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In this paper we study the extension problem for the sub-Laplacian on an H-type group

and use the solutions to prove trace Hardy and Hardy inequalities for fractional powers

of the sub-Laplacian.

1 Introduction and Main Results

Ever since Caffarelli and Silvestre [7] studied the extension problem associated to

the Laplacian on R
n and realised the fractional power (−�)s/2 as the map taking

Dirichlet data to the Neumann data, there has been a flurry of activities related to the

extension problem. Fractional powers of Laplacians also occur naturally in conformal

geometry and scattering theory. Indeed, as shown in the work of Chang–González [9],

the fractional-order Paneitz operators Pγ arising in the work of Graham and Zworski

[21] in conformal geometry coincide with (−�)γ when the conformally compact Einstein

manifold is taken to be the hyperbolic space. In [9], Chang–González have also extended

the definition of (−�)γ for γ ∈ (0, n/2). The main idea used in [9] is to relate the

extension problem for the Laplacian on R
n to the scattering theory for the Laplace–

Beltrami operator on the hyperbolic space X = R
n+1+ endowed with the hyperbolic metric

gX = dy2+d|x|2
y2 , y > 0, x ∈ R

n.
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An Extension Problem on H-type Groups 4239

Not very long after the appearance of the work of Chang and González, Frank

et al. [19] have studied the extension problem associated to the sub-Laplacian L on the

Heisenberg group H
n. Due to the fact that CR manifolds serve well as abstract models of

real submanifolds of complex manifolds, there is a vast literature on CR geometry and

analysis on CR manifolds. The role played by R
n in the case of conformal geometry is

now played by the Heisenberg group. Unlike the case of Rn, where (−�)s are conformally

invariant, in the context of Heisenberg groups Ls are not. Hence, conformally invariant

fractional powers of the sub-Laplacian, denoted by Ls, are more relevant than the

pure fractional powers Ls, see [1, 6, 18]. In their work, Frank et al. [19] have studied

construction of CR covariant operators of fractional order on the Heisenberg group H
n

and investigated how they may be constructed as the Dirichlet-to-Neumann operator

associated to a degenerate elliptic equation in the spirit of Caffarelli–Silvestre.

The extension problem for the sub-Laplacian on H
n takes the form

(
∂2
ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

t − L
)

U = 0 in H
n × R

+, (1.1)

with boundary condition U(z, t, 0) = f (z, t), (z, t) ∈ H
n. Note that the extension problem

is different from the usual problem due to the appearance of the extra term 1
4ρ2∂2

t . When

this extra term is absent, one can study the extension problem using the semigroup

approach developed by Stinga–Torrea [39], see also [20]. However, if we consider H
n as

the boundary of the Siegel’s upper half space �n+1, then the above extension problem

occurs naturally. Using this connection and making use of Fourier analysis on the

Heisenberg group H
n, Frank et al. have shown that for f ∈ C∞

0 (Hn) there is a unique

solution of the above equation that satisfies

Lsf = cs lim
ρ→0

ρ1−2s∂ρU.

They have also proved an interesting trace inequality for the restriction map T, which

takes functions U on �n+1 into their boundary values on H
n. In establishing their

results, they have made use of results from scattering theory.

In a recent article, Möllers et al. [27] have looked at the extension problem

associated to � on R
n and L on H

n in the light of representation theory. Realising that

there are Lie groups of symmetries acting on the space of solutions of these boundary

problems, they have related the solution operators (taking the boundary value into the

solution) with symmetry-breaking operators constructed in the work of Kobayashi–Speh

[26] and Möllers, Ørsted, and Oshima [28]. The Lie group relevant to the case of the
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4240 L. Roncal and S. Thangavelu

extension problem for the sub-Laplacian L is the rank 1 real reductive group U(1, n + 2)

and the solution operators that they call the Poisson transforms and denote by Ps are

related to the complementary series representations of this group.

Möllers et al. [27] have taken the point of view that solutions U(z, t, ρ) of the

extension problem (1.1) can be considered as functions on the higher-dimensional group

H
n+1, which are radial in the extra variable. Using coordinates (z, ζ , t) ∈ C

n × C × R on

H
n+1 they have considered the operator

Ls := −|ζ |2L + (1 − 2s)
(

ξ
∂

∂ξ
+ η

∂

∂η

)
(1.2)

where ζ = ξ + iη and L is the sub-Laplacian on H
n+1. The action of this operator on

functions, which are radial in the ζ variable, leads to the operator

−L + ∂2
ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2∂2

t ,

which is related to the operator studied by Frank et al. in [19]. The boundary value

problem associated to the above operator can be solved explicitly giving the solution as

a convolution of the boundary condition with a kernel known as the Poisson kernel. The

complementary series representations π−s are realised on certain Hilbert spaces Hs(Hn)

defined in terms of the fractional powers Ls. Using representation-theoretic arguments,

Möllers et al. [27] show that the solution operator Ps is an isometry between Hs(Hn) and

Hs+1(Hn+1).

In this article we revisit the extension problem in the more general context of

H-type groups. Using techniques different from those used by Frank et al. in [19] and

Möllers et al. in [27] we calculate explicitly the kernel associated to the solution operator

Ps. This allows us to prove that the Dirichlet-to-Neumann map can be defined not only

for 0 < s < 1, as studied by Frank et al., but also for all s > 0 save for a discrete set of

forbidden values. By making use of the connection between the extension problem and

the eigenfunction equation for the Laplace–Beltrami operator associated to the solvable

extension S of the given H-type group N, we characterise all solutions of the extension

problem satisfiying uniform Lp integrability, see Theorem 1.1. Moreover, by making use

of the extension problem, we prove a trace Hardy inequality for the sub-Laplacian, see

Theorem 1.3. Such a technique was already used in the Euclidean context in [15, 16, 30,

43]. The trace Hardy inequality leads to a Hardy inequality with homogeneous weight

function, see Corollary 1.6, which turns out to be sharp.
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An Extension Problem on H-type Groups 4241

Let N be an H-type group whose Lie algebra n is the direct sum of v and z. Here

z is the centre of the Lie algebra n and v is even-dimensional. Let 2n and m denote the

dimensions of v and z, respectively. Let Xj, j = 1, 2, . . . , 2n and Zj, j = 1, 2, . . . , m be bases

for v and z, respectively, consisting of left-invariant vector fields. The sub-Laplacian L
on N is defined by L = −∑2n

j=1 X2
j , which is known to be a subelliptic operator. We are

concerned with the extension problem(
−L + ∂2

ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2�z

)
u(v, z, ρ) = 0, lim

ρ→0
u(v, z, ρ) = f (v, z) (1.3)

where �z = ∑m
k=1 Z2

k stands for the Laplacian on R
m.

We study solutions of this equation by relating them to eigenfunctions of the

Laplace–Beltrami operator �S on the solvable extension S of the H-type group N. Recall

that the H-type group N admits nonisotropic dilations. Thus, there is an action of

A = R
+ on N. We can therefore form the semidirect product of N and A, which is usually

denoted by S = AN. This group S is solvable and when N is an Iwasawa group coming

out of a semisimple Lie group, S can be identified with a noncompact Riemannian

symmetric space of rank 1.

A basis for the Lie algebra s of S is given by Ej = √
ρXj, j = 1, 2, . . . , 2n, Tk = ρZk,

k = 1, 2, . . . , m, and H = ρ∂ρ . The Laplace–Beltrami operator �S on S is defined by

�S =
2n∑
j=1

E2
j +

m∑
k=1

T2
k + H2 − 1

2
QH (1.4)

where Q = 2(n + m) is the homogeneous dimension of N. It can be shown that when u

satisfies the extension problem (1.3), the function

w̃(v, z, ρ) = ρ
n+m−s

2 w(v, z, ρ) = ρ
n+m−s

2 u
(
2−1/2v, 2−1z,

√
2ρ

)
satisfies the eigenfunction equation

−�Sw̃(v, z, ρ) = (n + m)2 − s2

4
w̃(v, z, ρ).

Using this connection and known results on characterisations of eigenfunctions of the

Laplace–Beltrami operator on S we can prove the following theorem.

Let

ϕs,ρ(v, z) = ((
ρ2 + |v|2)2 + 16|z|2)− n+m+s

2 , (1.5)
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4242 L. Roncal and S. Thangavelu

which is integrable on N for all s > 0. Let us also denote by ∗ the convolution on the

group N. Thus, for two functions f and g on N the convolution f ∗ g is defined by

f ∗ g(x) =
∫

N
f
(
xy−1)

g(y) dy

where dy stands for the Haar measure on N.

In view of the connection between the solutions of the extension problem

(1.3) and the eigenfunctions of the Laplace–Beltrami operator (1.4), it follows that any

distribution solution of the extension problem is automatically a C∞ function.

Theorem 1.1. Let s > 0. Let u be any (distribution) solution of the equation(
−L + ∂2

ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2�z

)
u(v, z, ρ) = 0

and let 1 ≤ p ≤ ∞. Then u satisfies the uniform estimates∫
N

|u(v, z, ρ)|p dv dz ≤ C, ρ > 0

if and only if u = cρ2sf ∗ϕs,ρ for some f ∈ Lp(N), 1 < p ≤ ∞. When p = 1, u = cρ2sμ∗ϕs,ρ ,

for a complex Borel measure μ. Moreover, when 1 < p < ∞, u → c′f in Lp(N) as ρ → 0

(for p = 1, u → c′μ weakly as ρ → 0).

Later we will show that u = C1(n, m, s)ρ2sf ∗ ϕs,ρ converges to f in Lp, 1 ≤ p < ∞
as ρ → 0, where

C1(n, m, s) = 4m

πn+m/2

�(n + s)�
(n+m+s

2

)
�(s)�

(n+s
2

) . (1.6)

In the case of the Laplacian � on R
n, the function

u(x, ρ) = Cρs
∫
Rn

f (x − y)
(
ρ2 + |y|2)− n+s

2 dy

solves the extension problem associated to the Laplacian with initial condition f .

Moreover, it has been proved (see for instance [7]) that

− lim
ρ→0

ρ1−s∂ρu(x, ρ) = Cs(−�)s/2f (x).

In a similar way we can obtain conformally invariant fractional powers Ls of the sub-

Laplacian as the Dirichlet-to-Neumann map associated to the extension problem (1.3).
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An Extension Problem on H-type Groups 4243

Before stating our result, let us recall the definition of Ls in the context of H-

type groups (see [34] for the case of Heisenberg groups). The operator L is self-adjoint

and admits an explicit spectral resolution. In fact, L commutes with �z and hence there

is a joint spectral theory of L and �z. Using this, the operator Ls is simply defined by

Ls = 2s(−�z)
s/2

�
(
L(−�z)

−1/2+1+s
2

)
�

(
L(−�z)−1/2+1−s

2

) .

In view of Stirling’s formula for the Gamma function we see that Ls is essentially

the pure power Ls. However, as explained in [34], it is more convenient to work with

Ls rather than Ls. Moreover, it has the “conformal invariance,” see, for example, (1.9)

in [19].

We now have the following theorem, which obtains Lsf as the Dirichlet-to-

Neumann map associated to the extension problem.

Theorem 1.2. Let f ∈ Lp(N), 1 ≤ p < ∞. Then, as ρ → 0+,

u = C1(n, m, s)ρ2sf ∗ ϕs,ρ → f in Lp(N), (1.7)

where ϕs,ρ is defined in (1.5) and C1(n, m, s) is the one in (1.6). If we further assume that

Lsf ∈ Lp(N) then

− lim
ρ→0+ ρ1−2s∂ρ(u(v, z, ρ)) = 21−2s �(1 − s)

�(s)
Lsf (v, z). (1.8)

Moreover, when 0 < s < 1/2, we also have the pointwise representation

Lsf (x) = 4m+s

πn+m/2

�(n + s)�
(n+m+s

2

)
�

(n+s
2

)|�(−s)|
∫

N

f (x) − f (y)

|xy−1|Q+2s dy (1.9)

for all f ∈ C1(N) such that Xjf , Zk f ∈ L∞(N), j = 1, . . . , 2n, k = 1, . . . , m. Finally, for

0 < s < 1/2, the following limit also exists in the Lp(N) sense:

− lim
ρ→0+

u(v, z, ρ) − f (v, z)

ρ2s = |�(−s)|
4s�(s)

Lsf (v, z). (1.10)

In our earlier paper [34], we have obtained the integral representation for Lsf

in the context of the Heisenberg group. (We take this opportunity to correct an error in

the previous work: there we have mentioned that the integral representation is valid for
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4244 L. Roncal and S. Thangavelu

all 0 < s < 1. But in fact, we had proved it only for 0 < s < 1/2 as it is written. For

higher values of s, we need to subtract more terms from the Taylor expansion of f , see

for instance [37, p. 9]). In [34] we have used the integral representation in order to get

the ground state representation for the fractional power Ls, which has led to a Hardy-

type inequality with nonhomogeneous weight function. In this paper we obtain another

proof of the Hardy inequality in the general context of H-type groups, which is based

on the so called trace Hardy inequality. In order to state the inequality we introduce the

following variant of a Sobolev space. Let ∇u = (
X1u, . . . , X2nu, 1

2Z1u, . . . , 1
2Zmu, ∂ρu

)
. For

0 < s < 1, let W̃s,2
0 (S) be the completion of C∞

0 (N × R) with respect to the norm

‖u‖2
(s) =

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ.

This is indeed a norm: the vanishing of the integral implies the vanishing of the gradient

and hence the function reduces to a constant. But then, as the function is from C∞
0 (N×R),

it has to be zero.

Theorem 1.3 (General trace Hardy inequality). Let 0 < s < 1, ρ > 0 and let ϕ be a real-

valued function in the domain of Ls. Further assume that ϕ−1Lsϕ is locally integrable.

Then for any real-valued function u ∈ W̃s,2
0 (S), we have the inequality

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ ≥ 21−2s�(1 − s)

�(s)

∫
N

u2(v, z, 0)
Lsϕ(v, z)

ϕ(v, z)
dv dz.

Moreover, the inequality is sharp and the equality holds whenever u is a solution of the

extension problem with initial condition ϕ.

There is no problem in proving the inequality in Theorem 1.3 for C∞
0 functions

and hence for u in our space W̃s,2
0 (S). But for the sharpness, we have to show that the

solution of the extension problem belongs to our space. A priori this is not clear; this is

proved in Theorem 4.3.

Let

C2(n, m, s) = 42s �
(n+1+s

2

)
�

(n+1−s
2

) �
(n+m+s

2

)
�

(n+m−s
2

) . (1.11)

By taking u to be a solution of the extension problem with initial condition f , ϕ = ϕ−s,δ,

δ > 0, and making use of a result of Cowling and Haagerup [11], we can obtain the

following Hardy-type inequality.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/14/4238/5040588 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 12 July 2022



An Extension Problem on H-type Groups 4245

Corollary 1.4. Let 0 < s < 1, δ > 0. Let f , Lsf ∈ L2(N). Then

(Lsf , f ) ≥ C2(n, m, s)δ2s
∫

N
f 2(v, z)

((
δ2 + |v|2)2 + 16|z|2)−s dv dz,

where C2(n, m, s) is the constant in (1.11). Here again the constant is sharp and equality

is obtained when f = ϕ−s,δ.

In the Euclidean case, sharp Hardy inequalities with nonhomogeneous as well

as homogeneous weight functions are known and they play an important role in several

problems of partial differential equations. There is a vast literature on them. In the

context of Lie groups, the works [10, 13, 36] are worth mentioning.

