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Abstract: Amongst a number of different cathode materials, the layered nickel-rich LiNiyCoxMn1−y−xO2

and the integrated lithium-rich xLi2MnO3·(1 − x)Li[NiaCobMnc]O2 (a + b + c = 1) have received
considerable attention over the last decade due to their high capacities of ~195 and ~250 mAh·g−1,
respectively. Both materials are believed to play a vital role in the development of future electric
vehicles, which makes them highly attractive for researchers from academia and industry alike. The
review at hand deals with both cathode materials and highlights recent achievements to enhance
capacity stability, voltage stability, and rate capability, etc. The focus of this paper is on novel
strategies and established methods such as coatings and dopings.
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1. Introduction

Li-ion batteries (LIBs) are high-energy-density power sources, and their development since the
1980s–1990s can be considered one of the most important successes of modern electrochemistry.
It is a fact that in the past decades, LIBs have conquered the market of portable electronic
devices such as cellular phones, tape-recorders, cameras, etc. Because of their reliability and
general excellent performance at various temperatures, cycling behavior, stability and safety, LIBs
are beginning to be used for highly demanding applications, such as electric vehicles (EVs).
This is due, first of all, to their high energy density and good cyclability [1–4]. Important
materials for cathodes (or positive electrodes) of LIBs are lithium and manganese-rich layered
composites from the xLi2MnO3·(1 − x)Li[NiaCobMnc]O2 (a + b + c = 1) family that are normally
described as comprising two layered structure phases, Li2MnO3 (C/2m space group) and
Li[NiaCobMnc]O2 (a + b + c = 1) (R3m space group), integrated on the atomic level [5–8]. These two
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layered, structurally compatible nano-domains exist side by side in the composite materials.
The xLi2MnO3·(1 − x)Li[NiaCobMnc]O2 materials in Li-cells, mentioned above, deliver high discharge
capacities in excess of 250 mAh/g [9,10]. A recent paper by Dahn et al. describes them as a single
C2/m phase of Li1+yNiaCobMncO2 (y + a + b + c = 1) [11–13]. However, other researchers suggest a
multi-phase structure, referring to electron diffraction data showing the presence of both C2/m
and R3m components as well as X-ray-diffraction peaks with different intensity ratios for the two
phases [9,14–16].

Another group of cathode materials for LIBs is lithiated transition-metal (TM) oxides comprising
Ni, Co and Mn, of the general formula LiNiyCoxMn1−y−xO2. These materials have attracted
much attention since their first synthesis by Liu et al. in 1999 [17]. The symmetric structure
LiNi1/3Co1/3Mn1/3O2 (denoted NCM 333) was studied by Ohzuku, and demonstrated a capacity of
200 mAh/g within the voltage range of 2.5–4.6 V [18,19], or ~155 mAh/g if the anodic voltage is limited
by 4.3 V [20]. Such materials with higher Ni content (y > 5) are important as well, due to the high
capacity that can be extracted by charging up to 4.3 V only. Hence, there are two families of cathode
materials that are considered the most important, Li- and Mn-rich xLi2MnO3·(1 − x)Li[NiaCobMnc]O2

and Ni-rich (y > 0.5) LiNiyCoxMn1−y−xO2, having their own advantages and drawbacks as cathodes
in LIBs. These materials have attracted considerable attention from experts in solid-state chemistry,
materials science and electrochemistry, as well as from industrial companies, as promising candidates
in LIBs for EV-application.

In this review, we discuss the recent progress and challenges of the cathode materials
mentioned above, with an emphasis on their modification by lattice doping and thin surface coatings.
These modifications result in substantial improvement in the electrode performance, decreased capacity
fading and stabilization of the average voltage during cycling, mitigation of side reactions with solution
species and an increase in the thermal stability in charged states.

2. Lithium- and Manganese-Rich Layered Structure Materials

Electrodes comprising Li- and Mn-rich materials require an activation step by charging to more
than 4.5 V during the first cycle to reach high capacities [21–24]. The charge profile in Figure 1A,
measured during the first cycle, demonstrates assignments of Li+ intercalation sites and redox centers
made by in situ X-ray-diffraction measurements (XRD) and X-ray-absorption spectroscopy (XAS),
respectively [10,14,25–28]. Upon initial charging of Li- and Mn-rich materials, Ni2+/4+ and Co3+/4+

oxidation occurs, as in standard Li[NiaCobMnc]O2 layered materials [10,14]. Afterwards, a long
activation voltage plateau at about 4.5 V appears, involving O2 evolution, formation of a surface spinel
phase and Li+ extraction from the TM-layer [14,29–32]. At higher potentials, anionic oxidation of O2−

takes place, recently discovered by several groups [33–36] to occur with concomitant TM migration to
the Li-layer between the O2− slabs left unshielded after excessive Li+ extraction [10,14]. This migration
of transition metals to the Li-layer causes resistance towards Li+ re-intercalation and a large voltage
hysteresis between charge and discharge [37–40]. Upon discharge, depicted by the differential capacity
plot in Figure 1B, Li+ first enters the TM-layer with O2−x, Ni4+ and Co4+, and with Mn4+ reduction,
followed by Li+ intercalation into the Li-layer with further Mn4+ reduction [10,14].
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Figure 1. (A) Charge and (B) dQ/dV profiles for the first cycle of a representative Li-rich 
0.35LiMn2O3·0.65Li[Mn0.45Ni0.35Co0.20]O2 electrode in a Li-cell at a rate of C/20, 30 °C. Modified from [41].  

The TM migration to the Li-layer during later stages of charging, that causes the large 
charge/discharge voltage hysteresis, is also the main reason for the large capacity fades during the 
cycling of the Li- and Mn-rich materials [37–40].  

The intense capacity and voltage fade associated with Li- and Mn-rich materials is highlighted 
in Figure S1 in the Supporting Information, in comparison with a Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode 
as an example [41,42]. While both materials suffer from discharge capacity decay (Figure S1A), the 
voltage fade is especially problematic for the Li- and Mn-rich materials (Figure S1B) [41,42]. Here, the 
dramatic effect of the voltage hysteresis of these materials, caused by TM-migration, is evident; a 
difference of ~0.4 V in the average voltage is observed, as well as a large fade over cycling. 

As described above, the electrochemically inactive monoclinic phase Li2MnO3 is converted into 
an electrochemically active component by suitable integration at the molecular level with another 
component, which possesses inherent electrochemical activity. The Li–Mn–O system is promising for 
the further enhancement of the specific capacity of the cathode material and, hence, the energy 
density of the Li-ion cells. Recently, a Li–Mn–O system of nominal composition, “Li4Mn2O5”, was 
reported as a novel cathode material with a specific capacity exceeding 300 mA·h/g by an Mn3+/Mn5+ 
two-electron redox process, as was confirmed by magnetic measurements [43]. The oxide is prepared 
by a mechano-chemical route at ambient temperature using orthorhombic LiMnO2 and Li2O with a 
2:1 molar ratio. The electrodes made of Li4Mn2O5 are subjected to galvanostatic charge/discharge 
cycling at a rate of C/20 by gradually increasing the upper voltage limit from 4.4 to 4.6 V, and then to 
4.8 V. Under these conditions, the sample is completely charged by removing four Li+ ions per 
formula unit. The reversible capacity measured is 355 mA·h/g (equivalent to 2.88 Li+ per formula 
unit). It is the highest capacity reported until now among the known Li–Mn–O electrode materials. 

Figure 1. (A) Charge and (B) dQ/dV profiles for the first cycle of a representative Li-rich
0.35LiMn2O3·0.65Li[Mn0.45Ni0.35Co0.20]O2 electrode in a Li-cell at a rate of C/20, 30 ◦C. Modified
from [41].

The TM migration to the Li-layer during later stages of charging, that causes the large
charge/discharge voltage hysteresis, is also the main reason for the large capacity fades during
the cycling of the Li- and Mn-rich materials [37–40].

