ,λ, t] is a periodic
function of both λ1 and λ2 with period 2π

ε
. Hence the joint

moment-generating function Z[χ, t] = ∫
λ∈R2

d2λ

(2π )2 Z̃ [χ,λ, t]
diverges. We renormalize Z[χ, t] in a similar way as in the
previous section (see Appendix for details).

The moment-generating function Z[χ, t], as a result of
initial projective measurement (λ integrals), becomes inde-
pendent of squeezing phases of the initial states of the system
(φS) and both the reservoirs (φ1 and φ2) (see Appendix for
details).

For further analysis, it is convenient to consider the joint
statistics of 	es = (	e1 + 	e2) and 	er = 1

2 (	e1 − 	e2),
which, in the weak system-reservoir coupling limit considered
in this work, can be interpreted as the net energy flow out
of the system (	es) and the net energy flow (	er) between
the two reservoirs, respectively. The joint moment-generating
function for these stochastic quantities can be obtained as

Z̄[χr, χs, t] = Z[χ, t]|χ1/2→χs±χr/2 , where χr and χs are pa-
rameters conjugate to 	er and 	es, respectively.

The marginal moment-generating function corresponding
to 	es, Zs[χs, t] = Z̄[0, χs, t], becomes independent of time
in t → 0 limit, indicating that the fluctuations of energy flow
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out of the system saturate with time as the system reaches
steady state (see Appendix for details).

From here onwards, we confine ourselves to the steady
state and only discuss the statistics of the energy flow from
the reservoir “2” into the reservoir “1” (	er), i.e., we only
analyze the marginal distribution function P[	er, t] in the
t → ∞ limit.

In the steady-state limit, the λ integrals implementing
initial energy projective measurements on reservoirs can
be performed using the saddle-point approximation. This is
sketched in the Appendix. This gives the steady-state scaled
cumulant-generating function for the energy flow from the
reservoir “2” into the reservoir “1” as

F[χr] = lim
t→∞

lnZr[χr, t]

t
= �1 + �2

2

∑
x=±

[
1 − �12

x [χr]

2

]
, (24)

with

�12
± [χr] =

√
1 − T {[N1 ± 	1][(1 + N2) ± 	2](eiεχr − 1) + [(1 + N1) ± 	1][N2 ± 	2](e−iεχr − 1)}, (25)

where T = 4�1�2
(�1+�2 )2 .

The statistics of energy flux flowing between the two
reservoirs can be computed using the above scaled-cumulant-
generating function. The steady-state average flux is obtained
as limt→∞ 〈	er〉

t = �1�2
�1+�2

[N2 − N1]. For N1 = N2 = N, the
energy flux between the reservoirs vanishes; however, it
turns out that the probability function is not symmet-
ric (i.e., skewed) around the origin (n = 0), as the third

cumulant, limt→∞
〈	e3

r 〉c

t = 6 �2
1�2

2
(�1+�2 )3 [1 + 2N][	2

2 − 	2
1], is

nonzero. Hence according to the two-point measurement
scheme analysis, two squeezed thermal reservoirs can be
considered at mutual equilibrium (fluctuating energy flow is
time-reversal symmetric, i.e., energy flow between the two
systems in both the directions is equally likely) if their temper-
atures and squeezing amplitudes are the same, although their
phases may be different.

The marginal distribution function for the energy
flow between reservoirs is then given as P[	er, t] =∫ +∞
−∞

dχr

2π
eF [χr ]t+iχr	er = ∑

n∈Z p[n, t]δ[	er − nε], with

p[n, t] = 1
2π

∫ +π

−π
dχreF [χr/ε]t +iχr n . The second equality

in the above equation is a result of the periodicity of
F[χr + 2π

ε
] = F[χr].