On the other hand, trace Hardy inequality for the Laplacian plays a role in

proving Hardy inequality for fractional powers of � on R
n. In the same way, we can

prove the following version of Hardy inequality for the fractional powers of L on N. Let

ϕs(v, z) = |(v, z)|−(n+m+s) where |(v, z)| = (|v|4 + 16|z|2)
1
4 is the homogeneous norm on N

and ψs(v, z) = C1(n, m, s)(ϕs ∗ | · |−Q+2s)(v, z), where C1(n, m, s) is given in (1.6) and let us

define

ws(v, z) = ϕs(v, z)ψs(v, z)−1. (1.12)

It is easily verified that ws is homogeneous of degree −2s. It would be interesting to see

if ws(v, z) can be replaced by |(v, z)|2s, see Remark 4.9.

Theorem 1.5. Let 0 < s < 1 and let u ∈ W̃s,2
0 (S) be a real-valued function. Then we have

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ ≥ 21−2s �(1 − s)

�(s)
C2(n, m, s)

∫
N

u2(v, z, 0)ws(v, z) dv dz,

where ws is the homogeneous weight in (1.12) and C2(n, m, s) is the constant in (1.11).

The constant is sharp but equality is never achieved in W̃s,2
0 (S).

Corollary 1.6. Let 0 < s < 1, and f , Lsf ∈ L2(N). Then

(Lsf , f ) ≥ C2(n, m, s)
∫

N
f 2(v, z)ws(v, z) dv dz,

where ws is the function (1.12), which is homogeneous of degree −2s, and C2(n, m, s) is

given in (1.11). The constant is sharp but equality is never achieved in W̃s,2
0 (S).

As in [34], one can get Hardy’s inequality for pure fractional powers Ls from the

above corollaries.
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4246 L. Roncal and S. Thangavelu

As explained earlier, the extension problem for the sub-Laplacian on Heisenberg

groups H
n has been studied by Frank et al. in [19], where the authors have proved the

existence of a solution when the initial condition f belongs to C∞
0 (Hn). However, the

solution is not given explicitly in terms of the initial condition. In this article, as shown

in Theorem 1.2, we are able to write down the solution explicitly. This allows us to

study Lp convergence of the solution and its ρ derivative. The analogue of Theorem 1.2

in the context of the Euclidean Laplacian was proved by Caffarelli and Silvestre in [7].

However, we remark that the extension operator is slightly different.

As mentioned above, the explicit solution has also been obtained by Möllers

et al. [27] by considering the operator Ls in (1.2). They have shown that solutions of the

equation Lsu = 0 with initial condition u(z, 0, t) = f (z, t) that are radial in the ζ variable

are given by u(z, ζ , t) = cn,s|ζ |2sf ∗ ϕs,|ζ |(z, t) where ϕs,ρ is the one in (1.5) when N = H
n.

Using representation theory arguments, they have proved a nice isometry property for

the operator Ps, which takes f into the above solution u(z, ζ , t). In this paper we prove

an analogous property for the solution operator associated to H-type groups. In the

process, we also provide an alternate proof of the result of Möllers et al. see Section 3.3.

First, we need to set up some notation. For s > 0, let Hs(N) stand for the domain of L1/2
s :

that is to say, f ∈ Hs(N) if and only if L1/2
s f ∈ L2(N), which is the same as saying that

Ls/2f ∈ L2(N). Note that this space is just a variant of the homogeneous Sobolev space

associated to the sub-Laplacian. In the Euclidean case, the correspoding spaces Hs(Rn)

are defined in terms of the fractional powers (−�)s/2. We write ‖f ‖Hs(N) = ‖L1/2
s f ‖L2(N)

to denote the norm on Hs(N). For each ω ∈ S
m−1 we denote by Rωf the Radon transform

of an integrable function f on N in the z variable. That is,

Rωf (v, t) =
∫

z′∈ω⊥
f (v, tω + z′) dz′, t ∈ R, (1.13)

where ω⊥ = {z′ : z′ · ω = 0} and dz′ is the (m − 1)-dimensional Lebesgue measure on ω⊥.

As will be explained later (see Section 2.2), for each ω, Rωf (v, t) can be considered as a

function on an H-type group H
n
ω of dimension (2n + 1), which is isomorphic to H

n. The

space Hs(Hn
ω) is defined using the sub-Laplacian L on H

n. The following is the isometry

property for the solution operator associated to the extension problem on the group N.

Theorem 1.7. Let 0 < s < n + 1. Then any solution u of the extension problem with

initial condition f satisfies∫
Sm−1

∥∥∥Rω(−�z)
m−1

4 u
∥∥∥2

Hs+1(Hn+1)
dσ(ω) = C‖f ‖2

Hs(N).
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An Extension Problem on H-type Groups 4247

The plan of the paper is the following. In Section 2 we recall facts related to H-

type Lie algebras and groups and we describe the representation theory of such groups.

We also define the sub-Laplacian on an H-type group and its fractional powers and

recall a known result related to solvable extensions of H-type groups. The study of

the extension problem for the sub-Laplacian on H-type groups will be addressed in

Section 3. More precisely, we will prove Theorems 1.1, 1.2, and 1.7. We will also perform

the higher-order extension problem for values of s > 0. Finally, in Section 4 we will prove

trace Hardy and Hardy inequalities stated in Theorems 1.3 and 1.5 and Corollaries 1.4

and 1.6.

2 Preliminaries on H-type Groups

2.1 H-type Lie algebras and groups

A step 2 nilpotent Lie group N is said to be an H-type group if its Lie algebra n is of

H-type. A Lie algebra n is said to be an H-type Lie algebra if we can write n as the

direct sum v ⊕ z of two Euclidean spaces with a Lie algebra structure such that z is the

centre of n and for every unit vector v ∈ v the map ad(v) is a surjective isometry of the

orthogonal complement of ker(ad(v)) on to z. If n is such an H-type algebra we define a

map J : z → End(v) by

(Jωv, v′) = (ω, [v, v′]), ω ∈ z, v, v′ ∈ v.

It then follows that J2
ω = −I whenever ω is a unit vector in z. We can therefore introduce

a complex structure on v using Jω. The Hermitian inner product on v is given by

〈v, v′〉ω = (v, v′) + i(Jωv, v′) = (v, ω) + i([v, v′], ω).

Thus, when N is an H-type group, identifying N with its Lie algebra n, we write the

elements of N as (v, z), v ∈ v, z ∈ z. In view of the Baker–Campbell–Hausdorff formula,

the group law takes the form

(v, z)(v′, z′) = (v, z) + (v′, z′) + 1

2
[(v, z), (v′, z′)].

The best known example of an H-type group is the Heisenberg group H
n = R

2n × R. By

identifying R
2n with C

n, we write the elements of H
n as (v, t), v ∈ C

n, t ∈ R. The group
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4248 L. Roncal and S. Thangavelu

law in H
n is then given by

(v, t)(v′, t′) =
(

v + v′, t + t′ + 1

2
Im v · v̄

)
.

The Heisenberg groups play an important role in studying problems on H-type groups.

This is due to the fact that to every H-type Lie algebra n = v⊕ z and unit vector ω ∈ z we

can associate a Heisenberg Lie algebra hω as follows. Given a unit vector ω ∈ z, let k(ω)

stand for the orthogonal complement of ω in z. Then the quotient algebra n(ω) = n/k(ω)

can be identified with v ⊕ R by defining

[(v, t), (v′, t′)]ω = (0, [Jωv, v′]).

It is known (see [24, 29]) that this algebra is isomorphic to the Heisenberg algebra hn.

We denote the corresponding group by H
n
ω, which we often identify with H

n.

A full discussion and more examples of H-type groups can be found in [4,

Chapter 18] and [24].

2.2 The representation theory of H-type groups

Before describing the representation theory of H-type groups, let us first recall some

facts about irreducible unitary representations of the Heisenberg groups H
n. It is well

known that any irreducible unitary representation of H
n, which is nontrivial at the

centre (namely on {0} × R), is unitarily equivalent to the Schrödinger representation

πλ, for a unique λ ∈ R
∗ = R \ {0}. Here these representations πλ are all realised on L2(Rn)

and given explicitly by

πλ(v, t)ϕ(ξ) = eiλteiλ
(
x·ξ+ 1

2 x·y
)
ϕ(ξ + y)

where v = x+iy, ϕ ∈ L2(Rn). There is another family of one-dimensional representations,

which do not play any role in the Plancherel theorem. Hence, we do not attempt to

describe them.

The group Fourier transform of an L1(Hn) function f is defined to be the

operator-valued function λ → f̂ (λ) given by

f̂ (λ) =
∫
Hn

f (v, t)πλ(v, t) dv dt.
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Sometimes we use the notation πλ( f ) instead of f̂ (λ). Recalling the definition of πλ it is

easy to see that

f̂ (λ) =
∫
Cn

f λ(v)πλ(v, 0) dv

where we have written f λ to stand for

f λ(v) =
∫ ∞

−∞
eiλtf (v, t) dt,

the Euclidean inverse Fourier transform of f in the central variable. We will be using

this notation without any further comments.

When f ∈ L1 ∩ L2(Hn) it can be easily verified that f̂ (λ) is a Hilbert–Schmidt

operator and we have

∫
Hn

| f (v, t)|2 dv dt = (2π)−n−1
∫ ∞

−∞
‖ f̂ (λ)‖2

HS|λ|n dλ.

The above equality of norms allows us to extend the definition of the Fourier transform

to all L2 functions. It then follows that we have Plancherel theorem: f → f̂ is a unitary

operator from L2(Hn) on to L2(R∗, S2, dμ) where S2 stands for the space of all Hilbert–

Schmidt operators on L2(Rn) and dμ(x) = (2π)−n−1|λ|n dλ is the Plancherel measure for

the group H
n.

The connection between H-type Lie algebras and Heisenberg Lie algebras allows

us to get a quick picture of the representation theory of H-type groups. As in the case of

the Heisenberg groups, the irreducible unitary representations of H-type group N come

in two groups. As before we neglect the one-dimensional representations, which are

trivial on the centre of N. If π is any infinite-dimensional irreducible representation of

N, then its restriction to the centre has to be a unitary character. This means that ∃λ ∈ R
∗

and ω ∈ S
m−1, the unit sphere in the centre (identified with R

m) such that π(0, z) =
eiλ(ω,z) Id. It can be shown that such a representation factors through a representation

of H
n
ω, the group introduced in Section 2.1. By making use of the Stone–von Neumann

theorem we can show that all infinite-dimensional irreducible unitary representations

of N are parametrised by (λ, ω), λ > 0, ω ∈ S
m−1. We denote such a representation by

πλ,ω. It follows that the restriction of πλ,ω to H
n
ω is unitarily equivalent to the Schrödinger

representation πλ. The Plancherel theorem for H-type groups N reads as

‖ f ‖2
2 = (2π)−n−m

∫ ∞

0

(∫
Sm−1

‖πλ,ω( f )‖2
HS dσ(ω)

)
λn+m−1 dλ.
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4250 L. Roncal and S. Thangavelu

This theorem can be deduced from the Plancherel theorem for the Heisenberg group by

means of partial Radon transform.

We now briefly recall this connection, which will be made use of later. Let Rωf

be the Radon transform defined in (1.13). We identify Rωf with a function on H
n
ω. It can

be shown that

Rω( f ∗ g) = Rωf ∗ω Rωg

for two functions f , g ∈ L1(N). In the above, the convolution on the left is on the group N

whereas ∗ω on the right stands for the convolution on the Heisenberg group H
n
ω. Using

the above relation and the connection between πλ,ω and πλ we can show that

πλ,ω( f ) = πλ(Rωf ), ω ∈ S
m−1, λ > 0.

From this relation and Plancherel theorem for H
n
ω we can deduce Plancherel for the

group N.

We say that a function f on N is radial if it is radial in the v variable. For such

functions, the Fourier transform is given by a simple formula. Let H(λ) = −� + λ2|x|2 be

the scaled Hermite operator with spectral decomposition

H(λ) =
∞∑

k=0

(2k + n)|λ|Pk(λ).

Here Pk(λ) are the orthogonal projections of L2(Rn) on to the k-th eigenspaces corre-

sponding to the eigenvalues (2k + n)|λ|. For α ∈ N
n and λ �= 0, let �λ

α be the Hermite

functions on R
n, which are eigenfunctions of H(λ) with eigenvalues (2|α| + n)|λ| where

|α| = ∑n
j=1 αj, see for instance [41]. If f is a radial function on N, then its Fourier

transform πλ,ω( f ) reduces to a function of H(λ):

πλ,ω( f ) =
∞∑

k=0

f̂ (λω, k)Pk(λ)

where the coefficients f̂ (λω, k) are given by the following formula. Let

f λω(v) =
∫
Rm

eiλω·zf (v, z) dz

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/14/4238/5040588 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 12 July 2022



An Extension Problem on H-type Groups 4251

be the inverse Fourier transform of f in the central variable at λω, λ > 0, ω ∈ S
m−1. Let

ϕλ
k(v) = Ln−1

k

(
1

2
λ|v|2

)
e− λ

4 |v|2

stand for the Laguerre functions of type (n − 1) on C
n. Then

f̂ (λω, k) = cn
k! (n − 1)!

(k + n − 1)!

∫
Cn

f λω(v)ϕλ
k(v) dv,

where cn is a dimensional constant, see [41, (1.4.31)] When f is also radial in the z

variable, f λω is independent of ω and we have

πλ,ω( f ) = πλ,e1
( f ) =

∞∑
k=0

f̂ (λe1, k)Pk(λ),

with e1 := (1, 0, . . . , 0) ∈ z. We will make use of this formula in calculating later the

Fourier transform of ϕs,ρ given in (1.5).

2.3 Sub-Laplacian L and its fractional powers

We now define the sub-Laplacian L on an H-type group N, which is the main focus of

our work. We fix an orthonormal basis Xj, j = 1, 2, . . . , 2n for the subspace v and Zj,

j = 1, 2, . . . , m for the Lie algebra z. We denote by �z = ∑m
j=1 Z2

j the ordinary Laplacian

on the centre of N. The sub-Laplacian L on N is defined by L = −∑2n
j=1 X2

j . Note that

we have defined L with a negative sign, which makes it nonnegative. It is a subelliptic

operator, which has a self-adjoint extension with an explicit spectral resolution. In the

case of the Heisenberg group H
n the vector fields are given by

Xj = ∂

∂xj
+ 1

2
yj

∂

∂t
, Xn+j = ∂

∂yj
− 1

2
xj

∂

∂t
, Z = ∂

∂t

for j = 1, 2, . . . , n where (v, t) = (x + iy, t) ∈ H
n. More explicitly, the sub-Laplacian is

given by

L = −�
Cn − 1

4
|v|2 ∂2

∂t2 +
n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
∂

∂t
.

For more about L, we refer to [40] and [41].

In studying the extension problem for the sub-Laplacian L we will be making

good use of the heat kernel associated to L. It is known that L generates a diffusion
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4252 L. Roncal and S. Thangavelu

semigroup with a kernel qt from the Schwartz class: e−tLf = f ∗ qt for f ∈ Lp(N). An

explicit expression for the heat kernel is given by

∫
Rm

eiλz·ωqt(v, z) dz = (4π)−n
(

λ

sinh(tλ)

)n

e− λ
4 coth(tλ)|v|2

for λ > 0 and ω ∈ S
m−1, see [12, 32]. Good estimates on the heat kernel qt are known,

see [44].

