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Insights from a pseudospectral study of a potentially singular solution of the three-dimensional
axisymmetric incompressible Euler equation
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We develop a Fourier-Chebyshev pseudospectral direct numerical simulation (DNS) to examine a potentially
singular solution of the radially bounded, three-dimensional (3D), axisymmetric Euler equations [G. Luo and
T.Y. Hou, Proc. Natl. Acad. Sci. USA 111, 12968 (2014)]. We demonstrate that (a) the time of singularity is pre-
ceded, in any spectrally truncated DNS, by the formation of oscillatory structures called tygers, first investigated
in the one-dimensional (1D) Burgers and two-dimensional (2D) Euler equations; (b) the analyticity-strip method
can be generalized to obtain an estimate for the (potential) singularity time.
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I. INTRODUCTION

Two hundred and sixty five years ago, Euler introduced the
equations for an inviscid, incompressible, three-dimensional
(3D) fluid in Principes généraux du mouvement des flu-
ides [1–3]. The incompressible Euler partial differential
equation (PDE) and its descendant, the incompressible
Navier-Stokes PDE [4,5], govern, respectively, ideal and
viscous fluid flows at low Mach numbers. They are, there-
fore, among the most prominent equations in physics, and
their solutions are of importance in a variety of physical
settings. Furthermore, these equations pose challenges for
mathematicians: It is well known that the solutions of the two-
dimensional(2D) Euler equation, with analytic initial data, do
not exhibit a finite-time singularity [6]; however, it is still not
known if any solutions of the 3D Euler equations develop a
singularity in a finite time, if we start with analytic initial
data (for nonanalytic initial data, see Ref. [7]). The answer
to this grand-challenge, finite-time-singularity problem also
has important implications for turbulence in fluids, even if we
use the 3D Euler PDE, as conjectured by Onsager [8,9]; for
a detailed discussion of these issues, see, e.g., Refs. [10,11],
and, for recent advances, Ref. [12].

The possible relation between finite-time-singularities in
the 3D Euler PDE and finite-dissipation weak solutions of the
3D Euler equations, and their potential relevance to solutions
of the 3D Navier-Stokes equation in the limit of vanishing
viscosity, are discussed in Refs. [10,11,13–16]. In this paper,
we do not address the regularity problem for the 3D Navier-
Stokes PDE, which is one of the Clay Mathematics Institute
problems; for a discussion of this problem we refer the reader
to Ref. [17]. Here, we investigate a potentially singular solu-
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tion, first studied by Luo and Hou [18], of a 3D axisymmetric
Euler flow.

Explorations of finite-time-singularity problems (for the
Euler case see, e.g., Refs. [3,19–21]) often use direct numeri-
cal simulations (DNSs), which have not yielded unambiguous
results for or against a finite-time singularity in the 3D Euler
PDE. Luo and Hou [18] have explored a potentially sin-
gular solution of the radially bounded, 3D, axisymmetric
Euler equations via a hybrid Galerkin and finite-difference
method. Given the importance of this problem, it behooves
us to study this potentially singular solution by a completely
different numerical scheme and another singularity-detection
criterion, in addition to the one based on the well-known
Beale-Kato-Majda theorem [18,22,23]. In particular, we use
the singularity-detection criterion based on the movement of
singularities in the complex space that was first discussed
in the work of Sulem et al. [23–27]. This method, referred
to as the analyticity-strip method, calls for a pseudospectral
simulation of the governing PDEs.

Therefore, we have developed a pseudospectral, Fourier-
Chebyshev scheme to study this problem; in any numerical
implementation, we can only use a finite number of Fourier-
Chebyshev modes, i.e., we have a spectrally truncated system.

Our method leads to new insights that include the forma-
tion of localized, oscillatory structures, called tygers, at points
of positive strain in the velocity fields. Tygers were first intro-
duced in the context of the one-dimensional (1D) Burgers and
two-dimensional (2D) Euler equations [28–32], en route to
thermalization, in spectrally truncated pseudospectral DNSs;
note that the appearance of tygers does not necessarily imply
the formation of a finite-time singularity, which occurs in
the inviscid 1D Burgers equation but not for the 2D Euler
PDE. Lee [33] and Hopf [34] had proposed [35,36] that such
spectrally truncated systems, with a finite number of modes,
must thermalize, at sufficiently long times, because the total
energy is conserved; the thermalized state displays equipar-
tition of the energy between all wave-number (k) modes.
Such thermalization has been observed in various spectrally
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truncated hydrodynamical equations including the 3D Euler
[37] and the 3D and 2D Gross-Pitaevskii [38,39] equations.
The high-k modes thermalize faster than the low-k ones in,
e.g., the spectrally truncated 3D Euler equation; these high-k
thermalized modes act effectively as a dissipation range for
the low-k modes and, over intermediate timescales, before
complete thermalization occurs, the fluid energy spectrum
shows a power law ∼kp form with the exponent p � −5/3
as in the Kolmogorov 1941 phenomenology for inertial-range
scaling in 3D Navier-Stokes (NS) turbulence [37]. We note,
in passing, that high-order hyperviscosity in the 3D NS equa-
tion can emulate these effects of Galerkin truncation in the 3D
Euler PDE as discussed in Ref. [40]. A discussion of hyper-
viscosity is out of place here because we are concentrating on
the 3D axisymmetric Euler PDE; a full discussion of Galerkin
truncation via very-high-order hyperviscosity would require a
separate study.

