Line graph characterization of power graphs of finite nilpotent groups

Sudip Bera
Department of Mathematics, Indian Institute of Science, Bangalore, India

Abstract

This paper deals with the classification of groups G such that power graphs and proper power graphs of G are line graphs. In fact, we classify all finite nilpotent groups whose power graphs are line graphs. Also, we categorize all finite nilpotent groups (except non-abelian 2-groups) whose proper power graphs are line graphs. Moreover, we investigate when the proper power graphs of generalized quaternion groups are line graphs. Besides, we derive a condition on the order of the dihedral groups for which the proper power graphs of the dihedral groups are line graphs.

ARTICLE HISTORY

Received 17 March 2022
Communicated by Alexander Olshanskii

KEYWORDS

Line graph; nilpotent group; power graph; proper power graph

2020 MATHEMATICS SUBJECT CLASSIFICATION

05C25; 20D10

1. Introduction

The investigation of graph representations is one of the interesting and popular research topics in algebraic graph theory, as graphs like these enrich both algebra and graph theory. Moreover, they have important applications (see, for example, [2, 26]) and are related to automata theory [21]. During the last two decades, the investigation of the interplay between the properties of an algebraic structure S and the graph-theoretic properties of $\Gamma(S)$, a graph associated with S, has been an exciting topic of research. Different types of graphs, specifically power graph of semigroup [12, 23], group [22], normal subgroup based power graph of group [5], intersection power graph of group [3], enhanced power graph of group [4, 6], etc. have been introduced to study algebraic structures using graph theory. One of the major graph representations among them is the power graphs of finite groups. We found several papers in this context [2, 9-12, 20, 24, 25]. The concept of a power graph was introduced in [22]. As explained in the survey [2], this definition also covered the undirected graphs. Accordingly, the present paper follows Chakrabarty et al. and uses the brief term "power graph" defined as follows.

Definition 1.1 ($[2,12,22])$. Let S be a semigroup, then the power graph $\mathcal{P}(S)$ of S, is a simple graph, whose vertex set is S and two distinct vertices u and v are edge connected if and only if either $u^{m}=v$ or $v^{n}=u$, where $m, n \in \mathbb{N}$.

The authors in [12] studied various properties of the power graph. They characterized the class of semigroups S for which $\mathcal{P}(S)$ is connected or complete. As a consequence they proved the following:

Lemma 1.1 ([12, Theorem 2.12]). For a finite group G, the power graph $\mathcal{P}(G)$ is complete if and only if G is cyclic group of order 1 or p^{m}, for some prime p and for some $m \in \mathbb{N}$.

It is clear that for two groups G_{1} and $G_{2}, G_{1} \cong G_{2}$ implies that $\mathcal{P}\left(G_{1}\right) \cong \mathcal{P}\left(G_{2}\right)$. A natural question that arises is: Does the converse hold? In [9], the authors showed that the non-isomorphic finite groups may have isomorphic power graphs, but that finite abelian groups with isomorphic power graphs must be isomorphic. Also they conjectured that two finite groups with isomorphic power graphs have the same number of elements of each order. Then Cameron proved this conjecture in [8].

In [14], Curtin et al. introduced the concept of deleted power graphs. They introduced deleted power graph as follows:
Definition 1.2. Given a group G, the proper power graph of G, denoted by $\mathcal{P}^{* *}(G)$, is the graph obtained by deleting all the dominating vertices from the power graph $\mathcal{P}(G)$. Moreover, by $\mathcal{P}^{*}(G)$ we denote the graph obtained by deleting only the identity element of G and this is called deleted power graph of G. Note that if there is no such dominating vertex other than identity, then $\mathcal{P}^{*}(G)=\mathcal{P}^{* *}(G)$.

Curtin et al. discussed the diameter of the proper power graph of the symmetric group S_{n} on n symbols. For more information related to proper power graphs we refer to [14, 16, 27]. Then Aalipour et al. in [1, Question 40] asked about the connectivity of proper power graphs. Recently, Cameron and Jafari in [10] answered this question. Also they characterized all dominatable power graphs by following lemma:
Lemma 1.2 ([10, Theorem 4]). Let G be a finite group. Suppose that $x \in G$ has the property that for all $y \in G$, either x is a power of y or vice versa. Then one of the following holds:
(a) $x=e$;
(b) G is cyclic and x is a generator;
(c) G is a cyclic p-group for some prime p and x is arbitrary;
(d) G is a generalized quaternion group and x has order 2 .

1.1. Basic definitions, notations, and main results

We begin this section with some standard definitions from graph theory and group theory. For the convenience of the reader and also for later use, we recall some basic definitions and notations about graphs. Let $\Gamma=(V, E)$ be a graph where V is the set of vertices and E is the set of edges. A graph $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of another graph $\Gamma=(V, E)$ if and only if $V^{\prime} \subset V$, and $E^{\prime} \subset E$. An induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges connecting pairs of vertices in that subset. A graph Γ is said to be connected if for any pair of vertices u and v, there exists a path between u and $v . \Gamma$ is said to be complete if any two distinct vertices are adjacent. A clique of a graph Γ is an induced subgraph of Γ that is complete. The complete graph with n vertices is denoted by K_{n}. A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets V_{1} and V_{2} such that every edge connects a vertex in V_{1} to one in V_{2}. Vertex sets V_{1} and V_{2} are usually called the parts of the graph. A complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. The star graph with $n+1$ vertices is denoted by $\Gamma_{1, n}$ which consists of a single vertex with n neighbors. A star graph with the vertex set $v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$ is denoted by $\Gamma_{1,3}\left(v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right)$, where v is edge connected to each of the vertices $v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$ and there is no edge between the vertices $v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}$. A vertex of a graph $\Gamma=(V, E)$ is called a dominating vertex if it is adjacent to every other vertex. For a graph Γ, let $\operatorname{Dom}(\Gamma)$ denote the set of all dominating vertices in Γ. The
vertex connectivity of a graph Γ, denoted by $\kappa(\Gamma)$ is the minimum number of vertices which need to be removed from the vertex set Γ so that the induced subgraph of Γ on the remaining vertices is disconnected. The complete graph with n vertices has connectivity $n-1$. A graph Γ is a cograph if it has no induced subgraph isomorphic to the four-vertex path P_{4}. A graph Γ is chordal if it contains no induced cycles of length greater than 3 ; in other words, every cycle on more than 3 vertices has a chord. A threshold graph is a graph containing no induced subgraph isomorphic to P_{4}, K_{4} or $2 K_{2}$ (or $K_{2} \oplus K_{2}$) (two disjoint edges with no further edges connecting them). In general, let $\Gamma_{1}, \ldots, \Gamma_{m}$ be m graphs such that $V\left(\Gamma_{i}\right) \cap V\left(\Gamma_{j}\right)=\emptyset$, for $i \neq j$. Then $\Gamma=\Gamma_{1} \oplus \cdots \oplus \Gamma_{m}$ be a graphs with vertex set is $V(\Gamma)=V\left(\Gamma_{1}\right) \cup \cdots \cup V\left(\Gamma_{m}\right)$ and $E(\Gamma)=E\left(\Gamma_{1}\right) \cup \cdots \cup E\left(\Gamma_{m}\right)$. Two graphs Γ_{1} and Γ_{2} are isomorphic if there is a bijection, f (say) from $V\left(\Gamma_{1}\right)$ to $V\left(\Gamma_{2}\right)$ such that $v \sim v^{\prime}$ in Γ_{1} if and only if $f(v) \sim f\left(v^{\prime}\right)$ in Γ_{2}. for the vertices $v, v^{\prime}, v \sim v^{\prime}$ denotes that v and v^{\prime} are edge connected. Also $v \nsim v^{\prime}$ means that v and v^{\prime} are not edge connected.

Definition 1.3 ($[17,30])$. The line graph of a graph Γ is the graph $L(\Gamma)$ with the edges of Γ as its vertices, and where two edges of Γ are adjacent in $L(\Gamma)$ if and only if they are incident in Γ. If a graph Γ^{\prime} is a line graph of some graph then we can call the graph Γ^{\prime} a line graph.

One of the most important results related to the characterization of line graph is Lemma 1.3. For more information on line graphs we refer [17, 30].

Lemma 1.3 ([17, Theorem 7.1.18]). A graph Γ is the line graph of some graph if and only if Γ does not have any of the nine graphs in Figure 1 as an induced subgraph.

For more information on the graph theory we refer to [7, 17, 30].
Throughout this paper, we consider G as a finite group. $|G|$ denotes the cardinality of the set G. For a prime p, a group G is said to be a p-group if $|G|=p^{r}, r \in \mathbb{N}$. Recall that a finite group G is nilpotent if and only if it is a direct product of its Sylow p-subgroups over primes p dividing $|G|$. Note that, in a nilpotent group, elements of different prime orders commute. For more information on nilpotent groups we refer to [19, 28, 29].

Lemma 1.4 ([19, Proposition 7.5]). A finite group is nilpotent if and only if it is the direct product of its Sylow subgroups.
Lemma 1.5 ([19, Corollary 7.6]). If G is a finite nilpotent group and m divides $|G|$, then G has a subgroup of order m.

Figure 1. There are nine graphs, namely, $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}, \Gamma_{6}, \Gamma_{7}, \Gamma_{8}, \Gamma_{9}$ and the numbers that appear in this figure are the vertices of the corresponding graphs.

Lemma 1.6 ([18, Theorem 5.4.10]). If G is a p-group with a unique subgroup of order p for an odd prime p, then G is cyclic.

For any element $g \in G, \mathrm{o}(g)$ denotes the order of the element $g \in G$. Throughout this article $v^{(m)}$ denotes a vertex of order m of G. Let m and n be any two positive integers, then the greatest common divisor of m and n is denoted by $\operatorname{gcd}(m, n)$. The exponent of a group G, denoted by $\exp (G)$ is defined as the least common multiple of the orders of all elements of the group. If there is no least common multiple, the exponent is taken to be infinity (or sometimes zero, depending on the convention). The Euler's phi function $\phi(n)$ is the number of integers k in the range $1 \leq k \leq n$ for which the $\operatorname{gcd}(n, k)$ is equal to 1 . The set $\{1,2, \ldots, n\}$ is denoted by $[n]$. Throughout this paper, the group operation of any abelian group is taken to be additive.

A number of important graph classes, including line graphs, cographs, chordal graphs, split graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced subgraphs. Recently, Cameron, Manna and Mehatari in [11], determined completely the groups whose power graph is a threshold or split graph. Moreover, they determined completely the finite nilpotent groups whose power graph is a cograph. Motivated by this work, in this paper we give attention is on the following problems:

- Characterize all finite groups G such that $\mathcal{P}(G)$ is a line graph of some graph Γ.
- Characterize all finite groups G such that $\mathcal{P}^{* *}(G)$ is a line graph of some graph Γ.

We obtain the following two main results.
Theorem 1.7. Let G be a nilpotent group. Then $\mathcal{P}(G)$ is a line graph of some graph Γ if and only if G is cyclic p-group.