It is well known (see e.g., Strichartz [40]) that an essential role is played by the

Hermite operators H(λ) = −�+λ2|x|2 in the joint spectral theory of the sub-Laplacian L
and ∂

∂t on the Heisenberg group. In view of the relation (Lf )̂(λ) = f̂ (λ)H(λ), the spectral

theorem for L takes the form

Lf (v, t) = (2π)−n−1
∫ ∞

−∞
tr

(
πλ(v, t)∗f̂ (λ)H(λ)

)|λ|n dλ.

In calculating the trace we make use of the orthonormal basis �λ
α, α ∈ N

n

of L2(Rn), introduced in Section 2.2, consisting of the Hermite functions, which are

eigenfunctions of the Hermite operator H(λ) with eigenvalues (2|α| + n)|λ|. Thus,

Lf (v, t) = (2π)−n−1
∫ ∞

−∞

( ∑
α∈Nn

(
(2|α| + n)|λ|)(πλ(v, t)∗f̂ (λ)�λ

α, �λ
α

)) |λ|n dλ.

From the above it is clear that the (pure) fractional powers of L can be defined by

Lsf (v, t) = (2π)−n−1
∫ ∞

−∞

( ∑
α∈Nn

(
(2|α| + n)|λ|)s(

πλ(v, t)∗f̂ (λ)�λ
α, �λ

α

)) |λ|n dλ.

However, for several reasons it is convenient to work with the conformally invariant

fractional powers

Lsf (v, t) = (2π)−n−1
∫ ∞

−∞

( ∑
α∈Nn

�
(2|α|+n+1+s

2

)
�

(2|α|+n+1−s
2

) (2|λ|)s(πλ(v, t)∗f̂ (λ)�λ
α, �λ

α

)) |λ|n dλ.

Symbolically, we can write them as

Ls =
�

(
L(−Z2)

− 1
2 +1+s

2

)
�

(
L(−Z2)

− 1
2 +1−s

2

)2s( − Z2)s/2, Z2 = ∂2

∂t2 .
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An Extension Problem on H-type Groups 4253

Observe that Ls is defined for all values of s for which (2k+n)+1+s
2 is not a pole of �(x) for

any k = 0, 1, 2, . . ..

The conformally invariant fractional powers Ls have been studied by several

authors ([5, 6, 18, 23]). In an earlier paper [34] we investigated Hardy-type inequalities

for Ls on Heisenberg groups. Apart from being conformally invariant, the fractional

powers Ls have the added advantage of having explicit fundamental solutions. As proved

in Cowling–Haagerup [11], in the more general setting of H-type groups, a fundamental

solution for Ls on the Heisenberg groups H
n is given by the function Cn,s|(v, t)|−Q+2s

where Q = 2n+2 is the homogeneous dimension of Hn and |(v, t)| is the norm defined by

|(v, t)|4 = |v|4 +16t2. Note that |(v, t)| is homogeneous of degree 1 under the nonisotropic

dilation (v, t) → (δv, δ2t), δ > 0.

The fractional powers Ls of the sub-Laplacian on H-type groups N are defined

as in the case of Hn by

Ls =
�

(
L(−�z)

− 1
2 +1+s

2

)
�

(
L(−�z)

− 1
2 +1−s

2

)2s(−�z)
s/2, �z =

m∑
j=1

Z2
j .

The spectral resolution of L can be written down using the connection between N and

the Heisenberg groups H
n
ω, ω ∈ S

m−1. More explicitly, we have

Lsf (v, z)

= (2π)−n−m
∫ ∞

0

∫
Sm−1

( ∑
α∈Nn

�
(2|α|+n+1+s

2

)
�

(2|α|+n+1−s
2

) (2λ)s(πλ,ω(v, z)∗f̂ (λ)�λ
α, �λ

α

))
dσ(ω)λn+m−1 dλ.

The nonisotropic dilations on N are also given by (v, z) → (δv, δ2z), δ > 0 and the

homogeneous dimension is given by Q = 2(n + m).

2.4 Solvable extensions of H-type groups

As we have mentioned in the Introduction the connection between the extension problem

for L on N and the eigenfunction equation for �S on S = AN will be exploited. Recall

that A = R
+ acts on N by nonisotropic dilations and hence we can form the semidirect

product S. The left-invariant vector fields on S are given by Ej = √
ρXj, Tk = ρZk, and

H = ρ∂ρ for j = 1, 2, . . . , 2n, k = 1, 2, . . . , m. The left Haar measure on S is given by

ρ−n−m−1 dv dz dρ.
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4254 L. Roncal and S. Thangavelu

When G is a connected, simply connected rank 1 semisimple Lie group with

Iwasawa decomposition G = KAN, the nilpotent part N turns out to be of H-type and

Riemannian symmetric space X = G/K can be identified with the solvable extension AN

of N. The Laplace–Beltrami operator �X on X is then just �S on AN.

Eigenfunctions of the Laplace–Beltrami operator �X on noncompact Rieman-

nian symmetric spaces, not necessarily of rank 1, have been studied by Helgason [22] and

others culminating in the celebrated theorem of Kashiwara et al. [25]. Using this result,

Ben Saïd et al. [2] gave a simpler characterisation of eigenfunctions of �X satisfying

Hardy-type conditions. In the general context of AN groups when N is not necessarily

associated to a semisimple Lie group, there is no analogue of the theorem of Kashiwara

et al. However, recently Damek and Kumar [14] have proved an analogue of the theorem

of Ben Saïd et al. for all solvable extensions of H-type groups.

By slightly modifying the standard notation used in the literature, let us write

Ps(v, z, ρ) = ρ
n+m+s

2
((

ρ + |v|2)2 + 16|z|2)− n+m+s
2

for the Poisson kernel associated to the group S = AN. Observe that

Ps(v, z, ρ) = ρ
n+m+s

2 ϕs,
√

ρ(v, z).

Theorem 2.1 (Damek–Kumar). Assume that w̃ is an eigenfunction of the operator �S

with eigenvalue −1
4

(
(n + m)2 − s2

)
, s > 0. Then there exists f ∈ Lp(N), 1 < p ≤ ∞ such

that w̃(v, z, ρ) = f ∗ Ps(v, z, ρ) if and only if w̃ satisfies the uniform estimates

(∫
N

|w̃(v, z, ρ)|p dv dz
)1/p

≤ Cρ
n+m−s

2

for all ρ > 0.

The proof of this result given in [14] makes use of the maximum principle

for an operator, which resembles the extension operator we study in this article. We

remark that an independent characterisation of solutions of the extension problem will

naturally lead to a characterisation of eigenfunctions of �S on solvable extensions of

H-type groups.
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3 An Extension Problem for the Sub-Laplacian

3.1 Characterisation of solutions of the extension problem: proof of Theorem 1.1

The solution of the extension problem (1.3) with initial condition f ∈ Lp(N) given by

u(v, z, ρ) = C1(n, m, s)ρ2sf ∗ ϕs,ρ(v, z) satisfies the uniform estimate ‖u(·, ρ)‖p ≤ ‖f ‖p

trivially. Indeed, we can use Young’s inequality and the fact that

ρ2sϕs,ρ(v, z) = ρ−2(n+m)ϕs,1

(
ρ−1v, ρ−2z

)
is an integrable function, and therefore an approximate identity.

We will now show that this property characterises all solutions of the extension

problem with Lp initial condition. We will prove this by connecting solutions of the

extension problem with eigenfunctions of the Laplace–Beltrami operator �S given in

(1.4) on the solvable extension S of N.

Let us recall some facts already explained in the Introduction. If u is a solution

of the extension problem (1.3) then it is easy to see that the function w(v, z, ρ) =
u(2−1/2v, 2−1z, (2ρ)1/2) solves the equation

( − L + ρ∂2
ρ + (1 − s)∂ρ + ρ�z

)
w(v, z, ρ) = 0.

Recalling the definition of �S, another calculation shows that w̃(v, z,ρ)=ρ
(n+m−s)

2 w(v, z,ρ)

solves the eigenvalue problem

�Sw̃(v, z, ρ) = −1

4

(
(n + m)2 − s2)

w̃(v, z, ρ), (v, z, ρ) ∈ S.

In view of the definitions of u and Ps we see that w̃ can be expressed as the Poisson

integral of f , as in Theorem 2.1. We also note that the estimate ‖u(·, ρ)‖p ≤ C‖f ‖p

translates into the condition

ρ− (n+m−s)
2 p

∫
N

|w̃(v, z, ρ)|p dv dz ≤ C, ρ > 0.

As explained in Section 2.4, eigenfunctions of the Laplace–Beltrami operator �S satis-

fying the above conditions have been characterised by Ben Saïd et al. for Iwasawa N

groups in [2] and by Damek–Kumar in [14] for general H-type groups. Using their results

we can get the following result, thereby completing the proof of Theorem 1.1.
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4256 L. Roncal and S. Thangavelu

Theorem 3.1. Let 1 < p ≤ ∞. Then any solution of the extension problem (1.3) that

satisfies the uniform estimates ‖u(·, ρ)‖p ≤ C, ρ > 0 is of the form f ∗ ϕs,ρ for some

f ∈ Lp(N).

3.2 Proof of Theorem 1.2

In this subsection we provide a proof of Theorem 1.2. It will be a consequence of several

facts that will be discussed as we go along in this subsection.

The 1st issue to address is the connection with the solution of the extension

problem (1.3). A solution of the extension problem (1.3) can be written down explicitly

by modifying the formula by Stinga and Torrea (see [39]) for solutions of the extension

problem (
� + ∂2

ρ + 1 − s

ρ
∂ρ

)
u(x, ρ) = 0, u(x, 0) = f (x). (3.1)

Let us explain this more precisely. In [39] it has been shown that the function u defined

by the equation

u(x, ρ) = ρs

2s�(s/2)

∫ ∞

0
e− 1

4t ρ
2
et�f (x)t−s/2−1 dt

solves (3.1). Here, et� stands for the heat semigroup generated by the Laplacian �. In a

similar way we can show that the function

u(x, ρ) = ρs

2s�(s/2)

∫ ∞

0
e− 1

4t ρ
2
e−tLf (x)t−s/2−1 dt (3.2)

defined in terms of the heat semigroup e−tL generated by the sub-Laplacian solves the

extension problem(
−L + ∂2

ρ + 1 − s

ρ
∂ρ

)
u(x, ρ) = 0, u(x, 0) = f (x). (3.3)

This extension problem has been studied in the more general context of nilpotent Lie

groups by Chamorro–Jarrín in [8]. This would lead to the standard fractional powers Ls

of the sub-Laplacian. However, we are interested in the extension problem (1.3), which

is different from the problem (3.3).

By modifying the Stinga–Torrea formula (3.2) we can also write down a solution

of the extension problem (1.3). Let pt,s(ρ, z) be the heat kernel associated to the

generalised sub-Laplacian

L(s) := ∂2
ρ + 1 + 2s

ρ
∂ρ + 1

4
ρ2�z
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on R
+ × R

m. Let qt(v, z) stand for the heat kernel associated to L. Then it is known that

∫
Rm

qt(v, z)eiλω·z dz = (4π)−n
(

λ

sinh(tλ)

)n

e− 1
4 λ coth(tλ)|v|2 (3.4)

for λ > 0 and ω ∈ Sm−1. A similar formula is valid for the heat kernel pt,s(ρ, w) as well:

∫
Rm

pt,s(ρ, z)eiλω·z dz = (4π)−s−1
(

λ

sinh(tλ)

)s+1

e− 1
4 λ coth(tλ)ρ2

. (3.5)

Note that the kernels pt,s and qt are normalised in such a way that

∫ ∞

0

∫
Rm

pt,s(ρ, z) dρ dz = 1 =
∫

N
qt(v, z) dv dz.

The solution of the extension problem (1.3) can be written down explicitly in terms of the

function e−tLf . Indeed, we have the following analogue of the Stinga–Torrea formula.

Theorem 3.2. For f ∈ Lp(N), 1 ≤ p ≤ ∞, a solution of the extension problem (1.3) is

given by

u(v, z, ρ) = 4πs+1

�(s)
ρ2s

∫ ∞

0

∫
Rm

pt,s(ρ, w)
(
e−tLf

)
(v, z − w) dw dt.

As ρ tends to zero, the solution u(·, ρ) converges to f in Lp(N) for 1 ≤ p < ∞.

Proof. Applying L to the function u and noting that U(v, z, t) = e−tLf (v, z) satisfies the

heat equation −LU(v, z, t) = ∂tU(v, z, t) we see that

Lu(v, z, ρ) = −4πs+1

�(s)
ρ2s

∫ ∞

0

∫
Rm

pt,s(ρ, w)∂tU(v, z − w, t) dw dt.

Integrating by parts in the t variable we can transfer the t derivative to pt,s(ρ, w) and

since it satisfies the heat equation associated to L(s) we obtain

Lu(v, z, ρ) = 4πs+1

�(s)
ρ2s

(
∂2
ρ + 1 + 2s

ρ
∂ρ + 1

4
ρ2�z

) ∫ ∞

0

∫
Rm

pt,s(ρ, w)U(v, z − w, t) dw dt.

A simple calculation shows that

ρ2s
(

∂2
ρ + 1 + 2s

ρ
∂ρ + 1

4
ρ2�z

)
V(v, z, ρ) =

(
∂2
ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2�z

) (
ρ2sV(v, z, ρ)

)
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4258 L. Roncal and S. Thangavelu

for any function V(v, z, ρ). This proves that u satisfies the extension problem. In order

to prove the convergence of the solution to the initial condition we make use of several

properties of the heat kernels associated to L and L(s). By defining

�s,ρ(v, z) = 4πs+1

�(s)
ρ2s

∫ ∞

0

∫
Rm

pt,s(ρ, w)qt(v, z − w) dw dt (3.6)

we see that the solution u is given by the convolution

u(v, z, ρ) = f ∗ �s,ρ(v, z). (3.7)

From (3.4) and (3.5) it is easy to see that the heat kernels satisfy the homogeneity

conditions

pt,s

(
rρ, r2z

) = r−2m−2(s+1)pr−2t,s(ρ, z), qt

(
rv, r2z

) = r−2m−2nqr−2t(v, z)

for r > 0. Using this in (3.6) we observe that �s,ρ(v, z) = ρ−2(n+m)�s,1(ρ−1v, ρ−2z).

Moreover, as pt,s and qt are Schwartz class functions, �s,1 ∈ L1(N). Therefore, �s,ρ is

an approximate identity. Observe that ‖�s,1‖1 = 1. Indeed,

∫
N

�s,1(v, z) dv dz = 4πs+1

�(s)

∫ ∞

0

(∫
Rm

pt,s(1, z) dz
) (∫

N
qt(v, z) dv dz

)
dt.

Since
∫

N qt(v, z) dv dz = 1 and

∫
Rm

pt,s(1, z) dz = (4π)−s−1t−s−1e− 1
4t ,

we have

∫
N

�s,1(v, z) dv dz = 4πs+1

�(s)

∫ ∞

0
t−s−1e− 1

4t dt = 1.