We concentrate on the Galerkin-truncated axisymmetric
3D Euler PDE. We find that, before the appearance of tygers,
our method yields spectral convergence to the 3D Euler PDE
we consider, and the truncated solution is the true solution;
soon after the birth of tygers, our spectrally truncated system
moves towards thermalization and it does not provide a good
representation of this PDE. Nevertheless, we show how to
generalize the analyticity-strip method to uncover signatures
of the potential singularity discussed above.

The remainder of this paper is organized as follows: In
Sec. II we define the model we study. Section III contains the
numerical methods we use. In Sec. IV we present the results
of our study. Section V contains a discussion of our results in
the light of earlier studies. Some details of our calculations are
given in the Appendices A–D.

II. MODEL

The 3D Euler PDE, for an incompressible, inviscid fluid is

ωt + u · ∇ω = ω · ∇u,

ω = ∇ × u, u = ∇ × ψ; (1)

here, ω is the vorticity, u the velocity field, and ψ the vector-
valued stream function that is related to the vorticity by
the Poisson equation ω = −∇2ψ; and ωt ≡ ∂ω/∂t . For ax-
isymmetric flows, we use u(r, z) = ur (r, z) êr + uθ (r, z) êθ +
uz(r, z) êz, where êr, êθ , and êz are unit vectors in the
cylindrical coordinate system. Then, Eq. (1) can be reduced
to a system of equations for

u1 = uθ /r, ω1 = ωθ/r, ψ1 = ψθ/r, (2)

where uθ , ωθ , and ψθ are angular components:

u1
t + uru1

r + uzu1
z = 2u1ψ1

z , (3a)

ω1
t + urω1

r + uzω1
z = ((u1)2)z, (3b)

−
(

∂2
r + 3

r
∂r + ∂2

z

)
ψ1 = ω1, (3c)

with ur = −rψ1
z and uz = 2ψ1 + rψ1

r ; and the subscripts r, t,
and z on the functions indicate ∂r , ∂t , and ∂z, respectively [41].

The variables u1, ω1, and ψ1 are well defined, so long as the
solutions to Eq. (3) are smooth [C∞(R × R̄+) with R, the set

FIG. 1. A section of our cylindrical simulation domain with the
heat map of ω1 at a representative time t = 0.003094 for a resolution
of Nr = 512 and Nz = 1024. Chebyshev collocation points are shown
schematically in the r-z plane for a constant value of θ ; these are
spaced more closely near r = 0 and r = 1 than in the middle of the
domain.

of real numbers and R̄+, the set of affinely extended positive
real numbers]; uθ , ωθ , and ψθ must all vanish at r = 0 for
these solutions to remain smooth [42]. We solve Eq. (3) in the
domain D(1, L) = {(r, z) : 0 � r � 1, 0 � z � L}; we use
L-periodic boundary conditions in z, the no-flow condition at
r = 1 (4), and the pole condition at r = 0 (5)

ψ1(r = 1, z, t ) = 0, (4)

u1
r (r = 0, z, t ) = ω1

r (r = 0, z, t ) = ψ1
r (r = 0, z, t )

= 0; (5)

and the initial data [18]

u1(r, z, t = 0) = 100e−30(1−r2 )4
sin

(2πz

L

)
, (6a)

ω1(r, z, t = 0) = ψ1(r, z) = 0. (6b)

To compare our results with those of Luo and Hou [18],
it is imperative that we use their initial condition. (See
Appendix D for other types of initial conditions.)