In the long-time limit, we can define a large-deviation

rate function J[ n
t ] = − limt→∞

ln p[n,t]
t , such that p[n, t]

t→∞≈
e−J[ n

t ]t [5,66].
The marginal probability function and the correspond-

ing rate function for the energy flow between reservoirs in
the long-time limit are plotted in the upper and the lower
panels of Fig. 3, respectively. The insets of these plots
show, respectively, ln p[+n,t]

p[−n,t] vs n and J[− n
t ] − J[ n

t ] vs n
t ,

which are both linear functions indicating the presence of
the Gallavotti-Cohen symmetry, F[−χr − iα12] = F[χr], and
hence the steady-state fluctuation theorem p[n,∞]

p[−n,∞] = eα12εn for
the marginal probability (p[n, t]). Although we were not able
to identify an analytical form for the thermodynamic affinity
(α12) for a general parameter set, due to the complexity of
the steady-state cumulant-generating function, Eq. (24) along
with Eq. (25), our extensive numerical computations indicate
the existence of a well-defined thermodynamic affinity and a
steady-state energy exchange fluctuation theorem. However,
we note that, for a special set of parameters, Z1 = ln[1+2n1]

2

and Z2 = ln[1+2n2]
2 , such that 	1 = N1 and 	2 = N2 (hence

�−[χr] = 1), an analytical expression for the thermodynamic
affinity, α12 = 1

ε
ln N2(1+2N1 )

(1+2N2 )N1
, can be identified. Our numer-

ical calculations for a general parameter set indicate that
the affinity (α12) is generically not a universal function of
the reservoir parameters (temperatures and squeezing ampli-

FIG. 3. Upper panel: Marginal probability distribution func-
tion (p[n, t]) and (lower panel) the corresponding large deviation
rate function (J[n/t]) for the number of quanta of energy ex-
changed between the reservoirs for a range of Z2 values in steady
state. Parameters used are (

�1+�2

2 )t = 100.0, T = 1, β1ε = β2ε =
100.0, and Z1 = 1.0. Inset (upper panel) shows the linearity of
ln(p[+n, t]/p[−n, t]) vs n and (lower panel) the linearity of J[− n

t ] −
J[ n

t ] vs n
t (t ≡ [(�1 + �2)/2]t).
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tudes). Although it is independent of the system-reservoir
couplings, it depends on the cavity mode frequency, which is
also evident from the above analytically identified expression
for the affinity for the special set of parameters.

Thus unlike in the single reservoir case, where the
long-time energy exchange (Jarzynski-Wójcik) fluctuation
theorem, for the energy flow between the system and the
reservoir, was recovered only for a special set of parame-
ters, in the two-reservoir case, our numerical results indicate
that the steady-state energy exchange fluctuation theorem
(with a nonuniversal affinity), for the steady-state energy flow
between the two reservoirs, is satisfied for all numerically
explored parameter values, although explicit analytical ex-
pression for thermodynamic affinity could only be identified
for a special set of parameters.

V. CONCLUSION

A formalism for the analytical computation of the full
counting statistics of energy exchanged between a cavity
weakly coupled to an arbitrary number of squeezed thermal
photon reservoirs within the two-point measurement scheme
is developed. The crucial result of the formalism is Eq. (10)
for the moment-generating function for the energy exchange,
which can be considered as the dissipative generalization of
the Levitov-Lesovik-Klich formula. This formula is applied
to two model systems: a single mode cavity in contact with a
single squeezed thermal reservoir and two squeezed thermal
reservoirs. It is found that the careful treatment of the initial
projective measurement is necessary for getting physically
meaningful probabilities for energy transport statistics at short
times, although irrelevant for long-time scales. Generically,
the full distribution function for the energy transfers is found
not to satisfy transient energy exchange fluctuation theorems.