Theorem 1.8. Let G be a nilpotent group (except non-abelian 2-groups). Then $\mathcal{P}^{* *}(G)$ is a line graph of some graph Γ if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{p^{t}}, t \geq 1$
(b) $G \cong \mathbb{Z}_{p q}$
(c) $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$
(d) $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$
(e) $G \cong \underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k \text { times, } k \geq 2}$
(f) $\quad G$ is non abelian p group and $G=\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t} \ell}$, where ℓ is the number of distinct subgroups of order p.

If one takes a, b, c in \mathbb{Z}_{p} for an odd prime p, then one has the Heisenberg group modulo p. It is a group of order p^{3} with generators x, y and relations:

$$
z=x y x^{-1} y^{-1}, x^{p}=y^{p}=z^{p}=1, x z=z x, y z=z y .
$$

Corollary 1. Let G be the Heisenberg group modulo p. Then $\mathcal{P}^{* *}(G)$ is a line graph.
Proof. In the Heisenberg group modulo p, the order of each element is p. Therefore by the part (f) of Theorem 1.8, $\mathcal{P}^{* *}(G)$ is a line graph.

Corollary 2. Let G be a non-abelian group such that $\exp (G)=p$. Then $\mathcal{P}^{* *}(G)$ is a line graph .
Proof. G is non-abelian group and $\exp (G)=p$. So G is non-abelian p-group and order of each element of G is p. Hence by the part (f) of Theorem 1.8, $\mathcal{P}^{* *}(G)$ is a line graph.

Moreover, for non-abelian 2-groups, we prove two theorems.
Theorem 1.9. Let $Q_{2^{n}}$ be the generalized quaternion group. Then $\mathcal{P}^{* *}\left(Q_{2^{n}}\right)$ is a line graph.
Theorem 1.10. Let D_{n} be the dihedral group of order $2 n,(n \geq 3)$. Then $\mathcal{P}^{* *}\left(D_{n}\right)$ is a line graph if and only if $n=2^{k}, k \in \mathbb{N}$.

Now, let us briefly summarize the content. In Section 2, we consider the power graphs of finite nilpotent groups and classify all those power graphs which are line graphs. In Section 3, we focus on the proper power graphs of finite nilpotent groups (except non-abelian 2-groups) and characterize all those proper power graphs which are line graphs. Moreover, in this section, we study that the proper power graph of generalized quaternion group is line graph. Also we derive the condition on the order of the dihedral group such that the proper power graph is line graph.

2. Proof of main theorem for the power graphs

Here we give the proof of Theorem 1.7. To prove this theorem we need to go through three theorems. The first theorem describes the cyclic group case.

Theorem 2.1. Let G be a finite cyclic group. Then there exists a graph Γ such that $\mathcal{P}(G)=L(\Gamma)$ if and only if G is a p-group.

Proof. Let G be a cyclic p-group with $|G|=p^{r}$. Then by Lemma 1.1, $\mathcal{P}(G)$ is complete. As a result the star graph $\Gamma_{1, p^{r}}$ serves the purpose.

Conversely, let $|G|$ has at least two distinct prime factors say p, q. Now G is cyclic, so G has a unique subgroup H of order $p q$. Again $\phi(p q) \geq 2$ implies that H has at least two elements namely $v_{1}^{(p q)}, v_{2}^{(p q)}$ of order pq. Again the cyclic subgroup $H=\left\langle v_{1}^{(p q)}\right\rangle=\left\langle v_{1}^{(p q)}\right\rangle$ has elements $v^{(p)}$ and $v^{(q)}$ (say) of order p and q respectively. Now we replace the vertices of the graph Γ_{2} in Figure 1 in the following way:

$$
6 \text { by } v_{1}^{(p q)}, 10 \text { by } e \text {, the identity of } G, 8 \text { by } v_{2}^{(p q)}, 7 \text { by } v^{(p)} \text { and } 9 \text { by } v^{(q)} .
$$

Then the resulting graph is also isomorphic to the graph Γ_{2} in the Figure 1. Therefore, $\mathcal{P}(G)$ contains an induced subgraph isomorphic to Γ_{2}. Hence the theorem.

The next theorem handles noncyclic abelian groups.
Theorem 2.2. Let G be a non-cyclic abelian group. Then there does not exists any graph Γ such that $\mathcal{P}(G)=L(\Gamma)$.

Proof. We prove this theorem by showing that the power graph $\mathcal{P}(G)$ has no induced subgraph isomorphic to the graph $\Gamma_{1,3}$. Now it is given that G is non-cyclic abelian. So,

$$
G \cong \mathbb{Z}_{p_{1}^{t_{11}}} \times \cdots \times \mathbb{Z}_{p_{1}^{t_{1 k_{1}}}} \times \mathbb{Z}_{p_{2}^{t_{21}}} \times \cdots \times \mathbb{Z}_{p_{2}^{t_{2} k_{2}}} \times \cdots \times \mathbb{Z}_{p_{r}^{t_{r 1}}} \times \cdots \times \mathbb{Z}_{p_{r}^{t_{r k r}}}
$$

where $k_{i} \geq 1,1 \leq t_{i 1} \leq t_{i 2} \leq \cdots \leq t_{i k_{i}}$, for all $i \in[r]$ and there exists at least one k_{i} such that $k_{i} \geq 2$ (if each $k_{i}=1$, then G would be cyclic). Without loss of generality, we assume that $k_{1} \geq 2$. Let $H_{1}=\left\langle v_{1}^{\left(p_{1}\right)}\right\rangle, \ldots, H_{s}=\left\langle v_{s}^{\left(p_{1}\right)}\right\rangle$ be the complete list of distinct cyclic subgroups of order p_{1} of G. Now $k_{1} \geq 2$ implies that $s \geq 3$. Therefore we can choose three distinct vertices $v_{i_{1}}^{\left(p_{1}\right)}, v_{i_{2}}^{\left(p_{1}\right)}, v_{i_{3}}^{\left(p_{1}\right)}$ (order of each vertex is p_{1}) from three distinct cyclic subgroups $H_{i_{1}}, H_{i_{2}}, H_{i_{3}}$ respectively. Now we show that $e, v_{i_{1}}^{\left(p_{1}\right)}, v_{i_{2}}^{\left(p_{1}\right)}, v_{i_{3}}^{\left(p_{1}\right)}$ form an induced subgraph isomorphic to the
graph $\Gamma_{1,3}\left(e, v_{i_{1}}^{\left(p_{1}\right)}, v_{i_{2}}^{\left(p_{1}\right)}, v_{i_{3}}^{\left(p_{1}\right)}\right)$. From the definition of the power graph e is edge connected with $v_{i_{1}}^{\left(p_{1}\right)}, v_{i_{2}}^{\left(p_{1}\right)}$ and $v_{i_{3}}^{\left(p_{1}\right)}$. Now $v_{i_{1}}^{\left(p_{1}\right)}, v_{i_{2}}^{\left(p_{1}\right)}$ and $v_{i_{3}}^{\left(p_{1}\right)}$ are the generators of three distinct cyclic subgroups $H_{i_{1}}, H_{i_{1}}$ and $H_{i_{1}}$ respectively. Also order of each cyclic subgroup is p_{1}. As a result, $v_{i_{j}}^{\left(p_{1}\right)} \nsim v_{i_{k}}^{\left(p_{1}\right)}$, for each $i, j \in\{1,2,3\}$ and $i \neq j$. Hence the theorem.

Here we focus on the finite group G such that G is non-abelian nilpotent. In this case, we have the following:
Theorem 2.3. Let G be a non-abelian nilpotent group. Then there does not exists any graph Γ such that $\mathcal{P}(G)=L(\Gamma)$.

Proof. It is given that G is nilpotent. So, by Lemma 1.4, $G \cong P_{1} \times \cdots \times P_{r}$, where each P_{i} is a Sylow subgroup of order $p_{i}^{\alpha_{i}}$ and $\alpha_{i} \in \mathbb{N}$. Now divide the prove of this theorem in several cases.

Case 1: First let $r \geq 3$. In this case $|G|$ has at least three distinct prime divisors p_{1}, p_{2}, and p_{3} (say). Then by Lemma 1.5, G has three elements $v^{\left(p_{1}\right)}, v^{\left(p_{2}\right)}, v^{\left(p_{3}\right)}$ such that $\mathrm{o}\left(v^{\left(p_{1}\right)}\right)=p_{1}, \mathrm{o}\left(v^{\left(p_{2}\right)}\right)=$ p_{2}, and $\mathrm{o}\left(v^{\left(p_{3}\right)}\right)=p_{3}$. Now from the definition of the power graph, it is clear that the vertices $e, v^{\left(p_{1}\right)}, v^{\left(p_{2}\right)}, v^{\left(p_{3}\right)}$ form an induced subgraph $\Gamma_{1,3}\left(e, v^{\left(p_{1}\right)}, v^{\left(p_{2}\right)}, v^{\left(p_{3}\right)}\right)$ in $\mathcal{P}(G)$.

Case 2: Let $r=2$, then $G \cong P_{1} \times P_{2}$. Now it is given that G is non-abelian. Therefore, either P_{1} or P_{2} is non-cyclic. Without loss of generality we assume that P_{1} is non-cyclic. Now P_{1} is noncyclic group of order p_{1}^{α}, for some $\alpha \geq 2,\left(\alpha=1\right.$ implies that P_{1} is cyclic $)$. As a result, P_{1} has at least two elements v, v^{\prime} such that $v \nsim v^{\prime}$ in $\mathcal{P}(G)$. Otherwise by Lemma $1.1 P_{1}$ would be a cyclic group. Clearly, $\mathrm{o}(v)$ and $\mathrm{o}\left(v^{\prime}\right)$ are power of the prime p_{1}. Let $v^{\prime \prime}$ be an element of order p_{2} in P_{2}. Now from the definition of the power graph $v^{\prime \prime}$ is edge connected to neither v nor v^{\prime}. Also e is edge connected to the vertices $v, v^{\prime}, v^{\prime \prime}$. Hence $\Gamma_{1,3}\left(e, v, v^{\prime}, v^{\prime \prime}\right)$ is an induced subgraph of $\mathcal{P}(G)$.

Case 3: Let $r=1$. In this case, G is a non-abelian p-group. To prove this case we first prove a claim.