Hence, we immediately get the Lp(N) convergence of u = f ∗ �s,ρ to f as ρ tends to 0. �
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It is possible to calculate the kernel �s,1(v, z) explicitly. Using (3.4) and (3.5) we

see that

�s,1(v, z) = (4π)−n−s−1(2π)−m
∫ ∞

0

(∫
Rm

e−iz·x
( |x|

sinh(t|x|)
)n+s+1

e− 1
4 |x| coth(t|x|)(1+|v|2) dx

)
dt

= (4π)−n−s−1(2π)−m
∫
Rm

(∫ ∞

0

( |x|
sinh(t|x|)

)n+s+1
e− 1

4 |x| coth(t|x|)(1+|v|2) dt
)

e−iz·x dx.

(3.8)

In the case of the Heisenberg group H
n = C

n × R we have computed the above integral

explicitly in [34, Proposition 4.2]. We recall the result in the following Theorem 3.3 for

the convenience of the reader.

Theorem 3.3 (Roncal–Thangavelu). For (v, w) ∈ H
n and 0 < s < 1 we have

∫ ∞

0

∫ ∞

−∞
e−iλw

(
λ

sinh(tλ)

)n+s+1

e− 1
4 λ coth(tλ)(1+|v|2) dλ dt = cn,s

((
1 + |v|2)2 + 16w2)− (n+1+s)

2 ,

where the constant cn,s is given by

cn,s = 2n−1+3sπ−n−1�

(
n + s + 1

2

)2

.

Since the Fourier transform of a radial function is radial and given by the Hankel

transform we see that

�s,1(v, z) = cm,s

∫ ∞

0

∫ ∞

0

Jm/2−1(λ|z|)
(λ|z|)m/2−1

(
λ

sinh(tλ)

)n+s+1

e− 1
4 λ coth(tλ)(1+|v|2)λm−1 dλ dt.

It may be possible to evaluate this integral directly but we use Radon transform to prove

the following result giving us an explicit expression for �s,1.

Theorem 3.4. For (v, z) ∈ N and 0 < s < 1 we have

�s,1(v, z) = cn,m,s

((
1 + |v|2)2 + 16|z|2)− (n+m+s)

2 ,

where cn,m,s = C1(n, 1, s)C1(n, m, s)−1 and C1(n, m, s) was defined in (1.6).
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4260 L. Roncal and S. Thangavelu

Proof. It is known (and easy to check) that, for any f ∈ L1(Rm),

∫ ∞

−∞
e−iλwRωf (w) dw =

∫
Rm

e−iλω·xf (x) dx.

In other words,

Rωf (w) = (2π)−1
∫ ∞

−∞

(∫
Rm

e−iλω·xf (x) dx
)

eiλw dλ. (3.9)

By the uniqueness theorem for Radon transform, our theorem will follow once we show

that the Radon transform of �s,1 coincides with that of the function ((1 + |v|2)2 +
16|z|2)−

(n+m+s)
2 up to a multiplicative constant. In view of (3.8) and (3.9) we know that

Rω�s,1(v, w) = C(2π)−1
∫ ∞

−∞

∫ ∞

0
e−iλw

(
λ

sinh(tλ)

)n+s+1

e− 1
4 λ coth(tλ)(1+|v|2) dλ dt,

which has been evaluated in Theorem 3.3. Hence, we only need to verify that

∫
x·ω=t

((
1 + |v|2)2 + 16|x|2)− (n+m+s)

2 dμ(x) = cn,m,s

((
1 + |v|2)2 + 16t2)− (n+1+s)

2

where cn,m,s = C1(n, 1, s)C1(n, m, s)−1, which is rather easy to see. This completes the

proof. �

In this article, we need the exact values of integrals of several kernels. These are

collected in the following technical lemma.

Lemma 3.5. Let n, m > 0 and let j, α be such that α − j > 0 and α > −n. Then we have

∫
N

(
1 + |v|2)j((1 + |v|2)2 + 16|z|2)− n+m+α

2 dv dz = πn+m/2

4m

�(α − j)�(n+α
2 )

�(n − j + α)�
(n+m+α

2

) . (3.10)

Proof. Let us call I the integral in the left-hand side of (3.10). Recall the formula for

the Beta function

∫ ∞

0
(1 + t)−bta−1 dt = �(a)�(b − a)

�(b)
, Re(a) > 0, Re(b − a) > 0,
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and let ωn denote the area of the unit sphere S
n−1, that is, ωn = 2πn/2

�(n/2)
. By using polar

coordinates in both variables, we have

I = ω2n

∫
Rm

∫ ∞

0

(
1 + r2)j((1 + r2)2 + 16|z|2)− (n+m+α)

2 r2n−1 dr dz

= ω2n

2

∫
Rm

∫ ∞

0
(1 + r)j((1 + r)2 + 16|z|2)− (n+m+α)

2 rn−1 dr dz

= ω2n

2

∫
Rm

∫ ∞

0
(1 + r)−(n+m−j+α)

(
1 + 16|z|2

(1 + r)2

)− (n+m+α)
2

rn−1 dr dz

= ω2nωm

2

∫ ∞

0

∫ ∞

0
(1 + r)−(n+m−j+α)

(
1 + 16s2

(1 + r)2

)− (n+m+α)
2

rn−1sm−1 dr ds

= ω2nωm

2 · 4m

∫ ∞

0
(1 + r)−(n−j+α)rn−1 dr

∫ ∞

0

(
1 + s2)− (n+m+α)

2 sm−1 ds

= ω2nωm

4m+1

∫ ∞

0
(1 + r)−(n−j+α)rn−1 dr

∫ ∞

0
(1 + s)−

(n+m+α)
2 sm/2−1 ds

= ω2nωm

4m+1

�(n)�(α − j)

�(n − j + α)

�
(m

2

)
�

(n+α
2

)
�

(n+m+α
2

) = πn+m/2

4m

�(α − j)�
(n+α

2

)
�(n − j + α)�

(n+m+α
2

) .

�

As an immediate corollary, we obtain the following explicit formula for the

kernel �s,ρ(v, z).

Corollary 3.6. The kernel �s,ρ(v, z) can be expressed as

�s,ρ(v, z) = C1(n, m, s)ρ2sϕs,ρ(v, z),

where ϕs,ρ(v, z) is as in (1.5) and C1(n, m, s) is the constant in (1.6).

Proof. Up to the constant C1(n, m, s), the expression can be immediately inferred from

Theorems 3.2 and 3.4. To compute C1(n, m, s) observe that, since ‖�s,1‖1 = 1, we have

that C1(n, m, s)−1 = ∫
N ϕs,1(v, z) dv dz, which is given by

(∫
N

((
1 + |v|2)2 + 16|z|2)− n+m+s

2 dv dz
)−1

= 4m

πn+m/2

�(n + s)�
(n+m+s

2

)
�(s)�

(n+s
2

) ,

by Lemma 3.5 with j = 0 and α = s. �
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4262 L. Roncal and S. Thangavelu

Since �s,ρ(v, z) is an approximate identity, we obtain the Lp convergence (1.7) of

Theorem 1.2. We are now interested in proving the assertion about the limit in (1.8), that

is, that

−ρ1−2s∂ρ

(
ρ2sf ∗ ϕs,ρ

) → 21−2s �(1 − s)

�(s)
Lsf as ρ → 0.

First we need to recall the following identity, which was essentially proved by Cowling

and Haagerup in [11, Section 3], and it was also shown in [34, Theorem 3.1] by a

different method (we point out that there is a misprint in the statement of our result

[34, Theorem 3.1]: the restriction on s should be 0 < s < n + 1). We state it here in the

most convenient way for our purposes.

Theorem 3.7. Let ρ > 0 and 0 < s < n + 1. Then

Lsϕ−s,ρ(v, z) = C2(n, m, s)ρ2sϕs,ρ(v, z),

where

C2(n, m, s) = 42s �
(n+1+s

2

)
�

(n+1−s
2

) �
(n+m+s

2

)
�

(n+m−s
2

) .

Proof. Just repeat the proof of [34, Theorem 3.1] in the case H-type groups, and change

ρ into ρ2/4 (there, ρ corresponds to δ). �

Remark 3.8. In view of the results above, we can write the solution to (1.3) as

u(v, z, ρ) = C1(n, m, s)C2(n, m, s)−1Lsf ∗ ϕ−s,ρ(v, z),

and let us recall that ϕs,ρ(v, z) is given in (1.5).

Therefore,

−ρ1−2s∂ρu = C1(n, m, s)C2(n, m, s)−1Lsf ∗ Ks,ρ ,

where Ks,ρ(v, z) = −ρ1−2s∂ρϕ−s,ρ(v, z). Observe that

−∂ρϕ−s,ρ(v, z) = 2ρ(n + m − s)
(
ρ2 + |v|2)((

ρ2 + |v|2)2 + 16|z|2)− n+m−s
2 −1.
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An Extension Problem on H-type Groups 4263

We can rewrite this as

Ks,ρ(v, z) = 2(n + m − s)ρ2(1−s)

(
ρ2 + |v|2)((

ρ2 + |v|2)2 + 16|z|2)1/2 ϕ1−s,ρ(v, z).

This shows that Ks,ρ(v, z) = ρ−2(n+m)Ks,1(ρ−1v, ρ−2z) and hence Ks,ρ(v, z), after normali-

sation, is an approximate identity. Thus,

− lim
ρ→0

ρ1−2s∂ρu = C1(n, m, s)C2(n, m, s)−1C3(n, m, s)Lsf ,

with C3(n, m, s) = ∫
N Ks,1(v, z) dv dz. Then, by Lemma 3.5 with j = 1 and α = 2 − s, we

have

C3(n, m, s) = 2(n + m − s)
πn+m/2

4m

�(1 − s)�
(n+2−s

2

)
�(n − s + 1)�

(n+m+2−s
2

) . (3.11)

Finally, collecting (1.6), (1.11), and (3.11), we get

− lim
ρ→0

ρ1−2s∂ρu = 21−2s �(1 − s)

�(s)
Lsf . (3.12)

From (3.7) in the proof of Theorem 3.2, we see that the solution of the extension

problem can be written as u = f ∗ �s,ρ , and �s,ρ has an explicit expression, see

Corollary 3.6 (and also ‖�s,ρ‖1 = 1). With this we have

u(v, z, ρ) − f (v, z) = f ∗ �s,ρ(v, z) − f (v, z) =
∫

N

(
f (x) − f (y)

)
�s,ρ

(
y−1x

)
dy (3.13)

= C1(n, m, s)ρ2s
∫

N

(
f (x) − f (y)

)
ϕs,ρ

(
y−1x

)
dy.

From here, by taking derivative in ρ and multiplying by ρ1−2s, we obtain

ρ1−2s∂ρu(x, ρ) = ρ1−2s∂ρ

[
u(x, ρ) − f (x)

] = −C1(n, m, s)2s
∫

N

(
f (x) − f (y)

)
ϕs,ρ

(
y−1x

)
dy

− C1(n, m, s)ρ
∫

N

(
f (x) − f (y)

)
∂ρϕs,ρ

(
y−1x

)
dy.
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4264 L. Roncal and S. Thangavelu

Now we let ρ tend to 0+ to get

− lim
ρ→0+ ρ1−2s∂ρu(v, z, ρ) = C1(n, m, s)2s

∫
N

(
f (x) − f (y)

)
|xy−1|Q+2s dy

− lim
ρ→0+ C1(n, m, s)ρ

∫
N

(
f (x) − f (y)

)
∂ρϕs,ρ

(
y−1x

)
dy.

Assume for a while that we can prove

lim
ρ→0+ ρ

∫
N

(
f (x) − f (y)

)
∂ρϕs,ρ

(
y−1x

)
dy = 0. (3.14)

Then, in view of (3.12), we conclude that

Lsf (v, z) = 4m22s

πn+m/2

�(n + s)�
(n+m+s

2

)
�

(n+s
2

)|�(−s)|
∫

N

( f (x) − f (y))

|xy−1|Q+2s dy,

that is, the identity (1.9) in Theorem 1.2.

It remains to prove (3.14). For that, we need the following Mean Value Theorem

adapted to H-type groups, see [17, (1.33)].

Theorem 3.9 (Folland–Stein). There exist constants C > 0 and β > 0 such that for all

f ∈ C1(N) we have

|f (yx) − f (x)| ≤ C
(|y| + |y|2) 2n+m∑

j=1

sup
|y′|≤β|y|

∣∣Yjf (y′x)
∣∣,

where Yj = Xj, j = 1, . . . , 2n and Yj = Zj, j = 2n + 1 . . . , 2n + m.

Note that by a change of variables we have

ρ

∫
N

(
f (x) − f (y)

)
∂ρϕs,ρ

(
y−1x

)
dy = ρ

∫
N

(
f (x) − f

(
xy−1))

∂ρϕs,ρ(y) dy.

Let δρ be the nonisotropic dilation on the group N defined by δρ(v, z) := (ρv, ρ2z). A

simple calculation shows that

∂ρϕs,ρ(y) = ρ−1−2sρ−2(n+m)�(δρ(y)),
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where

�(v, z) =
(
1 + |v|2)((

1 + |v|2)2 + |z|2)1/2

((
1 + |v|2)2 + |z|2)− n+m+1+s

2 ,

and �(δρ(y)) = �(δρ(v, z)). Then, by Theorem 3.9 we have

ρ

∫
N

(
f (x) − f

(
xy−1))|∂ρϕs,ρ(y)| dy ≤ Cρ−2sρ−2(n+m)

∫
N

(|y| + |y|2)
�(δρ(y)) dy.

By a change of variable, the above is bounded by Cρ1−2s
∫

N(|y| + ρ|y|2)�(y) dy, which

tends to 0 as ρ → 0+, for 0 < s < 1/2, since (|y| + |y|2)�(y) is integrable.

Finally, we can now compute the limit in (1.10). From (3.13), by taking limits, we

obtain

lim
ρ→0+ ρ−2s(u(v, z, ρ) − f (v, z)) = C1(m, n, s)

∫
N

( f (x) − f (y))

|xy−1|Q+2s dy

= |�(−s)|
4s�(s)

Lsf (v, z),

where the 2nd equality follows from the identity (1.9) just proven. With this, the proof

of Theorem 1.2 is complete.

3.3 Isometry property of the solution operator for the extension problem

In this subsection we will prove Theorem 1.7. In order to prove this theorem, first we

prove the isometry property of the solution operator Ps (see the Introduction) for the

extension problem in the Heisenberg group context given by Möllers et al. in [27]. We will

modify slightly the notation here and use (z, t) ∈ C
n × R for elements of the Heisenberg

group H
n.

The solution of the extension problem associated to the sub-Laplacian L on H
n

is given by

u(z, t, ρ) = C1(n, s)ρ2sf ∗ ϕs,ρ(z, t)

where C1(n, s) := C1(n, 1, s) and

ϕs,ρ(z, t) = ((
ρ2 + |z|2)2 + 16t2)− n+1+s

2 .

We write the solution operator f → u as Psf . Thus, Psf = C1(n, s)ρ2sf ∗ϕs,ρ(z, t). Note that

the solution can be considered as a function on the (2n + 3)-dimensional Heisenberg
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4266 L. Roncal and S. Thangavelu

group H
n+1 = C

n+1 × R, which is radial in the extra variable ζ . On H
n+1 we use the

coordinates (z, ζ , t). Thus,

Psf (z, ζ , t) = C1(n, s)|ζ |2sf ∗ ϕs,|ζ |(z, t).

Taking this point of view, Möllers et al. have considered f → Psf as an extension map

taking functions f on H
n into functions on H

n+1. They have proved that Ps defines an

isometry between certain Sobolev spaces defined on H
n and H

n+1.