The intense capacity and voltage fade associated with Li- and Mn-rich materials is highlighted in
Figure S1 in the Supporting Information, in comparison with a Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode
as an example [41,42]. While both materials suffer from discharge capacity decay (Figure S1A), the
voltage fade is especially problematic for the Li- and Mn-rich materials (Figure S1B) [41,42]. Here,
the dramatic effect of the voltage hysteresis of these materials, caused by TM-migration, is evident;
a difference of ~0.4 V in the average voltage is observed, as well as a large fade over cycling.

As described above, the electrochemically inactive monoclinic phase Li2MnO3 is converted into
an electrochemically active component by suitable integration at the molecular level with another
component, which possesses inherent electrochemical activity. The Li–Mn–O system is promising
for the further enhancement of the specific capacity of the cathode material and, hence, the energy
density of the Li-ion cells. Recently, a Li–Mn–O system of nominal composition, “Li4Mn2O5”, was
reported as a novel cathode material with a specific capacity exceeding 300 mA·h/g by an Mn3+/Mn5+

two-electron redox process, as was confirmed by magnetic measurements [43]. The oxide is prepared
by a mechano-chemical route at ambient temperature using orthorhombic LiMnO2 and Li2O with a
2:1 molar ratio. The electrodes made of Li4Mn2O5 are subjected to galvanostatic charge/discharge
cycling at a rate of C/20 by gradually increasing the upper voltage limit from 4.4 to 4.6 V, and then
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to 4.8 V. Under these conditions, the sample is completely charged by removing four Li+ ions per
formula unit. The reversible capacity measured is 355 mA·h/g (equivalent to 2.88 Li+ per formula
unit). It is the highest capacity reported until now among the known Li–Mn–O electrode materials.
The electrochemical activity is attributed to the Mn3+/Mn4+, Mn4+/Mn5+ and O2−/O− redox couples.
The mechanism is supported by magnetic measurements.

2.1. Modifications of xLi2MnO3·(1 − x)Li[NiaCobMnc]O2 Materials by Surface Coating and Lattice Doping

The general consensus in the field of Li-ion batteries is that functional surface coatings and the
modification of electrodes by lattice doping may play a critical role in improving their electrochemical
properties, cycle life and thermal behavior. A wide variety of materials was investigated for use
as coatings, including the metal oxides SnO, Al2O3, TiO2, MgO and ZrO2 [44–47], fluorides such
as AlF3 and ZrFx [48,49], and phosphates such as AlPO4 [50]. Recently, we studied the structural
characteristics and electrochemical behavior of electrodes comprising Li- and Mn-rich Lix[MnNiCo]O2

cathode materials (prepared at BASF, Ludwigshafen, Germany) with the stoichiometry of xLi2MnO3·(1
− x)LiMnyNizCowO2 at 60 ◦C (x is in the range 0.4–0.5, and the y:z:w ratio was already reported, coated
with AlF3 (about 2–3 wt %)) [16]. Special emphasis was given to the possible structural transformation
during the activation and cycling of these electrodes, to solution and interfacial reactions, and to the
stability of the AlF3 coating during prolonged charge/discharge cycling at 60 ◦C. We also studied
possible interactions between the aluminum fluoride and the core of the active material, to better
understand the effect of this coating on all the chemical, electrochemical and thermal processes of the
electrodes. For the purpose of conducting Rietveld analysis and in keeping with previous studies,
we confirm that the structure of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 pristine material is composed
of two structurally compatible constituents: the monoclinic component Li2MnO3 (space group C2/m)
and the rhombohedral component LiMO2 (space group R3m) (M = Mn, Ni, Co). These two layered
Li2MnO3 and LiMO2 nanodomains exist side by side in the structure. From the Rietveld refinement for
the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 pristine material coated with AlF3, the Bragg R-factors for the
rhombohedral and monoclinic phases were calculated and found to be 0.046 and 0.082, respectively.
The refined cell parameters for Li2MnO3 were: a = 4.945(0) Å, b = 8.594(0) Å, c = 5.023(09) Å and
β = 108.86; and for Li(Ni,Co,Mn)O2: a = 2.855(4) Å and c = 14.251(1) Å.

The additional structural information about the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 pristine
material coated with AlF3 used here was obtained by TEM studies (Figure 2). Using the dark-field
imaging technique in TEM, it was possible to infer that the AlF3 coating layer consists of extremely
small (5–8 nm) AlF3 crystalline nanoparticles uniformly distributed over the particle surface. The AlF3

coating appears as thin crystalline layers covering the particle surface, indicated by arrows in the
inset (c).
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Figure 2. HRTEM image of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (x around 0.5, y:z:w around 2:2:1) 
pristine material coated with AlF3. Inset (a) is the Fourier transform of the image in a square marked 
by A. Subscripts (m) and (t) of the indexed spots are related to the monoclinic Li2MnO3 and tetragonal 
t-AlF3 phases, respectively; Inset (b) shows a filtered image of the AlF3 coating layer; Inset (a) exhibits 
a superposition of two sets of reflection spots, Li2MnO3 and t-AlF3; Inset (b) demonstrates a filtered 
image of the AlF3 structure with distances of 0.36, 0.39 and 0.31 nm between lattice fringes, which 
match the interplanar spacing d220, d211 and d301 in the t-AlF3 phase, respectively; Inset (c) is a TEM 
micrograph showing the microstructure of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 pristine material 
coated with AlF3. CBED patterns (a) and (b) are indexed on the basis of the monoclinic Li2MnO3 and 
tetragonal AlF3 structures, respectively. The layers of AlF3 are indicated by arrows. The coating 
crystallizes into the tetragonal structure t-AlF3 described by the P4nmm symmetry, possessing a unit 
cell with the parameters a = 10.1843 Å and c = 7.1738 Å. Reprinted from [16]. 

We have previously shown that xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (x around 0.5, y:z:w around 
2:2:1) electrodes can be effectively cycled at both 30 and 60 °C, with reversible capacities of about 220–
250 mAh·g−1 at a rate of C/5 [16]. The AlF3-coated electrodes also exhibit stable charge/discharge 
behavior, providing higher capacities and lower fade upon prolonged cycling at 60 °C (Figure 3A,B). 
It has recently been established that the AlF3 coating (>3 wt %) may interact with the layered cathode 
material (Li2MnO3), leading to partial extraction (“leaching”) of the Li-ions from it and the formation 
of a spinel-like structure [51]. We suggest that the uniformly distributed nano-sized AlF3 possesses 
high surface area and may indeed act as a strong Lewis acid in reactions with the lithiated TM-oxide, 
resulting in partial irreversible delithiation even in the pristine (initial) state [52]. During the first 
charge of Li2MnO3-containing electrodes, charge compensation during the extraction of lithium 
occurs, involving both oxygen removal from the Li2MnO3 structure and an exchange between Li+ and 
H+ in the solutions, according to the formulas [53]: 

2O2− (lattice) → O2 (gas) + 4e− (1) 

Li2MnO3 + H+ → LiHMnO3 + Li+ (2) 

Lithium carbonate is always formed in the air on TM-oxide electrodes, and its formation 
involves irreversible delithiation, according to: 

Li2MnO3 + xCO2 → Li2−2xMnO3−x + xLi2CO3 (3) 

Surface lithium carbonate can be replaced by LiF according to the reaction in the battery solution 
containing LiPF6 and unavoidably present free HF, according to: 

Figure 2. HRTEM image of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (x around 0.5, y:z:w around 2:2:1)
pristine material coated with AlF3. Inset (a) is the Fourier transform of the image in a square marked
by A. Subscripts (m) and (t) of the indexed spots are related to the monoclinic Li2MnO3 and tetragonal
t-AlF3 phases, respectively; Inset (b) shows a filtered image of the AlF3 coating layer; Inset (a) exhibits
a superposition of two sets of reflection spots, Li2MnO3 and t-AlF3; Inset (b) demonstrates a filtered
image of the AlF3 structure with distances of 0.36, 0.39 and 0.31 nm between lattice fringes, which
match the interplanar spacing d220, d211 and d301 in the t-AlF3 phase, respectively; Inset (c) is a TEM
micrograph showing the microstructure of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 pristine material
coated with AlF3. CBED patterns (a) and (b) are indexed on the basis of the monoclinic Li2MnO3

and tetragonal AlF3 structures, respectively. The layers of AlF3 are indicated by arrows. The coating
crystallizes into the tetragonal structure t-AlF3 described by the P4nmm symmetry, possessing a unit
cell with the parameters a = 10.1843 Å and c = 7.1738 Å. Reprinted from [16].

