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ABSTRACT
This paper deals with the classification of groups G such that power graphs
and proper power graphs of G are line graphs. In fact, we classify all finite
nilpotent groups whose power graphs are line graphs. Also, we categorize
all finite nilpotent groups (except non-abelian 2-groups) whose proper
power graphs are line graphs. Moreover, we investigate when the proper
power graphs of generalized quaternion groups are line graphs. Besides,
we derive a condition on the order of the dihedral groups for which the
proper power graphs of the dihedral groups are line graphs.
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1. Introduction

The investigation of graph representations is one of the interesting and popular research topics in
algebraic graph theory, as graphs like these enrich both algebra and graph theory. Moreover, they
have important applications (see, for example, [2, 26]) and are related to automata theory [21].
During the last two decades, the investigation of the interplay between the properties of an alge-
braic structure S and the graph-theoretic properties of CðSÞ, a graph associated with S, has been
an exciting topic of research. Different types of graphs, specifically power graph of semigroup
[12, 23], group [22], normal subgroup based power graph of group [5], intersection power graph
of group [3], enhanced power graph of group [4, 6], etc. have been introduced to study algebraic
structures using graph theory. One of the major graph representations among them is the power
graphs of finite groups. We found several papers in this context [2, 9–12, 20, 24, 25]. The concept
of a power graph was introduced in [22]. As explained in the survey [2], this definition also cov-
ered the undirected graphs. Accordingly, the present paper follows Chakrabarty et al. and uses
the brief term “power graph” defined as follows.

Definition 1.1 ([2, 12, 22]). Let S be a semigroup, then the power graph PðSÞ of S, is a simple
graph, whose vertex set is S and two distinct vertices u and v are edge connected if and only if
either um ¼ v or vn ¼ u, where m, n 2 N:

The authors in [12] studied various properties of the power graph. They characterized the class
of semigroups S for which PðSÞ is connected or complete. As a consequence they proved
the following:
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Lemma 1.1 ([12, Theorem 2.12]). For a finite group G, the power graph PðGÞ is complete if and
only if G is cyclic group of order 1 or pm, for some prime p and for some m 2 N:

It is clear that for two groups G1 and G2,G1 ffi G2 implies that PðG1Þ ffi PðG2Þ: A natural
question that arises is: Does the converse hold? In [9], the authors showed that the non-iso-
morphic finite groups may have isomorphic power graphs, but that finite abelian groups with iso-
morphic power graphs must be isomorphic. Also they conjectured that two finite groups with
isomorphic power graphs have the same number of elements of each order. Then Cameron
proved this conjecture in [8].

In [14], Curtin et al. introduced the concept of deleted power graphs. They introduced deleted
power graph as follows:

Definition 1.2. Given a group G, the proper power graph of G, denoted by P��ðGÞ, is the graph
obtained by deleting all the dominating vertices from the power graph PðGÞ: Moreover, by
P�ðGÞ we denote the graph obtained by deleting only the identity element of G and this is called
deleted power graph of G. Note that if there is no such dominating vertex other than identity,
then P�ðGÞ ¼ P��ðGÞ:

Curtin et al. discussed the diameter of the proper power graph of the symmetric group Sn on
n symbols. For more information related to proper power graphs we refer to [14, 16, 27]. Then
Aalipour et al. in [1, Question 40] asked about the connectivity of proper power graphs. Recently,
Cameron and Jafari in [10] answered this question. Also they characterized all dominatable power
graphs by following lemma:

Lemma 1.2 ([10, Theorem 4]). Let G be a finite group. Suppose that x 2 G has the property that
for all y 2 G, either x is a power of y or vice versa. Then one of the following holds:

(a) x ¼ e;
(b) G is cyclic and x is a generator;
(c) G is a cyclic p-group for some prime p and x is arbitrary;
(d) G is a generalized quaternion group and x has order 2.

1.1. Basic definitions, notations, and main results

We begin this section with some standard definitions from graph theory and group theory. For
the convenience of the reader and also for later use, we recall some basic definitions and nota-
tions about graphs. Let C ¼ ðV,EÞ be a graph where V is the set of vertices and E is the set of
edges. A graph C0 ¼ ðV 0, E0Þ is a subgraph of another graph C ¼ ðV ,EÞ if and only if V 0 � V,
and E0 � E: An induced subgraph of a graph is another graph, formed from a subset of the verti-
ces of the graph and all of the edges connecting pairs of vertices in that subset. A graph C is said
to be connected if for any pair of vertices u and v, there exists a path between u and v. C is said
to be complete if any two distinct vertices are adjacent. A clique of a graph C is an induced sub-
graph of C that is complete. The complete graph with n vertices is denoted by Kn: A bipartite
graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent
sets V1 and V2 such that every edge connects a vertex in V1 to one in V2: Vertex sets V1 and V2

are usually called the parts of the graph. A complete bipartite graph or biclique is a special kind
of bipartite graph where every vertex of the first set is connected to every vertex of the second
set. The star graph with nþ 1 vertices is denoted by C1, n which consists of a single vertex with n
neighbors. A star graph with the vertex set v, v0, v00, v000 is denoted by C1, 3ðv, v0, v00, v000Þ, where v is
edge connected to each of the vertices v0, v00, v000 and there is no edge between the vertices
v0, v00, v000: A vertex of a graph C ¼ ðV, EÞ is called a dominating vertex if it is adjacent to every
other vertex. For a graph C, let DomðCÞ denote the set of all dominating vertices in C: The
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vertex connectivity of a graph C, denoted by jðCÞ is the minimum number of vertices which
need to be removed from the vertex set C so that the induced subgraph of C on the remaining verti-
ces is disconnected. The complete graph with n vertices has connectivity n� 1: A graph C is a
cograph if it has no induced subgraph isomorphic to the four-vertex path P4: A graph C is chordal if
it contains no induced cycles of length greater than 3; in other words, every cycle on more than 3
vertices has a chord. A threshold graph is a graph containing no induced subgraph isomorphic to P4,
K4 or 2K2ðor K2 � K2Þ ðtwo disjoint edges with no further edges connecting themÞ: In general, let
C1, :::,Cm be m graphs such that VðCiÞ \ VðCjÞ ¼ ;, for i 6¼ j: Then C ¼ C1 � � � � � Cm be a
graphs with vertex set is VðCÞ ¼ VðC1Þ [ � � � [ VðCmÞ and EðCÞ ¼ EðC1Þ [ � � � [ EðCmÞ: Two
graphs C1 and C2 are isomorphic if there is a bijection, f (say) from VðC1Þ to VðC2Þ such that v � v0

in C1 if and only if f ðvÞ � f ðv0Þ in C2: for the vertices v, v0, v � v0 denotes that v and v0 are edge
connected. Also v ¿ v0 means that v and v0 are not edge connected.