For the single-reservoir case, a special parameter regime given
by Eq. (22) is identified for which a steady-state Jarzynski-
Wójcik energy exchange fluctuation theorem, for the energy
flow from the system into the reservoir, is satisfied. Contrary
to this, for the two-reservoir case, numerical results indicate
that the steady-state energy exchange fluctuation theorem,
for the steady-state energy flow between the two reservoirs,
with a nonuniversal affinity is valid always. Furthermore, the
analysis of the cumulants indicates that it is generically not
possible to describe squeezed thermal reservoirs with an effec-
tive temperature, and two-squeezed thermal reservoirs cannot
be considered as at equilibrium (fluctuating energy flow is
time-reversal symmetric, i.e., energy flow between the two
systems in both the directions is equally likely) even if there
is no average energy flux between them and can be consid-
ered at equilibrium only if their temperatures and squeezing
amplitudes are the same.
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APPENDIX

1. Derivation of Eq. (10) using Wigner phase-space representation

Instead of solving Eq. (9) for ρ�
SI (t ), we find it convenient to solve for the counting-field-dependent system’s Wigner function,

P�
SI [ϒ, t] [ϒ = (γ ∗

1 · · · γ ∗
M γ1 · · · γM )T ], in the interaction picture [30,39,43,67–71]. This is defined as the Fourier

transform of the Weyl (symmetric ordered moment) generating function [30,39,43,67–70] for the system,

P�
SI [ϒ, t] = 1

π2M

∫
D[W] TrS

[
eiW†BS ρ�

SI (t )
]︸ ︷︷ ︸

Weyl generating function

e−iW†ϒ , (A1)

where W = (w∗
1 · · · w∗

M w1 · · · wM )T and
∫
D[W ] = ∫ +∞

−∞ d[Re(w1)
∫ +∞
−∞ d[Im(w1)] · · · ∫ +∞

−∞ d[Re(wM )
∫ +∞
−∞ d

[Im(wM )].
Z̃[χ,λ, t ] defined in Eq. (8) is then expressed in terms of P�

SI [ϒ, t] as

Z̃[χ,λ, t ] =
∫
D[ϒ] P�

SI [ϒ, t], (A2)

where the shorthand notation
∫
D[ϒ] = ∫ +∞

−∞ d[Re(γ1)
∫ +∞
−∞ d[Im(γ1)] · · · ∫ +∞

−∞ d[Re(γM )
∫ +∞
−∞ d[Im(γM )] is introduced.

Using the counting-field-dependent Lindblad quantum master equation given in Eq. (9), an evolution equation for the
counting-field-dependent system’s Wigner function, P�

SI [ϒ, t], is obtained as [30,39,43,71]

∂

∂t
P�

SI [ϒ, t] = 1

2

[(
ϒ

∇ϒ

)T

H

(
ϒ

∇ϒ

)
+ Tr[�]

]
P�

SI [ϒ, t], (A3)

where ∇ϒ = ( ∂
∂γ ∗

1
· · · ∂

∂γ ∗
M

∂
∂γ1

· · · ∂
∂γM

)
T

; � and H are defined below Eq. (10).
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The parabolic partial differential equation, Eq. (A3), can be analytically solved. A brief description of two methods that
can be used to solve this class of equations is given in the following section. It is to be noted that similar types of partial
differential equations also appeared in the studies of heat current fluctuations through classical harmonic chains [72,73] and
work statistics of driven classical harmonic oscillators subjected to thermal noise [74,75]. Also, a related partial differential
equation is encountered in the study of the work statistics of a degenerate parametric amplification process [76].

The solution of Eq. (A3), obtained in the following section, is given in terms of a Green’s function as

P�
SI [ϒ, t] =

∫
D[ϒ′]G[ϒ, t |ϒ′, 0]PS[ϒ′, 0], (A4)

with the Green’s function given by

G[ϒ, t |ϒ′, 0] = 1

πM

e(1/2)Tr[� ]t√
Det[U21(t )σx]

e−(1/2){ϒT [U12(t )U22(t )−1]ϒ+[ϒ−U22(t )ϒ′]T [U21(t )U22(t )T ]−1
[ϒ−U22(t )ϒ′]}. (A5)

Uxy(t ) and � are defined in and below Eq. (11), respectively.
The Wigner function corresponding to the system’s initial state, the squeezed thermal state [44], is given as

PS[ϒ, 0] = 1

πM

1√
Det[DSσx]

e−(1/2)ϒT DS
−1ϒ , (A6)

with DS defined below Eq. (13). Using this in Eq. (A4) and performing ϒ′ Gaussian integral along with the use of identities
derived from the symplectic property of U (t ), i.e., U (t )T �U (t ) = �, an explicit form of the time-dependent Wigner function
is obtained. This is given as

P�
SI [ϒ, t] = 1

πM

e(1/2)Tr[� ]t e−(1/2)ϒT {[U11(t )+U12(t )DS][U21(t )+U22(t )DS]−1}ϒ√
Det[[U21(t ) + U22(t )DS]σx]

. (A7)

Using this in Eq. (A2), and performing the Gaussian ϒ integral gives Eq. (10).