We have previously shown that xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (x around 0.5, y:z:w around
2:2:1) electrodes can be effectively cycled at both 30 and 60 ◦C, with reversible capacities of about
220–250 mAh·g−1 at a rate of C/5 [16]. The AlF3-coated electrodes also exhibit stable charge/discharge
behavior, providing higher capacities and lower fade upon prolonged cycling at 60 ◦C (Figure 3A,B).
It has recently been established that the AlF3 coating (>3 wt %) may interact with the layered cathode
material (Li2MnO3), leading to partial extraction (“leaching”) of the Li-ions from it and the formation
of a spinel-like structure [51]. We suggest that the uniformly distributed nano-sized AlF3 possesses
high surface area and may indeed act as a strong Lewis acid in reactions with the lithiated TM-oxide,
resulting in partial irreversible delithiation even in the pristine (initial) state [52]. During the first
charge of Li2MnO3-containing electrodes, charge compensation during the extraction of lithium occurs,
involving both oxygen removal from the Li2MnO3 structure and an exchange between Li+ and H+ in
the solutions, according to the formulas [53]:

2O2− (lattice)→ O2 (gas) + 4e− (1)
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Li2MnO3 + H+ → LiHMnO3 + Li+ (2)

Lithium carbonate is always formed in the air on TM-oxide electrodes, and its formation involves
irreversible delithiation, according to:

Li2MnO3 + xCO2 → Li2−2xMnO3−x + xLi2CO3 (3)

Surface lithium carbonate can be replaced by LiF according to the reaction in the battery solution
containing LiPF6 and unavoidably present free HF, according to:

Li2CO3 + 2HFsol → 2LiF + H2O + CO2 (4)

We assume that AlF3 substitutes the highly resistive LiF species and develops LiAlF4 (or
Li1−xAlF3+x) at the interface, which may play an important role in the enhancement of the Li
transport processes due to its exclusively high ionic conductivity, around 10−6–10−4 S·cm−1 at room
temperature [54]. Along with Li1−xAlF3+x, some other species, such as an Al–F–O–H-type species,
can also be formed on the active material coated with AlF3, as has been demonstrated by TEM
studies. Therefore, we suggest that the higher reversible capacities of the AlF3-coated electrodes
may relate to the enhanced Li+-ion transport properties at the interface that comprises the species
mentioned above, since these species also promote lower impedance and more uniform and fast
intercalation/deintercalation processes. For instance, at a rate of C/3, uncoated and coated materials
provide ~210 and ~260 mAh·g−1, respectively. We have established that the mean charge voltage for
the uncoated and AlF3-coated electrodes is almost invariant as a function of cycling, and is ~500 mV
lower for the coated electrodes (Figure 3C). This can be attributed to the more energetically favorable
Li+-ion extraction from the AlF3-coated electrodes and to the lower impedance of these electrodes
developed upon cycling. At the same time, the mean voltage in discharge decreases continuously
with cycling to ~3.1 V for both electrodes. This change in discharge voltage obviously reflects gradual
structural changes in the active mass, such as the gradual development of spinel-like structural
ordering, as reflected by TEM measurements. We found that during cycling at 60 ◦C, the impedance of
the AlF3-coated electrodes is indeed smaller than that of the uncoated electrodes.

Comparing the XRD patterns of the cycled electrode (at 60 ◦C) with those of the pristine
electrode clearly reveals the appearance of the peaks of a spinel LiMn2O4-like phase (Figure S2).
It is clear, therefore, that the layered components of the integrated electrode material partially
convert to a spinel-like phase upon cycling, in agreement with previously reported observations
of layered-to-spinel-type structural transformation induced by electrochemical cycling [55–57].
The Raman spectra of the cycled xLi2MnO3·(1 − x)Li[MnyNizCow]O2 electrodes are characterized
by broader main peaks and a lower ratio of intensities, attributable to some structural disordering
and increased conductivity, respectively, compared to the pristine electrodes. These spectra reveal
the formation of spinel-type ordering, reflected by the blue-shift of the A1g mode at ~600 cm−1

in the pristine electrodes to ~625 cm−1 in cycled material, implying partial transformation of the
layered structure.
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comprising AlF3 coated material (b); Mean voltage of these electrodes registered in charge and in 
discharge as a function of cycle number (c). Reprinted from [16]. 

Figure 3. Charge/discharge cycling behavior at 60 ◦C of the uncoated xLi2MnO3·(1− x)Li[MnyNizCow]O2

(x around 0.5, y:z:w around 2:2:1) electrode (a) and of a similar electrode comprising AlF3 coated material
(b); Mean voltage of these electrodes registered in charge and in discharge as a function of cycle number
(c). Reprinted from [16].

Figure 4 (charts A and B) demonstrates the differential scanning calorimetry (DSC) responses
of the xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (uncoated and AlF3-coated) materials in contact with the
EC-DMC/1M LiPF6 solution at 40–400 ◦C. It was found that the thermal decomposition of the solution
alone exhibits an exothermic peak at 243 ◦C. The calculated heat of this reaction is about 400 J/g.
The DSC response of xLi2MnO3·(1 − x)Li[MnyNizCow]O2 with the EC-DMC/1M LiPF6 solution does
not demonstrate the thermal decomposition peak of the electrolyte solution. However, at least three
exothermic peaks appear, starting at 215 ◦C, and they are accompanied by a total heat evolution
of 440 J·g−1. The observed exothermic peaks are related to the well-known pronounced thermal
reactions between lithiated transition-metal-oxide cathode material and solution species (curve b).
Surface modification of xLi2MnO3·(1 − x)Li[MnyNizCow]O2 with aluminum fluoride significantly
enhances the thermal stability, shifting the onset of the thermal reactions to higher temperatures and
lowering the total specific heat of the reactions by more than 10% (curve c). We suggest that the
AlF3 coating significantly reduces the direct contact area between the active mass and the solution
species. Since the electrochemical or chemical delithiation of the monoclinic component Li2MnO3 of
the cathode material is accompanied by oxygen evolution, this oxygen can react with AlF3 to form
Al2O3 at 200 ◦C [58]. Supposedly, alumina thus formed does not sufficiently protect the surface of the
material at elevated temperatures, and the interfacial reactions may accelerate to more than 200 ◦C.
Indeed, the DSC measurements detect an onset of very slow exothermic reactions at 220 ◦C, which
is about 20 ◦C higher than the temperature of the uncoated material. The strong exothermic peak
appears at 260 ◦C, 45 ◦C above the temperature of the uncoated material. The DSC response obtained
from the uncoated xLi2MnO3·(1 − x)Li[MnyNizCow]O2 active mass after the 20th charge (delithiated
state at 60 ◦C) shows three well-resolved exothermic peaks (curve d). The exothermic peak observed
with the cycled electrode is 198 ◦C, accompanied by a specific heat release of ~1015 J·g−1, while the
DSC response of the charged AlF3-coated cathode material (delithiated state at 60 ◦C) after 20 cycles
(Figure 4 chart B) differs significantly from that of the pristine state. The thermal stability decreases and
the temperature of the main exothermic reaction is shifted to ~236 ◦C. The ratio between the exothermic
peaks changes and the heat release increases more than twofold. Such differences may be related to
the surface and bulk changes of the cathode material upon cycling, and the results obtained correlate
well with previous reports [58–61]. To summarize, the surface modification by AlF3 coating of these