III. NUMERICAL METHODS

A. Fourier Chebyshev spectral methods

We use the Fourier-Chebyshev representation, in which a
function f (r, z) is approximated by

f (r, z) =
∑

k

∑
m

f̂ (k, m)eikz Tm(2r − 1), (7)

where Tm is the Chebyshev polynomial (of the first kind)
of order m [43,44]. In the schematic diagram in Fig. 1, we
display the collocation points in our Fourier-Chebyshev DNS;
these points are distributed uniformly in the periodic (axial)
direction z; in the radial direction r, these points coincide
with the roots of the highest-order Chebyshev polynomial in
our basis. We use a finer resolution in the z direction than in
the r direction, because, for a given number of collocation
points, the Chebyshev nodes are spaced more closely near
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the boundary at r = 1 than the Fourier nodes. This prevents
excessive elongation of the cells in our simulation grid, in
physical space near this boundary. If these cells are very elon-
gated and narrow in the radial direction, it becomes difficult to
satisfy the Courant-Friedrichs-Lewy (CFL) condition at every
time-integration step. We use a CFL number C = 0.2 and
adjust the time step dt , to ensure that the CFL condition is
satisfied. For the temporal evolution of Eqs. (3a) and (3c), we
use the explicit fourth-order Runge-Kutta scheme in physical
space; we evaluate the derivatives in Fourier-Chebyshev space
and, subsequently, compute the nonlinear terms in physical
space. We solve the Poisson equation Eq. (3c) in the domain
D(1, L) = {(r, z) : 0 � r � 1, 0 � z � L} with the boundary
conditions (4) and (5). We use the 2/3 truncation method
for dealiasing both Fourier and Chebyshev modes. Reference
[18] utilizes the symmetry properties of this initial condition
to study the Euler PDEs in the domain D(1, L/4); in our
Fourier-Chebyshev method we use the full length L of the
domain.

B. Conserved quantities and spectra

The total energy and helicity are, respectively,

E = 1

2

∫ 1

0

∫ L

0
(|ur |2 + |uz|2 + |uθ |2) r dr dz, (8a)

H =
∫ 1

0

∫ L

0
u · ω r dr dz. (8b)

We calculate these by using the Fourier-Chebyshev coeffi-
cients of u and ω [see Figs. 2(a) and 2(b)].

Fourier and Chebyshev transforms, over z and r, respec-
tively, yield the fixed-r and fixed-z spectra

S1(r, k, t ) := g(k)

2 Nz
(|ûθ (r, k, t )|2

+ |ûr (r, k, t )|2 + |ûz(r, k, t )|2), (9a)

S2(m, z, t ) := Nr

2 g(m)
(|ûθ (m, z, t )|2

+ |ûr (m, z, t )|2 + |ûz(m, z, t )|2), (9b)

where g(i = 0) = 1 and g(i > 0) = 2 (i is k or m). We give
the spatiotemporal evolution of S1(r, k, t ) and S2(m, z, t ) in
videos S1 and S2, respectively, in the Supplemental Material
[45]. Similarly, simultaneous Fourier-Chebyshev transforms
give us the following spectra:

S3(m, k, t ) := (|ûθ (m, k, t )|2 + |ûr (m, k, t )|2
+|ûz(m, k, t )|2), (10a)

S4(m, k, t ) := (|ûθ (m, k, t ) ω̂θ (m, k, t )| + |ûr (m, k, t )

× ω̂r (m, k, t )| + |ûz(m, k, t ) ω̂z(m, k, t )|).
(10b)

FIG. 2. Plots versus t of (a) log (base 10) of the percentage
change, in our DNS, of the energy (δE%) (red full line), (b) log
(base 10) of the absolute value |H | of the helicity [Eq. (8b)], and
(c) log10 ( log10(||ω||∞)) (dark blue full line) for Nz = 4096 and Nr =
512. Here, ||ω||∞, the L∞ norm of the vorticity, is well approximated
by the maximum value of |ω| on our grid. The red (blue) dashed line
indicates the time of the birth of a tyger (see text) in u1 (ω1); the
black dashed line denotes the estimate for the time of the (potential)
singularity, from Ref. [18]. In Fig. 9 of Appendix A, we give similar
plots for other values of Nz and Nr ; the higher the values of Nz and
Nr (especially Nz), the better our scheme captures the rapid growth
of log10 ( log10(||ω||∞)).

C. Methods to track singularity

1. Beale-Kato-Majda criterion: Growth of ||ω||∞
The detection of a singularity based on the BKM theorem

[22,23] uses a plot of log10 ( log10(||ω||∞)) versus t . We show
such a plot (blue full line) in Fig. 2(c), from our DNS; the red
(blue) dashed line indicates the time of the birth of a tyger (see
below) in u1 (ω1); the black dashed line denotes the estimate
for the time of the (potential) singularity, from Ref. [18].