To motivate the proof let us consider the case of the Laplacian on R
n. In view of

the Stinga–Torrea formula (3.3) the solution of the extension problem associated to �

(
� + ∂2

ρ + 1 − s

ρ
∂ρ

)
u = 0, u(x, 0) = f (x) (3.15)

is given by (see [39] and also [3])

u(x, ρ) = cn,sρ
sf ∗ us,ρ(x)

where now us,ρ(x) = (ρ2 + |x|2)− n+s
2 and cn,s is given by

c−1
n,s =

∫
Rn

(
1 + |x|2)− n+s

2 dx.

Let Ps be defined by Psf (x, y) = u(x, |y|), (x, y) ∈ R
n × R. Let Hs(Rn) stand for the

homogeneous Sobolev space defined to be the set of all distributions f such that

(−�)s/2f ∈ L2(Rn). Equivalently, f ∈ Hs(Rn) if and only if f̂ ∈ L2(Rn, |ξ |2s dξ). In [27]

the following theorem has been proved, and here we provide a different proof.

Theorem 3.10. For 0 < s < n, Ps : Hs/2(Rn) → H(s+1)/2(Rn+1) is a constant multiple of

an isometry.

Proof. In proving this theorem, we make use of the identity (see [3, Lemma 2.2],

also [39])

ρsf ∗ us,ρ(x) = cn,s(−�)s/2f ∗ u−s,ρ(x) (3.16)

where cn,s is an explicit constant. For a function ϕ(x, y) on R
n+1 note that

ϕ̂(ξ , η) =
∫
R

e−iyη

(∫
Rn

ϕ(x, y)e−ix·ξ dx
)

dy.
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Consequently, taking into account of (3.16),

(Psf )̂(ξ , η) = cn,s

(∫
Rn+1

(
y2 + |x|2)− n−s

2 e−i(x·ξ+yη) dx dy
) (

(−�)s/2f
)̂
(ξ).

Since (y2 + |x|2)−
n+1−(1+s)

2 is homogeneous of degree −(n + 1)+ (1 + s) on R
n+1, its Fourier

transform is a constant multiple of (η2 + |ξ |2)− s+1
2 . Thus,

(Psf )̂(ξ , η) = cn,s

(
η2 + |ξ |2)− s+1

2 |ξ |ŝf (ξ),

where cn,s is an explicit constant. In view of the above calculations,

‖Psf ‖2
H(s+1)/2(Rn+1)

= c2
n,s

∫
Rn

∫
R

(
η2 + |ξ |2)− s+1

2 |ξ |2s |̂f (ξ)|2 dη dξ ,

which after integration in the η variable gives

‖Psf ‖2
H(s+1)/2(Rn+1)

= c2
n,s

∫
Rn

|ξ |s |̂f (ξ)|2 dξ = c2
n,s‖f ‖2

Hs/2(Rn)
.

This proves the theorem. �

We have the following.

Proposition 3.11. For 0 < s < 1, let f be a real-valued function in Hs/2(Rn), that is,

f , (−�)s/4f ∈ L2(Rn). If u is the solution of the extension problem (3.15) with initial

condition f , then ∫ ∞

0

∫
Rn

|∇u(x, ρ)|2ρ1−s dx dρ = C‖f ‖2
Hs/2(Rn)

.

Proof. In what follows, we make use of the following fact, which can be easily proved.

If f and g are from L2(Rn) then their convolution f ∗ g is uniformly continuous and

vanishes at infinity. This can be proved by approximating f and g by sequence of

compactly supported smooth functions. Since f and ρsus,ρ are from L2(Rn) it follows

that the solution u of the extension problem vanishes at infinity as a function of x

for any fixed ρ. Moreover, ∂xj
us,ρ ∈ L2(Rn). The same is true of ∂ρus,ρ . Hence, ∂xj

u also

vanishes at infinity. Integrating by parts and making use of the above, we see that∫
Rn

|∂xj
u(x, ρ)|2 dx =

∫
Rn

u(x, ρ)∂2
xj

u(x, ρ) dx.
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4268 L. Roncal and S. Thangavelu

We also observe that |u(x, ρ)| ≤ ρs‖f ‖2‖us,ρ‖2, which after a simple calculation, shows

that u(x, ρ) goes to 0 as ρ tends to infinity. The same is true of ∂ρu(x, ρ). In view of these,

a similar calculation with the ρ-derivative gives

∫ ∞

0
(∂ρu(x, ρ))2ρ1−s dρ =

∫ ∞

0
u(x, ρ)∂ρ

(
ρ1−s∂ρu(x, ρ)

)
dρ − u(x, 0) lim

ρ→0

(
ρ1−s∂ρu

)
(x, ρ).

Adding them up and recalling that u solves the extension problem with initial condition

f we obtain the result. �

Proposition 3.12. Under the same hypotheses as in Proposition 3.11, we have

∫ ∞

0

∫
Rn

u(x, ρ)2ρ−1−s dx dρ = C‖f ‖2
Hs/2(Rn)

.

Proof. Observe that

û(ξ , ρ) = cn,sρ
sf̂ (ξ)

∫
Rn

(
ρ2 + |x|2)− n+s

2 e−ix·ξ dx = cn,sf̂ (ξ)G(ρ|ξ |),

where G is defined by

G(ξ) :=
∫
Rn

(
1 + |x|2)− n+s

2 e−ix·ξ dx.

The asymptotic properties of G are well known, see [38, p. 132, (29), (30)]. As G(ρ) behaves

like ρs near 0 it follows that
∫ ∞

0 G(ρ)2ρ−1−s dρ < ∞ and hence

∫ ∞

0

∫
Rn

|̂f (ξ)|2G(ρ|ξ |)2ρ−1−s dρ dξ

=
∫
Rn

|̂f (ξ)|2|ξ |s
(∫ ∞

0
G(ρ)2ρ−1−s dρ

)
dξ = C‖f ‖2

Hs/2(Rn)
.

�

Analogously as in the context of H-type groups, we introduce the following

variant of a Sobolev space. For 0 < s < 2, let W̃s,2
0 (Rn) be the completion of C∞

0 (Rn × R)

with respect to the norm

‖u‖2
(s) =

∫ ∞

0

∫
Rn

|∇u(x, ρ)|2ρ1−s dx dρ.

It can be easily checked that this is indeed a norm.
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Proposition 3.13. For 0 < s < 1, let f be a real-valued function in Hs(Rn). If u is the

solution of the extension problem (3.15) with initial condition f , then u ∈ W̃s,2
0 (Rn).

Proof. We know that the function

u = cn,sf ∗ ρs(ρ2 + |x|2)− n+s
2

solves the extension problem (3.15) and∫ ∞

0

∫
Rn

|∇u(x, ρ)|2ρ1−s dx dρ < ∞.

Then, we have to approximate u by C∞
0 functions on R

n × R. Let η ∈ C∞
0 (R) be such that

η(t) = 0 for |t| > 2 and η(t) = 1 for |t| ≤ 1. Consider

uj(x, ρ) = η
(
2−j(ρ2 + |x|2))

u(x, ρ) =: ψj(x, ρ)u(x, ρ),

after extending u to R
n × R as an even function in ρ. Then, uj is compactly supported

and

∇uj = ∇ψju + ψj∇u

so that

∇(u − uj) = ∇ψju + (1 − ψj)∇u.

Note that 1 − ψj = 0 on (ρ2 + |x|2) ≤ 2j. Hence,

∫ ∞

0

∫
Rn

|(1 − ψj)∇u|2ρ1−s dx dρ ≤
∫

(ρ2+|x|2)>2j
|∇u|2ρ1−s dx dρ → 0 as j → ∞.

On the other hand, as η′ = 0 on (ρ2 + |x|2) ≤ 2j and (ρ2 + |x|2) ≥ 2j+1,∣∣∣∣∣ ∂

∂xj
ψj(x, ρ)

∣∣∣∣∣ = 2−j2|xj|η′(2−j(ρ2 + |x|2)) ≤ 2−j(ρ2 + |x|2)1/2
η′(2−j(ρ2 + |x|2)) ≤ Cρ−1.

Similarly, |∂ρψj(x, ρ)| ≤ Cρ−1. Therefore,

∫ ∞

0

∫
Rn

|∇ψj(x, ρ)|2|u|2ρ1−s dx dρ ≤ C
∫

ρ2+|x|2≥2j
|u|2ρ−1−s dx dρ

≤ C
∫ ∞

0

∫
Rn

|u|2ρ−1−s dx dρ = ∥∥(−�)s/4f
∥∥

2 < ∞,
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4270 L. Roncal and S. Thangavelu

by Proposition 3.12 and the hypothesis on f . Hence,
∫
ρ2+|x|2≥2j |u|2ρ−1−s dx dρ → 0 as

j → ∞, that is,

∫ ∞

0

∫
Rn

|∇ψj(x, ρ)|2|u|2ρ1−s dx dρ → 0 as j → ∞.

Thus, u is approximated by uj, and the proof is complete. �

We now turn to the case of the Heisenberg group. Here the Sobolev spaces Hs(Hn)

are defined via the relation f ∈ Hs(Hn) if and only if L1/2
s f ∈ L2(Hn) where Ls is the

conformally invariant fractional power of L. In view of the Plancherel theorem for the

Heisenberg group, we have

‖f ‖2
Hs(Hn) = (2π)−n−1

∫ ∞

−∞
∥∥(
L1/2

s f
)̂
(λ)

∥∥2
HS|λ|n dλ.

Recalling the definition of Ls we note that

(
L1/2

s f
)̂
(λ) = f̂ (λ)

⎛⎝�
(

Hn(λ)
2|λ| + 1+s

2

)
�

(
Hn(λ)
2|λ| + 1−s

2

)
⎞⎠1/2

(2|λ|)s/2

where Hn(λ) stands for the scaled Hermite operator −� + λ2|x|2 on R
n (we changed a

little bit the notation from Section 2.3). The Hilbert–Schmidt norm can be calculated in

terms of the Hermite basis �λ
α(x), α ∈ N

n. As they are eigenfunctions of the Hermite

operator Hn(λ) with eigenvalues (2|α| + n)|λ|, we see that

‖f ‖2
Hs(Hn) = 2s(2π)−n−1

∫ ∞

−∞

⎛⎝ ∑
α∈Nn

�
(

2|α|+n+1+s
2

)
�

(
2|α|+n+1−s

2

)∥∥̂f (λ)�λ
α

∥∥2
2

⎞⎠ |λ|n+s dλ.

In calculating the norm of a function u ∈ Hs(Hn+1) we make use of the

orthonormal basis �λ
α,j(x, y) = �λ

α(x)hλ
j (y), α ∈ N

n, j ∈ N where hλ
j (y) = �λ

j (y) are the

one-dimensional Hermite functions forming an orthonormal basis for L2(R). Thus,

‖u‖2
Hs+1(Hn+1)

=2s+1(2π)−n−2
∫ ∞

−∞

⎛⎝ ∑
(α,j)∈Nn×N

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)
�

(
2|α|+2j+(n+1)+1−(1+s)

2

)∥∥û(λ)�λ
α,j

∥∥2
2

⎞⎠|λ|(n+s+2) dλ.
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We are now ready to prove the following result, which was previously showed by

Möllers et al. in [27, Theorem D (2)] by different methods. Let Psf (z, ζ , t) = C1(n, s)|ζ |2sf ∗
ϕs,|ζ |(z, t) be the solution operator.

Theorem 3.14. For 0 < s < n + 1, the solution operator Ps : Hs(Hn) → Hs+1(Hn+1)

satisfies the isometry property

‖u‖2
Hs+1(Hn+1)

= π2n+4�(s)�(1 + s)

22n−2−6s�
(n+1−s

2

)4 ‖f ‖2
Hs(Hn).

Proof. We begin with the observation that the (group) Fourier transform of a function

u on H
n+1 is defined by

û(λ) =
∫
Hn+1

u(z, ζ , t)πλ(z, ζ , t) dz dζ dt.

Here πλ(z, ζ , t) are the Schrödinger representations realised on L2(Rn+1). Since

(z, ζ , t) = (0, ζ , 0)(z, 0, t), πλ(z, ζ , t) = πλ(0, ζ , 0)πλ(z, 0, t)

and hence

û(λ) =
∫
C

πλ(0, ζ , 0)

(∫
Hn

u(z, ζ , t)πλ(z, 0, t) dz dt
)

dζ .

Since the solution u(z, ζ , t) = Psf (z, ζ , t) is given by convolution of f with a function, the

inner integral simplifies.

At this point we make use of Theorem 3.7 with m = 1, namely,

Lsϕ−s,ρ(z, t) = C2(n, s)ρ2sϕs,ρ(z, t),

where C2(n, s) := C2(n, 1, s). In view of this we can write the solution as

u(z, ζ , t) = C1(n, s)C2(n, s)−1Lsf ∗ ϕ−s,|ζ |(z, t).

Thus,

∫
Hn

u(z, ζ , t)πλ(z, 0, t) dz dt = C1(n, s)C2(n, s)−1(Lsf )̂(λ)

∫
Hn

ϕ−s,|ζ |(z, t)πλ(z, 0, t) dz dt,
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4272 L. Roncal and S. Thangavelu

where (Lsf )̂(λ) is the Fourier transform of Lsf on H
n and hence acts on L2(Rn). From this

we obtain

û(λ) = C1(n, s)C2(n, s)−1(Lsf )̂(λ)

∫
Hn+1

((|z|2 +|ζ |2)2 +16t2)− n+1−s
2 πλ(z, ζ , t) dz dζ dt. (3.17)

For g = (z, ζ , t) ∈ H
n, let |g| = (

(|z|2 + |ζ |2)2 + 16t2
)1/4 be the homogeneous norm. Then

(3.17) can be rewritten as

û(λ) = C1(n, s)C2(n, s)−1(Lsf )̂(λ)

∫
Hn+1

|g|−2(n+2)+2(s+1)πλ(g) dg. (3.18)

It is known, see [34, p. 127], that C−1
n+1,s+1|g|−2(n+2)+2(1+s) is a fundamental solution of

the operator Ls+1 on H
n+1, if we take

Cn,s = πn+1�(s)

2n+1−3s�
(n+1−s

2

)2 .

Consequently,

∫
Hn+1

|g|−2(n+2)+2(s+1)πλ(g) dg = Cn+1,s+1(2|λ|)−s−1
�

(
Hn+1(λ)

2|λ| + 1−(1+s)
2

)
�

(
Hn+1(λ)

2|λ| + 1+(1+s)
2

) .

Therefore, in view of this and (3.18) we see that

û(λ)�λ
α,j(x, y) = Cn+1,s+1(2|λ|)−s−1

�
(

2|α|+2j+(n+1)+1−(1+s)
2

)
�

(
2|α|+2j+(n+1)+1+(1+s)

2

) (Lsf )̂(λ)�λ
α,j(x, y).