Inorganics 2017, 5, 32 8 of 29

Li- and Mn-rich cathode materials improves their thermal stability in pristine and delithiated states
compared to the uncoated electrodes. These results are in line with the TEM data, demonstrating that
even after cycling at 60 ◦C, the AlF3 coating still remains stable on the surface of the cathode material.
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Figure 4. Typical DSC responses measured upon heating. In chart (A) (a) 1M LiPF6/ EC:DMC 1:1
electrolyte solution, (b–d) uncoated and AlF3-coated xLi2MnO3·(1 − x)Li[MnyNizCow]O2 (x around
0.5, y:z:w around 2:2:1) materials in the same solution: (b) pristine uncoated electrode, (c) pristine
AlF3-coated electrode, (d) uncoated charged electrode (delithiated state) after 20th cycle at 60 ◦C.
In chart (B) AlF3-coated charged electrode (delithiated state) after 20th cycle at 60 ◦C. Reprinted
from [16].

Novel hybrid materials composed of Mg2+ and LiMgPO4 have been proposed by Liu et al [62].
As protective surface layers on Li- and Mn-rich Li1.17Ni0.17Co0.17Mn0.5O2 material in order to lessen the
capacity fading and voltage decay during prolonged cycling at 24 and 60 ◦C. Figure 5 shows a schematic
illustration of surface-coated cathode material with hybrid LiMgPO4 material and preparation of
the surface-modified Li1.17N0.17C0.17Mn0.5O2. From the Rietveld refinement of the XRD patterns,
it was suggested that the LiMgPO4 surface-coated layered material was surface-doped, resulting in
[Li1.17−yMgy][Ni0.17Co0.17Mn0.5]O2. In the Li2MnO3 phase, the Mg2+ ions prefer to occupy the Li+

(4h) sites. This suppresses TM migration from the TM layer to the lithium layer, thereby reducing
the structural transformation from the layered (space group R3m) to the spinel-like phase. It was
also hypothesized that during the coating process, the Li2MnO3 phase is activated with simultaneous
hybrid surface coating, which leads to Li-rich material with better rate capability and initial Coulombic
efficiency at 24 ◦C, compared to the bare material.

Although upon long cycling at room temperature the capacity retention is almost the same for the
bare and 1.5 wt % surface-coated sample, cycling at an elevated temperature of 60 ◦C is significantly
better for the 1.5 wt % LiMgPO4-coated samples. The authors show (Figure 6) that the surface-coated
sample with 1.5 wt % LiMgPO4 delivers an initial discharge capacity of 264 mAh·g−1 at a rate of 0.5 C
with a capacity retention of 87.1%, whereas the bare sample shows only 33.4% capacity retention after
75 cycles. The LiMgPO4-coated Li-rich layered material serves as a protective layer that minimizes
electrolyte contact with the active material particles, thereby reducing the attack from acidic HF and
eliminating metal dissolution at a high operating temperature. Consequently, in the LiMgPO4-coated
Li- and Mn-rich layered material mentioned above, the voltage fade due to cation migration and
structural transformation is reduced, thereby enhancing the cycling stability of the cathode material at
elevated temperatures.

The atomic layer deposition (ALD) technique has been used to obtain uniform surface coatings
with controlled thickness on top of the Li- and Mn-rich cathode materials [63]. Choi et al. coated the
acid-treated 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 composite electrode material with a thin Al2O3

layer [64]. By the ALD technique, they demonstrated that the alumina-coated electrodes improve
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not only the discharge capacity but also the cycling stability, compared to the uncoated material.
After 10 ALD cycles, the 0.1-M-HNO3-treated electrode material coated with Al2O3 shows better
capacity retention. Here, Al2O3 forms a stable protective layer that can quickly transport Li+ ions
across the interface of the cathode particles during charging and discharging.
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(a) Schematic illustration of surface-modified Li-rich cathode particles with the novel hybrid material
LiMgPO4; (b) Schematic diagram showing the preparation of surface-coated Li1.17Ni0.17Co0.17Mn0.5O2

particles from bare material. Reprinted with permission [62]. Copyright 2015, Wiley-VCH Verlag.
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at 60 ◦C. (a) The discharge capacity versus prolonged cycling of the bare and 1.5 wt % coated samples
at 60 ◦C at a 1.0 C/1.0 C rate after several formation cycles; (b,c) The charge/discharge profiles of
the bare and 1.5 wt % surface-modified Li-rich cathode materials. Reprinted with permission [62].
Copyright 2015, Wiley-VCH Verlag.

In a surface-modification technique proposed by Oh et al., the Li- and Mn-rich layered-cathode
0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 material was surface-coated with several layers of reduced
graphene oxide (rGO) by the spray-dry technique and treated with hydrazine (HGO) solution to
obtain a better electronic conducting pathway onto the bare cathode surface [65]. A schematic view of
the HGO-coated material is shown in Figure S3. The Li2MnO3 phase on the surface is stabilized by
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activating its structure with HGO treatment. This surface treatment of layered cathode materials by
HGO greatly increases the initial Coulombic efficiency and mitigates voltage fading upon extended
cycling (Figure S4). In this figure, the specific capacities obtained at low rates are almost the same
for the pristine and HGO samples, but the rate capabilities are clearly distinguishable at higher
rates, mainly due the conducting HGO layer at the surface. Upon long cycling, the surface-treated
samples mentioned above demonstrate a stable discharge capacity over 100 cycles, with a capacity
retention of 78%, whereas the specific capacity of the uncoated sample falls abruptly after 30 cycles.
This improvement in the HGO-coated Li-rich electrodes emerges by suppressing the phase transition
of the bulk material from the layered phase to spinel-like phases and rock-salt phases, which is the
main reason behind the capacity fading observed in all Li-rich layered cathode materials.

The influence of cation dopants (such as Mg2+) in xLi2MnO3·(1 − x)Li[MnyNizCow]O2

materials was studied by partial replacement of Mn in a typical material (the general formula
Li1.2Ni0.16Mn0.56−xMgxCo0.08O2). Two dopant levels were used, x = 0.02 and x = 0.05. The material
was synthesized by the self-combustion reaction (SCR) from the precursors of LiNO3, Ni(NO3)2,
Mn(NO3)2, Co(NO3)2 and Mg(NO3)2, as reported earlier [66]. These precursors and sucrose act as
oxidants and fuel, respectively, in the SCR. The XRD patterns of both samples can be indexed as a
hexagonal O3 α-NaFeO2 structure (space group R3m), with a few broad peaks that appear in the 2θ
range of 20◦–25◦ (Figure S5). These diffraction peaks result from the super-lattice ordering of Li and
Mn in the transition-metal layers associated with the presence of the monoclinic phase Li2MnO3. No
additional XRD peaks were detected upon Mg doping, indicating the absence of any impurity phase
and the proper substitution of Mg for Mn. The Mg doping resulted in a slight increase in the lattice
parameters and the unit cell volume of the doped material (V = 201 Å3) compared to the undoped
one (V = 200.8 Å3). This is probably because of the large size of Mg2+ (0.76 Å) compared to Mn4+