2. Analyticity strip method

For a DNS in a domain with periodic boundary condi-
tions in all spatial directions, the analyticity-strip method
[23–27,46–48] proposes that the solution of the PDE can be
continued analytically to complex space variables z = x + iy,
inside the analyticity strip | y |< δ(t ), where t is real and
δ(t ), the width of this strip, follows from the spatial Fourier
transform of the solution, which decays, at large wave num-
bers k, as exp[−kδ(t )] (this has an algebraic prefactor). We
obtain δ(t ) and estimate if δ(t ) → 0 at a finite time t∗; at
this time the solution shows a finite-time singularity because
singularities, in the complex plane for t < t∗, hit the real axis.
Our determination of δ(t ) is accurate up until times at which
δ(t ) remains larger than a few mesh widths. For such times,
we have spectral convergence of the Fourier expansion.
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FIG. 3. (a) Plots versus k of ln[S1(r = 1, k, t )], at different
times t (the full temporal evolution is given in the video S1 in
the Supplemental Material [45]); here, the modes with k > kG, the
dealiasing-cutoff wave number, have zero energy. Nr = 512, Nz =
1024, and the dealiasing cutoff is kG = 341. (b) Plots versus m of
ln[S2(m, z = 0, t )] at different times t ; there is an exponentially de-
caying tail in the spectrum S2(m, z = 0, t ), at large m, whose decay
rate decreases with t . (The full temporal evolution is given in the
video S2 in the Supplemental Material [45].)

We now extend the analyticity-strip method: (a) We first
work with a fixed value of r; we evaluate the Fourier trans-
form(in the z direction) of the components of the velocity; the
wave number dependence of this transform yields the width of
this analyticity strip. (b) Next, we work with a fixed value of z;
we evaluate the Chebyshev transform (in the r direction) of the
components of the velocity; we then examine the dependence
of the Chebyshev-expansion coefficients [49–54] on the order
m; if these coefficients decrease as exp(−mα), for large m,
then the velocity field is analytic in the Bernstein ellipse
Eρ∗ = {z ∈ C | z = (ρ∗eıθ − ρ−1

∗ e−ıθ )/2, 0 � θ � 2π}, with

ρ∗ = eα; and δr = (ρ∗ − ρ−1
∗ )/2, (11)

the width of this analyticity strip.
Before the birth of tygers, we have spectral convergence of

our Fourier-Chebyshev expansions. This allows us to employ
the analyticity-strip method. We concentrate on S1(r, k, t ) and
S2(m, z, t ).

In Fig. 3(a) we plot ln[S1(r = 1, k, t )] [see Eq. (9a)] ver-
sus k, at different times t (see the video S1 in the Supplemental
Material [45]); here, the modes with k > kG, the dealiasing-
cutoff wave number, have zero energy.

The symmetries of our initial condition lead to even-odd k
oscillations in, e.g., S1(r = 1, k, t ) [black, brown, and orange
curves in Fig. 3(a)]. At small and intermediate values of t ,
these oscillations have exponentially decaying envelopes at
large k. The envelope for odd k lies above its even-k coun-
terpart and the separation between these envelopes increases
with t . The natural logarithmic decrements of these envelopes,
δodd(t ) and δeven(t ), respectively, decrease as t increases.

At sufficiently large t , S1(r = 1, k, t ) does not have expo-
nentially decaying envelopes (e.g., the orange curve in Fig. 3),
because of the formation of tygers, our spectrally truncated
system proceeds towards thermalization, and we lose spectral
convergence of the Fourier expansion.

Similarly, we obtain Chebyshev spectra, at fixed values
of z [see panel (b) in Fig. 3 and Eq. (9b)]. At small and
intermediate values of t , these spectra decay exponentially at
large values of m, with the slope decreasing with increasing t .
At sufficiently large t , S2(m, z = 0, t ) does not decay at large

m, because of the formation of tygers and the consequent loss
of spectral convergence of the Chebyshev expansion.

IV. RESULTS

A. Tygers and the onset of thermalization

Given the finite resolution of any practical spectral or pseu-
dospectral DNS, we integrate not the full hydrodynamical
PDE, but its Galerkin-truncated modification. Tygers appear
when complex-space singularities come within one Galerkin
wavelength λG = 2π/kG [26,28,29,37] of the real domain. As
we increase the resolution of our DNS, λG decreases, hence
there is an increase in the time taken by the pole, nearest to the
real domain, to cross into this region. Therefore, the time tb at
which tygers first appear increases with the spatial resolution
of our DNS.