Claim: Let $H_{1}=\left\langle v_{1}^{(p)}\right\rangle, \ldots, H_{\ell}=\left\langle v_{\ell}^{(p)}\right\rangle$ be the collection of all distinct cyclic subgroups of order p of G. We prove that either $\ell=1$ or $\ell \geq 3$. So, we have to prove that ℓ cannot be 2 . So suppose $\ell=2$. Since G is p-group, the center of G is $Z(G)$ is nontrivial. Therefore, $Z(G)$ has a subgroup $H_{i_{1}}=\left\langle v_{i_{1}}^{(p)}\right\rangle$ (say) of order p. Let $H_{i_{2}}=\left\langle v_{i_{2}}^{(p)}\right\rangle$ be another cyclic subgroup of order p, (as $\ell \geq 2$, we can choose more than one subgroup of order p). Then $v_{i_{1}}^{(p)} v_{i_{2}}^{(p)}=v_{i_{2}}^{(p)} v_{i_{1}}^{(p)}$ and $\mathrm{o}\left(v_{i_{1}}^{(p)} v_{i_{2}}^{(p)}\right)=p$. Take $H_{i_{3}}=\left\langle v_{i_{1}}^{(p)} v_{i_{2}}^{(p)}\right\rangle$ and it is easy to see that $H_{1} \neq H_{3}$ and $H_{2} \neq H_{3}$. Hence $\ell>2$.

Now using the claim we finish the proof of this case. First suppose that $\ell \geq 3$. Then we can choose three p-ordered elements $v_{i_{1}}^{(p)}, v_{i_{2}}^{(p)}$, and $v_{i_{3}}^{(p)}$ from $H_{i_{1}}, H_{i_{2}}$, and $H_{i_{3}}$ respectively. Clearly they are not adjacent to each other. Therefore, $\mathcal{P}(G)$ has an induced subgraph $\Gamma_{1,3}\left(e, v_{i_{1}}^{(p)}, v_{i_{2}}^{(p)}, v_{i_{3}}^{(p)}\right)$. Now let $\ell=1$, i.e., G has exactly one cyclic subgroup of order p. Now by Lemma 1.6, p cannot be an odd prime. Therefore $p=2$. Then, $G \cong Q_{2^{n}}$, where $Q_{2^{n}}$ is the generalized quaternion group of order $2^{n}, n \geq 3$. Now $Q_{2^{n}}$ has exactly one subgroup $H=\left\langle v^{\left(2^{n-1}\right)}\right\rangle$ of order 2^{n-1}. Also, the number of 4-ordered elements in $Q_{2^{n}} \backslash H$ is 2^{n-1}. Now, the number of distinct 4-ordered cyclic subgroups in $Q_{2^{n}} \backslash H$ is 2^{n-2}. Let these are $H_{1}=\left\langle v_{1}^{(4)}\right\rangle, \ldots, H_{2^{n-2}}=\left\langle v_{2^{n-2}}^{(4)}\right\rangle$. Clearly $2^{n-2} \geq 2$. So, we can choose two vertices $v_{i_{1}}^{(4)}$ and $v_{i_{2}}^{(4)}$ from $H_{i_{1}}$ and $H_{i_{2}}$ respectively, where $i_{1} \neq i_{2}$ and $\mathrm{o}\left(v_{i_{1}}^{(4)}\right)=4=\mathrm{o}\left(v_{i_{2}}^{(4)}\right)$. Now $v_{i_{1}}^{(4)}, v_{i_{2}}^{(4)} \in Q_{2^{n}} \backslash H$ implies that $v^{\left(2^{n-1}\right)}$ neither edge connected to $v_{i_{1}}^{(4)}$ nor to $v_{i_{2}}^{(4)}$. Moreover, $v_{i_{1}}^{(4)} \nsim v_{i_{2}}^{(4)}$ in $\mathcal{P}(G)$. Therefore, $\mathcal{P}(G)$ has an induced subgraph $\Gamma_{1,3}\left(e, v^{\left(2^{n-1}\right)}, v_{i_{1}}^{(4)}, v_{i_{2}}^{(4)}\right)$. This completes the proof.

3. Proof of the main theorem for proper power graphs

In this portion, we give the attention for the proof of Theorem 1.8. Here we first characterize all cyclic groups, for which $\mathcal{P}^{* *}(G)=L(\Gamma)$. Then we do same thing for the cases non-cyclic abelian and non-abelian nilpotent groups.

Theorem 3.1. Let G be a finite cyclic group. Then there exists a graph Γ such that $\mathcal{P}^{* *}(G)=L(\Gamma)$ if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{p^{t}}$
(b) $\quad G \cong \mathbb{Z}_{p q}$,
where p, q are distinct primes and $t \geq 1$.
To prove this theorem first we need to prove the following propositions:
Proposition 3.2. Let G be a finite cyclic group. Then $\mathcal{P}^{* *}(G)$ does not contain the star graph $\Gamma_{1,3}$ as an induced subgraph if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{p^{t}}$
(b) $G \cong \mathbb{Z}_{p q r}$
(c) $G \cong \mathbb{Z}_{p^{2} q^{2}}$
(d) $\quad G \cong \mathbb{Z}_{p^{t} q}$,
where p, q, r are primes such that $p \neq q \neq r$ and $t \geq 1$.
Proof. We divide the proof of this proposition in several cases.
Case 1: Let $|G|$ has at least four distinct prime divisors say p, q, r, p^{\prime}. Since G is cyclic, then G has an element $v^{(p q r)}$ such that $\mathrm{o}\left(v^{(p q r)}\right)=p q r$. Also the cyclic subgroup $\left\langle v^{(p q r)}\right\rangle$ has elements $v^{(p)}, v^{(q)}, v^{(r)}$ of order p, q, r, respectively. Clearly, the vertices $v^{(p q r)}, v^{(p)}, v^{(q)}$ and $v^{(r)}$ are not the generators of the group G. Therefore, by Lemma $1.2 v^{(p q r)}, v^{(p)}, v^{(q)}$ and $v^{(r)} \in V\left(\mathcal{P}^{* *}(G)\right)$. Now $v^{(p)}, v^{(q)}$, and $v^{(r)} \in\left\langle v^{(p q r)}\right\rangle$ implies that $v^{(p q r)}$ is edge connected to the vertices $v^{(p)}, v^{(q)}$, and $v^{(r)}$. Again, p, q, r are three distinct primes, therefore from the definition of power graph the vertices $v^{(p)}, v^{(q)}$, and $v^{(r)}$ are not adjacent to each other. As a result, $\mathcal{P}^{* *}(G)$ has an induced sub$\operatorname{graph} \Gamma_{1,3}\left(v^{(p q r)}, v^{(p)}, v^{(q)}, v^{(r)}\right)$.

Case 2: Let $|G|=p^{\alpha} q^{\beta} p_{3}^{\gamma}$, where at least one of $\alpha, \beta, \gamma \geq 2$. Then applying the same argument as in the Case 1, we can conclude that $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{(p q r)}, v^{(p)}, v^{(q)}, v^{(r)}\right)$.

Now we show that if $G \cong \mathbb{Z}_{p q r}$, then $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)$ does not contain any induced subgraph isomorphic to $\Gamma_{1,3}$. Note that by Lemma 1.2, the identity and all the generators of the group $\mathbb{Z}_{p q r}$ are the complete list of dominating vertices of the graph $\mathcal{P}\left(\mathbb{Z}_{p q r}\right)$. Therefore, the identity and all the generators of the group $\mathbb{Z}_{p q r}$ are not in the vertex set $V\left(\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)\right)$. If possible $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)$ contains an induced subgraph $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$, for some vertices $v, v_{1}, v_{2}, v_{3} \in V\left(\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)\right)$. So, $v \sim$ v_{i} for each $i \in\{1,2,3\}$ and $v_{i} \nsim v_{j}$ for each pair $i, j(i \neq j) \in\{1,2,3\}$. Now the possible order of the vertices of the graph $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)$ are either p or q or r or $p q$ or $p r$ or $q r$. Now order of v could either p or q or r or $p q$ or $q r$ or $p r$. First suppose that $o(v)=p q$. Then it is cleared (from the definition of power graph) that v is edge connected only with each $p q$-ordered, p-ordered and q ordered vertices in $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)$. Let $V(t)$ be the collection of all vertices of order t. So we have to choose v_{1}, v_{2}, v_{3} from $V(p) \cup V(q) \cup V(p q)$ such that no two of them are adjacent. Note that we cannot choose more than one vertex from any one of the set $V(p), V(q), V(p q)$. In fact, all the vertices in any one of the set $V(p), V(q), V(p q)$ form a clique. So, without loss of generality we assume that $v_{1} \in V(p), v_{2} \in V(q)$ and $v_{3} \in V(p q)$. But it is cleared that v_{3} is edge connected to both of the vertices v_{1} and v_{2}. This violates the condition $v_{i} \nsim v_{j}$ for each pair $i, j \in\{1,2,3\}$.

Similarly, we can show that the graph $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q r}\right)$ do not have any induced subgraph isomorphic to $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$ for the other possible choices of the $\mathrm{o}(v), \mathrm{o}\left(v_{1}\right), \mathrm{o}\left(v_{2}\right), \mathrm{o}\left(v_{3}\right)$.

Case 3: Let $|G|$ has two distinct prime divisors p and q. Suppose $G \cong \mathbb{Z}_{p^{t_{1}}} \times \mathbb{Z}_{q^{2}}$. First we consider that $t_{1} \geq 3$ and $t_{2} \geq 2$, (if $t_{1} \geq 2$ and $t_{2} \geq 3$, then also similar result holds). In this case, $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{t_{1}}} \times \mathbb{Z}_{q^{t_{2}}}\right)$ have an induced subgraph $\Gamma_{1,3}\left(v^{(p)}, v^{\left(p^{3}\right)}, v^{\left(p^{2} q\right)}, v^{\left(p q^{2}\right)}\right)$, where $\mathrm{o}\left(v^{(p)}\right)=$ $p, \mathrm{o}\left(v^{\left(p^{3}\right)}\right)=p^{3}, \mathrm{o}\left(v^{\left(p^{2} q\right)}\right)=p^{2} q, \mathrm{o}\left(v^{\left(p q^{2}\right)}\right)=p q^{2}$.

If $G \cong \mathbb{Z}_{p^{t} q}$, where $t \geq 1$. If we proceed exactly same way as in the proof of the case $G \cong$ $\mathbb{Z}_{p q r}$, we can conclude that $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{t} q}\right)$ does not have any induced subgraph isomorphic to star graph $\Gamma_{1,3}$.

If $G \cong \mathbb{Z}_{p^{2} q^{2}}$. As it was done in the case where $G \cong \mathbb{Z}_{p q r}$ we can prove that $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{2} q^{2}}\right)$ does not have any induced subgraph isomorphic to $\Gamma_{1,3}$.

Case 4: Let $|G|$ has exactly one prime divisor p say. Now $G \cong \mathbb{Z}_{p^{t}}$ as a result $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{t}}\right)$ is complete. Hence the result.

Proposition 3.3. Let G be a cyclic group. Then $\mathcal{P}^{* *}(G)$ does not contain the graph Γ_{2} (a graph in Figure 1) as an induced subgraph if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{p^{t}}$
(b) $G \cong \mathbb{Z}_{p q}$
(c) $G \cong \mathbb{Z}_{12}$
(d) $\quad G \cong \mathbb{Z}_{18}$.