As (Lsf )̂(λ) = f̂ (λ)
�
(

Hn(λ)
2|λ| + 1+s)

2

)
�
(

Hn(λ)
2|λ| + 1−s)

2

) (2|λ|)s acts only on �λ
α, we get

û(λ)�λ
α,j(x, y) = C2

n+1,s+1|λ|−1
�

(
2|α|+2j+(n+1)+1−(1+s)

2

)
�

(
2|α|+2j+(n+1)+1+(1+s)

2

) �
(

2|α|+n+1+s
2

)
�

(
2|α|+n+1−s)

2

) f̂ (λ)�λ
α(x)hλ

j (y),

so that

∥∥û(λ)�λ
α,j

∥∥2
2 = C2

n+1,s+1|λ|−2
�

(
2|α|+2j+(n+1)+1−(1+s)

2

)2

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)2

�
(

2|α|+n+1+s
2

)2

�
(

2|α|+n+1−s)
2

)2

∥∥̂f (λ)�λ
α

∥∥2
2 .
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Recalling the expression for the norm of u in Hs+1(Hn+1) we have to multiply the above

with

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)
�

(
2|α|+2j+(n+1)+1−(1+s)

2

)
and sum over α and j:

∞∑
j=0

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)
�

(
2|α|+2j+(n+1)+1−(1+s)

2

) �
(

2|α|+2j+(n+1)+1−(1+s)
2

)2

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)2 =
∞∑

j=0

�
(

2|α|+2j+(n+1)+1−(1+s)
2

)
�

(
2|α|+2j+(n+1)+1+(1+s)

2

) .

The above can be computed using properties of hypergeometric functions. Recall that

F(a, b; c; z) =
∞∑

s=0

(a)s(b)s

(c)ss!
zs =

∞∑
s=0

�(a + s)�(b + s)�(c)

�(a)�(b)�(c + s)s!
zs.

With a = 2|α|+n+1−s
2 , b = 1, c = 2|α|+n+3+s

2 , and z = 1 we see that

∞∑
j=0

�
(

2|α|+2j+(n+1)+1−(1+s)
2

)
�

(
2|α|+2j+(n+1)+1+(1+s)

2

) =
∞∑

j=0

�
(

2|α|+n+1−s
2 + j

)
�(1 + j)

�
(

2|α|+n+3+s
2 + j

)
j!

= �(a)�(1)

�(c)
F(a, 1; c, 1).

Now making use of [31, 15.4.20]

F(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, Re(c − a − b) > 0,

we obtain

∞∑
j=0

�
(

2|α|+2j+(n+1)+1−(1+s)
2

)
�

(
2|α|+2j+(n+1)+1+(1+s)

2

) = �(s)

�(1 + s)

�
(

2|α|+n+1−s
2

)
�

(
2|α|+n+1+s

2

) .

Consequently,

∑
α∈Nn

∞∑
j=0

�
(

2|α|+2j+(n+1)+1+(1+s)
2

)
�

(
2|α|+2j+(n+1)+1−(1+s)

2

)∥∥û(λ)�λ
α,j

∥∥2
2

= C2
n+1,s+1

�(s)

�(1 + s)
|λ|−2

∑
α∈Nn

�
(

2|α|+n+1+s)
2

)
�

(
2|α|+n+1−s

2

) ∥∥̂f (λ)�λ
α

∥∥2
2.
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4274 L. Roncal and S. Thangavelu

Integrating the above with respect to |λ|n+2+s dλ we obtain

‖u‖2
Hs+1(Hn+1)

= C2
n+1,s+1

�(s)

�(1 + s)
‖f ‖2

Hs(Hn).

�

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. We begin with the observation that if u is a solution of the

extension problem for L on N, then for any ω ∈ S
m−1, Rωu is a solution of the extension

problem for L on H
n
ω. (Since all H

n
ω are isomorphic to H

n we use the same notation L
to denote these sub-Laplacians). This can be easily seen as follows: since u(v, z, ρ) =
C1(n, m, s)ρ2sf ∗ϕs,ρ(v, z), by taking Radon transform in the z-variable and recalling that

Rω( f ∗ ϕs,ρ)(v, t) = Rωf ∗ω Rωϕs,ρ(v, t), where ∗ω is the convolution on H
n
ω, we have

Rωu(v, t, ρ) = C1(n, m, s)ρ2sRωf ∗ω Rωϕs,ρ(v, t).

We have already calculated Rωϕs,ρ(v, t) in the proof of Theorem 3.4. It is given by

Rωϕs,ρ(v, t) = C1(n,1,s)
C1(n,m,s)

(
(ρ2 + |v|2)2 + 16t2

)− n+1+s
2 , which is considered as a kernel on

H
n
ω

∼= H
n. Thus, we have

C1(n, m, s)Rωϕs,ρ(v, t) = C1(n, 1, s)
((

ρ2 + |v|2)2 + 16t2)− n+1+s
2

and it is clear that Rωu(v, t, ρ) solves the extension problem for L on H
n
ω with

initial condition Rωf . As (−�z) commutes with L, it follows that (−�z)
m−1

4 u =
C1(n, m, s)ρ2s(−�z)

m−1
4 f ∗ ϕs,ρ and consequently,

Rω(−�z)
m−1

4 u(v, t) = C1(n, 1, s)ρ2sRω(−�z)
m−1

4 f ∗ω ϕ̃s,ρ(v, t),

where ϕ̃s,ρ(v, t) = (
(ρ2 + |v|2)2 + 16t2

)− n+1+s
2 . Now in view of Theorem 3.14, we have

∥∥Rω

(
(−�z)

m−1
4 u

)∥∥2
Hs+1(Hn+1)

= C
∥∥Rω

(
(−�z)

m−1
4 f

)∥∥2
Hs(Hn)

.

Integrating the above over S
m−1 we obtain

∫
Sm−1

∥∥Rω

(
(−�z)

m−1
4 u

)∥∥2
Hs+1(Hn+1)

dσ(ω) = C
∫
Sm−1

∥∥Rω

(
(−�z)

m−1
4 f

)∥∥2
Hs(Hn)

dσ(ω).
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Recalling the definition of the norm on Hs(Hn), the right-hand side of the above reads

∫
Sm−1

∫
Hn

∣∣L1/2
s Rω

(
(−�z)

m−1
4 f

)
(v, t)

∣∣2 dv dt dσ(ω).

The proof will be completed by showing that the above integral is a constant multiple

of
∫

N |L1/2
s f (v, z)|2 dv dz. By Plancherel theorem for the Fourier transform on H

n

∫
Hn

∣∣∣L1/2
s Rω

(
(−�z)

m−1
4 f

)
(v, t)

∣∣∣ 2 dv dt

= (2π)−n−1
∫ ∞

−∞

⎛⎝ ∑
α∈Nn

�
(

2|α|+n+1+s
2

)
�

(
2|α|+n+1−s

2

) ∥∥∥πλ

(
Rω

(
(−�z)

m−1
4 f

)
�λ

α

∥∥∥2

2

⎞⎠ |λ|n+s dλ

where we have used πλ(F) to stand for the Fourier transform F̂(λ) of a function F on H
n.

But we note that for any g on N, πλ(Rωg) = πλ,ω(g) (recall the notation from Section 2.2).

Using this we have

πλ

(
Rω(−�z)

m−1
4 f

) = πλ,ω

(
(−�z)

m−1
4 f

) = |λ|m−1
2 πλ,ω( f ).

Therefore,

∫
Hn

∣∣L1/2
s

(
Rω(−�z)

m−1
4 f

)
(v, t)

∣∣2 dv dt = C
∫ ∞

−∞

∑
α∈Nn

�
(

2|α|+n+1+s
2

)
�

(
2|α|+n+1−s

2

)‖πλ,ω( f )‖2
2|λ|n+m−1+s dλ.

Integrating both sides over S
m−1 we immediately see that

∫
Sm−1

∥∥∥Rω(−�z)
m−1

4 u
∥∥∥2

Hs+1(Hn+1)
dσ(ω)

= C
∫
Sm−1

∫ ∞

−∞
∥∥πλ,ω

(
L1/2

s f
)∥∥2

HS|λ|n+m−1 dλ dσ(ω),

and from here we conclude. �
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4276 L. Roncal and S. Thangavelu

3.4 Higher-order extension problem

In this subsection we will deal with the extension problem for large values of s > 0. By

Theorem 1.2 we have that, for s > 0,

u(v, z, ρ) =
(

πn+m/2

4m

�(s)�
(n+s

2

)
�(n + s)�

(n+m+s
2

))−1

ρ2sf ∗ ϕs,ρ(v, z)

solves the extension problem and limρ→0 u(v, z, ρ) = f (v, z). We are interested in

recovering Lsf as the limit of certain derivatives (in ρ) of u(v, z, ρ). Observe that the

operator Ls is defined for all values of s ∈ R \ D, where D = {±(n + 2k + 1) : k =
0, 1, 2, . . .} = D+ ∪ D−. Higher-order extension problems have been studied in [9, 45] for

the Euclidean Laplacian for s ∈ (0, n/2), and for general nonnegative self-adjoint linear

operators defined in an L2-space for any noninteger positive number s, in [33].

The main result of this subsection reads as follows.

Theorem 3.15. Let N be an H-type group with homogeneous dimension Q = 2(n + m).

Let s > 0 be such that either s /∈ N if m is even or s /∈ D+ if m is odd. Suppose that � is

the integer such that � − 1 ≤ s < �. Let u be the solution of the extension problem (1.3)

with initial condition f ∈ Lp(N), 1 ≤ p < ∞. Then

lim
ρ→0

ρ2(�−s)
(

1

2ρ
∂ρ

)�

u(v, z, ρ) = C(�, m, n, s)Lsf (v, z),

in the Lp norm provided Lsf ∈ Lp(N), where C(�, m, n, s) = C1(n, m, s)C2(n, m, s)−1

a(�, n, m, s) with C1(n, m, s) and C2(n, m, s) given by (1.6) and (1.11), respectively, and

a(�, n, m, s) by

a(�, n, m, s) = πn+m/2

4m

�(� − s)

�(n + � − s)

�∑
j=0

c(�, j)
�

(n+�+j−s
2

)
�

(n+m+�+j−s
2

) .

Here c(�, j) satisfies the recurrence relation

c(� + 1, j) = ( j + 1)c(�, j + 1) − 1

2
(n + m + � + j − 1 − s)c(�, j − 1), 1 ≤ j ≤ �,

c(� + 1, 0) = c(�, 1), c(� + 1, � + 1) = −1

2
(n + m + 2� − s)c(�, �) (3.19)

with initial conditions c(0, 0) = 1, c(1, 0) = 0.
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Proof. We can write the solution (see Remark 3.8) as

u(v, z, ρ) = C1(n, m, s)C2(n, m, s)−1Ls f ∗ ϕ−s,ρ(v, z),

provided 0 < s < n + 1. By induction, still assuming 0 < s < n + 1, we can show that

(
1

2ρ
∂ρ

)�

ϕ−s,ρ(v, z) =
�∑

j=0

c(�, j)gj,ρ(v, z)ϕ�−s,ρ(v, z), (3.20)

for some explicit constants c(�, j) that will be computed at the end of the proof and

gj,ρ(v, z) =
(
ρ2 + |v|2)j((

ρ2 + |v|2)2 + 16|z|2)j/2
.

This shows that

ρ2(�−s)
(

1

2ρ
∂ρ

)�

u(v, z, ρ) = C1(n, m, s)C2(n, m, s)−1
�∑

j=0

Lsf ∗ hj,ρ,s(v, z), (3.21)

where

hj,ρ,s(v, z) = c(�, j)gj,ρ(v, z)ρ2(�−s)ϕ�−s,ρ(v, z).

We claim that the latter identity is valid for any 0 < s /∈ N or s /∈ D+ as the case may

be. This restriction comes from the fact that C2(n, m, s) is not defined when s is of the

form n + m + 2k, for a nonnegative integer k. In order to prove the claim, we use Fourier

transform on N. As u(v, z, ρ) = C1(n, m, s)ρ2sf ∗ ϕs,ρ(v, z), by Theorem 3.7, it is enough to

show that

πλ,ω( f )ρ2(�−s)
(

1

2ρ
∂ρ

)� [
ρ2sπλ,ω(ϕs,ρ)

] = C2(n, m, s)−1πλ,ω(Lsf )

�∑
j=0

πλ,ω(hj,ρ,s)

for any λ > 0 and ω ∈ S
�−1. Since ϕs,ρ(v, z) is radial in both v and z, the group Fourier

transform of ϕs,ρ is given by

πλ,ω(ϕs,ρ) =
∞∑

k=0

cλ
k,ρ(s)Pk(λ),
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4278 L. Roncal and S. Thangavelu

see Section 2.2. Here the coefficients have been computed in [34, Section 3] and are given

by the formula

cλ
k,ρ(s) = (2π)n+1|λ|s

�
(1

2 (n + 1 + s)
)2 L

(
ρ2|λ|

4
,

2k + n + 1 + s

2
,

2k + n + 1 − s

2

)
, (3.22)

where the L-function is

L(a, b, c) =
∫ ∞

0
e−a(2x+1)xb−1(

1 + x
)−c dx, (3.23)

which is valid for a, b ∈ R
+ and c ∈ R. Using the facts that ϕs,ρ and hj,ρ,s are radial and

πλ,ω(Lsf ) = πλ,ω( f )(2|λ|)s
�

(
H(λ)
2|λ| + 1+s

2

)
�

(
H(λ)
2|λ| + 1−s

2

) ,

we only need to show that

ρ2(�−s)
(

1

2ρ
∂ρ

)� [
ρ2scλ

k,ρ(s)
] = C2(n, m, s)−1(2|λ|)s

�
(

2k+n+1+s
2

)
�

(
2k+n+1−s

2

) �∑
j=0

ĥj,ρ,s(λ, k) (3.24)

for every k ∈ N. Here,

ĥj,ρ,s(λ, k) = cn
k! (n − 1)!

(k + n − 1)!

∫
Cn

hλω
j,ρ,s(v)ϕλ

k(v) dv

(observe that hλω
j,ρ,s(v) is independent of ω as hj,ρ,s(v, z) is radial in z).

From the definition of the L-function it is clear that ρ2(�−s)
( 1

2ρ
∂ρ

)�[ρ2scλ
k,ρ(s)] is

a holomorphic function of s on Re s > 0. On the other hand, it is easy to see that the

right-hand side of (3.24) is also holomorphic on {0 < Re s < �} ∩ (C \ N) or {0 < Re s < �}
∩ (C \ D+) as the case may be. As both sides agree on 0 < Re s < n + 1, we can conclude

that they agree on 0 < s < �. This proves the claim.

Thus, we have proved (3.21) for 0 < s < �. As hj,ρ,s(v, z)=ρ−2(n+m)hj,1,s(ρ
−1v, ρ−2z)

and hj,1,s ∈ L1(N), we see that

lim
ρ→0

ρ2(�−s)
(

1

2ρ
∂ρ

)�

u(v, z, ρ) = C1(n, m, s)C2(n, m, s)−1a(�, n, m, s)Ls f ,
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where, by Lemma 3.5 with α = � + j − s,

a(�, n, m, s) =
�∑

j=0

c(�, j)
∫

N

(
1 + |v|2)j((1 + |v|2)2 + 16|z|2)− n+m+�+j−s

2 dv dz

= πn+m/2

4m

�(� − s)

�(n + � − s)

�∑
j=0

c(�, j)
�

(n+�+j−s
2

)
�

(n+m+�+j−s
2

) .

Finally, we can get a recurrence relation for the constants c(�, j). By rewriting (3.20), we

have

(
1

2ρ
∂ρ

)�

ϕ−s,ρ(v, z) =
�∑

j=0

c(�, j)
(
ρ2 + |v|2)j((

ρ2 + |v|2)2 + |z|2)− n+m+�+j−s
2 . (3.25)

Differentiating the above once more, we get

(
1

2ρ
∂ρ

)�+1

ϕ−s,ρ(v, z) =
�∑

j=1

c(�, j)j(ρ2 + |v|2)j−1((
ρ2 + |v|2)2 + |z|2)− n+m+�+1+j−1−s

2

− 1

2

�∑
j=0

c(�, j)(n + m + � + j − s)
(
ρ2 + |v|2)j+1((

ρ2 + |v|2)2 + |z|2)− n+m+�+1+j+1−s
2 .