In the first two columns of Fig. 4 , we present plots, versus
z, of u1(r = 1, z, t ) [top row] and ω1(r = 1, z, t ) [bottom row]
at various times [28,29]; in the last column we plot tb, the
time of the birth of tygers, versus λG. Tygers appear clearly in
ω1(r = 1, z, t ) before they become visible in u1(r = 1, z, t ).
We define tyger-birth times as the time at which oscillations,
with the wavelength λG, are first detected by the find_peaks
module of MATLAB. Both tyger-birth times, for the vorticity
(t (ω1 )

b ) and the velocity (t (u1 )
b ), precede (Fig. 2) the estimate for

the singularity time given in Ref. [18]. The plots in Fig. 4 are
the clearest examples of tygers in a 3D hydrodynamical PDE.

As in the 1D Burgers equation [28,29,55], tygers do not
appear at the point where the singularity develops, as a step
in uθ (r = 1, z, t ) at z = 0, but some distance away from it,
where a resonant interaction occurs between the fluid particle
and the truncation waves [28]. The tygers appear most promi-
nently in uθ , which is the component of the velocity that is
perpendicular to the direction in which the fastest variation in
uθ is seen (i.e., ẑ). The tygers grow, as they initiate the process
of thermalization and spread through the whole domain; this
is the real-space manifestation of thermalization. The devel-
opment of the (potential) singularity leads to numerical errors
as our DNS nears the singularity-time estimate of Ref. [18];
eventually, energy and helicity conservation become poor, and
this prevents us from proceeding, in our DNS, to complete
thermalization. The plots versus z in Fig. 4 provide a natural
motivation for studying a 1D model formulated by Luo and
Hou [18]; this model displays a finite-time singularity, which
we study via the analyticity-strip method and for which we
show that tygers are formed before the time at which the
singularity occurs (see Appendix C).

B. Analysis of analyticity strip widths

The spectrum S3(m, k, t ), at t = 0, has significant weight
at low values of m and k; with the passage of time, we see that
this weight cascades to large values of m and k. This allows us
to use the analyticity strip method for times when S3(m, k, t )
decays at large values of m and k.

We extract δeven(r, t ) [similarly δodd(r, t )] by using a least-
squares fit for the envelopes of S1(r, k, t ) at even (ke) and odd
(ko) wave numbers:

ln(S1(r, ke, t )) = Ce − ne ln(ke) − 2 δeven(r, t ) ke, (12a)
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FIG. 4. Plots versus z of (a),(b) u1(r = 1) and (d),(e) ω1(r = 1) at various times t listed in panel (b) for Nr = 512 and Nz = 1024; as we
go from columns one to two, we zoom in to the region with localized oscillatory structures called tygers [28,29]. Plots of the tyger-birth time tb

versus λG = 2π/kG in (c) u1 and ( f ) ω1, respectively, where kG is the dealiasing cutoff wave number. To determine the tyger-birth times t (u1 )
b

and t (ω1 )
b , we examine plots of u1 and ω1 as a function of t .

ln(S1(r, ko, t )) = Co − no ln(ko) − 2 δodd(r, t ) ko. (12b)

In Fig. 5(a), we give a surface plot of δeven(r, t ) to show
that it decays fastest at r = 1. Similarly, we obtain the rate at
which the tail of S2(m, z, t ) decays exponentially, for interme-
diate times t , and thence the width δr (z, t ) of the analyticity
strip shown in Fig. 5(b); it decays fastest at z = 0, L/2, L.
Concurrently, we see that the fastest variation in ω1(r, z) and
u1(r, z) occurs at the set of points corresponding to r = 1 and
z = 0, L/2, L where the fastest decays of the analyticity strip
widths have been reported above.

At sufficiently large t , there is no exponential decay (e.g.,
for the top plot in orange) because of the onset of ther-
malization in our spectrally truncated system. We use the
least-squares fit

ln[S2(m, z, t )] = C2 − 2mα (13)

and relate α to δr (z, t ) via Eq. (11).
The tygers in Fig. 4 appear as soon as the pole, in which we

are interested, enters the analyticity strip. In Fig. 5 we portray
the time dependences of the widths of analyticity strips. We
now summarize our results for analyticity-strip widths.