Proof. Let G be a cyclic group of order n such that n has at least three distinct prime divisors $p<q<r$ (say). Let $v_{1}^{(q r)}, v_{2}^{(q r)}, v_{3}^{(q r)}, v^{(q)}, v^{(r)} \in G$ such that $\mathrm{o}\left(v_{1}^{(q r)}\right)=\mathrm{o}\left(v_{2}^{(q r)}\right)=\mathrm{o}\left(v_{3}^{(q r)}\right)=$ $q r, \mathrm{o}\left(v^{(q)}\right)=q, \mathrm{o}\left(v^{(r)}\right)=r$ (since G is cyclic and $|G|$ has at least three distinct prime divisors p, q, r with $p<q<r$, then clearly $\phi(q r) \geq 3)$. Clearly, $v_{1}^{(q r)}, v_{2}^{(q r)}, v_{3}^{(q r)}, v^{(q)}, v^{(r)} \in V\left(\mathcal{P}^{* *}(G)\right)$. Now we replace the vertices of the graph Γ_{2} in Figure 1 in the following way:

$$
6 \text { by } v_{1}^{(q r)}, 8 \text { by } v_{2}^{(q r)}, 10 \text { by } v_{3}^{(q r)}, 7 \text { by } v^{(q)}, 9 \text { by } v^{(r)} .
$$

Clearly, the resulting induced graph isomorphic to Γ_{2}.
If $G \cong \mathbb{Z}_{p^{t} q}, t \geq 3$, in this case $\mathcal{P}^{* *}(G)$ have the vertices namely, $v_{1}^{\left(p^{2} q\right)}, v_{2}^{\left(p^{2} q\right)}, v_{3}^{\left(p^{2} q\right)}, v^{\left(p^{2}\right)}, v^{(q)}$, where $\mathrm{o}\left(v_{1}^{\left(p^{2} q\right)}\right)=\mathrm{o}\left(v_{1}^{\left(p^{2} q\right)}\right)=\mathrm{o}\left(v_{1}^{\left(p^{2} q\right)}\right)=p^{2} q,\left(\right.$ as $\left.\phi\left(p^{2} q\right) \geq 3\right) \mathrm{o}\left(v^{\left(p^{2}\right)}\right)=p^{2}, \mathrm{o}\left(v^{(q)}\right)=q$. Now we replace the vertices of the graph Γ_{2} in the following way:

$$
6 \text { by } v_{1}^{\left(p^{2} q\right)}, 8 \text { by } v_{2}^{\left(p^{2} q\right)}, 10 \text { by } v_{3}^{\left(p^{2} q\right)}, 7 \text { by } v^{\left(p^{2}\right)}, 9 \text { by } v^{(q)} .
$$

Clearly, the resulting induced graph is isomorphic to Γ_{2} (in Figure 1).
Let $G \cong \mathbb{Z}_{p^{2} q}$. Suppose $\phi(p q) \geq 3$, then $\mathcal{P}^{* *}(G)$ has three vertices $v_{1}^{(p q)}, v_{2}^{(p q)}, v_{3}^{(p q)}$ such that $\mathrm{o}\left(v_{1}^{(p q)}\right)=p q=\mathrm{o}\left(v_{2}^{(p q)}\right)=\mathrm{o}\left(v_{3}^{(p q)}\right)$. Also it has two vertices $v^{(p)}$ and $v^{(q)}$ such that $\mathrm{o}\left(v^{(p)}\right)=p$ and $\mathrm{o}\left(v^{(q)}\right)=q$. Now we replace the vertices of the graph Γ_{2} in the following way:

$$
6 \text { by } v_{1}^{(p q)}, 8 \text { by } v_{2}^{(p q)}, 10 \text { by } v_{3}^{(p q)}, 7 \text { by } v^{(p)}, 9 \text { by } v^{(q)} .
$$

Clearly, the resulting induced graph is isomorphic to Γ_{2} (in Figure 1).
Now $\phi(p q)=2$ if and only if either $p=2, q=3$ or $q=2, p=3$. So, either $G \cong \mathbb{Z}_{12}$ or $G \cong$ \mathbb{Z}_{18}. In these two cases we prove that $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ and $\mathcal{P}^{* *}\left(\mathbb{Z}_{18}\right)$ don't have an induced subgraph isomorphic to the graph Γ_{2} in Figure 1. In fact, in $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ there are exactly two vertices namely, $v_{1}^{(3)}, v_{2}^{(3)}$ of order 3 and they generate same cyclic group. Also in $\mathcal{P}^{* *}(G), \operatorname{deg}\left(v_{1}^{(3)}\right)=3=\operatorname{deg}\left(v_{2}^{(3)}\right)$ and $v_{1}^{(3)}, v_{2}^{(3)}$ are the only vertices of degree 3. But the graph Γ_{2} has two vertices of degree 3 and
they are not edge connected. Therefore, $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ has no induced subgraph isomorphic to Γ_{2}. Again, in $\mathcal{P}^{* *}\left(\mathbb{Z}_{18}\right)$ there is no vertex v such that $\operatorname{deg}(v)=3$. Hence in both of the cases it is not possible. Now if $G \cong \mathbb{Z}_{p^{t}}$, then $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{t}}\right)$ is complete. So $\mathcal{P}^{* *}\left(\mathbb{Z}_{p^{t}}\right)$ does not have any induced subgraph isomorphic to Γ_{2}. Also for the group $G \cong \mathbb{Z}_{p q}$, the graph $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q}\right)$ is disjoint union of two cliques. Therefore, $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q}\right)$ does not have any induced subgraph isomorphic to the graph Γ_{2} (in Figure 1). This completes the proposition.

Proof of Theorem 3.1. Clearly, from Propositions 3.2 and 3.3, it follows that $\mathcal{P}^{* *}(G)$ is a line graph of some graph Γ if and only if either $G \cong \mathbb{Z}_{p^{t}}$ or $G \cong \mathbb{Z}_{p q}$ or $G \cong \mathbb{Z}_{12}$ or $G \cong \mathbb{Z}_{18}$. Now we show that if $G \cong \mathbb{Z}_{12}$ or \mathbb{Z}_{18}, then there exists no graph Γ such that $\mathcal{P}^{* *}(G)$ is line graph of Γ. Let $G \cong \mathbb{Z}_{12}$, then we show that $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ has an induced subgraph isomorphic to the graph Γ_{4} in Figure 1. Clearly \mathbb{Z}_{12} has elements $v_{1}^{(6)}, v_{2}^{(6)}, v_{1}^{(3)}, v_{2}^{(3)}, v^{(2)}, v^{(4)}$ such that $\mathrm{o}\left(v_{1}^{(6)}\right)=\mathrm{o}\left(v_{2}^{(6)}\right)=$ $6, \mathrm{o}\left(v_{1}^{(3)}\right)=\mathrm{o}\left(v_{2}^{(3)}\right)=3, \mathrm{o}\left(v^{(2)}\right)=2$ and $\mathrm{o}\left(v^{(4)}\right)=4$. Now it is easy to see that $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ contains the graph Γ_{4} as an induced subgraph by replacing the vertices of the graph Γ_{4} in the following way:

$$
17 \text { by } v_{1}^{(6)}, 18 \text { by } v^{(2)}, 19 \text { by } v_{2}^{(6)}, 20 \text { by } v_{1}^{(3)}, 21 \text { by } v^{(4)} \text {, and } 22 \text { by } v_{2}^{(3)} \text {. }
$$

Let $G \cong \mathbb{Z}_{18}$, then we show that $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to the graph Γ_{3} in Figure 1. The group \mathbb{Z}_{18} has elements $v_{1}^{(3)}, v_{2}^{(3)}, v_{1}^{(6)}, v_{2}^{(6)}, v_{1}^{(9)}, v_{2}^{(9)}$ such that $\mathrm{o}\left(v_{1}^{(3)}\right)=\mathrm{o}\left(v_{2}^{(3)}\right)=$ $3, \mathrm{o}\left(v_{1}^{(6)}\right)=\mathrm{o}\left(v_{2}^{(6)}\right)=6$ and $\mathrm{o}\left(v_{1}^{(9)}\right)=\mathrm{o}\left(v_{2}^{(9)}\right)=9$. Now we replace the vertices of the graph Γ_{3} in the following way:

$$
11 \text { by } v_{1}^{(3)}, 12 \text { by } v_{1}^{(6)}, 13 \text { by } v_{2}^{(3)}, 14 \text { by } v_{1}^{(9)}, 15 \text { by } v_{2}^{(6)} \text {, and } 16 \text { by } v_{2}^{(9)} \text {. }
$$

Then the resulting graph is isomorphic to the graph Γ_{3}. Hence the graphs $\mathcal{P}^{* *}\left(\mathbb{Z}_{12}\right)$ and $\mathcal{P}^{* *}\left(\mathbb{Z}_{18}\right)$ are not line graph.

Let $G \cong \mathbb{Z}_{p q}$, in this case $\mathcal{P}^{* *}\left(\mathbb{Z}_{p q}\right)$ is the line graph of the graph $\Gamma_{1, \phi(p)} \oplus \Gamma_{1, \phi(q)}$. Also for the cyclic p-group $\mathbb{Z}_{p^{r}}, \mathcal{P}^{* *}\left(\mathbb{Z}_{p^{r}}\right)$ is the empty graph (empty graph is line graph). Hence, the theorem is proved.

Now we want to describe all non-cyclic abelian groups G for which $\mathcal{P}^{* *}(G)$ is a line graph. For this case we have the following:

Theorem 3.4. Let G be a non-cyclic abelian group. Then $\mathcal{P}^{* *}(G)$ is a line graph of some graph Γ if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$
(b) $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$
(c) $\quad G \cong \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}, p$ is prime.

To prove Theorem 3.4, we use Lemma 1.3. According to this lemma we have to characterize all non-cyclic abelian groups for which $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to the star graph $\Gamma_{1,3}$. Now Proposition 3.5 completely describes this case.

Proposition 3.5. Let G be a non-cyclic abelian group. Then $\mathcal{P}^{* *}(G)$ does not contain $\Gamma_{1,3}$ as an induced subgraph if and only if G is one of the following:
(a) $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$
(b) $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$
(c) $G \cong \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}, p$ is prime.