2. Counting-field-independent Wigner function of the system

The Wigner function of the system, in the interaction picture, for the case χ = λ = 0, i.e., in the absence of two-point
measurements, is given as

P 0
SI [ϒ, t] = 1

πM

1√
Det[DS (t )σx]

e−(1/2)ϒT DS (t )ϒ , (A8)

with

DS (t ) = e−(1/2)[
∑N

α=1 �α]t DSe−(1/2)[
∑N

α=1 �α]t +
∫ t

0
ds e−(1/2)[

∑N
α=1 �α]s

[
N∑

α=1

�αDα

]
e−(1/2)[

∑N
α=1 �α]s. (A9)

3. Methods for solving PDEs in Eq. (A3)

In this section, we provide a brief sketch of two methods to solve the parabolic partial differential equation of the form in
Eq. (A3).

a. Method I

In this section we sketch a way to solve parabolic partial differential equations of the form

∂

∂t
P�

SI [ϒ, t] = 1

2

[(
ϒ

∇ϒ

)T

H

(
ϒ

∇ϒ

)
+ Tr[�]

]
P�

SI [ϒ, t], (A10)

with the initial condition P�
SI [ϒ, t]|t=0 = PS[ϒ, 0]. Here ϒ = (γ ∗

1 · · · γ ∗
M γ1 · · · γM )T , ∇ϒ =

( ∂
∂γ ∗

1
· · · ∂

∂γ ∗
M

∂
∂γ1

· · · ∂
∂γM

)
T

, and H = (
H11 H12
H21 H22

) is a 2 × 2 block partitioned 4M × 4M complex symmetric

matrix independent of ϒ and t . If H11 = O2M×2M , the above equation is of the standard Ornstein-Uhlenbeck form, whose
solution can be found in the Fourier domain by using the method of characteristics [43,77–80]. For H11 �= O2M×2M , the
quadratic term in the above equation can be eliminated using the transformation [81]

P�
SI [ϒ, t] = e(1/2)[ϒT R(t )ϒ+Tr[� ]t]P̄�

SI [ϒ, t], (A11)
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where without loss of generality, we can assume RT (t ) = R(t ) and the requirement that R(t ) satisfies the following Riccati
matrix differential equation [82–88],

d

dt
R(t ) = R(t )H22R(t ) + H12R(t ) + R(t )H21 + H11, (A12)

with the initial condition R(t )|t=0 = O2M×2M . The solution of this Riccati matrix differential equation is given as

R(t ) = −U12(t )U22(t )−1, (A13)

where Uxy(t ) are 2M × 2M matrices defined as the 2 × 2 blocks of U (t ), defined as

U (t ) =
(
U11(t ) U12(t )
U21(t ) U22(t )

)
= e−H�t , (A14)

with the standard symplectic matrix defined as � = iσy ⊗ I2M×2M .
Using the symplectic property UT (t )�U (t ) = � and the equation d

dt U (t ) = −H�U (t ) [with U (t )|t=0 = I4M×4M],
P̄�

SI [ϒ, t] can be shown to satisfy the following parabolic partial differential equation of Ornstein-Uhlenbeck type,

∂

∂t
P̄�

SI [ϒ, t] = 1

2

[(
ϒ

∇ϒ

)T(
O H12 + R(t )H22

H21 + H22R(t ) H22

)(
ϒ

∇ϒ

)]
P̄�

SI [ϒ, t], (A15)

where O is the (2M × 2M )-dimensional null matrix. This equation can be solved in Fourier space using the method of
characteristics [43,77–80] [simplifications while applying this procedure can be achieved by using the properties of U (t )],
which when Fourier transformed back, we get P̄�

SI [ϒ, t]. Using thus obtained solution, P̄�
SI [ϒ, t], P�

SI [ϒ, t] is given as

P�
SI [ϒ, t] =

∫
D[ϒ′]G[ϒ, t |ϒ′, 0]P [ϒ′, 0], (A16)

with the Green’s function or the propagator given by

G[ϒ, t |ϒ′, 0] = 1

πM

e(1/2)Tr[� ]t√
Det[U21(t )σx]

e−(1/2){ϒT [U12(t )U22(t )−1]ϒ+[ϒ−U22(t )ϒ′]T [U21(t )U22(t )T ]−1
[ϒ−U22(t )ϒ′]}, (A17)

and
∫
D[ϒ′] = ∫ +∞

−∞ d[Re(γ ′
1)
∫ +∞
−∞ d[Im(γ ′

1)] · · · ∫ +∞
−∞ d[Re(γ ′

M )
∫ +∞
−∞ d[Im(γ ′

M )].

b. Method II

The formal solution of the parabolic partial differential equation [89]

∂

∂t
P�

SI [ϒ, t] = 1

2

[(
ϒ

∇ϒ

)T

H

(
ϒ

∇ϒ

)
+ Tr[�]

]
P�

SI [ϒ, t] (A18)

is

P�
SI [ϒ, t] = e

(1/2)

[(
ϒ
∇ϒ

)T

H

(
ϒ
∇ϒ

)
+Tr[� ]

]
t
PS[ϒ, 0]. (A19)

The exponential operator in the above equation can be put in a more manageable form using the Wei-Norman method [90,91]
inspired technique [92] as

e
(1/2)

[(
ϒ
∇ϒ

)T

H

(
ϒ
∇ϒ

)]
t = 1√

Det[U22(t )]
e−(1/2)ϒT [U12(t )U22(t )−1]ϒ e−ϒT [lnU22(t )T ]∇ϒ e(1/2)∇T

ϒ [U22(t )−1U21(t )]∇ϒ , (A20)

where Uxy(t ) are the same as defined previously. Using this, P�
SI [ϒ, t] can be expressed [89] in the same form as given previously

in Eq. (A16) along with Eq. (A17).

4. Details of Sec. IV A

Using the explicit expressions for U11(t ) and U12(t ) in Eq. (10) with χ = χ1 and λ = λ1 gives

Z̃[χ1, λ1, t] = e�1t /2√
Det

[
cosh

[�1t
2

]
I + sinh

[�1t
2

]�1S[χ1,λ1]
�1
2

] , (A21)
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where �αS[χα, λα] (here α = 1) is given as

�αS[χα, λα] = �α

2
I − �α ×

{
eiελασz

[
σxDα − 1

2
I

]
e−iελασz

[
σxDS + 1

2
I

](
eiεχα − 1

)
+ eiελασz

[
σxDα + 1

2
I

]
e−iελασz

[
σxDS − 1

2
I

](
e−iεχα − 1

)}
, (A22)

with Dα = −iσye−iSασy [nα (εσz ) + 1
2 I ]eiSασy , ε = ε1, Sα = Zασze

iσzφα , and nα (x) = (eβαx − 1)−1 ≡ nα (for α = S and 1). Substi-
tuting this expression for �1S in Eq. (A21) and upon simplification gives Eq. (15).