In panel (a) of Fig. 6, we plot, versus t , the widths δodd

and δeven associated with the odd- and even-k envelopes,
respectively, of S1(r = 1, k, t ). In panel (b) of Fig. 6, we
present a log-log (base 10) plot of δeven versus |t − t∗|, where
t∗ = 0.003 505 6 is the estimate of the time of the (potential)
singularity in Ref. [18] along with the power-law fit δeven =
a|t − t∗|b; we find log10 a = 7 ± 1 and b = 2.6 ± 0.5 in the
region between the dashed grey lines. In Fig. 7, we show the
local-slope analysis for log10(δeven) versus log10 |t − t∗| [of
Fig. 6(b)]. We find that the slope increases linearly with time,

because of the finite spatial resolution of our DNS. By using
grey lines, we have indicated the region of almost constant
slope, which we then use to obtain the fit in Fig. 6(b). The
video S3 which shows the evolution of this fit with t can be
found in the Supplemental Material [45].

In panel (c) of Fig. 6, we plot, versus t , the width δr ,
which we obtain from the natural logarithmic decrements of
S2(m, z = 0, t ). This is very-nearly linear until just before the
estimate of the time of the (potential) singularity given in
Ref. [18]. From a linear fit, in the region between the dashed
grey lines, we find an intercept, on the horizontal axis, at
t = 0.0033 ± 0.0002, which is slightly less than the estimate
for the time of (potential) singularity in Ref. [18]. The linear
fit δr = ct + b gives the following values for the parameters:
c = −140 ± 20 and d = 0.47 ± 0.05. In Fig. 8, we show the
local-slope analysis for δr versus t [of Fig. 6(c)]. We indicate
the region that is used for fitting of Fig. 6(c) by using grey
lines. The video S4 which shows the evolution of this fit with
t can be found in the Supplemental Material [45].

V. CONCLUSIONS

We have examined the potentially singular solution of
the 3D, axisymmetric and radially bounded Euler equa-
tion [18,56–59] by developing a pseudospectral, Fourier-
Chebyshev scheme. Our method leads to new insights for it
shows that, in this scheme, the formation of tygers precedes
the development of the (potential) singularity and leads even-
tually to the thermalization of our system. We then show
how to generalize the analyticity-strip method [23–27] to
track this (potential) singularity. Our results are consistent
with a finite-time singularity. A recent paper by Barkley
[60] also used a Fourier-Chebyshev method to study this
initial condition; it concentrates on the physical mechanism
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FIG. 5. Surface plots of (a) δeven(r, t ) (this falls fastest at the wall
at r = 1) and (b) δr (z, t ) (this falls fastest at z = 0).

for the singularity and not on the issues we discuss. Recent
work by Hertel, Besse, and Frisch [61] examined this sin-
gularity by a Cauchy-Lagrange (CL) method, which requires
the computation of Lagrangian trajectories and high-order
Taylor expansions based on the Cauchy-invariants formula
[62–66]; the advantage of this method is that the time step is
not restricted by a Courant-Fredrichs-Lewy (CFL) criterion;
however, this method is computationally expensive because
it requires interpolations to map the Lagrangian grid onto
the Eulerian one. This CL study also uses the BKM cri-
terion to investigate the growth of the vorticity. Reference
[18] uses a hybrid sixth-order Galerkin and sixth-order finite-
difference method on a mesh that adapts itself in time to
resolve the peak of the maximum in the vorticity (for the
BKM criterion); this adaptive mesh is computationally in-
volved and expensive. The smallest scale in the mesh of
Ref. [18] is � 10−15. In our DNSs the highest resolution
is 10−5 near r = 1, which suffices for our application of
the analyticity-strip methods. Our pseudospectral method al-
lows us to use a completely different method to track the
(potential) singularity, namely, the analyticity-strip method;
and, given the calculations we carry out, the CFL crite-
rion is not a significant constraint. This singularity-detection
method gives us a complementary perspective on the devel-

FIG. 6. (a) Plots versus t of the widths δodd and δeven, which we
obtain from the odd- and even-k envelopes, respectively, of S1(r =
1, k, t ). (b) Log-log (base 10) plots of δeven versus |t − t∗|, where t∗ =
0.003 505 6 is the estimate of the time of the (potential) singularity in
Ref. [18] along with the power-law fit (black full line) δeven = a|t −
t∗|b (see text). (c) Plot of δr versus t with a linear fit (black full line)
(see text). Nr = 512 and Nz = 4096.

FIG. 7. (a) Log-log (base 10) plots of δeven versus |t − t∗|, where
t∗ = 0.003 505 6 along with the power-law fit (black full line) δeven =
a|t − t∗|b; we find log10 a = 7 ± 1 and b = 2.6 ± 0.5, in the region
between the dashed grey lines. (b) The fit range is based on the local-
slope (blue full line) and local-intercept (red full line) analysis shown
in the inset panel.