(0.53 Å). Galvanostatic charge/discharge cycling of the Mg-doped Li- and Mn-rich cathodes was
performed vs. Li counter-electrodes in coin-type cells at 25 mA·g−1 (about C/10 rate). The voltage
range was 2.0–4.7 V in the first cycle and 2.0–4.6 V in the 100 subsequent cycles. The voltage profiles
measured from these electrodes demonstrated a plateau around 4.5 V corresponding to the activation
of Li2MnO3. However, the first charge voltage plateau region is shortened when the dopant level
of Mg is x = 0.05. A high specific capacity of about 340 mAh·g−1 was initially obtained for the
undoped Li1.2Ni0.16Mn0.56Co0.08O2 cathodes, while charging capacities of about 348 and 250 mAh·g−1

were measured in the first cycle for the electrodes doped with Mg at values of x = 0.02 and x = 0.05,
respectively. This result demonstrates that Mg doping only slows the initial activation process of the
monoclinic Li2MnO3 component with the higher amount of dopant (x = 0.05). This is in agreement
with the result reported in the literature for the partial substitution of Mn by Sn [67]. The partial
substitution of Mn by Mg suppresses the capacity resulting from the activation of Li2MnO3. This is
because the formation of stronger Mg–O bonds compared to Li–O bonds suppresses the irreversible
extraction of Li+ and O2 during the charge in the first cycle [68]. The charge/discharge voltage
profiles relating to several cycles during the prolonged cycling of Li1.2Ni0.16Mn0.54Mg0.02Co0.08O2 and
Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2 are presented in Figure 7. The wide plateau at potentials higher
than 4.5 V in the first cycle, corresponding to the activation of Li2MnO3, disappear during the
charge in subsequent cycles. In the second cycle, the discharge capacities are found to be about
270 and 170 mAh·g−1 for Li1.2Ni0.16Mn0.54Mg0.02Co0.08O2 and Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2, with a
Coulombic efficiency approaching 99%. As established earlier, there is a decrease in the specific capacity
and discharge voltage decay of the undoped electrode materials upon cycling. In our experiments,
the Mg-doped (x = 0.02) samples demonstrate this effect [69]. However, when the Mg-doping level is
0.05 for Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2, the specific capacity increases during the initial 20–30 cycles
and stabilizes at about 230 mAh·g−1.

The specific capacity obtained from galvanostatic cycling at a rate of C/10 as a function of
the cycle number is shown in Figure 8. In the case of the Li1.2Ni0.16Mn0.56Co0.08O2 electrodes, a
discharge capacity of 250 mAh·g−1 is obtained in the second cycle, which decreases to 175 mAh·g−1,
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thus retaining about 70% capacity after 100 cycles (Figure 8i). For the Li1.2Ni0.16Mn0.54Mg0.02Co0.08O2

cathodes, the specific capacity drops from 270 mAh·g−1 (second discharge) to 220 mAh·g−1,
thus retaining about 81.5% capacity after 100 cycles (Figure 8ii). The specific capacity of the
Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2 electrodes increases from 170 mAh·g−1 (second discharge) to
230 mAh·g−1 after about 20 cycles, finally decreasing to 210 mAh·g−1, with a capacity retention
of about 91.3% (Figure 8iii). Such an increase in capacity during the first few cycles indicates, again,
the gradual activation of Li1.2Ni0.16Mn0.51Mg0.05Co0.08O2 upon cycling, which is in line with previous
reports [68]. Hence, the minor substitution of Mn by Mg results in an improvement in the cycling
stability during prolonged cycling of these Li- and Mn-rich cathodes.
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2.2. Low-Temperature Activation of xLi2MnO3·(1 − x)Li[MnyNizCow]O2 Materials

Recently, our group has discovered a unique phenomenon: the activation of Li- and Mn-rich
materials at lower than ambient temperatures (e.g., 0 or 15 ◦C) results in a ~10% enhancement
in the subsequent discharge capacity of these materials [41,71]. This effect has been shown in
multiple formulations of xLi2MnO3·(1 − x)Li[MnyNizCow]O2. The results for two different materials
are depicted in Figure 9 [41,71]. The mechanism behind the enhanced discharge capacity from
low-temperature activation is still under investigation. Since the first cycle of the Li- and Mn-rich
materials must be extended to higher potentials, at which electrolyte oxidation is enhanced, the surface
films may play a role, showing lower resistance for cells activated at lower temperatures [41,71].Inorganics 2017, 5, 32 12 of 29 
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2.3. Porous Li- and Mn-Rich High-Energy-Density Cathode Materials 

As discussed above, Li- and Mn-rich cathodes present thermodynamic and kinetic challenges, 
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Figure 9. Low-temperature activation of electrodes comprising different compositions of Li- and
Mn-rich materials. 0.35Li2MnO3·0.65Li[Mn0.45Ni0.35Co0.20]O2 cycled at (A) 30 and (B) 45 ◦C after the
first two cycles, which were performed at 0–45 ◦C as indicated. Reprinted from Erickson et al. with
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which were performed at 0 and 30 ◦C as indicated. Modified from [41].
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2.3. Porous Li- and Mn-Rich High-Energy-Density Cathode Materials

As discussed above, Li- and Mn-rich cathodes present thermodynamic and kinetic challenges,
such as low Coulombic efficiency, poor rate capability and fast capacity fading. To overcome these
issues, metal-ion doping of the lattice and surface modifications by coating are being adopted.
Another approach is to focus on the fabrication of nanostructured cathode materials with well-defined
morphologies, such as porous structures and hollow spheres. The selection of nano-sized materials
potentially improves the mass transport of the cathode by increasing its surface area, shorting
the diffusion lengths and providing higher intercalation/deintercalation rates. Apart from the
advantages of the high specific surface area of the nanoparticles, the nano-sized materials show
certain disadvantages: the lowering of thermodynamic stability, higher contact resistance, low packing
density and high side reactions at the electrode/electrolyte solution interface. Therefore, these materials
cannot be used in practical applications. Compared to nanomaterials, micrometer-sized particles have
relatively high thermodynamic stability, low contact resistance and low specific surface area, and they
exhibit less side reactions. In contrast, the advantage in porous structured materials is their good
electrode/electrolyte solution interface through the pores and promising structural stability via low
contact resistance through the walls of the pores. Therefore, electrodes prepared from porous materials
are expected to possess high rate capability, since the electrolyte can seep into the particles and enhance
the contact area of the electroactive surface with the electrolyte. This shortens the diffusion length of
Li+-ion transport and enhances the kinetics [72,73]. As a result, these materials can withstand high
currents during charge/discharge cycling. Furthermore, the electrode material can tolerate the volume
expansion and contraction that may occur during Li intercalation/deintercalation processes.

Porous materials can be classified as microporous (<2 nm), mesoporous (2–50 nm),
and macroporous (>50 nm), based on the pore size. They are prepared by various synthetic routes,
such as template and non-template methods. Non-template methods are hydrothermal, sonication and
microwave routes. Template methods use a substrate on which the material nucleates, grows and then
the product can be separated from the substrate. There are several kinds of templates: soft templates
(polymers), hard templates (SiO2, polymer beads) and self-templates (one of the precursors, which
acts as a template). In Table S1, which presents an overview of the literature data on porous cathode
materials for Li-ion batteries (LIBs), we demonstrate the relation between the synthetic method of
porous materials and their electrochemical performance. In addition, several approaches are discussed
below with detailed benefits of using porous materials.