5. Details of Sec. IV B

Using the explicit expressions for U11(t ) and U12(t ) in Eq. (10), we get an expression for Z̃[χ,λ, t ] given as

Z̃ [χ,λ, t] = e[(�1+�2 )/2]t

[
1 − X−−[χ,λ] +

[
cosh(�−[χ,λ]t )

1
�−[χ,λ] sinh(�−[χ,λ]t )

]T

X[χ,λ]

[
cosh(�+[χ,λ]t )

1
�+[χ,λ] sinh(�+[χ,λ]t )

]]−1/2

, (A23)

where χ = (χ1 χ2)T , λ = (λ1 λ2)T , and

�∓[χ,λ] =

√√√√[
Tr[�12[χ,λ]]

2

]
±
√[

Tr[�12[χ,λ]]
2

]2

− Det[�12[χ,λ]], (A24)

with

�αα′[χ,λ] =
(

�α + �α′

2

)2

I − �α�α′

{
eiελασz

[
σxDα − 1

2
I

]
e−iε (λα−λ

α′ )σz

[
σxDα′ + 1

2
I

]
e−iελ

α′ σz
(
eiε (χα−χ

α′ ) − 1
)

+ eiελασz

[
σxDα + 1

2
I

]
e−iε (λα−λ

α′ )σz

[
σxDα′ − 1

2
I

]
e−iελ

α′ σz
(
e−iε (χα−χ

α′ ) − 1
)}

(A25)

and X[χ,λ] =
(
X−−[χ,λ] X−+[χ,λ]
X+−[χ,λ] X++[χ,λ]

)
is given as

X−−[χ,λ] = 1

2
− 1

2

1(
�−[χ,λ]2 − �+[χ,λ]2

)2 Det

⎡
⎢⎢⎣ ∑

α,α′=1,2
α �=α′

{(
�−[χ,λ]2 + �+[χ,λ]2

2

)
I − �αα′ [χ,λ]

}
+ �12S[χ,λ]

⎤
⎥⎥⎦,

X∓±[χ,λ] = 1

2
Tr

[∑
α=1,2

�αS[χα, λα]

]

± 1(
�−[χ,λ]2 − �+[χ,λ]2

)Tr

⎡
⎢⎢⎣ ∑

α,α′=1,2
α �=α′

{(
�−[χ,λ]2 + �+[χ,λ]2

2

)
I − �αα′ [χ,λ]

}
�αS[χα, λα]

⎤
⎥⎥⎦,

and

X++[χ,λ] = Det

[∑
α=1,2

�αS[χα, λα]

]
+
(

�−[χ,λ]2 + �+[χ,λ]2

2

)
(1 − X−−[χ,λ]), (A26)

with

�12S[χ,λ] = �1�2[eiελ1σzσxD1e−iελ1σz , eiελ2σzσxD2e−iελ2σz ]

×
{[

σxDS − 1

2
I

]
[(e−iεχ1 − 1) − (e−iεχ2 − 1)][(eiεχ1 − 1) + (eiεχ2 − 1)]

−
[
σxDS + 1

2
I

]
[(eiεχ1 − 1) − (eiεχ2 − 1)][(e−iεχ1 − 1) + (e−iεχ2 − 1)]

}
(A27)

and �αS[χα, λα] is given in Eq. (A22).
In the above equations, Dα = −iσye−iSασy [nα (εσz ) + 1

2 I ]eiSασy , ε = ε1, Sα = Zασze
iσzφα , and nα (x) = (eβαx − 1)−1 ≡ nα (for

α = S, 1, and 2).
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Z̃ [χ,λ, t] is a periodic function of both λ1 and λ2 with period 2π
ε

. Hence the joint moment-generating function Z[χ, t] =∫
λ∈R2

d2λ

(2π )2 Z̃ [χ,λ, t] diverges. To make Z[χ, t] a proper moment-generating function, we introduce two cutoffs in λ integrals,
renormalize Z[χ, t] by Z[0, t], and send the cutoffs to infinity to obtain the following expression:

Z[χ, t] =
( ε

2π

)2
∫

λ∈[−π/ε,+π/ε]2

d2λ Z̃ [χ,λ, t]. (A28)

Furthermore, by doing the change of variables λ1/2 → λ1/2 − (
φ1/2−φS

2ε
) and using the periodic property of Z̃ [χ,λ, t] with

respect to λ1/2, it can be shown that the squeezing phases of the initial states of the system (φS) and both the reservoirs (φ1 and
φ2) do not affect the statistics of the energy flow from the system into the reservoirs.