065107-6



INSIGHTS FROM A PSEUDOSPECTRAL STUDY OF A … PHYSICAL REVIEW E 105, 065107 (2022)

FIG. 8. (a) Plot of δr versus t ; along with a linear fit (black
full line) δr = ct + d with c = −140 ± 20 and d = 0.47 ± 0.05, in
the region between the dashed grey lines. We obtain t∗ = 0.0033 ±
0.0002 for the x intercept of the fit. The potential time reported by
Luo et al. [18] lies in this range. (b) In the inset panel, we show the
local-slope (blue full line) and local-intercept (red full line) analysis.

opment of the potential singularity that we have discussed
above.
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APPENDIX A: STUDY OF THE RESOLUTION
DEPENDENCE OF THE GROWTH OF log10 ( log10(||ω||∞))

The higher the resolution of our DNS (especially in the z
direction), the longer we can track the growth ||ω||∞ [as seen

FIG. 9. Plots versus time t of log10 ( log10(||ω||∞)), for different
resolutions (Nr, Nz ). As t increases and approaches the time of the
(potential) singularity (at t � 0.003 505 6), the conservation of E and
H deteriorate. For t � 0.003 309 5, the error in energy δE (t ) is less
than 10−5% for (Nr = 512, Nz = 4096).

in panel (c) of Fig. 9]. We follow the solution for as long as the
percentage error in energy remains below 10−5. Furthermore,
by varying the constant factor (100) that multiplies the poten-
tially singular initial condition [Eq. (6b)], we have checked
that the estimates for the blowup and tyger-birth times are
shifted to earlier times if this constant is increased.

APPENDIX B: POISSON SOLVERS FOR AXISYMMETRIC
DOMAINS

We have checked the robustness of our results, with the tau
Poisson solver, by comparing them with those from a scheme
that employs a Galerkin Poisson solver [67,68], adapted to our
boundary conditions.

To solve Eq. (3c), we use an axisymmetric Poisson solver
with the appropriate boundary conditions [Eqs. (4) and (5)] to
be imposed on ψ1:

−
[

∂2
r + 3

r
∂r + ∂2

z

]
ψ1(r, z) = ω1(r, z), (B1a)

ψ1(1, z, t ) = 0; ∂rψ
1(0, z, t ) = 0, (B1b)

ψ1(r, 0, t ) = ψ1(r, L, t ). (B1c)

Both the Shen-Galerkin and tau methods involve the inver-
sion of the matrix system in Eq. (B1a) in spectral space.

The Fourier-Chebyshev transformed system (∂2
z →

−k2; r = (1 + x)/2; x ∈ [−1, 1]) is

−[ 4(x + 1)∂2
x + 12 ∂x − k2(x + 1) ]ψ1(x, k) = ω1(x, k),

(B2a)

ψ1(x = 1, k) = 0, ∂rψ
1(x = −1, k) = 0. (B2b)

1. Galerkin method

This method [67,68] involves the construction of basis
functions φm(x), each of which satisfy the boundary condi-
tions, and are linear combinations of Chebyshev polynomials
Tm(x) = cos (m cos−1(x)):

φm(x) = Tm(x) + −4(m + 1)

(m + 1)2 + (m + 2)2
Tm+1(x)

+ m2 + (m + 1)2

(m + 1)2 + (m + 2)2
Tm+2(x). (B3a)

The Galerkin approximation of ψ1, in terms of φm, is

ψ1(x, k) =
N−3∑
m=0

a(m, k)φm(x). (B3b)
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FIG. 10. (a) Plots versus t of log ( log(||ω∞||)) using the tau and Shen-Galerkin Poisson solvers when implemented in the scheme. These
plots are for a resolution of (Nr, Nz ) = (512, 1024). (d) Plots versus resolution (Nr, Nz ) of maximal relative error in ∇−2(∇2g(r, z)). We see
that both methods are equivalent (as seen by the black solid and red dashed lines that overlap almost completely).

We then take the weighted inner product of Eq. (B1a)
with the φm:

((x + 1)∂xψ
1, η φm) − (2∂xψ

1, φm)η + β((x + 1)ψ1, φm)η

= (g, φm)η, (B3c)

where η is the Chebyshev weight and g = 1
4ω1(x + 1).

This matrix system can be inverted in spectral space to
get ψ1.