Definition 1.3 ([17, 30]). The line graph of a graph C is the graph LðCÞ with the edges of C as
its vertices, and where two edges of C are adjacent in LðCÞ if and only if they are incident in C:
If a graph C0 is a line graph of some graph then we can call the graph C0 a line graph.

One of the most important results related to the characterization of line graph is Lemma 1.3.
For more information on line graphs we refer [17, 30].

Lemma 1.3 ([17, Theorem 7.1.18]). A graph C is the line graph of some graph if and only if C
does not have any of the nine graphs in Figure 1 as an induced subgraph.

For more information on the graph theory we refer to [7, 17, 30].
Throughout this paper, we consider G as a finite group. jGj denotes the cardinality of the set

G. For a prime p, a group G is said to be a p-group if jGj ¼ pr, r 2 N: Recall that a finite group
G is nilpotent if and only if it is a direct product of its Sylow p-subgroups over primes p dividing
jGj: Note that, in a nilpotent group, elements of different prime orders commute. For more infor-
mation on nilpotent groups we refer to [19, 28, 29].

Lemma 1.4 ([19, Proposition 7.5]). A finite group is nilpotent if and only if it is the direct product
of its Sylow subgroups.

Lemma 1.5 ([19, Corollary 7.6]). If G is a finite nilpotent group and m divides jGj, then G has a
subgroup of order m.

Figure 1. There are nine graphs, namely, C1,C2,C3,C4,C5,C6,C7,C8,C9 and the numbers that appear in this figure are the
vertices of the corresponding graphs.
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Lemma 1.6 ([18, Theorem 5.4.10]). If G is a p-group with a unique subgroup of order p for an
odd prime p, then G is cyclic.

For any element g 2 G, oðgÞ denotes the order of the element g 2 G: Throughout this article
vðmÞ denotes a vertex of order m of G. Let m and n be any two positive integers, then the greatest
common divisor of m and n is denoted by gcdðm, nÞ: The exponent of a group G, denoted by
exp ðGÞ is defined as the least common multiple of the orders of all elements of the group. If
there is no least common multiple, the exponent is taken to be infinity (or sometimes zero,
depending on the convention). The Euler’s phi function /ðnÞ is the number of integers k in the
range 1 	 k 	 n for which the gcdðn, kÞ is equal to 1. The set f1, 2, :::, ng is denoted by ½n
:
Throughout this paper, the group operation of any abelian group is taken to be additive.

A number of important graph classes, including line graphs, cographs, chordal graphs, split
graphs, and threshold graphs, can be defined either structurally or in terms of forbidden induced
subgraphs. Recently, Cameron, Manna and Mehatari in [11], determined completely the groups
whose power graph is a threshold or split graph. Moreover, they determined completely the finite
nilpotent groups whose power graph is a cograph. Motivated by this work, in this paper we give
attention is on the following problems:

� Characterize all finite groups G such that PðGÞ is a line graph of some graph C:
� Characterize all finite groups G such that P��ðGÞ is a line graph of some graph C:

We obtain the following two main results.

Theorem 1.7. Let G be a nilpotent group. Then PðGÞ is a line graph of some graph C if and only
if G is cyclic p-group.

Theorem 1.8. Let G be a nilpotent group (except non-abelian 2-groups). Then P��ðGÞ is a line
graph of some graph C if and only if G is one of the following:

(a) G ffi Zpt , t � 1
(b) G ffi Zpq

(c) G ffi Z2  Z22

(d) G ffi Z22  Z22

(e) G ffi Zp  � � �  Zp
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k times, k�2

(f) G is non abelian p group and G ¼ Zpt1 [ � � � [ Zpt‘ , where ‘ is the number of distinct sub-
groups of order p.

If one takes a, b, c in Zp for an odd prime p, then one has the Heisenberg group modulo p. It
is a group of order p3 with generators x, y and relations:

z ¼ xyx�1y�1, xp ¼ yp ¼ zp ¼ 1, xz ¼ zx, yz ¼ zy:

Corollary 1. Let G be the Heisenberg group modulo p. Then P��ðGÞ is a line graph.

Proof. In the Heisenberg group modulo p, the order of each element is p. Therefore by the part
(f) of Theorem 1.8, P��ðGÞ is a line graph. w

Corollary 2. Let G be a non-abelian group such that expðGÞ ¼ p: Then P��ðGÞ is a line graph.

Proof. G is non-abelian group and exp ðGÞ ¼ p: So G is non-abelian p-group and order of each
element of G is p. Hence by the part (f) of Theorem 1.8, P��ðGÞ is a line graph. w
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Moreover, for non-abelian 2-groups, we prove two theorems.

Theorem 1.9. Let Q2n be the generalized quaternion group. Then P��ðQ2nÞ is a line graph.

Theorem 1.10. Let Dn be the dihedral group of order 2n, ðn � 3Þ: Then P��ðDnÞ is a line graph if
and only if n ¼ 2k, k 2 N:

Now, let us briefly summarize the content. In Section 2, we consider the power graphs of
finite nilpotent groups and classify all those power graphs which are line graphs. In Section 3,
we focus on the proper power graphs of finite nilpotent groups (except non-abelian 2-groups)
and characterize all those proper power graphs which are line graphs. Moreover, in this section,
we study that the proper power graph of generalized quaternion group is line graph. Also we
derive the condition on the order of the dihedral group such that the proper power graph is
line graph.

2. Proof of main theorem for the power graphs

Here we give the proof of Theorem 1.7. To prove this theorem we need to go through three theo-
rems. The first theorem describes the cyclic group case.

Theorem 2.1. Let G be a finite cyclic group. Then there exists a graph C such that PðGÞ ¼ LðCÞ if
and only if G is a p-group.

Proof. Let G be a cyclic p-group with jGj ¼ pr: Then by Lemma 1.1, PðGÞ is complete. As a result
the star graph C1, pr serves the purpose.