Proof. First let $|G|$ has at least two distinct prime divisors. In this case, we show that $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to $\Gamma_{1,3}\left(v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right)$, for some vertices $v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime} \in V\left(\mathcal{P}^{* *}(G)\right)$. It is given that G is non-cyclic abelian group. Therefore,

$$
G \cong \mathbb{Z}_{p_{1}^{t_{11}}} \times \cdots \times \mathbb{Z}_{p_{1}^{t_{1 k_{1}}}} \times \mathbb{Z}_{p_{2}^{t_{21}}} \times \cdots \times \mathbb{Z}_{p_{2}^{t_{2 k} k_{2}}} \times \cdots \times \mathbb{Z}_{p_{r}^{t_{r 1}}} \times \cdots \times \mathbb{Z}_{p_{r}^{t_{r},}}
$$

where $1 \leq t_{i 1} \leq t_{i 2} \leq \cdots \leq t_{i k_{i}}$, for all $i \in[r], r \geq 2, k_{i} \geq 1$ and there exists at least one k_{i} such that $k_{i} \geq 2$. So, without loss of generality, we assume that $k_{1} \geq 2$. Consider

$$
V=\{(\underbrace{\bar{a}, \bar{b}, \overline{0}, \ldots, \overline{0}}_{k_{1} \text { times }}, \bar{c}, \overline{0}, \ldots, \overline{0}): \bar{a}, \bar{b}, \bar{c} \in G \text { and } \mathrm{o}(\bar{a})=\mathrm{o}(\bar{b})=p_{1}, \mathrm{o}(\bar{c})=p_{2}\}
$$

Clearly, V is a subset of G and each element of V is of order $p_{1} p_{2}$ and $|V|=\left(p_{1}^{2}-1\right)\left(p_{2}-1\right)$. Again these $\left(p_{1}^{2}-1\right)\left(p_{2}-1\right)$ number of elements form $\frac{\left(p_{1}^{2}-1\right)\left(p_{2}-1\right)}{\phi\left(p_{1} p_{2}\right)}=p_{1}+1$ number of distinct cyclic groups say $H_{1}, H_{2}, \ldots, H_{p_{1}+1}$, where order of each H_{i} is $p_{1} p_{2}$. Now, it is easy to see that, the cyclic group $\langle\underbrace{(\overline{0}, \ldots, \overline{0}}_{k_{1} \text { times }}, \bar{c}, \overline{0} \ldots, \overline{0})\rangle$ is contained in each of the cyclic groups $H_{1}, \ldots, H_{p_{1}+1}$, where $\mathrm{o}(\bar{c})=p_{2}$. Since $p_{1}+1 \geq 3$, we can choose three distinct vertices $v_{i_{1}}^{\left(p_{1} p_{2}\right)}, v_{i_{2}}^{\left(p_{1} p_{2}\right)}$ and $v_{i_{3}}^{\left(p_{1} p_{2}\right)}$ from $H_{i_{1}}, H_{i_{2}}$ and $H_{i_{3}}$ (respectively) such that $\mathrm{o}\left(v_{i_{j}}^{\left(p_{1} p_{2}\right)}\right)=p_{1} p_{2}$, for $j \in\{1,2,3\}$ and $i_{1}, i_{2}, i_{3} \in$ $\left\{1, \ldots, p_{1}+1\right\}$. Also we take the vertex $v^{\left(p_{2}\right)}=\underbrace{(\overline{0}, \ldots, \overline{0}}_{k_{1} \text { times }}, \bar{c}, \overline{0}, \ldots, \overline{0})$. Then we get $\Gamma_{1,3}\left(v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right)$ as an induced subgraph in the graph $\mathcal{P}^{* *}(G)$, where $v=v^{\left(p_{2}\right)}, v^{\prime}=v_{i_{1}}^{\left(p_{1} p_{2}\right)}, v^{\prime \prime}=v_{i_{2}}^{\left(p_{1} p_{2}\right)}, v^{\prime \prime \prime}=v_{i_{3}}^{\left(p_{1} p_{2}\right)}$.

Now suppose that G is a non-cyclic abelian p-group. Then we can say that $G \cong$ $\underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k(\geq 0) \text { times }} \times \mathbb{Z}_{p^{t_{1}}} \times \cdots \times \mathbb{Z}_{p^{t_{r}}}, \quad$ where $t_{1} \leq t_{2} \leq \cdots \leq t_{r}, t_{i} \geq 2$ for all i. For this particular groups (non-cyclic abelian p-groups), we break the prove in several cases.

Case 1: First suppose that $r \geq 3$. In this case, we show that $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{(p)}, v_{1}^{\left(p^{\left(t_{1}\right)}\right)}, v_{2}^{\left(p^{\left(t_{1}\right)}\right)}, v_{3}^{\left(p^{\left(t_{1}\right)}\right)}\right)$, where

$$
\begin{aligned}
& v^{(p)}=(\underbrace{\overline{0}, \ldots, \overline{0}}_{k \text { times }}, \bar{a}, \overline{0}, \overline{0}, \overline{0}, \ldots, \overline{0}) \\
& v_{1}^{\left(p^{\left(t_{1}\right)}\right)}=(\underbrace{\overline{0}, \ldots, \overline{0}}_{k \text { times }}, \overline{1}, \bar{b}, \bar{c}, \overline{0}, \ldots, \overline{0}) \\
& v_{2}^{\left(p^{\left(t_{1}\right)}\right)}=(\underbrace{\overline{0}, \ldots, \overline{0}}_{k \text { times }}, \overline{1}, \bar{b}, \overline{0}, \overline{0}, \ldots, \overline{0}) \\
& v_{3}^{\left(p^{\left(t_{1}\right)}\right)}=(\underbrace{\overline{0}, \ldots, \overline{0}}_{k \text { times }}, \overline{1}, \overline{0}, \overline{0}, \overline{0}, \ldots, \overline{0}),
\end{aligned}
$$

$a=p^{t_{1}-1}$ and $\mathrm{o}(\bar{b})=\mathrm{o}(\bar{c})=p$. Clearly, $\mathrm{o}(\bar{a})=p$. Again $\overline{1}$ is a generator of the group $\mathbb{Z}_{p^{t_{1}}}$ and we can write $\bar{a}=p^{t_{1}-1} \overline{1}$. Also $t_{1} \geq 2$ implies that $t_{1}-1 \geq 1$. Now $\mathrm{o}(\bar{b})=\mathrm{o}(\bar{c})=p$ implies that $p^{t_{1}-1} v_{1}^{\left(p^{\left(t_{1}\right)}\right)}=v^{(p)}$. Therefore, $v_{1}^{\left(p^{\left(t_{1}\right)}\right)} \sim v^{(p)}$. Similarly, we can show that $v_{2}^{\left(p^{\left(t_{1}\right)}\right)} \sim v^{(p)}$ and $v_{3}^{\left(p^{\left(t_{1}\right)}\right)} \sim$ $v^{(p)}$. Now we show that $v_{i}^{\left(p^{\left(t_{1}\right)}\right)} \nsim v_{j}^{\left(p^{\left(t_{1}\right)}\right)}$, for all $i, j \in\{1,2,3\}$. Note that $o\left(v_{i}^{\left(p^{\left(t_{1}\right)}\right)}\right)=p^{t_{1}}$ for each i. So $v_{i}^{\left(p^{\left(t_{1}\right)}\right)} \sim v_{j}^{\left(p^{\left(t_{1}\right)}\right)}$ if and only if $\left\langle v_{i}^{\left(p^{\left(t_{1}\right)}\right)}\right\rangle=\left\langle v_{j}^{\left(p^{\left(t_{1}\right)}\right)}\right\rangle$. But clearly it is not possible from the construction of the vertices.

Case 2: Let $r=2$, so $G \cong \underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k(\geq 0) \text { times }} \times \mathbb{Z}_{p^{t_{1}}} \times \mathbb{Z}_{p^{t_{2}}}$, where $t_{1} \leq t_{2}, t_{i} \geq 2$ for all i.

Subcase 1: First suppose that p is an odd prime. Since $\phi(p) \geq 2$, we can choose two distinct elements \bar{b} and \bar{c} from $\mathbb{Z}_{p^{\prime 2}}$ such that $\mathrm{o}(\bar{b})=\mathrm{o}(\bar{c})=p$. Also we can take another p-ordered element $\bar{a} \in \mathbb{Z}_{p^{t_{1}}}$ such that $a=p^{t_{1}-1}$. Now we consider the vertices

$$
\begin{aligned}
v^{(p)} & =(\overline{0}, \ldots, \overline{0}, \bar{a}, \overline{0}), & v_{1}^{\left(p^{t_{1}}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \bar{b}), \\
v_{2}^{\left(p^{t_{1}}\right)} & =(\overline{0}, \ldots, \overline{0}, \overline{1}, \bar{c}), & v_{3}^{\left(p^{t_{1}}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \overline{0}) .
\end{aligned}
$$

Continuing as Case 1 , we can show that $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{(p)}, v_{1}^{\left(p^{t_{1}}\right)}\right.$, $\left.v_{2}^{\left(p^{t_{1}}\right)}, v_{3}^{\left(p^{t_{1}}\right)}\right)$.

Subcase 2: Here we focus on the case $p=2$. So, $G \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{k(\geq 0) \text { times }} \times \mathbb{Z}_{2^{t_{1}}} \times \mathbb{Z}_{2^{t_{2}}}$. In this case we first consider that at least one t_{1} and $t_{2} \geq 3$. Without loss of generality we assume that $t_{1} \geq 3$. Here we consider the vertices

$$
\begin{aligned}
v=(\overline{0}, \ldots, \overline{0}, \bar{a}, \overline{0}), & v_{1}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \bar{b}), \\
v_{2} & =(\overline{0}, \ldots, \overline{0}, \overline{1}, \bar{c}),
\end{aligned} \quad v_{3}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \overline{0}),
$$

where $a=2^{t_{1}-1}, \mathrm{o}(\bar{b})=2, \mathrm{o}(\bar{c})=4$. Clearly, $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{(2)}, v_{1}^{\left(2^{t_{1}}\right)}\right.$, $\left.v_{2}^{\left(t_{1}\right)}, v_{3}^{\left(t_{1}\right)}\right)$.

Let $G \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{k \geq 0 \text { times }} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$. It is easy to see that $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{(2)}, v_{1}^{(4)}, v_{2}^{(4)}, v_{3}^{(4)}\right)$, where

$$
\begin{aligned}
v^{(2)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{0}, \overline{2}), & v_{1}^{(4)}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \overline{0}, \overline{1}) \\
v_{2}^{(4)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{0}, \overline{1}), & v_{3}^{(4)}=(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{2}, \overline{1})
\end{aligned}
$$

Case 3: Let $r=1$. In this case $G \cong \underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k(\geq 1) \text { times }} \times \mathbb{Z}_{p^{t}}, t \geq 2$.
Subcase 1: First suppose that $p \geq 3$. Then $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{\left(p^{t-1}\right)}, v_{1}^{\left(p^{t}\right)}\right.$, $\left.v_{2}^{\left(p^{t}\right)}, v_{3}^{\left(p^{t}\right)}\right)$, where

$$
\begin{aligned}
v^{\left(p^{t-1}\right)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \bar{p}), & v_{1}^{\left(p^{t}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{2}, \overline{1}), \\
v_{2}^{\left(p^{t}\right)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{1}), & v_{3}^{\left(p^{t}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \overline{1})
\end{aligned}
$$

Subcase 2: Let $p=2$. Then $G \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{k(\geq 1) \text { times }} \times \mathbb{Z}_{2^{t}}, t \geq 2$. In this case, first suppose that $k \geq 2$. Then the following vertices form an induced subgraph $\Gamma_{1,3}\left(v^{\left(2^{t-1}\right)}, v_{1}^{\left(2^{t}\right)}, v_{2}^{\left(2^{t}\right)}, v_{3}^{\left(2^{t}\right)}\right)$, where

$$
\begin{aligned}
v^{\left(2^{t-1}\right)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{0}, \overline{2}), & & v_{1}^{\left(2^{t}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{1}, \overline{1}) \\
v_{2}^{\left(2^{t}\right)} & =(\overline{0}, \ldots, \overline{0}, \overline{0}, \overline{0}, \overline{1}), & & v_{3}^{\left(2^{t}\right)}=(\overline{0}, \ldots, \overline{0}, \overline{1}, \overline{0}, \overline{1}) .
\end{aligned}
$$

Now let $k=1$. Then $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{t}}, t \geq 2$. In this case, we show that $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to $\Gamma_{1,3}$ if and only if $t \geq 3$. In fact, for $t \geq 3$ we have the induced subgraph $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$, where $v=(\overline{0}, \overline{4}), v_{1}=(\overline{1}, \overline{2}), v_{2}=(\overline{0}, \overline{1}), v_{3}=(\overline{1}, \overline{1})$. Let $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$. Clearly, $\mathcal{P}^{* *}(G)$ is the graph in Figure 2.