Li- and Mn-rich Li1.2Mn0.54Ni0.13Co0.13O2 material with hierarchical porous micro-sized rods
was prepared by the facile hydrothermal method, with discharge capacities of about 281, 255, 232,
226, 202 and 173 mAh·g−1, at rates of 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C and 5 C, respectively, measured as
shown in Figure S6A [74]. Ma et al. [75] reported hierarchical Li1.165Mn0.501Ni0.167Co0.167O2, which
was prepared by the ultrasonic-assisted co-precipitation method with two steps of heat treatment
by adopting graphene and carbon nanotubes as the functional framework. These materials exhibit
the specific capacity of 277 mAh·g−1 at a rate of 0.1 C and 61 mAh·g−1 at a rate of 10 C (Figure S6B).
Munichandraiah et al. prepared porous Li- and Mn-rich cathodes (Li1.2Mn0.53Ni0.13Co0.13O2,
Li1.2Mn0.54Ni0.22Fe0.04O2, Li1.2Mn0.53Ni0.13Fe0.132, Li1.2Mn0.6Ni0.2O2) by the reverse micro-emulsion
method using a tri-block co-polymer as a soft template [76–79]. Soft-template synthesis by the inverse
micro-emulsion route is useful for the preparation of small particles. When a small volume of an
aqueous phase consisting of the reactants is dispersed in a large volume of a non-aqueous phase,
the reactants are confined to micrometer-sized aqueous reaction zones and the size of the product
particles is limited to the size of the aqueous droplets, which are stabilized by surfactant molecules.
Sub-micrometer/nanometer-sized particles were synthesized by this route [80]. The typical reverse
micro-emulsion route contains hydrocarbon (aliphatic or aromatic) as an oil phase, co-surfactant (4 to 8
carbon-chain aliphatic alcohol) and a small amount of aqueous phase. As shown in the schematic
diagram in Figure 10a, the presence of tri-block polymeric templates such as P123, F068 and F127 is
expected to facilitate porosity on the product particles. These templates follow the general formula
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–[(EO)n–(PO)m–(EO)n]–, (n = 20, m = 70 for P123, n = 78, m = 30 for F068, n = 106, m = 70 for F127),
where EO and PO are ethylene oxide and propylene oxide, respectively.Inorganics 2017, 5, 32 14 of 29 
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samples heated to 500, 600, 700, 800 and 900 ◦C (in the inset), as indicated; and (d) rate capability of
0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 electrode samples heated to 800 ◦C (i) and 900 ◦C (ii). Reprinted
from [77].

The combination of a hydrophobic and hydrophilic PO block leads to the creation of
porosity [81]. Sub-micrometer-sized porous cathode materials can be synthesized by combining
the salient features of inverse micro-emulsion and the polymeric template. The precursor of
the porous Li1.2Mn0.53Ni0.13Co0.13O2 is heated to several temperatures between 500 and 900 ◦C.
The product samples possess mesoporosity with broadly distributed pores, with about 30-nm diameters
(Figure 10C). Note that there is a decrease in the pore volume as well as in the surface area with the
increase in the temperature of preparation. The discharge capacity of the Li1.2Mn0.53Ni0.13Co0.13O2

samples prepared at 800 and 900 ◦C is ~250 mAh·g−1 at a specific current of 40 mA·g−1, showing good
cycling stability and rate capability (Figure 10D).

A hierarchically porous layered lithium-rich oxide, 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2,
was synthesized by the co-precipitation of metal oxalates, with the assistance of a moderate
polyethylene glycol (PEG2000) [82]. It was found that the as-synthesized oxide exhibits excellent
rate capability and cyclic stability as an electrode in Li-cells, delivering an initial discharge
capacity of 262 mAh·g−1 at 0.1 C and 135 mAh·g−1 at 4 C, and possessing a capacity retention
of 83% after 200 cycles at 4 C. The discharge profiles and corresponding dQ/dV plots are
shown in Figure 11. Both samples display a similar trend in voltage fading, as can be seen
by the decreasing potential profiles with increasing cycle numbers (Figure 11A,C), but without
PEG-0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3 O2 electrodes exhibit a more serious decline in discharge
capacity than electrodes comprising PEG2000-0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 composite
material. This result shows that PEG2000-0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 has better structural
stability than 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2. This difference between the two materials can be
more easily observed from the dQ/dV plots in Figure 11B,D. Three main reduction processes (which
accompany Li-intercalation) can be identified: Re1 at about 4.5 V is related to Li occupation in the
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tetrahedral sites; Re2 at 3.7 V can be ascribed to Li occupation in the octahedral sites corresponding
to Ni4+/Ni2+ and Co4+/Co3+; and Re3 at <3.5 V can be explained by Li occupation in the octahedral
sites associated with Mn4+/Mn3+ redox [83,84]. Further delithiation beyond 4.5 V during the
first cycle leads to oxygen vacancies and the subsequent migration of transition metal ions into
lithium sites and lithium ions into tetrahedral sites, resulting in a distorted oxygen lattice [85–88].
Figure 11B,D shows that all the reduction peaks shift with cycling, but the shifting is more serious
for 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 than for PEG2000-0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2.
This observation reveals that PEG2000-0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 is more structurally
stable than 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 under deep cycling.
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The porous Li1.2Ni0.13Co0.13Mn0.54O2 nanoplate was prepared by a colloidal crystal template
assembled by poly(methyl methacrylate) (PMMA) beads [89]. In Figure S7, the cycling performance
of the porous Li1.2Ni0.13Co0.13Mn0.54O2 and bulk Li1.2Ni0.13Co0.13Mn0.54O2 materials are compared at
different discharge rates over the voltage range of 2.0–4.8 V. During the rate capability studies, all the
charging steps were carried out at 0.1 C and the discharge was performed over the range of 0.1–1 C
rates. Clearly, the porous Li1.2Ni0.13Co0.13Mn0.54O2 shows higher discharge capacity than the bulk
Li1.2Ni0.13Co0.13Mn0.54O2 at all C-rates. These results indicate that porous Li1.2Ni0.13Co0.13Mn0.54O2

cathode material shows high specific capacity and improved cycling stability compared to the
bulk Li1.2Ni0.13Co0.13Mn0.54O2 prepared by the traditional method. Nanoparticles of the layered
Li- and Mn-rich cathode Li[Li0.2Ni0.2Mn0.6]O2 were synthesized via two-step hydrothermal reactions
combined with a calcination process, where carbon spheres were used as templates. This cathode
material delivers optimal cycling ability, minimal voltage decay and maximal discharge capacities of
239, 219, 205 and 183 mAh·g−1 at rates of 1, 2, 5 and 10 C, respectively [90].
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In the past, the hollow nanostructured electrode materials were generally prepared by template
methods, and the removal of the templates was difficult [72]. In contrast, self-template or
sacrificial-template methods are convenient for the preparation of hollow materials. The self-template
not only acts as a reactant precursor, but also allows the formation of hollow particles [91,92]. Hollow
0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres were synthesized on a large scale through a simple in situ
template-sacrificial route. Starting from porous MnO2 microspheres, hollow microspheres assembled
with 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 nanocrystals were produced (Figure 12) [93]. This material exhibits
a highly reversible capacity of about 295 mAh·g−1 over 100 cycles and excellent rate capability
(125 mAh·g−1 at 1000 mA·g−1) as a cathode in Li-cells. An important advantage is that dual and
multi-porous Li- and Mn-rich materials with an advantageous distribution of pores between 2–5 nm
and 30–50 nm. While small pores act as transport channels for ions to the bulk of the electrode, larger
pores allow for easy mass transport of solvated ions [94,95].
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surface. Hence, dopants and surface coatings may react with the surface lithium to form lithium 
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Figure 12. (a) Schematic illustration of the formation of hollow Li-rich materials; (b,c) SEM
and TEM images of hollow Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 material; (d) Rate capability of
Li1.2Mn0.54Ni0.13Co0.13O2 electrode sample, current densities (mA·g−1) are indicated; (e) A comparison
of the rate capabilities of electrodes comprising hollow microspheres, nanoparticles and bulk
0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 materials. Reprinted with permission [89,93]. Copyright 2017, Springer,
and 2013, Royal Society of Chemistry.