Conversely, let jGj has at least two distinct prime factors say p, q: Now G is cyclic, so G has a
unique subgroup H of order pq. Again /ðpqÞ � 2 implies that H has at least two elements namely

vðpqÞ1 , vðpqÞ2 of order pq. Again the cyclic subgroup H ¼ hvðpqÞ1 i ¼ hvðpqÞ1 i has elements vðpÞ and vðqÞ

(say) of order p and q respectively. Now we replace the vertices of the graph C2 in Figure 1 in
the following way:

6 by vðpqÞ1 , 10 by e, the identity of G, 8 by vðpqÞ2 , 7 by vðpÞ and 9 by vðqÞ:

Then the resulting graph is also isomorphic to the graph C2 in the Figure 1. Therefore, PðGÞ
contains an induced subgraph isomorphic to C2: Hence the theorem. w

The next theorem handles noncyclic abelian groups.

Theorem 2.2. Let G be a non-cyclic abelian group. Then there does not exists any graph C such
that PðGÞ ¼ LðCÞ:

Proof. We prove this theorem by showing that the power graph PðGÞ has no induced subgraph
isomorphic to the graph C1, 3: Now it is given that G is non-cyclic abelian. So,

G ffi Zpt111
 � � �  Z

p
t1k1
1

 Zpt212
 � � �  Z

p
t2k2
2

 � � �  Zp
tr1
r
 � � �  Z

p
trkr
r
,

where ki � 1, 1 	 ti1 	 ti2 	 � � � 	 tiki , for all i 2 ½r
 and there exists at least one ki such that
ki � 2 (if each ki ¼ 1, then G would be cyclic). Without loss of generality, we assume that

k1 � 2: Let H1 ¼ hvðp1Þ1 i, :::,Hs ¼ hvðp1Þs i be the complete list of distinct cyclic subgroups of order
p1 of G. Now k1 � 2 implies that s � 3: Therefore we can choose three distinct vertices

vðp1Þi1 , vðp1Þi2 , vðp1Þi3 (order of each vertex is p1) from three distinct cyclic subgroups Hi1 ,Hi2 ,Hi3

respectively. Now we show that e, vðp1Þi1 , vðp1Þi2 , vðp1Þi3 form an induced subgraph isomorphic to the
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graph C1, 3ðe, vðp1Þi1 , vðp1Þi2 , vðp1Þi3 Þ: From the definition of the power graph e is edge connected with

vðp1Þi1 , vðp1Þi2 and vðp1Þi3 : Now vðp1Þi1 , vðp1Þi2 and vðp1Þi3 are the generators of three distinct cyclic subgroups

Hi1 ,Hi1 and Hi1 respectively. Also order of each cyclic subgroup is p1: As a result, vðp1Þij ¿ vðp1Þik ,

for each i, j 2 f1, 2, 3g and i 6¼ j: Hence the theorem. w

Here we focus on the finite group G such that G is non-abelian nilpotent. In this case, we
have the following:

Theorem 2.3. Let G be a non-abelian nilpotent group. Then there does not exists any graph C such
that PðGÞ ¼ LðCÞ:

Proof. It is given that G is nilpotent. So, by Lemma 1.4, G ffi P1  � � �  Pr, where each Pi is a
Sylow subgroup of order paii and ai 2 N: Now divide the prove of this theorem in several cases.

Case 1: First let r � 3: In this case jGj has at least three distinct prime divisors p1, p2, and p3
(say). Then by Lemma 1.5, G has three elements vðp1Þ, vðp2Þ, vðp3Þ such that oðvðp1ÞÞ ¼ p1, oðvðp2ÞÞ ¼
p2, and oðvðp3ÞÞ ¼ p3: Now from the definition of the power graph, it is clear that the vertices
e, vðp1Þ, vðp2Þ, vðp3Þ form an induced subgraph C1, 3ðe, vðp1Þ, vðp2Þ, vðp3ÞÞ in PðGÞ:

Case 2: Let r ¼ 2, then G ffi P1  P2: Now it is given that G is non-abelian. Therefore, either
P1 or P2 is non-cyclic. Without loss of generality we assume that P1 is non-cyclic. Now P1 is non-
cyclic group of order pa1, for some a � 2, ða ¼ 1 implies that P1 is cyclicÞ: As a result, P1 has at
least two elements v, v0 such that v ¿ v0 in PðGÞ: Otherwise by Lemma 1.1 P1 would be a cyclic
group. Clearly, oðvÞ and oðv0Þ are power of the prime p1: Let v00 be an element of order p2 in P2:
Now from the definition of the power graph v00 is edge connected to neither v nor v0: Also e is
edge connected to the vertices v, v0, v00: Hence C1, 3ðe, v, v0, v00Þ is an induced subgraph of PðGÞ:

Case 3: Let r ¼ 1: In this case, G is a non-abelian p-group. To prove this case we first prove
a claim.

Claim: Let H1 ¼ hvðpÞ1 i, :::,H‘ ¼ hvðpÞ‘ i be the collection of all distinct cyclic subgroups of
order p of G. We prove that either ‘ ¼ 1 or ‘ � 3: So, we have to prove that ‘ cannot be 2. So
suppose ‘ ¼ 2: Since G is p-group, the center of G is Z(G) is nontrivial. Therefore, Z(G) has a

subgroup Hi1 ¼ hvðpÞi1 i (say) of order p. Let Hi2 ¼ hvðpÞi2 i be another cyclic subgroup of order p,

(as ‘ � 2, we can choose more than one subgroup of order pÞ: Then vðpÞi1 vðpÞi2 ¼ vðpÞi2 vðpÞi1 and

oðvðpÞi1 vðpÞi2 Þ ¼ p: Take Hi3 ¼ hvðpÞi1 vðpÞi2 i and it is easy to see that H1 6¼ H3 and H2 6¼ H3:

Hence ‘ > 2:
Now using the claim we finish the proof of this case. First suppose that ‘ � 3: Then we can

choose three p-ordered elements vðpÞi1 , vðpÞi2 , and vðpÞi3 from Hi1 ,Hi2 , and Hi3 respectively. Clearly
they are not adjacent to each other. Therefore, PðGÞ has an induced subgraph

C1, 3ðe, vðpÞi1 , vðpÞi2 , vðpÞi3 Þ: Now let ‘ ¼ 1, i.e., G has exactly one cyclic subgroup of order p. Now by
Lemma 1.6, p cannot be an odd prime. Therefore p ¼ 2: Then, G ffi Q2n , where Q2n is the gener-
alized quaternion group of order 2n, n � 3: Now Q2n has exactly one subgroup H ¼ hvð2n�1Þi of
order 2n�1: Also, the number of 4-ordered elements in Q2nnH is 2n�1: Now, the number of dis-

tinct 4-ordered cyclic subgroups in Q2nnH is 2n�2: Let these are H1 ¼ hvð4Þ1 i, :::,H2n�2 ¼ hvð4Þ2n�2i:
Clearly 2n�2 � 2: So, we can choose two vertices vð4Þi1 and vð4Þi2 from Hi1 and Hi2 respectively,

where i1 6¼ i2 and oðvð4Þi1 Þ ¼ 4 ¼ oðvð4Þi2 Þ: Now vð4Þi1 , vð4Þi2 2 Q2nnH implies that vð2
n�1Þ neither edge

connected to vð4Þi1 nor to vð4Þi2 : Moreover, vð4Þi1 ¿ vð4Þi2 in PðGÞ: Therefore, PðGÞ has an induced sub-

graph C1, 3ðe, vð2n�1Þ, vð4Þi1 , vð4Þi2 Þ: This completes the proof. w
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3. Proof of the main theorem for proper power graphs