Now we show that there is no vertices v, v_{1}, v_{2}, v_{3} in $V\left(\mathcal{P}^{* *}(G)\right)$ such that $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$. The graph in Figure 2 has only one vertex namely, $(\overline{0}, \overline{1})$ such that $\operatorname{deg}(\overline{0}, \overline{1})=4$ and the degree of all other vertices are 2 . So, to form $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$ we

Figure 2. The proper power graph $\mathcal{P}^{* *}\left(Z_{2} \times Z_{2}^{2}\right)$.
should take $v=(\overline{0}, \overline{1})$. Now it is clear that we cannot choose v_{1}, v_{2}, v_{3} such that no two of these three vertices are adjacent.

Let $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$, then we show that $\mathcal{P}^{* *}(G)$ does not have any induced subgraph isomorphic to $\Gamma_{1,3}$. If possible there is an induced subgraph $\Gamma_{1,3}\left(v, v_{1}, v_{2}, v_{3}\right)$ for some $v, v_{1}, v_{2}, v_{3} \in$ $\mathcal{P}^{* *}(G)$. Then we show that $\mathrm{o}(v)=2$. First note that $v \sim v_{i}(i=1,2,3)$ implies $\langle v\rangle \subset\left\langle v_{i}\right\rangle$, for all i. If $\left\langle v_{1}\right\rangle \subset\langle v\rangle$, then $v \sim v_{2}$ implies that either $\langle v\rangle \subset\left\langle v_{2}\right\rangle$ or $\left\langle v_{2}\right\rangle \subset\langle v\rangle$. Since G is a p-group, then in any cases $v_{1} \sim v_{2}$, which is not possible. So, $\mathrm{o}(v)=2$ and $\mathrm{o}\left(v_{i}\right)=4$, for all i. First consider the two ordered element $v=(\overline{2}, \overline{0})$. Our claim is that v is edge connected with exactly two four ordered elements v_{1}, v_{2} (say) such that $\left\langle v_{1}\right\rangle \neq\left\langle v_{2}\right\rangle$. Clearly, $(\overline{2}, \overline{0}) \nsim(\bar{a}, \bar{b})$, where $\bar{b}=4$. By our condition $\mathrm{o}(\bar{a})=4$. Therefore, $(\overline{2}, \overline{0})$ is edge connected with the vertices $(\overline{1}, \overline{0}),(\overline{3}, \overline{0})$, $(\overline{1}, \overline{2}),(\overline{3}, \overline{2})$. Also, $\langle(\overline{1}, \overline{0})\rangle=\langle(\overline{3}, \overline{0})\rangle$ and $\langle(\overline{1}, \overline{2})\rangle=\langle(\overline{3}, \overline{2})\rangle$. This proves our claim. The same claim holds for the vertex $(\overline{0}, \overline{2})$. The remaining two ordered element is $(\overline{2}, \overline{2})$. Let $(\overline{2}, \overline{2}) \sim(\bar{a}, \bar{b})$. Then we show that $\mathrm{o}(\bar{a})=4=\mathrm{o}(\bar{b})$. It is easy to see neither $\bar{a}=\overline{0}$ nor $\bar{b}=\overline{0}$. If $\bar{a}=\overline{2}$, then $(\overline{2}, \overline{2}) \sim(\overline{2}, \bar{b})$ implies there exists $k \in \mathbb{N}$ such that $k \overline{2}=\overline{2} \Rightarrow k \overline{2}=\overline{2} \Rightarrow k=4 \ell+1 \Rightarrow(4 \ell+1) \bar{b} \neq$ $\overline{2}$. Similar result holds if $\bar{b}=\overline{2}$. As a result, $(\overline{2}, \overline{2}) \in\langle(\overline{1}, \overline{3})\rangle=\langle(\overline{3}, \overline{1})\rangle$ and $\langle(\overline{1}, \overline{1})\rangle=\langle(\overline{3}, \overline{3})\rangle$.

Let $G \cong \underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k \text { times }}$. Here the graph $\mathcal{P}^{* *}(G)$ is isomorphic to the graph $\underbrace{K_{\phi(p)} \oplus \cdots \oplus K_{\phi(p)}}_{k \text { times }}$. This completes the proof.

Proof of Theorem 3.4. Let $\mathcal{P}^{* *}(G)$ be a line graph of some graph Γ. Then by Proposition 3.5, we can say that either $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$ or $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$ or $G \cong \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$.

Conversely, we show that if G is one of the above, then $\mathcal{P}^{* *}(G)$ is line graph of some graph. If $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}$, then $\mathcal{P}^{* *}(G)$ is the graph in Figure 2 and it is the line graph of the graph Γ, described as in Figure 3.

Let $G \cong \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}$. The group G has 6 distinct cyclic subgroups of order 4, namely $H_{1}=$ $\langle(\overline{1}, \overline{0})\rangle, H_{2}=\langle(\overline{0}, \overline{1})\rangle, H_{3}=\langle(\overline{1}, \overline{1})\rangle, H_{4}=\langle(\overline{1}, \overline{3})\rangle, H_{5}=\langle(\overline{1}, \overline{2})\rangle, H_{6}=\langle(\overline{2}, \overline{1})\rangle . \quad$ Again $\quad(\overline{2}, \overline{0}) \in$ $H_{1} \cap H_{5},(\overline{2}, \overline{2}) \in H_{3} \cap H_{4},(\overline{0}, \overline{2}) \in H_{2} \cap H_{6}$. Therefore, $\mathcal{P}^{* *}(G)$ is the graph in Figure 4.

Clearly, $\mathcal{P}^{* *}(G)$ is the line graph of the graph described as in Figure 5.
Let $G \cong \underbrace{\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}}_{k \text { times }}$. In this case $\mathcal{P}^{* *}(G) \cong \underbrace{K_{\phi(p)} \oplus \cdots \oplus K_{\phi(p)}}_{k \text { times }}$. Clearly, it is the line graph of the graph $\underbrace{\Gamma_{1, \phi(p)} \oplus \cdots \oplus \Gamma_{1, \phi(p)}}_{k \text { times }}$, where $k=p^{k-1}+p^{k-2}+\cdots+p+1$. This completes the proof.

In this portion, we study the non-abelian nilpotent groups G for which $\mathcal{P}^{* *}(G)$ is line graph.

SUDIP BERA

Figure 3. The graph Γ such that $\mathcal{P}^{* *}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}}\right)=L(\Gamma)$.

Figure 4. The graph $\mathcal{P}^{* *}\left(\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}\right)$.

Figure 5. The graph Γ such that $\mathcal{P}^{* *}\left(\mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2^{2}}\right)=L(\Gamma)$.

Theorem 3.6. Let G be a non-abelian nilpotent group such that $|G|$ has at least three distinct prime divisors. Then there is no graph Γ such that $\mathcal{P}^{* *}(G)=L(\Gamma)$.

Proof. Let p_{1}, p_{2}, p_{3} be three distinct prime divisors of $|G|$. Now G nilpotent implies that G has an element $v^{\left(p_{1} p_{2} p_{3}\right)}$ such that $\mathrm{o}(v)=p_{1} p_{2} p_{3}$. Now $\left\langle v^{\left(p_{1} p_{2} p_{3}\right)}\right\rangle$ has elements $v^{\left(p_{1}\right)}, v^{\left(p_{2}\right)}, v^{\left(p_{3}\right)}$ such that
$\mathrm{o}\left(v^{\left(p_{1}\right)}\right)=p_{1}, \mathrm{o}\left(v^{\left(p_{2}\right)}\right)=p_{2}, \mathrm{o}\left(v^{\left(p_{3}\right)}\right)=p_{3}$. Clearly, $\mathcal{P}^{* *}(G)$ has an induced subgraph $\Gamma_{1,3}\left(v^{\left(p_{1} p_{2} p_{3}\right)}\right.$, $\left.v^{\left(p_{1}\right)}, v^{\left(p_{2}\right)}, v^{\left(p_{3}\right)}\right)$. Hence, the theorem is proved.

Theorem 3.7. Let G be non-abelian nilpotent group such that $|G|$ has exactly two distinct prime divisors. Then there is no graph Γ such that $\mathcal{P}^{* *}(G)=L(\Gamma)$.

Proof. It is given that G is non-abelian nilpotent and $|G|$ has two distinct prime divisors. Let the prime divisors are p_{1} and p_{2}. Note that $G \cong P_{1} \times P_{2}$, where P_{1}, P_{2} are Sylow subgroups of G with $\left|P_{1}\right|=p_{1}^{\alpha_{1}}$ and $\left|P_{2}\right|=p_{2}^{\alpha_{2}}$. So $|G|=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}$, where at least one $\alpha_{i} \geq 2(i=1,2)$. Otherwise, G would be cyclic. First suppose that p_{1} and p_{2} are odd primes. Now G is nilpotent, therefore G has an element $v^{\left(p_{1} p_{2}\right)}$ of order $p_{1} p_{2}$. Consider the cyclic subgroup $H=\left\langle v^{\left(p_{1} p_{2}\right)}\right\rangle$. (Note that all the elements of the cyclic group H belong to $V\left(\mathcal{P}^{* *}(G)\right)$.) Again H has elements $v^{\left(p_{1}\right)}$ and $v^{\left(p_{2}\right)}$ of order p_{1} and p_{2} respectively. Also no elements in $\left\langle v^{\left(p_{1}\right)}\right\rangle$ is edge connected with the element in $\left\langle v^{\left(p_{2}\right)}\right\rangle$. Now p_{1} and p_{2} are odd primes, which imply that $\phi\left(p_{1} p_{2}\right), \phi\left(p_{1}\right), \phi\left(p_{2}\right) \geq 2$. Let $v_{1}^{\left(p_{1}\right)}$, $v_{2}^{\left(p_{1}\right)}, v_{1}^{\left(p_{2}\right)} v_{2}^{\left(p_{2}\right)}$ and $v_{1}^{\left(p_{1} p_{2}\right)}, v_{1}^{\left(p_{1} p_{2}\right)}$ are elements of H such that $\mathrm{o}\left(v_{1}^{\left(p_{1}\right)}\right)=\mathrm{o}\left(v_{2}^{\left(p_{1}\right)}\right)=p_{1}, \mathrm{o}\left(v_{1}^{\left(p_{2}\right)}\right)=$ $\mathrm{o}\left(v_{2}^{\left(p_{2}\right)}\right)=p_{2}$, and $\mathrm{o}\left(v_{1}^{\left(p_{1} p_{2}\right)}\right)=\mathrm{o}\left(v_{2}^{\left(p_{1} p_{2}\right)}\right)=p_{1} p_{2}$. Now we replace the vertices of the graph Γ_{3} in Figure 1 in the following way:

$$
11 \text { by } v_{1}^{\left(p_{1} p_{2}\right)}, 13 \text { by } v_{2}^{\left(p_{1} p_{2}\right)}, 12 \text { by } v_{1}^{\left(p_{1}\right)}, 15 \text { by } v_{2}^{\left(p_{1}\right)}, 14 \text { by } v_{1}^{\left(p_{2}\right)} \text { and } 16 \text { by } v_{2}^{\left(p_{2}\right)} .
$$