The marginal moment-generating function corresponding to 	es (defined in the main text), Zs[χs, t] = Z̄[0, χs, t], is obtained
as

Zs[χs, t] =
( ε

2π

)2
∫

λ∈[−π/ε,+π/ε]2

d2λ Z̃s[χs,λ, t], (A29)

with

Z̃s[χs,λ, t] = e[(�1+�2 )/2]t√
Det

{
cosh

[(�1+�2
2

)
t
]
I + sinh

[(�1+�2
2

)
t
]�RS[χs,λ](

�1+�2
2

)
} , (A30)

where

�RS[χs,λ] =
[

2∑
α=1

�α

2

]
I −

{
2∑

α=1

�α

[
eiελασz

(
σxDα − 1

2
I

)
e−iελασz

][
σxDS + 1

2
I

]
(eiεχs − 1)

+
2∑

α=1

�α

[
eiελασz

(
σxDα + 1

2
I

)
e−iελασz

][
σxDS − 1

2
I

]
(e−iεχs − 1)

}
. (A31)

The expression for Z̃s[χs,λ, t] given above in Eq. (A30), apart from its dependence on λ1 and λ2, has a similar mathematical
structure as for the moment-generating function for energy transfer in the presence of a single reservoir. This indicates that the
dynamical behavior of the statistics of the system’s energy loss to reservoirs is similar to the case of a single reservoir. Further,
from Eq. (A30), it is clear that limt→∞ Zs[χs, t] is finite, indicating that the statistics of 	es also becomes independent of time in
the long-time limit. This indicates that the fluctuations of energy flow out of the system saturate with time as the system reaches
steady state.

The marginal distribution of the energy flow from the reservoir “2” into the reservoir “1” (	er) (defined in the main text),
i.e., P[	er, t] in the t → ∞, becomes simpler in the long-time limit.

In the long-time limit (t → ∞), the moment-generating function corresponding to the energy flow (	er), defined as
Zr[χr, t] = Z̄[χr, 0, t], is obtained by substituting the leading term of Eq. (A23) into Eq. (A28). This is given as

Zr[χr, t] =
( ε

2π

)2
∫

λ∈[−π/ε,+π/ε]2

d2λ 2

{[
X−−[χ,λ] + X−+[χ,λ]

�+[χ,λ]
+ X+−[χ,λ]

�−[χ,λ]
+ X++[χ,λ]

�+[χ,λ]�−[χ,λ]

]−1/2

× e([(�1+�2 )/2]−[(�+[χ,λ]+�−[χ,λ])/2])t

}∣∣∣∣
χ1/2→±(χr/2)

. (A32)

As noted already, the squeezing phases can be gauged to zero by shifting the integration variables λ in Eq. (A32), and hence we
can set φS = φ1 = φ2 = 0.

For performing λ integrals, it is convenient to change the integration variables to λ = λ1 − λ2 and λ̄ = λ1+λ2
2 . Although

�±[χ,λ] depends only on λ [this can be seen from Eq. (A24) along with Eq. (A25)], X±±[χ,λ] depend on both λ and λ̄.
However, when the system’s initial state is not squeezed, i.e., ZS = 0, X±±[χ,λ] becomes independent of λ̄. This is because the
simultaneous measurements of both the reservoirs’ energies (in the weak-coupling limit) is equivalent to measuring the system’s
energy and the difference of energies of the two reservoirs. The λ̄ dependence, which accounts for the noncommutativity of the
initial system’s energy measurement with the initial system’s density matrix, drops out as the system’s initial state commutes
with the initial energy projective measurement for this case. We focus on the statistics at steady state where the system’s initial
state does not play a role. Therefore, for simplification purposes, we consider the case where the system’s initial state is a thermal
state. For this case, λ̄ in Eq. (A32) can be integrated out, leaving only the λ integral behind, which, in the long-time limit, is
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performed in the saddle-point approximation. The saddle point of the exponent in Eq. (A32) is found at λ = 0. This finally gives
the steady-state scaled cumulant-generating function given in Eq. (24) along with Eq. (25).
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