In this portion, we give the attention for the proof of Theorem 1.8. Here we first characterize all
cyclic groups, for which P��ðGÞ ¼ LðCÞ: Then we do same thing for the cases non-cyclic abelian
and non-abelian nilpotent groups.

Theorem 3.1. Let G be a finite cyclic group. Then there exists a graph C such that P��ðGÞ ¼ LðCÞ
if and only if G is one of the following:

(a) G ffi Zpt

(b) G ffi Zpq,

where p, q are distinct primes and t � 1:

To prove this theorem first we need to prove the following propositions:

Proposition 3.2. Let G be a finite cyclic group. Then P��ðGÞ does not contain the star graph C1, 3

as an induced subgraph if and only if G is one of the following:

(a) G ffi Zpt

(b) G ffi Zpqr

(c) G ffi Zp2q2

(d) G ffi Zptq,

where p, q, r are primes such that p 6¼ q 6¼ r and t � 1:

Proof. We divide the proof of this proposition in several cases.
Case 1: Let jGj has at least four distinct prime divisors say p, q, r, p0: Since G is cyclic, then G

has an element vðpqrÞ such that oðvðpqrÞÞ ¼ pqr: Also the cyclic subgroup hvðpqrÞi has elements
vðpÞ, vðqÞ, vðrÞ of order p, q, r, respectively. Clearly, the vertices vðpqrÞ, vðpÞ, vðqÞ and vðrÞ are not the
generators of the group G. Therefore, by Lemma 1.2 vðpqrÞ, vðpÞ, vðqÞ and vðrÞ 2 VðP��ðGÞÞ: Now
vðpÞ, vðqÞ, and vðrÞ 2 hvðpqrÞi implies that vðpqrÞ is edge connected to the vertices vðpÞ, vðqÞ, and vðrÞ:
Again, p, q, r are three distinct primes, therefore from the definition of power graph the vertices
vðpÞ, vðqÞ, and vðrÞ are not adjacent to each other. As a result, P��ðGÞ has an induced sub-
graph C1, 3ðvðpqrÞ, vðpÞ, vðqÞ, vðrÞÞ:

Case 2: Let jGj ¼ paqbpc3, where at least one of a, b, c � 2: Then applying the same argument
as in the Case 1, we can conclude that P��ðGÞ has an induced subgraph C1, 3ðvðpqrÞ, vðpÞ, vðqÞ, vðrÞÞ:

Now we show that if G ffi Zpqr, then P��ðZpqrÞ does not contain any induced subgraph iso-
morphic to C1, 3: Note that by Lemma 1.2, the identity and all the generators of the group Zpqr

are the complete list of dominating vertices of the graph PðZpqrÞ: Therefore, the identity and all
the generators of the group Zpqr are not in the vertex set VðP��ðZpqrÞÞ: If possible P��ðZpqrÞ con-
tains an induced subgraph C1, 3ðv, v1, v2, v3Þ, for some vertices v, v1, v2, v3 2 VðP��ðZpqrÞÞ: So, v �
vi for each i 2 f1, 2, 3g and vi ¿ vj for each pair i, jði 6¼ jÞ 2 f1, 2, 3g: Now the possible order of
the vertices of the graph P��ðZpqrÞ are either p or q or r or pq or pr or qr. Now order of v could
either p or q or r or pq or qr or pr. First suppose that oðvÞ ¼ pq: Then it is cleared (from the def-
inition of power graph) that v is edge connected only with each pq-ordered, p-ordered and q-
ordered vertices in P��ðZpqrÞ: Let V(t) be the collection of all vertices of order t. So we have to
choose v1, v2, v3 from VðpÞ [ VðqÞ [ VðpqÞ such that no two of them are adjacent. Note that we
cannot choose more than one vertex from any one of the set VðpÞ,VðqÞ,VðpqÞ: In fact, all the
vertices in any one of the set VðpÞ,VðqÞ,VðpqÞ form a clique. So, without loss of generality we
assume that v1 2 VðpÞ, v2 2 VðqÞ and v3 2 VðpqÞ: But it is cleared that v3 is edge connected to
both of the vertices v1 and v2: This violates the condition vi ¿ vj for each pair i, j 2 f1, 2, 3g:
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Similarly, we can show that the graph P��ðZpqrÞ do not have any induced subgraph isomorphic
to C1, 3ðv, v1, v2, v3Þ for the other possible choices of the oðvÞ, oðv1Þ, oðv2Þ, oðv3Þ:

Case 3: Let jGj has two distinct prime divisors p and q. Suppose G ffi Zpt1  Zqt2 : First we
consider that t1 � 3 and t2 � 2, (if t1 � 2 and t2 � 3, then also similar result holds). In this

case, P��ðZpt1  Zqt2 Þ have an induced subgraph C1, 3ðvðpÞ, vðp3Þ, vðp2qÞ, vðpq2ÞÞ, where oðvðpÞÞ ¼
p, oðvðp3ÞÞ ¼ p3, oðvðp2qÞÞ ¼ p2q, oðvðpq2ÞÞ ¼ pq2:

If G ffi Zptq, where t � 1: If we proceed exactly same way as in the proof of the case G ffi
Zpqr, we can conclude that P��ðZptqÞ does not have any induced subgraph isomorphic to star
graph C1, 3:

If G ffi Zp2q2 : As it was done in the case where G ffi Zpqr we can prove that P��ðZp2q2Þ does
not have any induced subgraph isomorphic to C1, 3:

Case 4: Let jGj has exactly one prime divisor p say. Now G ffi Zpt as a result P��ðZptÞ is com-
plete. Hence the result. w

Proposition 3.3. Let G be a cyclic group. Then P��ðGÞ does not contain the graph C2 (a graph in
Figure 1) as an induced subgraph if and only if G is one of the following:

(a) G ffi Zpt

(b) G ffi Zpq

(c) G ffi Z12

(d) G ffi Z18:

Proof. Let G be a cyclic group of order n such that n has at least three distinct prime divisors

p< q < r (say). Let vðqrÞ1 , vðqrÞ2 , vðqrÞ3 , vðqÞ, vðrÞ 2 G such that oðvðqrÞ1 Þ ¼ oðvðqrÞ2 Þ ¼ oðvðqrÞ3 Þ ¼
qr, oðvðqÞÞ ¼ q, oðvðrÞÞ ¼ r (since G is cyclic and jGj has at least three distinct prime divisors p, q,

r with p < q < r, then clearly /ðqrÞ � 3Þ: Clearly, vðqrÞ1 , vðqrÞ2 , vðqrÞ3 , vðqÞ, vðrÞ 2 VðP��ðGÞÞ: Now we
replace the vertices of the graph C2 in Figure 1 in the following way:

6 by vðqrÞ1 , 8 by vðqrÞ2 , 10 by vðqrÞ3 , 7 by vðqÞ, 9 by vðrÞ:

Clearly, the resulting induced graph isomorphic to C2:

If G ffi Zptq, t � 3, in this case P��ðGÞ have the vertices namely, vðp
2qÞ

1 , vðp
2qÞ

2 , vðp
2qÞ

3 , vðp
2Þ, vðqÞ,

where oðvðp2qÞ1 Þ ¼ oðvðp2qÞ1 Þ ¼ oðvðp2qÞ1 Þ ¼ p2q, ðas /ðp2qÞ � 3Þoðvðp2ÞÞ ¼ p2, oðvðqÞÞ ¼ q: Now we
replace the vertices of the graph C2 in the following way:

6 by vðp
2qÞ

1 , 8 by vðp
2qÞ

2 , 10 by vðp
2qÞ

3 , 7 by vðp
2Þ, 9 by vðqÞ:

Clearly, the resulting induced graph is isomorphic to C2 (in Figure 1).

Let G ffi Zp2q: Suppose /ðpqÞ � 3, then P��ðGÞ has three vertices vðpqÞ1 , vðpqÞ2 , vðpqÞ3 such that

oðvðpqÞ1 Þ ¼ pq ¼ oðvðpqÞ2 Þ ¼ oðvðpqÞ3 Þ: Also it has two vertices vðpÞ and vðqÞ such that oðvðpÞÞ ¼ p and
oðvðqÞÞ ¼ q: Now we replace the vertices of the graph C2 in the following way:

6 by vðpqÞ1 , 8 by vðpqÞ2 , 10 by vðpqÞ3 , 7 by vðpÞ, 9 by vðqÞ:

Clearly, the resulting induced graph is isomorphic to C2 (in Figure 1).
Now /ðpqÞ ¼ 2 if and only if either p ¼ 2, q ¼ 3 or q ¼ 2, p ¼ 3: So, either G ffi Z12 or G ffi

Z18: In these two cases we prove that P��ðZ12Þ and P��ðZ18Þ don’t have an induced subgraph
isomorphic to the graph C2 in Figure 1. In fact, in P��ðZ12Þ there are exactly two vertices namely,

vð3Þ1 , vð3Þ2 of order 3 and they generate same cyclic group. Also in P��ðGÞ, degðvð3Þ1 Þ ¼ 3 ¼ degðvð3Þ2 Þ
and vð3Þ1 , vð3Þ2 are the only vertices of degree 3. But the graph C2 has two vertices of degree 3 and
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they are not edge connected. Therefore, P��ðZ12Þ has no induced subgraph isomorphic to C2:
Again, in P��ðZ18Þ there is no vertex v such that degðvÞ ¼ 3: Hence in both of the cases it is not
possible. Now if G ffi Zpt , then P��ðZptÞ is complete. So P��ðZptÞ does not have any induced sub-
graph isomorphic to C2: Also for the group G ffi Zpq, the graph P��ðZpqÞ is disjoint union of two
cliques. Therefore, P��ðZpqÞ does not have any induced subgraph isomorphic to the graph C2 (in
Figure 1). This completes the proposition. w

Proof of Theorem 3.1. Clearly, from Propositions 3.2 and 3.3, it follows that P��ðGÞ is a line
graph of some graph C if and only if either G ffi Zpt or G ffi Zpq or G ffi Z12 or G ffi Z18: Now we
show that if G ffi Z12 or Z18, then there exists no graph C such that P��ðGÞ is line graph of C:
Let G ffi Z12, then we show that P��ðZ12Þ has an induced subgraph isomorphic to the graph C4 in

Figure 1. Clearly Z12 has elements vð6Þ1 , vð6Þ2 , vð3Þ1 , vð3Þ2 , vð2Þ, vð4Þ such that oðvð6Þ1 Þ ¼ oðvð6Þ2 Þ ¼
6, oðvð3Þ1 Þ ¼ oðvð3Þ2 Þ ¼ 3, oðvð2ÞÞ ¼ 2 and oðvð4ÞÞ ¼ 4: Now it is easy to see that P��ðZ12Þ contains
the graph C4 as an induced subgraph by replacing the vertices of the graph C4 in the following way:

17 by vð6Þ1 , 18 by vð2Þ, 19 by vð6Þ2 , 20 by vð3Þ1 , 21 by vð4Þ, and 22 by vð3Þ2 :

Let G ffi Z18, then we show that P��ðGÞ has an induced subgraph isomorphic to the graph C3 in

Figure 1. The group Z18 has elements vð3Þ1 , vð3Þ2 , vð6Þ1 , vð6Þ2 , vð9Þ1 , vð9Þ2 such that oðvð3Þ1 Þ ¼ oðvð3Þ2 Þ ¼
3, oðvð6Þ1 Þ ¼ oðvð6Þ2 Þ ¼ 6 and oðvð9Þ1 Þ ¼ oðvð9Þ2 Þ ¼ 9: Now we replace the vertices of the graph C3 in
the following way:

11 by vð3Þ1 , 12 by vð6Þ1 , 13 by vð3Þ2 , 14 by vð9Þ1 , 15 by vð6Þ2 , and 16 by vð9Þ2 :

Then the resulting graph is isomorphic to the graph C3: Hence the graphs P��ðZ12Þ and
P��ðZ18Þ are not line graph.