It is easy to see that the resulting graph is isomorphic to the graph Γ_{3} in Figure 1.
Now let at least one of p_{1} and p_{2} be 2 . Let $p_{1}=2$. Then $|G|=2^{k} p_{2}^{r}$, for some $r, k \in \mathbb{N}$ with at least one of $r, k \geq 2$. First suppose that G has an element of order $2^{k}, k \geq 2$. Now G has an element $v^{\left(2^{k} p_{2}\right)}$ such that $\mathrm{o}\left(v^{\left(2^{k} p_{2}\right)}\right)=2^{k} p_{2}$. As $\phi\left(2^{k} p_{2}\right) \geq 2$, we can choose two elements $v_{1}^{\left(2^{k} p_{2}\right)}, v_{2}^{\left(2^{k} p_{2}\right)}$ form $\left\langle v^{\left(2^{k} p_{2}\right)}\right\rangle$ such that $\mathrm{o}\left(v_{1}^{\left(2^{k} p_{2}\right)}\right)=2^{k} p_{2}$ and $\mathrm{o}\left(v_{1}^{\left(2^{k} p_{2}\right)}\right)=2^{k} p_{2}$. Also $\left\langle v^{\left(2^{k} p_{2}\right)}\right\rangle$ has elements namely, $v_{1}^{\left(2^{k}\right)}, v_{2}^{\left(2^{k}\right)}\left(\right.$ as $\left.k \geq 2, \phi\left(2^{k}\right) \geq 2\right), v_{1}^{\left(p_{2}\right)}, v_{2}^{\left(p_{2}\right)}$ such that $\mathrm{o}\left(v_{1}^{\left(2^{k}\right)}\right)=2^{k}, \mathrm{o}\left(v_{2}^{\left(2^{k}\right)}\right)=2^{k}, \mathrm{o}\left(v_{1}^{\left(p_{2}\right)}\right)=$ $p_{2}, \mathrm{o}\left(v_{2}^{\left(p_{2}\right)}\right)=p_{2}\left(p_{2}\right.$ is an odd prime, so it is possible to find at least two elements of order p_{2} in $\left.\left\langle v^{\left(2 p_{2}\right)}\right\rangle\right)$. Now we replace the vertices of the graph Γ_{3} in Figure 1 in the following way:

$$
11 \text { by } v_{1}^{\left(2^{k} p_{2}\right)}, 13 \text { by } v_{2}^{\left(2^{k} p_{2}\right)}, 12 \text { by } v_{1}^{\left(2^{k}\right)}, 15 \text { by } v_{2}^{\left(2^{k}\right)}, 14 \text { by } v_{1}^{\left(p_{2}\right)} \text { and } 16 \text { by } v_{2}^{\left(p_{2}\right)} \text {. }
$$

As a result $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to the graph Γ_{3}. Therefore, in this case $\mathcal{P}^{* *}(G)$ is not a line graph.

Now suppose that order of each element of the Sylow subgroup P_{1} is 2 . Then either $P_{1} \cong$ $\underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{k(\geq 2) \text { times }}$ or $P_{1} \cong \mathbb{Z}_{2}$. Therefore, either $G \cong \underbrace{\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}}_{k(\geq 2) \text { times }} \times P_{2}$ or $G \cong \mathbb{Z}_{2} \times P_{2}$. In both of
the cases, G has at least one element $v^{(2)}$ (say) of order 2. Let $H_{1}=\left\langle v_{1}^{\left(p_{2}\right)}\right\rangle, \ldots, H_{\ell}=\left\langle v_{\ell}^{\left(p_{2}\right)}\right\rangle$ be the complete list of distinct cyclic subgroups of order p_{2} of the Sylow subgroup P_{2}. Now by the claim in Case 3 of the proof of Theorem $2.3 \ell \neq 2$. Again $\ell=1$ implies that G is abelian by Lemma 1.6. Therefore, $\ell \geq 3$. Consider $K_{1}=\left\langle v^{(2)} v_{1}^{\left(p_{2}\right)}\right\rangle, \ldots, K_{\ell}=\left\langle v^{(2)} v_{\ell}^{\left(p_{2}\right)}\right\rangle$. Clearly, each K_{i} is a cyclic group of order $2 p_{2}$. Moreover, for all $i \neq j, K_{i} \neq K_{j}$ and $K_{i} \cap K_{j}=\left\langle v^{(2)}\right\rangle$, where $i, j \in$ $\{1, \ldots, \ell\},(\ell \geq 3)$. Now we choose three generators $v^{(2)} v_{i_{1}}^{\left(p_{2}\right)}, v^{(2)} v_{i_{2}}^{\left(p_{2}\right)}$ and $v^{(2)} v_{i_{3}}^{\left(p_{2}\right)}$ from three distinct cyclic subgroups $K_{i_{1}}, K_{i_{2}}$ and $K_{i_{3}}$ respectively, where $i_{1}, i_{2}, i_{3} \in\{1, \ldots, \ell\}$. Since $K_{i_{1}}, K_{i_{2}}$ and $K_{i_{3}}$ are distinct cyclic subgroups, then $v^{(2)} v_{i_{1}}^{\left(p_{2}\right)}, v^{(2)} v_{i_{2}}^{\left(p_{2}\right)}$ and $v^{(2)} v_{i_{3}}^{\left(p_{2}\right)}$ are not adjacent to reach other in $\mathcal{P}^{* *}(G)$. Also $\left\langle v^{(2)}\right\rangle$ is contained in each of the cyclic subgroups $K_{i_{1}}, K_{i_{2}}$, and $K_{i_{3}}$. As a result, $\mathcal{P}^{* *}(G)$ contains an induced subgraph $\Gamma_{1,3}\left(v^{(2)}, v^{(2)} v_{i_{1}}^{\left(p_{2}\right)}, v^{(2)} v_{i_{2}}^{\left(p_{2}\right)}, v^{(2)} v_{i_{3}}^{\left(p_{2}\right)}\right)$. This completes the proof.

Theorem 3.8. Let G be a non-abelian p-group, where p is an odd prime. Then there is a graph Γ such that $\mathcal{P}^{* *}(G)=L(\Gamma)$ if and only if $G=\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t_{\ell}}}$, where ℓ is the number of distinct subgroups of order p.

Proof. First suppose that $G=\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t^{t}}}$, where ℓ is the number of distinct subgroups of order p. Now for any $i \neq j, \mathbb{Z}_{p^{t i}} \cap \mathbb{Z}_{p^{t j}}=\{e\}$, the identity of the group G. In fact, for a nonidentity element $a \in \mathbb{Z}_{p^{t_{i}}} \cap \mathbb{Z}_{p^{t^{j}}}$, the p-order cyclic subgroup of $\langle a\rangle$ is contained in $\mathbb{Z}_{p^{t_{i}}} \cap \mathbb{Z}_{p^{p^{j}}}$. And this contradicts that $G=\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t},}$, where ℓ is the number of distinct subgroups of order p. As a result, for any $i \neq j, \mathbb{Z}_{p^{t i}} \cap \mathbb{Z}_{p^{t j}}=\{e\}$. So, $\mathcal{P}^{* *}(G)$ is a line graph of the $\operatorname{graph} \Gamma_{1, p^{t_{1}}} \oplus \cdots \oplus \Gamma_{1, p^{t_{l}}}$.

Conversely, suppose that there is a graph Γ such that $\mathcal{P}^{* *}(G)=L(\Gamma)$. We show that $G=$ $\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t} \ell}$, where ℓ is the number of distinct subgroups of order p. Now G is a p-group. So we can write $G=K_{1} \cup \cdots \cup K_{r}$, where

$$
\begin{aligned}
& K_{1}=\left\{x_{(1)} \in G:\left\langle a_{(1)}\right\rangle \subset\left\langle x_{(1)}\right\rangle \text { and } \mathrm{o}\left(a_{(1)}\right)=p\right\} \cup\{e\} \\
& K_{2}=\left\{x_{(2)} \in G:\left\langle a_{(2)}\right\rangle \subset\left\langle x_{(2)}\right\rangle, a_{(2)} \in G \backslash\left\langle a_{(1)}\right\rangle \text { and } \mathrm{o}\left(a_{(2)}\right)=p\right\} \cup\{e\} \\
& \quad \vdots \\
& K_{r}=\left\{x_{(r)} \in G:\left\langle a_{(r)}\right\rangle \subset\left\langle x_{(r)}\right\rangle, a_{(r)} \in G \backslash\left\langle a_{(1)}\right\rangle \cup \cdots \cup\left\langle a_{(r-1)}\right\rangle, \text { and } \mathrm{o}\left(a_{(r)}\right)=p\right\} \cup\{e\}
\end{aligned}
$$