3. Nickel-Rich Li[NixCoyMnz]O2 Layered Structure Materials (NCM, x > 0.5, x + y + z = 1)

3.1. Zirconium and Aluminum Doping of Li[NixCoyMnz]O2 Materials

Doping of Li[NixCoyMnz]O2 Ni-rich cathode materials with various cations (such as Fe3+, Cu2+,
Cr3+, Mg2+, Al3+ and Zr4+) has been reported to enhance their electrochemical behavior [68,96–101].
Dopants play various roles in the material. On the one hand, they can act as pillars in the lithium
layers and lead to the suppression of c-lattice contraction at the end of the charge, resulting in
improved rate capability of the electrode [96]. Furthermore, with dopants occupying lithium sites,
the Li+/Ni2+ mixing can be reduced and, hence, the formation of inactive rock salt on the surface is
suppressed, resulting in lower charge-transfer-resistance growth with cycling [96,97,102]. Since most
of the synthetic strategies of NCM make use of the lithium excess to achieve the correct stoichiometry
and minimize the cation mixing during annealing, the material has some excess lithium on the surface.
Hence, dopants and surface coatings may react with the surface lithium to form lithium conductive
layers [103].
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We have recently reported the beneficial impact of zirconium doping in NCM622 [96].
The materials under examination were LiNi0.6Co0.2Mn0.2O2 and LiNi0.54Zr0.04Co0.2Mn0.2O2,
synthesized by a self-combustion reaction and annealed at 800 ◦C under oxygen flow. Based on
computational considerations, the Ni2+/Ni3+ ratio was calculated for zirconium doping in place of
cobalt, nickel or manganese (Figure 13). Since Zr4+ is electrochemically inactive, doping results in a
lower NCM capacity. To compensate for this, Ni was chosen as a substitute, since we have already
established the increase in the Ni2+/Ni3+ ratio. With more Ni2+ ions available in the material, the
capacity offset induced by the Zr doping can be compensated.
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The Zr-doped material exhibits improved performance at higher cycling rates and a more stable
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Figure 14. Galvanostatic cycling of LiNi0.6Co0.2Mn0.2O2 and LiNi0.54Zr0.04Co0.2Mn0.2O2 under various C 
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Post-cycling analysis by TEM and electron-diffraction studies after 50 cycles of the undoped
NCM622 reveal the presence of a spinel-like phase on the surface of the particles (Figure 15a–c). Spinel
formation is considered an intermediate step towards the formation of electrochemically inactive
rock salt [102]. Among several investigated particles of Zr-doped NCM622, no evidence for spinel
formation was found (Figure 15d–f). Some particles show reflections indicative of Li2ZrO3, showcasing
the formation of lithium-rich phases on the particles with excess lithium.
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Figure 15. (a–c) TEM image and electron diffraction patterns of undoped NCM622 after 50 cycles
at 45 ◦C. Spinel-like structure species were found on the surface; (d–f) Electron-diffraction patterns
of Zr-doped NCM622 after 50 cycles at 45 ◦C. No indication of spinel was found, among several
investigated particles. The formation of Li2ZrO3 was confirmed in small amounts. Reprinted from [96].

Another study was dedicated to investigating the impact of minor aluminum doping (0.01 at %)
of the NCM523 material prepared at BASF [97]. According to the synthetic procedure, Al doping took
place at the expense of all the transition metals (Ni, Co, Mn). An important motivating factor in this
research was to understand the preference of Al doping at Mn, Co or Ni sites, a question which may
be addressed by theoretical calculation of the substitution energies. These were calculated for the
configurations doped at the preferred Co, Mn and Ni sites as −5.13 −3.10 and −5.86 eV, respectively.
Since the highest negative substitution energy of Al is at the Ni sites, Al substitution is preferred there
rather than at the Co sites. The thermodynamic preference of Al3+ substitutions follows the order Ni
> Co > Mn. The local magnetic moments of undoped LiNi0.5Co0.2Mn0.3O2 suggest that the formal
charges on Co and Mn are +3 and +4, respectively. It follows from our calculations that both Ni2+

(magnetic moment ~1.5) and Ni3+ (magnetic moment ~0.8) ions exist in both Al-doped and undoped
pristine materials.

Since the NCM523 cathode material is much less problematic (due to a lower Ni-content) than
Li-rich NCM622 and NCM811, improvement in the electrochemical performance is usually less obvious.
Nonetheless, it was shown that by adding 0.01 at % of Al-dopant to the material, the electrodes
demonstrate lower capacity fading (Figure 16).
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Figure 16. Cycle stability of NCM523 (a) and Al-doped NCM523 (b) at 30 ◦C. The cycling rate was
C/15 for the initial cycles and C/5 for the rest. Reprinted from [97].

Interestingly, lower charge transfer and surface-film resistance were measured for the doped
material after cycling and aging at 30 ◦C. This effect is attributed, to some extent, to the formation
of LiAlO2 and other species on the surface of the NCM particles. We suggest that a more stable
cathode/solution interface and, consequently, lower surface-film and charge-transfer resistance will
result from specific surface interactions of these electrodes with solution species. We also suggest
that upon cycling or aging in the solutions, a thin reactive surface layer (RSL) on the particles of the
Al-doped material becomes enriched with Al3+-ions, which initiate interfacial reactions, such as:

Al3+ + Li+ + 4HF→ LiAlF4(s)↓ + 4H+ (5)

Al3+ + Li+ + Ni2+ + 3H2O→ LiNiAlO3(s)↓ + 6H+ (6)

Al3+ + Li+ + 2H2O→ LiAlO2(s)↓ + 4H+ (7)

It is reasonable to propose that Al-containing species that form in an RSL upon cycling or
aging in solutions of Al-doped electrodes may partially suppress the unavoidable formation of LiF,
stabilizing the electrode/solution interface and, hence, leading to lower impedance and more stable
charge/discharge behavior of these electrodes. Thus, the modified interface comprising the Li+-ion
conducting active centers such as LiAlO2, AlF3, Li[AlF4] and others may promote enhanced Li+

transport to the electrode bulk and facilitate the charge-transfer reactions [104].
The higher thermal stability of the Al-doped samples was reflected by the DSC responses of

electrodes in the charged state (4.3 V). The heat evolved was calculated as 575 and 520 J·g−1 for
undoped NCM523 and Al-doped NCM523, respectively. Since safety is a major concern for commercial
application, high capacity materials must be low in heat release. This is especially important for
electric-vehicle battery cells of several ampere hours per cell. A failure in one cell can potentially
be catastrophic for the whole battery pack. In a recent study by Cho et al., NCM433, NCM523,
NCM622 and NCM811 were investigated in terms of thermal stability under charged conditions [105].
The nickel-rich materials NCM811 and NCM622 showed onset temperatures of ~150 and ~200 ◦C,
respectively (Figure 17). Critical failure is accompanied by phase changes from layered to spinel and
finally to rock salt. All steps involve gas evolution, which resulted in pressure inside the cell. It is
clear that the high capacity and energy of NCM811 is also problematic, and efforts have to be made to
ensure sufficient thermal stability by doping and coating approaches.
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Figure 17. Pressure diagram for NCM433, NCM523, NCM622 and NCM811 electrodes over a wide
temperature range and the accompanying phase changes; all measurements were made for charged
materials without any addition of electrolyte solution. Reprinted from [105].

The increase in the nickel content in NCMs from NCM333 to NCM811 leads to an increase in
capacity from ~155 to 195 mAh·g−1. The higher delithiation degree in NCM811 (~70%) is substantial
and leads to multiple phase changes during charge and discharge [28,106]. Depletion of the lithium
layer is accompanied by a deshielding of the oxygen layers since less and less lithium ions are
present. This leads to a stronger repulsive force and hence to an expansion of the c-lattice parameter.
With further lithium removal, the emptier lithium layer is likely to be partially filled with transition
metals (e.g., Ni) to stabilize the lattice. This leads to strong interactions between high-oxidation-state
transition metals inside the lithium layer and the oxygen layers, eventually lowering the c-parameter
again (Figure 18). The overall volume change in NCM811 is ~5% if charged to 4.3 V [28]. The rapid
c-parameter contraction, starting from 4.1 V, results in a fast volume change of ~2.5% and stress on the
phase boundaries of the primary particles. NCM811 and NCM622 are known to form microcracks along
the phase boundaries during cycling, leading to an increase in surface areas for side reactions [42].