Let G ffi Zpq, in this case P��ðZpqÞ is the line graph of the graph C1,/ðpÞ � C1,/ðqÞ: Also for the
cyclic p-group Zpr ,P��ðZprÞ is the empty graph (empty graph is line graph). Hence, the theorem
is proved. w

Now we want to describe all non-cyclic abelian groups G for which P��ðGÞ is a line graph.
For this case we have the following:

Theorem 3.4. Let G be a non-cyclic abelian group. Then P��ðGÞ is a line graph of some graph C if
and only if G is one of the following:

(a) G ffi Z2  Z22

(b) G ffi Z22  Z22

(c) G ffi Zp  � � �  Zp, p is prime:

To prove Theorem 3.4, we use Lemma 1.3. According to this lemma we have to characterize
all non-cyclic abelian groups for which P��ðGÞ has an induced subgraph isomorphic to the star
graph C1, 3: Now Proposition 3.5 completely describes this case.

Proposition 3.5. Let G be a non-cyclic abelian group. Then P��ðGÞ does not contain C1, 3 as an
induced subgraph if and only if G is one of the following:

(a) G ffi Z2  Z22

(b) G ffi Z22  Z22

(c) G ffi Zp  � � �  Zp, p is prime:

Proof. First let jGj has at least two distinct prime divisors. In this case, we show that P��ðGÞ has
an induced subgraph isomorphic to C1, 3ðv, v0, v00, v000Þ, for some vertices v, v0, v00, v000 2 VðP��ðGÞÞ:
It is given that G is non-cyclic abelian group. Therefore,
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G ffi Zpt111
 � � �  Z

p
t1k1
1

 Zpt212
 � � �  Z

p
t2k2
2

 � � �  Zp
tr1
r
 � � �  Z

p
trkr
r
,

where 1 	 ti1 	 ti2 	 � � � 	 tiki , for all i 2 ½r
, r � 2, ki � 1 and there exists at least one ki such
that ki � 2: So, without loss of generality, we assume that k1 � 2: Consider

V ¼ fð�a, �b, �0, :::, �0
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k1 times

,�c, �0, :::, �0Þ : �a, �b,�c 2 G and oð�aÞ ¼ oð�bÞ ¼ p1, oð�cÞ ¼ p2g:

Clearly, V is a subset of G and each element of V is of order p1p2 and jVj ¼ ðp21 � 1Þðp2 � 1Þ:
Again these ðp21 � 1Þðp2 � 1Þ number of elements form ðp21�1Þðp2�1Þ

/ðp1p2Þ ¼ p1 þ 1 number of distinct

cyclic groups say H1,H2, :::,Hp1þ1, where order of each Hi is p1p2: Now, it is easy to see that, the
cyclic group hð�0, :::, �0

|fflfflfflffl{zfflfflfflffl}

k1 times

,�c, �0:::, �0Þi is contained in each of the cyclic groups H1, :::,Hp1þ1, where

oð�cÞ ¼ p2: Since p1 þ 1 � 3, we can choose three distinct vertices vðp1p2Þi1 , vðp1p2Þi2 and vðp1p2Þi3 from

Hi1 ,Hi2 and Hi3 (respectively) such that oðvðp1p2Þij Þ ¼ p1p2, for j 2 f1, 2, 3g and i1, i2, i3 2
f1, :::, p1 þ 1g: Also we take the vertex vðp2Þ ¼ ð�0, :::, �0

|fflfflfflffl{zfflfflfflffl}

k1 times

,�c, �0, :::, �0Þ: Then we get C1, 3ðv, v0, v00, v000Þ

as an induced subgraph in the graph P��ðGÞ, where v ¼ vðp2Þ, v0 ¼ vðp1p2Þi1 , v00 ¼ vðp1p2Þi2 , v000 ¼ vðp1p2Þi3 :

Now suppose that G is a non-cyclic abelian p-group. Then we can say that G ffi

Zp  � � �  Zp
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�0Þ times

Zpt1  � � �  Zptr , where t1 	 t2 	 � � � 	 tr, ti � 2 for all i: For this particular

groups (non-cyclic abelian p-groups), we break the prove in several cases.
Case 1: First suppose that r � 3: In this case, we show that P��ðGÞ has an induced subgraph

C1, 3ðvðpÞ, vðp
ðt1ÞÞ

1 , vðp
ðt1ÞÞ

2 , vðp
ðt1ÞÞ

3 Þ, where
vðpÞ ¼ ð�0, :::, �0

|fflfflffl{zfflfflffl}

k times

, �a, �0, �0, �0, :::, �0Þ

vðp
ðt1ÞÞ

1 ¼ ð�0, :::, �0
|fflfflffl{zfflfflffl}

k times

, �1, �b,�c, �0, :::, �0Þ

vðp
ðt1ÞÞ

2 ¼ ð�0, :::, �0
|fflfflffl{zfflfflffl}

k times

, �1, �b, �0, �0, :::, �0Þ

vðp
ðt1ÞÞ

3 ¼ ð�0, :::, �0
|fflfflffl{zfflfflffl}

k times

, �1, �0, �0, �0, :::, �0Þ,

a ¼ pt1�1 and oð�bÞ ¼ oð�cÞ ¼ p: Clearly, oð�aÞ ¼ p: Again �1 is a generator of the group Zpt1 and

we can write �a ¼ pt1�1�1: Also t1 � 2 implies that t1 � 1 � 1: Now oð�bÞ ¼ oð�cÞ ¼ p implies that

pt1�1vðp
ðt1ÞÞ

1 ¼ vðpÞ: Therefore, vðp
ðt1ÞÞ

1 � vðpÞ: Similarly, we can show that vðp
ðt1ÞÞ

2 � vðpÞ and vðp
ðt1ÞÞ

3 �
vðpÞ: Now we show that vðp

ðt1ÞÞ
i ¿ vðp

ðt1ÞÞ
j , for all i, j 2 f1, 2, 3g: Note that oðvðpðt1ÞÞi Þ ¼ pt1 for each i.