2. Tau method

In this method, the boundary conditions are explicitly en-
forced and the basis polynomials do not satisfy the boundary
conditions inherently [69]. Here, we choose the Chebyshev
polynomials as the basis:

ψ1(x, k) =
N−1∑
m=0

a(m, k)Tm(x). (B4a)

FIG. 11. Plots versus z of (a), (b) u, (d ), (e) ω; as we go from columns one to two, we zoom in to the region with localized oscillatory
structures called tygers. (c) Plots versus time t of the width δ of the odd k envelope of E (k); ( f ) Plots versus k of ln(E (k)), at different times t
(the full temporal evolution is given in the video S7 in the Supplemental Material [45]); Nz = 2048; there is an exponentially decaying tail in
this spectrum, at large k; the rate of this decay decreases with time as shown in panel (c).
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FIG. 12. Plot versus Nt (number of time steps) of the percentage
deviation of energy δE%, maximal relative errors in u1 and ω1 for
the stationary solution where xroot is the first root of J1(r) and κ = 1.

The weighted inner product [70] of the Poisson equation
Eq. (B1a) is

( − 4(x + 1)∂2
x ψ1, Tm)η − (12 ∂xψ

1, Tm)η

+(k2(x + 1)ψ1, Tm)η = (ω1, Tm)η. (B4b)

The last two rows of the operator matrix are replaced by
the following expressions for the boundary conditions:

(i) The no-flow boundary condition at r = 1:

MNr−2,m = cos (2πm), m = 0, 1, . . . , Nr − 1. (B4c)

(ii) The pole condition at r = 0 is enforced as follows:

MNr−1,m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2m
m/2∑
n=1

cos
(
(2n − 1)π

)
, m even;

m
(m−1)/2∑

n=0

cos
(
2nπ

)
, m odd.

(B4d)

Figure 10 compares the results that we obtain by using the
Shen-Galerkin and tau schemes for the Euler equation with
initial condition given by Eq. (6b).

APPENDIX C: THE 1D MODEL

We have also studied the following 1D PDE, which has
been introduced in Ref. [18] to model the potential singularity

in a solution of the axisymmetric Euler equations restricted
to r = 1:

∂t u + v∂zu = 0, (C1a)

∂tω + v∂zω = ∂zu; (C1b)

here ∂zv = H(ω), with H(·) the Hilbert transform; we
use periodic boundary conditions [71,72] and the initial
data

u0(z) = 104 sin2(2πz/L), (C2a)

ω0(z) = 0. (C2b)

This 1D model can be obtained if we (a) restrict the 3D
axisymmetric Euler equations (3) to the boundary r = 1 and
(b) then make the identifications u(z) → (u1)2(1, z), ω(z) →
ω1(1, z), and v(z) → ∂rψ

1(1, z). With these restrictions, the
flow field is negative for z > 0 and positive for z < 0; this
creates a compression flow at z = 0. Eventually, there is a
finite-time singularity in this 1D model [71,72]. We use a
Fourier pseudospectral DNS to study this 1D model, with
N = 2048 collocation points along the z axis; from this DNS
we obtain the spatiotemporal evolution of u and ω where
L = 1/6.

The video S5 in the Supplemental Material [45] gives the
temporal evolution of the fields and the spectra in this model.
We see, once again, the development of tygers, before the
time at which a finite-time singularity occurs. We plot these
in Fig. 11. The last column, top row gives a plot of the
analyticity-strip width δ(t ) versus the time t . The growth of
tygers in this 1D model leads to thermalization in a manner
that is akin to what we have discussed for the 3D axisym-
metric and radially bounded Euler [Eq. (3)]; this is shown
clearly by the energy spectra in the last column, bottom row
of Fig. 11.

APPENDIX D: BENCHMARKING OF OUR 3D
AXISYMMETRIC EULER CODE

To validate our code, we use the stationary analytical so-
lution given in Ref. [72]. We have the following family of
stationary solutions and their forms at the pole in Eq. (D1):

ψ1 =
J1

(√
(B2 − κ2)r

)
cos(κz)

r
,

u1 =
B J1

(√
(B2 − κ2)r

)
cos(κz)

r
,

ω1 =
B2J1

(√
(B2 − κ2)r

)
cos(κz)

r
,

ψ1(r = 0) =
√

B2 − κ2

2
cos(κz),

u1(r = 0) = B
√

B2 − κ2

2
cos(κz),

ω1(r = 0) = B2
√

B2 − κ2

2
cos(κz).

(D1)

Let xroot be one of the roots of J1; then B =
√

x2
root + κ2,

where κ = 0, 1, 2, . . ..

In Fig. 12, we plot versus number of time steps Nt , the
percentage deviation of the energy, from our DNS, relative
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to the energy of the stationary solution (D1) with κ = 1 and
xroot = 3.831 705 970 207 51 (the first root of J1); the per-
centage deviation of energy is less than 10−10 for over 103

time steps for a DNS with a resolution as low as (Nr, Nz ) =
(256, 512).
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