It should be emphasized that the formation of a reactive surface layer enriched with Al3+ dopant
ions, as proposed above, is very important for understanding electrode cycling behavior. This is
due to the fact that in the charged electrode some nucleation may be induced starting in RSL to
promote the transformation of a layered structure toward a spinel-type structure. This reactive surface
layer can also be represented as a “disordered surface layer” surrounding the core of nanoparticles
or microparticles of cathode layered-structure materials. It was demonstrated, for instance, that for
Li-rich electrodes comprising nano-Li2MnO3 particles, the isothermal magnetization profiles measured
by magnetic susceptibility do not differ upon aging the material in EC-DMC/LiPF6 solution, indicating
that magnetic transition does not occur (Figure S8) [107]. A decrease in the magnetic moment of
the aged nanoparticles shown in Table S2 corresponds to an increase in the reciprocal magnetic
susceptibility due to the presence of Mn ions in the low-spin state in a thin disordered layer at the
surface of Li2MnO3 particles. This implies that manganese ions are present in a lower oxidation state
than 4+: either Mn3+ (S = 1) or Mn2+ (S = 1

2 ). Magnetic susceptibility tests have been employed to
estimate the amount of these ions [107]. On the basis of the proposed disordered surface layer (DSL)
model, it was possible to explain the origin of the observed electrochemical activity of nano-Li2MnO3
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electrodes at 4.0–4.1 V that is likely due to reversible oxidation/reduction of Mn3+ and Mn2+ ions from
nanoparticles (20–30 nm) with the disordered surface layers of 3–4 nm. The volume of the DSL was
estimated to reach ~85%–60%, respective to the total volume of the nanoparticle. One of the main
conclusions from this work [107] was that the partial transition of layered Li2MnO3 to a spinel-type
structure (confirmed by analysis of XRD, TEM, and Raman spectroscopy studies) occurred in these
systems during delithiation/lithiation.
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Figure 18. (a) Lattice parameter changes in NCM811 electrode during charge and discharge measured
by in situ XRD; (b) dQ/dV profile for NCM811. Reprinted with permission [106]. Copyright
2015, Wiley.

3.2. Surface Coatings of Li[NixCoyMnz]O2 Materials

Set aside from doping strategies, coating cathode materials with thin surface layers is a popular
approach to enhance the cycle life and thermal stability of electrodes. The objective is to protect the
surface area of the active material by an inert thin layer of organic or inorganic compounds. The coating
will act as a barrier between the active material and the electrolyte, minimizing parasitic side reactions
at high voltages. In addition, some coatings are known to be HF scavengers, which is especially
beneficial if the coating is not uniform or tends to break during cycling [108]. Most of the reported
coating strategies employ a wet chemical approach to deposit the coating layer onto the active material,
followed by a heat treatment. While this approach is fairly easy to perform, the coatings often suffer
from cracks or are deposited as flakes. Recently, powder atomic layer deposition (pALD) was shown
to be an alternative technique with several benefits [109]. The coating thickness can be tailored just by
the number of pALD cycles and, furthermore, the coating is uniform amongst all secondary particles.
An inherent drawback is the still higher cost of the pALD technique.

Numerous coatings have been investigated for different NCMs (e.g., AlF3 [104], Al2O3 [47],
ZrO2 [110], TiO2 [111,112], SiO2 [113]). All the coatings were shown to improve the cycle stability
of the investigated active material when used in low amounts (Figure 19A). The coatings do not
contribute to the electrode capacity, and hence high amounts will lower the specific capacity of the
active material [47]. Since side reactions are minimal in coated samples, a lower impedance growth
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during cycling is usually observed in coated active materials. A 1 wt % TiO2 coating on NCM622 was
shown to limit the impedance to 55 Ω in the coated versus 70 Ω in the bare NCM622 after 50 cycles at
30 ◦C (Figure 19B) [111].Inorganics 2017, 5, 32 22 of 29 
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+ c = 1) that are usually described as comprising two layered structure phases of Li2MnO3 and 
Li[NiaCobMnc]O2 (a + b + c = 1) integrated on atomic level and existing side by side in the composite, 
and (2) lithiated transition metal oxides comprising Ni, Co, and Mn and known as Ni-rich 
Li[NixCoyMnz]O2 layered structure materials (NCM, x > 0.5, x + y + z = 1). Attention was paid to the 
advantages and drawbacks of the above materials as cathodes in LIBs (especially for EV-
applications). It was concluded that during the last decade, the main focus of many research groups 
has been on modifications of these materials; lattice doping by foreign cations (for instance, Mg2+, 
Al3+, Zr4+) and thin surface coatings (for instance, prepared by ALD). From numerous literature 

Figure 19. (a) Cycle stability of NCM622 material coated with various amounts of TiO2 at 30 ◦C, cycled
in the potential range of 3–4.5 V; (b) Impedance spectra for pristine and 1 wt % TiO2-coated NCM622
after 30 and 50 cycles. Reprinted with permission [111]. Copyright 2014, Elsevier.

Another property targeted by coatings is the thermal stability of the active material, especially of
nickel-rich NCMs. The onset temperature of charged NCM622 (4.3 V) was measured to be ~290 ◦C,
while a 0.5 wt % SiO2 coating could lower the onset to ~270 ◦C (Figure 20) [113]. It must be emphasized
that DSC measurements of charged samples are often run with dry powder, but a more realistic picture
would need the addition of the electrolyte solution as well [16]. Nonetheless, trends can also be
observed from measurements on dry powder.
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4. Conclusions

This paper is a review of recent advances and challenges in the field of materials for positive
electrodes (cathodes) of lithium-ion batteries. We focused on two main groups of materials, namely:
(1) Li and Mn-rich layered composites of the general formula xLi2MnO3·(1 − x)Li[NiaCobMnc]O2

(a + b + c = 1) that are usually described as comprising two layered structure phases of Li2MnO3
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and Li[NiaCobMnc]O2 (a + b + c = 1) integrated on atomic level and existing side by side in the
composite, and (2) lithiated transition metal oxides comprising Ni, Co, and Mn and known as Ni-rich
Li[NixCoyMnz]O2 layered structure materials (NCM, x > 0.5, x + y + z = 1). Attention was paid to the
advantages and drawbacks of the above materials as cathodes in LIBs (especially for EV-applications).
It was concluded that during the last decade, the main focus of many research groups has been on
modifications of these materials; lattice doping by foreign cations (for instance, Mg2+, Al3+, Zr4+) and
thin surface coatings (for instance, prepared by ALD). From numerous literature reports reviewed
in this paper, it was established that these modifications resulted in substantial improvement of
electrodes’ cycling behavior such as decreasing the capacity fading and the stabilization of the average
voltage. Surface coatings also lead to reducing side reactions of cathodes with solution species as
well as to increasing their thermal stability in charged states. We also concluded that the fabrication
of nanostructured cathode materials with well-defined morphologies, such as porous structures and
hollow spheres, is another interesting approach in the field of LIB.

Due to the ever-growing interest of academic researchers and industrial groups in advanced
materials for high-energy LIBs, the authors of the present review believe that it will stimulate further
investigations in broad aspects related to materials science, electrochemistry, and thermal studies, etc.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/2/32/s1,
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Li1.165Mn0.501Ni0.167Co0.167O2 (LMNCO) material prepared by ultrasonic-assisted co-precipitation method.
Figure S7. Schematic diagram of the synthesis of porous Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) material; The initial
charge–discharge curves of the first cycle and rate capability of porous Li1.2Ni0.13Co0.13Mn0.54O2 and bulk
Li1.2Ni0.13Co0.13Mn0.54O2 electrode materials. Figure S8. Plot of the reciprocal magnetic susceptibility H/M of the
pristine and two-week aged Li2MnO3 nanostructured powders.
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