Comparing this with (3.25) we obtain the recurrence relation in (3.19). This completes

the proof. �

4 Trace Hardy and Hardy Inequalities for the Sub-Laplacian

Our aim in this section is to prove various forms of trace Hardy and Hardy inequalities

for L on an H-type group N. Let us recall that ∇u = (
X1u, . . . , X2nu, 1

2Z1u, . . . , 1
2Zmu, ∂ρu

)
and let

L := −L + ∂2
ρ + 1 − 2s

ρ
∂ρ + 1

4
ρ2�z (4.1)

stand for the extension operator. We have the following general trace Hardy inequality.

In order to state the result, we recall the Sobolev space presented in the Introduction.

Let W̃s,2
0 (S) be the completion of C∞

0 (N × R) with respect to the norm

‖u‖2
(s) =

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ.

As it was noted in the Introduction, it can be easily checked that this is indeed a norm.
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4280 L. Roncal and S. Thangavelu

Theorem 4.1 (General trace Hardy inequality). Let 0 < s < 1 and let ϕ ∈ L2(N) be a

real-valued function in the domain of Ls such that ϕ−1Lsϕ is locally integrable. Then for

any real-valued function u(v, z, ρ) ∈ W̃s,2
0 (S) we have the inequality

∫ ∞

0

∫
N

∣∣∣∇u(v, z, ρ)

∣∣∣2ρ1−2s dv dz dρ ≥ 21−2s �(1 − s)

�(s)

∫
N

u2(v, z, 0)
Lsϕ(v, z)

ϕ(v, z)
dv dz.

Proof of Theorem 4.1. Let Yi be any of the vector fields Xj or 1
2Zk on the N group. An

easy limiting argument shows that it is enough to prove the inequality for functions u,

which are restrictions to AN of a C∞
0 function on N × R. Let u(v, z, ρ) be such a function

and take w(v, z, ρ) to be the solution of the extension problem with initial condition ϕ.

Now consider the integral

∫
N

(
Yiu − u

w
Yiw

)2
dv dz =

∫
N

(
(Yiu)2 − 2

u

w
YiuYiw +

( u

w
Yiw

)2
)

dv dz.

Integrating by parts and noting that there are no boundary terms we get

∫
N

u

w
YiuYiw dv dz = −

∫
N

uYi

( u

w
Yiw

)
dv dz

= −
∫

N

u

w
YiuYiw dv dz −

∫
N

u2Yi

(
1

w
Yiw

)
dv dz.

Since
∫

N u2Yi

( 1
w Yiw

)
dv dz = − ∫

N
u2

w2

(
Yiw

)2 dv dz + ∫
N

u2

w Y2
i w dv dz, the above gives

∫
N

(
u2

w2 (Yiw)2 − 2
u

w
YiuYiw

)
dv dz =

∫
N

u2

w
Y2

i w dv dz.

On the other hand, a similar calculation with the ρ-derivative gives

∫ ∞

0

(
u2

w2 (∂ρw)2 − 2
u

w
∂ρu∂ρw

)
ρ1−2s dρ =

∫ ∞

0

u2

w
∂ρ

(
ρ1−2s∂ρw

)
dρ

+ u(v, z, 0)2

w(v, z, 0)
lim
ρ→0

(
ρ1−2s∂ρw

)
(v, z, ρ).
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Let us now add them up and take all integrations into account. By denoting x = (v, z)

and dx = dv dz, we get, in view of (4.1),

∫ ∞

0

∫
N

∣∣∣∇u(x, ρ) − u(x, ρ)

w(x, ρ)
∇w(x, ρ)

∣∣∣2ρ1−2s dx dρ =
∫ ∞

0

∫
N

∣∣∣∇u(x, ρ)

∣∣∣2ρ1−2s dx dρ

+
∫ ∞

0

∫
N

u(x, ρ)2

w(x, ρ)
(Lw(x, ρ))ρ1−2s dx dρ +

∫
N

u(x, 0)2

w(x, 0)
lim
ρ→0

ρ1−2s∂ρw(x, ρ) dx. (4.2)

Since we have taken w = C1(n, m, s)ρ2sϕ ∗ ϕs,ρ , with ϕs,ρ as in (1.5) and C1(n, m, s)

as in (1.6), w solves the equation Lw = 0, with w(x, 0) = ϕ(x). Moreover, as ρ → 0,

−ρ1−2s∂ρ

(
C1(n, m, s)ρ2sϕ ∗ ϕs,ρ

) → 21−2s �(1 − s)

�(s)
Lsϕ.

Therefore, (4.2) simplifies and we obtain the inequality

∫ ∞

0

∫
N

∣∣∣∇u(x, ρ)

∣∣∣2ρ1−2s dx dρ ≥ 21−2s �(1 − s)

�(s)

∫
N

u2(x, 0)
Lsϕ(x)

ϕ(x)
dx,

as desired. �

Remark 4.2. By taking ϕ(v, z) = u(v, z, 0), we obtain the following inequality:

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ ≥ C
∫

N
Lsϕ(v, z)ϕ(v, z) dv dz.

This has been already proved in [19] by using results from the scattering theory.

Theorem 4.1 proves the main part of Theorem 1.3. In order to show that the

inequality is sharp we claimed that the equality is attained when u is a solution of the

extension problem with initial condition ϕ. If only we know that the solution u belongs

to the space W̃s,2
0 (S), this will be easily seen by checking that both sides of the inequality

reduce to (ϕ,Lsϕ). Thus, we need the following result, which is in part the counterpart

of Proposition 3.13 for H-type groups.

Theorem 4.3. For 0 < s < 1, let ϕ be a real-valued function in Hs(N), that is, ϕ, Ls/2ϕ ∈
L2(N). If u is the solution of the extension problem with initial condition ϕ, then u ∈
W̃s,2

0 (S).

In order to prove Theorem 4.3, we need the following proposition:
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4282 L. Roncal and S. Thangavelu

Proposition 4.4. Under the same hypothesis as in Theorem 4.3 we have

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ = 21−2s �(1 − s)

�(s)

∫
N
Lsϕ(v, z)ϕ(v, z) dv dz.

Proof. The proof follows the lines of the proof of Proposition 3.11: we take into account

that Yjϕs,ρ ∈ L2(N) when Yj is any of the vector fields Xj or Zj (and therefore Yju also

vanishes at infinity), and the same for ∂ρϕs,ρ . Integrating by parts, we have that

∫
N

|Yju(v, z, ρ)|2 dv dz =
∫

N
u(v, z, ρ)Y2

j u(v, z, ρ) dv dz.

Moreover, |u(v, z, ρ)| ≤ ρ2s‖ϕ‖2‖ϕs,ρ‖2, which implies that u(v, z, ρ) goes to 0 as ρ tends

to infinity (the same for ∂ρu(v, z, ρ)). The computation with the ρ-derivative yields

∫ ∞

0
(∂ρu(v, z, ρ))2ρ1−2s dρ =

∫ ∞

0
u(v, z, ρ)∂ρ

(
ρ1−2s∂ρu(v, z, ρ)

)
dρ

− u(v, z, 0) lim
ρ→0

(
ρ1−2s∂ρu

)
(v, z, ρ).

Now we sum up and we use the fact that u solves the extension problem with initial

condition ϕ. The result follows. �

From Proposition 4.4 we see that the “energy norm” of the solution u is a

constant multiple of the Hs(N) norm of the initial condition.

Proof of Theorem 4.3. We are now in a position to prove Theorem 4.3. As the energy

norm of u is finite, all we have to do is to show that it can be approximated by a sequence

of compactly supported smooth functions on N×R. As u(v, z, ρ) is even in ρ we can think

of it as a smooth function on N × R. Let η ∈ C∞
0 (R) be supported in |ρ| ≤ 2 and assume

that η = 1 on |ρ| ≤ 1. Let ψj(v, z, ρ) = η(2−j((ρ2 + |v|2)2 + |z|2)) and define uj(v, z, ρ) =
ψj(v, z, ρ)u(v, z, ρ). We will show that uj converges to u in the energy norm. Observe that

∇(u − uj) = (1 − ψj)∇u + u∇ψj. Since (1 − ψj) is supported in ((ρ2 + |v|2)2 + |z|2) ≥ 2j it

follows that

∫ ∞

0

∫
N

|(1 − ψj)(v, z, ρ)|2|∇u(v, z, ρ)|2ρ1−2s dv dz dρ

≤ C
∫

((ρ2+|v|2)2+|z|2)≥2j
|∇u(v, z, ρ)|2ρ1−2s dv dz dρ,
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which tends to 0 as j tends to infinity, in view of Proposition 4.4. On the other hand, ∇ψj

is supported on 2j ≤ ((ρ2 + |v|2)2 + |z|2) ≤ 2j+1. Moreover, we have that

|∂ρψj(v, z, ρ)| = 2−j2
(
ρ2 + |v|2)

2|ρ|η′(2−j((ρ2 + |v|2)2 + |z|2))
≤ C2−j((ρ2 + |v|2)2 + |z|2)3/4

η′(2−j((ρ2 + |v|2)2 + |z|2))
= C2−j3/4((

ρ2 + |v|2)2 + |z|2)3/4
η′(2−j((ρ2 + |v|2)2 + |z|2))

2−j/4

= C
[
2−j((ρ2 + |v|2)2 + |z|2)]3/4

η′(2−j((ρ2 + |v|2)2 + |z|2))
2−j/4.

Therefore, calling t := 2−j((ρ2 + |v|2)2 + |z|2)), we have

|∂ρψj(v, z, ρ)| ≤ Ct3/4η′(t)2−j/4 ≤ C2−j/4.

Same estimate is true of Xψj(v, z, ρ) for any other vector field X. For instance, let us

compute and estimate |Xkψj(v, t, ρ)| on the Heisenberg group with v = x + iy ∈ C
n and

t ∈ R for simplicity. We get

|Xkψj(v, t, ρ)| ≤ 2−j(4(
ρ2 + |v|2)|xk| + |yk||t|)η′(2−j((ρ2 + |v|2)2 + |z|2))

≤ C2−j((ρ2 + |v|2)2 + t2)1/2((
ρ2 + |v|2)2 + t2)1/4

η′(2−j((ρ2 + |v|2)2 + |z|2))
= C

[
2−j((ρ2 + |v|2)2 + t2)]3/4

η′(2−j((ρ2 + |v|2)2 + |z|2))
2−j/4.

As before, we infer that

|∇ψj(v, z, ρ)| ≤ C2−j/4. (4.3)

Since the solution u of the extension problem with initial condition ϕ is given by u =
C1(n, m, s)ρ2sϕ ∗ ϕs,ρ , by Young’s inequality, we get ‖u‖L2(N) ≤ ‖ϕ‖L2(N) by the choice of

the constant C1(n, m, s). Now as ∇ψj is supported in 2j ≤ ((ρ2 + |v|2)2 + |z|2) ≤ 2j+1

∫ ∞

0

∫
N

|u(v, z, ρ)|2|∇ψj(v, z, ρ)|2ρ1−2s dv dz dρ

≤ C2−j/2
∫ 2 (j+1)/4

0

(∫
N

|u(v, z, ρ)|2 dv dz
)

ρ1−2s dρ ≤ C2−j/2
∫ 2(j+1)/4

0
ρ1−2s dρ,

which clearly goes to zero as j tends to infinity since s > 0. This completes the proof of

Theorem 4.3. �
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4284 L. Roncal and S. Thangavelu

We are going to show another form of trace Hardy inequality. We make use of

the connection between solutions of the extension problem and eigenfunctions of the

Laplace–Beltrami operator on S, which we have already exploited. Recall that

�S =
2n∑
j=1

E2
j +

m∑
k=1

T2
k + H2 − 1

2
QH.

Given a function u on S, as before, we define w(v, z, ρ) = u(2−1/2v, 2−1z,
√

2ρ) and

w̃(v, z, ρ) = ρ
(n+m−s)

2 w(v, z, ρ). We also denote by ∇Sw the full gradient of w on S. Making

use of the connection between the two gradients, we see that

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ = C
∫ ∞

0

∫
N

|∇Sw(v, z, ρ)|2ρ−1−s dv dz dρ

whenever u and w are related as above. We now prove the following proposition.

Proposition 4.5. Let 0 < s < 1. Assume that w is the restriction to S of a function in

C∞
0 (N × R). Then we have the identity

∫ ∞

0

∫
N

|∇Sw(v, z, ρ)|2ρ−1−s dv dz dρ

=
∫ ∞

0

∫
N

w̃(v, z, ρ)

(
−�S − (n + m)2 − s2

4

)
w̃(v, z, ρ)ρ−n−m−1 dv dz dρ

−
∫

N
w(v, z, 0) lim

ρ→0
ρ1−s∂ρw(v, z, ρ) dv dz dρ.

Proof. First of all, note that the assumptions on s and w and the definition of ∇S

ensure that all the integrals involved in Proposition 4.5 are finite. By integration by

parts we have, as the boundary terms vanish,

∫
N

2n∑
j=1

E2
j w̃(v, z, ρ)w̃(v, z, ρ)ρ−n−m−1 dv dz dρ = −

∫
N

2n∑
j=1

|Ejw|2ρ−1−s dv dz dρ (4.4)

and also

∫
N

m∑
k=1

T2
kw̃(v, z, ρ)w̃(v, z, ρ)ρ−n−m−1 dv dz dρ = −

∫
N

m∑
k=1

|Tkw|2ρ−1−s dv dz dρ. (4.5)
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Now, observe that

H2 − (n + m)H = ρ2∂2
ρ − (n + m − 1)ρ∂ρ .