So vðp
ðt1ÞÞ

i � vðp
ðt1ÞÞ

j if and only if hvðpðt1ÞÞi i ¼ hvðpðt1ÞÞj i: But clearly it is not possible from the con-

struction of the vertices.
Case 2: Let r ¼ 2, so G ffi Zp  � � �  Zp

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�0Þ times

Zpt1  Zpt2 , where t1 	 t2, ti � 2 for all i:
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Subcase 1: First suppose that p is an odd prime. Since /ðpÞ � 2, we can choose two distinct
elements �b and �c from Zpt2 such that oð�bÞ ¼ oð�cÞ ¼ p: Also we can take another p-ordered elem-

ent �a 2 Zpt1 such that a ¼ pt1�1: Now we consider the vertices

vðpÞ ¼ ð�0, :::, �0, �a, �0Þ, vðp
t1 Þ

1 ¼ ð�0, :::, �0, �1, �bÞ,
vðp

t1 Þ
2 ¼ ð�0, :::, �0, �1,�cÞ, vðp

t1 Þ
3 ¼ ð�0, :::, �0, �1, �0Þ:

Continuing as Case 1, we can show that P��ðGÞ has an induced subgraph C1, 3ðvðpÞ, vðp
t1 Þ

1 ,

vðp
t1 Þ

2 , vðp
t1 Þ

3 Þ:
Subcase 2: Here we focus on the case p ¼ 2: So, G ffi Z2  � � �  Z2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�0Þ times

Z2t1  Z2t2 : In this case

we first consider that at least one t1 and t2 � 3: Without loss of generality we assume that t1 � 3:
Here we consider the vertices

v ¼ ð�0, :::, �0, �a, �0Þ, v1 ¼ ð�0, :::, �0, �1, �bÞ,
v2 ¼ ð�0, :::, �0, �1,�cÞ, v3 ¼ ð�0, :::, �0, �1, �0Þ,

where a ¼ 2t1�1, oð�bÞ ¼ 2, oð�cÞ ¼ 4: Clearly, P��ðGÞ has an induced subgraph C1, 3ðvð2Þ, vð2
t1 Þ

1 ,

vðt1Þ2 , vðt1Þ3 Þ:
Let G ffi Z2  � � �  Z2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k�0 times

Z22  Z22 : It is easy to see that P��ðGÞ has an induced subgraph

C1, 3ðvð2Þ, vð4Þ1 , vð4Þ2 , vð4Þ3 Þ, where
vð2Þ ¼ ð�0, :::, �0, �0, �0, �2Þ, vð4Þ1 ¼ ð�0, :::, �0, �1, �0, �1Þ
vð4Þ2 ¼ ð�0, :::, �0, �0, �0, �1Þ, vð4Þ3 ¼ ð�0, :::, �0, �0, �2, �1Þ

Case 3: Let r ¼ 1: In this case G ffi Zp  � � �  Zp
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�1Þ times

Zpt , t � 2:

Subcase 1: First suppose that p � 3: Then P��ðGÞ has an induced subgraph C1, 3ðvðpt�1Þ, vðp
tÞ

1 ,

vðp
tÞ

2 , vðp
tÞ

3 Þ, where
vðp

t�1Þ ¼ ð�0, :::, �0, �0, �pÞ, vðp
tÞ

1 ¼ ð�0, :::, �0, �2, �1Þ,
vðp

tÞ
2 ¼ ð�0, :::, �0, �0, �1Þ, vðp

tÞ
3 ¼ ð�0, :::, �0, �1, �1Þ

Subcase 2: Let p ¼ 2: Then G ffi Z2  � � �  Z2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�1Þ times

Z2t , t � 2: In this case, first suppose that k � 2:

Then the following vertices form an induced subgraph C1, 3ðvð2t�1Þ, vð2
tÞ

1 , vð2
tÞ

2 , vð2
tÞ

3 Þ, where
vð2

t�1Þ ¼ ð�0, :::, �0, �0, �0, �2Þ, vð2
tÞ

1 ¼ ð�0, :::, �0, �0, �1, �1Þ
vð2

tÞ
2 ¼ ð�0, :::, �0, �0, �0, �1Þ, vð2

tÞ
3 ¼ ð�0, :::, �0, �1, �0, �1Þ:

Now let k ¼ 1: Then G ffi Z2  Z2t , t � 2: In this case, we show that P��ðGÞ has an induced sub-
graph isomorphic to C1, 3 if and only if t � 3: In fact, for t � 3 we have the induced subgraph
C1, 3ðv, v1, v2, v3Þ, where v ¼ ð�0, �4Þ, v1 ¼ ð�1, �2Þ, v2 ¼ ð�0, �1Þ, v3 ¼ ð�1, �1Þ: Let G ffi Z2  Z22 : Clearly,
P��ðGÞ is the graph in Figure 2.

Now we show that there is no vertices v, v1, v2, v3 in VðP��ðGÞÞ such that P��ðGÞ has an
induced subgraph C1, 3ðv, v1, v2, v3Þ: The graph in Figure 2 has only one vertex namely, ð�0, �1Þ
such that degð�0, �1Þ ¼ 4 and the degree of all other vertices are 2. So, to form C1, 3ðv, v1, v2, v3Þ we
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should take v ¼ ð�0, �1Þ: Now it is clear that we cannot choose v1, v2, v3 such that no two of these
three vertices are adjacent.

Let G ffi Z22  Z22 , then we show that P��ðGÞ does not have any induced subgraph iso-
morphic to C1, 3: If possible there is an induced subgraph C1, 3ðv, v1, v2, v3Þ for some v, v1, v2, v3 2
P��ðGÞ: Then we show that oðvÞ ¼ 2: First note that v � viði ¼ 1, 2, 3Þ implies hvi � hvii, for all
i. If hv1i � hvi, then v � v2 implies that either hvi � hv2i or hv2i � hvi: Since G is a p-group,
then in any cases v1 � v2, which is not possible. So, oðvÞ ¼ 2 and oðviÞ ¼ 4, for all i. First con-
sider the two ordered element v ¼ ð�2, �0Þ: Our claim is that v is edge connected with exactly two
four ordered elements v1, v2 (say) such that hv1i 6¼ hv2i: Clearly, ð�2, �0Þ ¿ ð�a, �bÞ, where �b ¼ 4: By
our condition oð�aÞ ¼ 4: Therefore, ð�2, �0Þ is edge connected with the vertices ð�1, �0Þ, ð�3, �0Þ,
ð�1, �2Þ, ð�3, �2Þ: Also, hð�1, �0Þi ¼ hð�3, �0Þi and hð�1, �2Þi ¼ hð�3, �2Þi: This proves our claim. The same
claim holds for the vertex ð�0, �2Þ: The remaining two ordered element is ð�2, �2Þ: Let ð�2, �2Þ � ð�a, �bÞ:
Then we show that oð�aÞ ¼ 4 ¼ oð�bÞ: It is easy to see neither �a ¼ �0 nor �b ¼ �0: If �a ¼ �2, then
ð�2, �2Þ � ð�2, �bÞ implies there exists k 2 N such that k�2 ¼ �2 ) k�2 ¼ �2 ) k ¼ 4‘þ 1 ) ð4‘þ 1Þ�b 6¼
�2: Similar result holds if �b ¼ �2: As a result, ð�2, �2Þ 2 hð�1, �3Þi ¼ hð�3, �1Þi and hð�1, �1Þi ¼ hð�3, �3Þi:

Let G ffi Zp  � � �  Zp
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k times

: Here the graph P��ðGÞ is isomorphic to the graph

K/ðpÞ� � � ��K/ðpÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k times

: This completes the proof. w

Proof of Theorem 3.4. Let P��ðGÞ be a line graph of some graph C: Then by Proposition 3.5, we
can say that either G ffi Z2  Z22 or G ffi Z22  Z22 or G ffi Zp  � � �  Zp:

Conversely, we show that if G is one of the above, then P��ðGÞ is line graph of some graph. If
G ffi Z2  Z22 , then P��ðGÞ is the graph in Figure 2 and it is the line graph of the graph C,
described as in Figure 3.