(Note that $r \neq 1$. If $r=1$, then G is a group with unique minimal subgroup. Again p is an odd prime, therefore, G is a cyclic p-group, it contradicts that G is non-abelian). Clearly, $K_{i} \cap K_{j}=$ $\{e\}$ for any $i \neq j$. Now it is enough to show that each $K_{i}=\mathbb{Z}_{p^{t}}$, for some $t_{i} \geq 1$. Let there is at least one j such that K_{j} is not a cyclic subgroup of G. Then we can write K_{j} as a union cyclic subgroups of G. In fact, since K_{j} is not a cyclic group there exists at least one element say $x_{(j)}^{\left(p^{r}\right)} \in K_{j}$ such that $\mathrm{o}\left(x_{(j)}^{\left(p^{r}\right)}\right)=p^{r}, r \geq 2$, (if order of each element of K_{j} is p then K_{j} would be cyclic by the construction of K_{j}). Consider $K_{(j)}^{r}=\left\langle x_{(j)}^{\left(p^{r}\right)}\right\rangle$. Clearly, it is a cyclic subgroup of K_{j}. Since K_{j} is not cyclic group then there is an element say $x_{(j)}^{\left(\tilde{p}^{r}\right)} \in K_{j} \backslash K_{(j)}^{r}$ such that $\mathrm{o}\left(x_{(j)}^{\left(\tilde{p}^{r}\right)}\right)=p^{s}, s \geq 2(s=$ 1 implies $K_{j}=\mathbb{Z}_{p^{r} r}$. Let $K_{(j)}^{s}=\left\langle x_{(j)}^{\left(\rho^{s}\right)}\right\rangle$. Note that neither $K_{(j)}^{r}$ is a subgroup of $K_{(j)}^{s}$ nor $K_{(j)}^{s}$ is a subgroup of $K_{(j)}^{r}$ and $K_{(j)}^{r} \cap K_{(j)}^{s}$ contains the cyclic subgroup $\left\langle a_{(j)}\right\rangle$. Now $p \geq 3$ implies that $\phi(p), \phi\left(p^{r}\right)$ and $\phi\left(p^{s}\right) \geq 2$. Let $a_{(j) 1}, a_{(j) 2}$ be two p-ordered elements of $K_{j}, x_{(j) 1}^{\left(p^{r}\right)}, x_{(j) 2}^{\left(p^{r}\right)}$ be two p^{r} ordered elements of $K_{(j)}^{r}$ and $x_{(j) 1}^{\left(p^{s}\right)}, x_{(j) 2}^{\left(p^{s}\right)}$ be two p^{s}-ordered elements of $K_{(j)}^{s}$. Now we replace the vertices of the graph Γ_{3} in Figure 1 in the following way:

$$
11 \text { by } a_{(j) 1}, 13 \text { by } a_{(j) 2}, 12 \text { by } x_{(j) 1}^{\left(p^{r}\right)}, 15 \text { by } x_{(j) 2}^{\left(p^{r}\right)}, 14 \text { by } x_{(j) 1}^{\left(p^{s}\right)} \text { and } 16 \text { by } x_{(j) 2}^{\left(p^{s}\right)} \text {. }
$$

Clearly the resulting graph is isomorphic to the graph Γ_{3}. Therefore, $\mathcal{P}^{* *}(G)$ has an induced subgraph isomorphic to Γ_{3}. This contradicts the fact that $\mathcal{P}^{* *}(G)$ is a line graph. Therefore, each $K_{i}=\mathbb{Z}_{p^{t_{i}}}$, for some $t_{i} \in \mathbb{N}$. Clearly $r=\ell$ and hence $G=\mathbb{Z}_{p^{t_{1}}} \cup \cdots \cup \mathbb{Z}_{p^{t_{\ell}}}$, where ℓ is the number of distinct cyclic subgroup of order p.

Proof of Theorem 1.8. Clearly, Theorems 3.1, 3.4, 3.6, 3.7, 3.8 complete the proof.
Now we concentrate on non-abelian 2-group. For that we need the structures of dihedral groups and generalized quarternion groups. For $n \geq 2$, the dihedral group of order $2 n$ is defined by the following presentation:

$$
D_{2 n}=\left\langle r, s: r^{n}=s^{2}=e, r s=s r^{-1}\right\rangle
$$

We also consider the generalized quarternion groups $Q_{2^{n}}$. Let $x=\overline{(1,0)}$ and $y=\overline{(0,1)}$. Then $Q_{2^{n}}=\langle x, y\rangle$, where
(a) x has order 2^{n-1} and y has order 4,
(b) every element of $Q_{2^{n}}$ can be written in the form x^{a} or $x^{a} y$ for some $a \in \mathbb{Z}$,
(c) $x^{2^{n-2}}=y^{2}$,
(d) for each $g \in Q^{2^{n}}$ such that $g \in\langle x\rangle$, such that $g x g^{-1}=x^{-1}$.

For more information about $D_{2 n}$, and $Q_{2^{n}}$ see [13, 15, 29].
Proof of Theorem 1.9. We know that $Q_{2^{n}}$ has exactly one cyclic subgroup H of order 2^{n-1}. Also each element in $Q_{2^{n}} \backslash H$ is of order 4. So, there are 2^{n-2} distinct 4-ordered cyclic subgroups in $Q_{2^{n}}$. Clearly, $\mathcal{P}^{* *}\left(Q_{2^{n}}\right)$ is the graph $K_{2^{n-1}} \oplus \underbrace{K_{2} \oplus \cdots \oplus K_{2}}_{2^{n-2} \text { times }}$. Therefor, $\mathcal{P}^{* *}\left(Q_{2^{n}}\right)$ is the line graph of the graph $\Gamma_{1,2^{n-1}} \oplus \underbrace{\Gamma_{1,2} \oplus \cdots \oplus \Gamma_{1,2}}_{2^{n-2} \text { times }}$.

Proof of Theorem 1.10. Suppose n is not a power of 2. Then clearly $\left|D_{n}\right|$ has a prime divisor $p \neq$ 2. Therefore by Theorem $3.7 \mathcal{P}^{* *}\left(D_{n}\right)$ is not a line graph.

Conversely, let $n=2^{k}$, then D_{n} is 2-group. Also $D_{n}=\mathbb{Z}_{2^{k}} \cup \underbrace{\mathbb{Z}_{2} \cup \cdots \cup \mathbb{Z}_{2}}_{2^{k} \text { times }}$ and the number of distinct 2 -ordered cyclic subgroup is 2^{k+1}. Then by Theorem 1.8, $\mathcal{P}^{* *}\left(D_{n}\right)$ is line graph.

Acknowledgment

The author profusely thanks the anonymous referee for meticulous reading of the manuscript and valuable suggestions that significantly improved the exposition of this paper. The author would like to thank Prof. Arvind Ayyer for his constant support and encouragement. Also, the author would like to thank Dr. Sumana Hatui for the helpful discussions on p-groups.

Funding

The author was supported by NBHM Post Doctoral Fellowship grant 0204/52/2019/RD-II/339.

References

[1] Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R., Shaveisi, F. (2017). On the structure of the power graph and the enhanced power graph of a group. Electron. J. Combin. 24(3):P3.16. DOI: 10.37236/6497.
[2] Abawajy, J., Kelarev, A. V., Chowdhury, M. (2013). Power graphs: a survey. Electron. J. Graph Theory Appl. 1(2):125-147. DOI: 10.5614/ejgta.2013.1.2.6.
[3] Bera, S. (2018). On the intersection power graph of a finite group. Electron. J. Graph Theory Appl. 6(1): 178-189. DOI: 10.5614/ejgta.2018.6.1.13.
[4] Bera, S., Bhuniya, A. K. (2018). On enhanced power graphs of finite groups. J. Algebra Appl. 17(08): 1850146. DOI: 10.1142/S0219498818501463.
[5] Bhuniya, A. K., Bera, S. (2017). Normal subgroup based power graphs of a finite group. Commun. Algebra 45(8):3251-3259. DOI: 10.1080/00927872.2016.1236122.
[6] Bera, S., Dey, H. K., Mukherjee, S. K. (2021). On the connectivity of enhanced power graphs of finite groups. Graphs Combin. 37(2):591-603. DOI: 10.1007/s00373-020-02267-5.
[7] Bondy, J. A., Murty, U. S. R. (1977). Graph Theory with Applications. United Kingdom: Elsevier.
[8] Cameron, P. J. (2010). The power graph of a finite group. II. J. Group Theory. 13(6):779-783. DOI: 10. 1515/JGT.2010.023.
[9] Cameron, P. J., Ghosh, S. (2011). The power graph of a finite group. Discrete Math. 311:220-1222. DOI: 10.1016/j.disc.2010.02.011.
[10] Cameron, P. J., Jafari, S. H. (2020). On the connectivity and independence number of power graphs of groups. Graphs Combin. 36(3):895-904. DOI: 10.1007/s00373-020-02162-z.
[11] Cameron, P. J., Manna, P., Mehatari, R. (2021). Forbidden subgraphs of power graphs. The Electron. J. Combin. 28(3):P3.4. DOI: 10.37236/9961.
[12] Chakrabarty, I., Ghosh, S., Sen, M. K. (2009). Undirected power graphs of semigroups. Semigroup Forum. 78(3):410-426. DOI: 10.1007/s00233-008-9132-y.
[13] Conrad, K. (2014). Generalized quaternions. http://www.math.uconn.edu/kconrad/blurbs/.
[14] Curtin, B., Pourgholi, G. R., Azari, H. Y. (2015). On the punctured power graph of a finite group. Australas. J. Combin. 62:1-7.
[15] Dummit, D. S., Foote, R. M. (2003). Abstract Algebra. U.S.A.: Wiley.
[16] Doostabadi, A., Farrokhi, M., Ghouchan, D. (2015). On the connectivity of proper power graph of finite group. Commun. Algebra 43(10):4305-4319. DOI: 10.1080/00927872.2014.945093.
[17] Godsil, C., Royle, G. (2001). Algebraic Graph Theory. Springer-Verlag. New York Inc.
[18] Gorenstein, D. (1980). Finite Groups. New York: Chelsea Publishing Co.
[19] Hungerford, T. W. (1974). Algebra. Graduate Text in Mathematics. New York: Springer-Verlag.
[20] Hamzeh, A., Ashrafi, A. R. (2017). Automorphism groups of supergraphs of the power graph of a finite group. European J. Combin. 60:82-88. DOI: 10.1016/j.ejc.2016.09.005.
[21] Kelarev, A. V. (2003). Graphs Algebras and Automata. New York: Marcel Dekker.
[22] Kelarev, A. V., Quinn, S. J. (2000). A combinatorial property and power graphs of groups. Contrib. General Algebra. 12:229-235.
[23] Kelarev, A. V., Quinn, S. J. (2002). Directed graph and combinatorial properties of semigroups. J. Algebra 251(1):16-26. DOI: 10.1006/jabr.2001.9128.
[24] Kelarev, A. V., Quinn, S. J. (2004). A combinatorial property and power graphs of semigroups. Comment. Math. Univ. Carolinae. 45:1-7. 10338.dmlcz/119433.
[25] Kelarev, A. V., Quinn, S. J., Smolikova, R. (2001). Power graphs and semigroups of matrices. Bull. Austral. Math. Soc. 63(2):341-344. DOI: 10.1017/S0004972700019390.
[26] Kelarev, A., Ryan, J., Yearwood, J. (2009). Cayley graphs as classifiers for data mining: the influence of asymmetries. Discrete Math. 309(17):5360-5369. DOI: 10.1016/j.disc.2008.11.030.
[27] Moghaddamfar, A. R., Rahbariyan, S., Shi, W. J. (2014). Certain properties of the power graph associated with a finite group. J. Algebra Appl. 13(7):1450040. DOI: 10.1142/S0219498814500406.
[28] Robinson, D. J. S. (1995). A Course in the Theory of Groups, 2nd ed. New York: Springer-Verlag.
[29] Scott, W. R. (1987). Group Theory. New York: Dover Publications.
[30] West, D. B. (2001). Introduction to Graph Theory, 2nd ed. India: Pearson Education Inc.