Therefore, we consider the integral

∫ ∞

0

(
ρ2∂2

ρ − (n + m − 1)ρ∂ρ

)
w̃(v, z, ρ)w̃(v, z, ρ)ρ−m−n−1 dρ

=
∫ ∞

0
∂2
ρ

(
ρ

n+m−s
2 w

)
ρ− n+m+s−2

2 w dρ − (n + m − 1)

∫ ∞

0
∂ρ

(
ρ

n+m−s
2 w

)
ρ− n+m+s

2 w dρ. (4.6)

We first look at the truncated integral

I :=
∫ B

A
∂2
ρ

(
ρ

n+m−s
2 w

)
ρ− n+m+s−2

2 w dρ

where 0 < A < B ≤ ∞. Integration by parts and some computations show that

I = −1

4

(
2s(1 − s) − (n + m − s)(n + m + s − 2)

) ∫ B

A
ρ−(1+s)w2 dρ

−
∫ B

A
ρ1−s(∂ρw)2 dρ + ρ− n+m+s−2

2 w∂ρ

(
ρ

n+m−s
2 w

) ∣∣∣B
A

− 1 − s

2
ρ−2w2

∣∣∣B
A

. (4.7)

Concerning the 2nd integral, we have

I I := −(n + m − 1)

∫ ∞

0
∂ρ

(
ρ

n+m−s
2 w

)
ρ− n+m+s

2 w dρ,

which by integration by parts and some calculations lead to

I I = −(n + m − 1)

(
n + m

2

)∫ B

A
ρ−(1+s)w2 dρ − n + m − 1

2
ρ−2w2

∣∣∣B
A

. (4.8)

Then, collecting (4.6), (4.7), and (4.8), we have

∫ B

A

(
ρ2∂2

ρ − (n + m − 1)ρ∂ρ

)
w̃(v, z, ρ)w̃(v, z, ρ)ρ−m−n−1 dρ

= −1

4

(
(n + m)2 − s2) ∫ B

A
ρ−(1+s)w2 dρ −

∫ B

A
ρ1−s(∂ρw)2 dρ

+ ρ− n+m+s−2
2 w∂ρ

[
ρ

n+m−s
2 w

]∣∣∣B
A

− n + m − s

2
ρ−2w2

∣∣∣B
A

.
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Finally, observe that

ρ− n+m+s−2
2 w∂ρ

(
ρ

n+m−s
2 w

)∣∣∣B
A

= n + m − s

2
ρ−2w2

∣∣∣B
A

+ wρ1−s∂ρw
∣∣∣B
A

,

and consequently we obtain

∫ ∞

0

(
H2 − (n + m)H

)
w̃(v, z, ρ)w̃(v, z, ρ)ρ−m−n−1 dρ

=
∫ ∞

0

(
ρ2∂2

ρ − (n + m − 1)ρ∂ρ

)
w̃(v, z, ρ)w̃(v, z, ρ)ρ−m−n−1 dρ (4.9)

= −1

4

(
(n + m)2 − s2) ∫ ∞

0
ρ−(1+s)w(v, z, ρ)2 dρ −

∫ ∞

0
ρ−1−s(ρ∂ρw(v, z, ρ)

)2 dρ

+ w(v, z, 0) lim
ρ→0

ρ1−s∂ρw(v, z, ρ).

Taking into account of (4.4), (4.5), and (4.9), we obtain the conclusion. �

From Proposition 4.5 we can immediately obtain the following trace inequality.

Theorem 4.6. Let 0 < s < 1. We have the inequality

∫ ∞

0

∫
N

|∇Sw(v, z, ρ)|2ρ−1−s dv dz dρ ≥ −
∫

N
w(v, z, 0) lim

ρ→0
ρ1−s∂ρw(v, z, ρ) dv dz dρ,

for any real-valued function w(v, z, ρ) = u(2−1/2v, 2−1z,
√

2ρ) with u ∈ W̃s,2
0 (S). Moreover,

equality holds if and only if u is a solution of the extension problem (1.3).

Proof. The stated inequality for w ∈ C∞
0 (N × R) follows from the above proposition

since −�S ≥ 1
4 (n + m)2. By approximating u and hence w by a sequence of C∞

0 (N × R)

functions, we can conclude that the inequality remains true under the hypothesis on w.

We have already remarked in Section 3.1 that when u satisfies the extension problem,

then w̃(v, z, ρ) = ρ
(n+m−s)

2 w(v, z, ρ) is an eigenfunction of �S with eigenvalue − (n+m)2−s2

4 .

Consequently, we can easily conclude that equality holds if and only if u is the solution

of the extension problem. �

Theorems 4.1 and 4.3 lead to some interesting corollaries.
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Corollary 4.7. Let 0 < s < 1, δ > 0. Then for all real-valued u ∈ W̃s,2
0 (S), we have

∫ ∞

0

∫
N

|∇u(v, z, ρ)|2ρ1−2s dv dz dρ ≥ Cn,sδ
2s

∫
N

u(v, z, 0)2((
δ2 + |v|2)2 + 16z2

)s dv dz (4.10)

with the constant given by

Cn,s = 21−2s�(1 − s)

�(s)
42s �

(n+1+s
2

)
�

(n+1−s
2

) �
(n+m+s

2

)
�

(n+m−s
2

) .

The above inequality is sharp and equality is obtained when u(v, z, ρ) = ϕ−s,δ ∗
ρ2sϕs,ρ(v, z).

Proof. We immediately obtain the inequality by taking ϕ = ϕ−s,δ in Theorem 4.1 for a

fixed δ > 0 and using Theorem 3.7.

As for the equality, when we take u(v, z, ρ) = C1(n, m, s)ϕ−s,δ ∗ ρ2sϕs,ρ(v, z) in the

inequality (4.10), in view of Proposition 4.4, the left-hand side reduces to

21−2s �(1 − s)

�(s)

∫
N

ϕ−s,δLsϕ−s,δ dv dz,

which, by Theorem 3.7, is nothing but the right-hand side of (4.10). �

Remark 4.8. In Corollary 4.7, if we take u to be the solution of the extension problem

with initial condition f , the left-hand side reduces to a constant multiple of ( f ,Lsf ).

This immediately proves Corollary 1.4.

Now we are going to prove Theorem 1.5. Let us recall some definitions. Let

ϕs(v, z) = |(v, z)|−(n+m+s) and ψs(v, z) = C1(n, m, s)
(
ϕs ∗ | · |−Q+2s)(v, z).

Note that ψs(v, z) is homogeneous of degree −(n + m − s). Let us define

ws(v, z) = ϕs(v, z)ψs(v, z)−1

so that ws is homogeneous of degree −2s.

Proof of Theorem 1.5. Let u ∈ C∞
0 (N × R) and let ϕ > 0 be any function that is in the

domain of Ls. Let w = C1(n, m, s)ρ2sϕ ∗ϕs,ρ be the solution of the extension problem (1.3)
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with initial condition ϕ. Then, proceeding as in the proof of Theorem 4.1, we get

∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇w(x, ρ)

w(x, ρ)

∣∣∣∣2 ρ1−2su2(x, ρ) dx dρ

+ 21−2s�(1 − s)

�(s)

∫
N

Lsϕ(x)

ϕ(x)
u2(x, 0) dx =

∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)

∣∣∣∣2 ρ1−2su2(x, ρ) dx dρ. (4.11)

Now, let η ∈ C∞
0 supported in 0 < a ≤ |(v, z)| ≤ b < ∞ be such that 0 ≤ η ≤ 1. Let us take

ϕ = ηϕs ∗ ϕ−s,δ in (4.11). We note that, in view of Theorem 3.7,

21−2s�(1 − s)

�(s)

∫
N

Lsϕ(x)

ϕ(x)
u2(x, 0) dx

= 21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

δ2s(ηϕs) ∗ ϕs,δ(v, z)

ηϕs ∗ ϕ−s,δ(v, z)
u2(v, z, 0) dv dz.

From identity (4.11) we observe that

21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

δ2s(ηϕs) ∗ ϕs,δ(v, z)

ηϕs ∗ ϕ−s,δ(v, z)
u2(v, z, 0) dv dz

≤
∫ ∞

0

∫
N

∣∣∣∇u(x, ρ)

∣∣∣2ρ1−2s dx dρ.

As ηϕs ∈ L2(N) and C1(n, m, s)δ2sϕs,δ is an approximate identity, δ2sηϕs ∗ ϕs,δ converges

to C1(n, m, s)−1ηϕs(v, z) a.e. as δ → 0. We also note that ηϕs ∗ ϕ−s,δ(v, z) converges to

ηϕs ∗ | · |−Q+2s (due to Dominated Convergence Theorem). By Vitali’s theorem (see [35,

p. 143]) with dμ(v, z) = u2(v, z, 0) dv dz we conclude that

lim
δ→0

21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

δ2s(ηϕs) ∗ ϕs,δ(v, z)

ηϕs ∗ ϕ−s,δ(v, z)
u2(v, z, 0) dv dz

= 21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

ηϕs(v, z)

C1(n, m, s)ηϕs ∗ | · |−Q+2s(v, z)
u2(v, z, 0) dv dz.

We also have, with wη,δ(v, z, ρ) = C1(n, m, s)ρ2sηϕs ∗ ϕ−s,δ ∗ ϕs,ρ(v, z),

∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇wη,δ(x, ρ)

wη,δ(x, ρ)

∣∣∣∣2ρ1−2su2(x, ρ) dx dρ

≤
∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)

∣∣∣∣2ρ1−2su2(x, ρ) dx dρ.
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Note that, as δ → 0, wη,δ converges to

wη(v, z, ρ) = C1(n, m, s)ρ2sηϕs ∗ | · |−Q+2s ∗ ϕs,ρ(v, z)

and ∇wη,δ → ∇wη. Again, by Vitali’s theorem with dμ(v, z, ρ) = u2(v, z, ρ)ρ1−2s dv dz dρ,

we can conclude that

lim
δ→0

∫ ∞

0

∫
N

∣∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇wη,δ(x, ρ)

wη,δ(x, ρ)

∣∣∣∣∣
2

ρ1−2su2(x, ρ) dx dρ

=
∫ ∞

0

∫
N

∣∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇wη(x, ρ)

wη(x, ρ)

∣∣∣∣∣
2

ρ1−2su2(x, ρ) dx dρ.

Putting together, we have obtained

∫ ∞

0

∫
N

∣∣∣∇u(x, ρ)

∣∣∣2ρ1−2s dx dρ =
∫ ∞

0

∫
N

∣∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇wη(x, ρ)

wη(x, ρ)

∣∣∣∣∣
2

ρ1−2su2(x, ρ) dx dρ

+ 21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

ηϕs(v, z)

C1(n, m, s)ηϕs ∗ | · |−Q+2s(v, z)
u2(v, z, 0) dv dz.

Choosing a sequence η = ηk of functions supported on 1
2k ≤ |(v, z)| ≤ 2k, which are equal

to 1 on 1
k ≤ |(v, z)| ≤ k, arguing as above, we can take limit as k → ∞ in the above to get

∫ ∞

0

∫
N

∣∣∣∇u(x, ρ)

∣∣∣2ρ1−2s dx dρ =
∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇w(x, ρ)

w(x, ρ)

∣∣∣∣2 ρ1−2su2(x, ρ) dx dρ

+ 21−2s�(1 − s)

�(s)
C2(n, m, s)

∫
N

u2(v, z, 0)ws(v, z) dv dz. (4.12)

Let us take now u ∈ W̃s,2
0 (S). Choose a sequence uk ∈ C∞

0 (N × R) such that uk

converges to u in W̃s,2
0 (S). It is clear that passing to the limit in (4.12) we get the identity

for functions in W̃s,2
0 (S). From (4.12) we deduce immediately the inequality stated in the

theorem.

The equality is obtained if and only if
∣∣∇u(x,ρ)

u(x,ρ)
− ∇w(x,ρ)

w(x,ρ)

∣∣ = 0, that is, if and only

if u = c · w, for some positive constant c, with w = C1(n, m, s)ρ2sϕs ∗ | · |−Q+2s ∗ ϕs,ρ(v, z).

But this w makes the rest of the terms of (4.12) infinite. �

Proof of Corollary 1.6. Take u(v, z, ρ) = C1(n, m, s)ρ2sf ∗ ϕs,ρ(v, z, ρ). By Theorem 1.2, u

solves the extension problem (1.3) with initial condition f so that, by Theorem 1.3, we
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have the identity

∫ ∞

0

∫
N

∣∣∇u(x, ρ)
∣∣2ρ1−2s dx dρ = 21−2s �(1 − s)

�(s)

∫
N

f (x)Lsf (x) dx.

Then, applying Theorem 1.5, we get

∫
N

f (x)Ls(x) dx ≥ C2(n, m, s)
∫

N
f 2(v, z)ws(v, z) dv dz,

and the conclusion follows. �

Remark 4.9. It would be interesting to get an inequality of the form

∫ ∞

0

∫
N

∣∣∇u(x, ρ)
∣∣2ρ1−2s dx dρ ≥ C(n, m, s)

∫
N

u2(x, 0)|x|−2s dx,

with sharp constant. Unfortunately, the weight function ws(x), though it has the right

homogeneity, does not simplify to yield |x|−2s, even in the case of the Heisenberg group.

Recall that in the Euclidean setting

ws(x) = |x|− n+s
2

|x|− n+s
2 ∗ |x|−n+s

= C(n, s)|x|−2s,

with a precise constant C(n, s) yielding the sharp Hardy inequality.

In the case of the Heisenberg group, we have

ψs(z, t) =
∫
Hn

|(ζ , τ)|−(n+1+s)
∣∣(z, t)(ζ , τ)−1

∣∣−Q+2s dζ dτ = |(z, t)|−(n+1−s)ψs(z
′, t′),

where |z′|4 + t′2 = 1. Using the Cayley transform (see for instance [42]), it is easy to see

that the above integral is equal to a constant times

((
1 + |z′|2)2 + t′2)−λ/4

∫
S2n+1

|1 − ζ · η̄|−λ/2|(1 − ζn+1)(1 + ζn+1)|−γ /2 dζ

where λ = 2(n + 1) − 2s, γ = n + 1 + s and η is the Cayley transform of (z′, t′). A sharp

upper bound for the above integral would lead to a Hardy inequality with homogeneous

weight |(z, t)|−2s.
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Remark 4.10. In Theorem 1.5, the weight function ws(x) is optimal in the following

sense: if w̃s ≥ ws is another weight function for which

∫ ∞

0

∫
N

∣∣∇u(x, ρ)
∣∣2ρ1−2s dx dρ ≥ 21−2s �(1 − s)

�(s)
C2(n, m, s)

∫
N

u2(x, 0)w̃s(x) dx

then w̃s = ws.

To see this, consider

21−2s �(1 − s)

�(s)
C2(n, m, s)

∫
N
(w̃s(x) − ws(x))u2(x, 0) dx

≤
∫ ∞

0

∫
N

∣∣∇u(x, ρ)
∣∣2ρ1−2s dx dρ − 21−2s �(1 − s)

�(s)
C2(n, m, s)

∫
N

ws(x)u2(x, 0) dx.

In view of the identity (4.12), we have

∫
N
(w̃s(x) − ws(x))u2(x, 0) dx ≤

∫ ∞

0

∫
N

∣∣∣∣∇u(x, ρ)

u(x, ρ)
− ∇w(x, ρ)

w(x, ρ)

∣∣∣∣2 ρ1−2su2(x, ρ) dx dρ (4.13)

where

w(x, ρ) = C1(n, m, s)ρ2sϕs ∗ | · |−Q+2s ∗ ϕs,ρ(x).

Let ψs = C1(n, m, s)ϕs ∗ | · |−Q+2s, as in the proof of Theorem 1.5. It is clear that ψs(x) ≤
C|x|− Q

2 +s. By defining ψ
(1)
s = ψsχ|x|≤1 and ψ

(2)
s = ψsχ|x|>1, we see that ψs = ψ

(1)
s + ψ

(2)
s ∈

L1(N)+ Lp(N) for p > 2Q
Q−2s . Consequently, C1(n, m, s)ρ2sψs ∗ϕs,ρ(x) → ψs(x) for a.e. x and

also in L1(N) + Lp(N). Let

uk(x, ρ) = C1(n, m, s)ηkρ2s[ψs ∗ ϕs,ρ

]
(x),

with ηk as in the proof of Theorem 1.5. Then, uk(x, 0) = ηkψs(x) → ψs(x) as k → ∞.

Let us now take u = uk in the inequality (4.13). As k → ∞ the left-hand side

converges to
∫

N(w̃s(x) − ws(x))ψs(x) dx. On the other hand, as uk(x, ρ) = ηkw(x, ρ) it

follows that
∣∣∇uk(x, ρ) − ηk∇(x, ρ)

∣∣2 → 0 as k → ∞. Consequently, the right-hand side

tends to 0, proving w̃s = ws, as ψs(x) > 0.
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