Let G ffi Z22  Z22 : The group G has 6 distinct cyclic subgroups of order 4, namely H1 ¼
hð�1, �0Þi,H2 ¼ hð�0, �1Þi,H3 ¼ hð�1, �1Þi,H4 ¼ hð�1, �3Þi,H5 ¼ hð�1, �2Þi,H6 ¼ hð�2, �1Þi: Again ð�2, �0Þ 2
H1 \ H5, ð�2, �2Þ 2 H3 \ H4, ð�0, �2Þ 2 H2 \ H6: Therefore, P��ðGÞ is the graph in Figure 4.

Clearly, P��ðGÞ is the line graph of the graph described as in Figure 5.
Let G ffi Zp  � � �  Zp

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

k times

: In this case P��ðGÞ ffi K/ðpÞ� � � ��K/ðpÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k times

: Clearly, it is the line graph

of the graph C1,/ðpÞ� � � ��C1,/ðpÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k times

, where k ¼ pk�1 þ pk�2 þ � � � þ pþ 1: This completes the

proof. w

In this portion, we study the non-abelian nilpotent groups G for which P��ðGÞ is line graph.

Figure 2. The proper power graph P��ðZ2  Z22Þ:
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Theorem 3.6. Let G be a non-abelian nilpotent group such that jGj has at least three distinct prime
divisors. Then there is no graph C such that P��ðGÞ ¼ LðCÞ:

Proof. Let p1, p2, p3 be three distinct prime divisors of jGj: Now G nilpotent implies that G has an
element vðp1p2p3Þ such that oðvÞ ¼ p1p2p3: Now hvðp1p2p3Þi has elements vðp1Þ, vðp2Þ, vðp3Þ such that

Figure 3. The graph C such that P��ðZ2  Z22 Þ ¼ LðCÞ:

Figure 4. The graph P��ðZ22  Z22 Þ:

Figure 5. The graph C such that P��ðZ22  Z22 Þ ¼ LðCÞ:
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oðvðp1ÞÞ ¼ p1, oðvðp2ÞÞ ¼ p2, oðvðp3ÞÞ ¼ p3: Clearly, P��ðGÞ has an induced subgraph C1, 3ðvðp1p2p3Þ,
vðp1Þ, vðp2Þ, vðp3ÞÞ: Hence, the theorem is proved. w

Theorem 3.7. Let G be non-abelian nilpotent group such that jGj has exactly two distinct prime
divisors. Then there is no graph C such that P��ðGÞ ¼ LðCÞ:

Proof. It is given that G is non-abelian nilpotent and jGj has two distinct prime divisors. Let the
prime divisors are p1 and p2: Note that G ffi P1  P2, where P1, P2 are Sylow subgroups of G
with jP1j ¼ pa11 and jP2j ¼ pa22 : So jGj ¼ pa11 p

a2
2 , where at least one ai � 2ði ¼ 1, 2Þ: Otherwise, G

would be cyclic. First suppose that p1 and p2 are odd primes. Now G is nilpotent, therefore G has
an element vðp1p2Þ of order p1p2: Consider the cyclic subgroup H ¼ hvðp1p2Þi: (Note that all the ele-
ments of the cyclic group H belong to VðP��ðGÞÞ:Þ Again H has elements vðp1Þ and vðp2Þ of order
p1 and p2 respectively. Also no elements in hvðp1Þi is edge connected with the element in hvðp2Þi:
Now p1 and p2 are odd primes, which imply that /ðp1p2Þ,/ðp1Þ,/ðp2Þ � 2: Let vðp1Þ1 ,

vðp1Þ2 , vðp2Þ1 vðp2Þ2 and vðp1p2Þ1 , vðp1p2Þ1 are elements of H such that oðvðp1Þ1 Þ ¼ oðvðp1Þ2 Þ ¼ p1, oðvðp2Þ1 Þ ¼
oðvðp2Þ2 Þ ¼ p2, and oðvðp1p2Þ1 Þ ¼ oðvðp1p2Þ2 Þ ¼ p1p2: Now we replace the vertices of the graph C3 in
Figure 1 in the following way:

11 by vðp1p2Þ1 , 13 by vðp1p2Þ2 , 12 by vðp1Þ1 , 15 by vðp1Þ2 , 14 by vðp2Þ1 and 16 by vðp2Þ2 :

It is easy to see that the resulting graph is isomorphic to the graph C3 in Figure 1.
Now let at least one of p1 and p2 be 2. Let p1 ¼ 2: Then jGj ¼ 2kpr2, for some r, k 2 N with at

least one of r, k � 2: First suppose that G has an element of order 2k, k � 2: Now G has an elem-

ent vð2
kp2Þ such that oðvð2kp2ÞÞ ¼ 2kp2: As /ð2kp2Þ � 2, we can choose two elements vð2

kp2Þ
1 , vð2

kp2Þ
2

form hvð2kp2Þi such that oðvð2kp2Þ1 Þ ¼ 2kp2 and oðvð2kp2Þ1 Þ ¼ 2kp2: Also hvð2kp2Þi has elements

namely, vð2
kÞ

1 , vð2
kÞ

2 ðas k � 2,/ð2kÞ � 2Þ, vðp2Þ1 , vðp2Þ2 such that oðvð2kÞ1 Þ ¼ 2k, oðvð2kÞ2 Þ ¼ 2k, oðvðp2Þ1 Þ ¼
p2, oðvðp2Þ2 Þ ¼ p2 (p2 is an odd prime, so it is possible to find at least two elements of order p2 in
hvð2p2ÞiÞ: Now we replace the vertices of the graph C3 in Figure 1 in the following way:

11 by vð2
kp2Þ

1 , 13 by vð2
kp2Þ

2 , 12 by vð2
kÞ

1 , 15 by vð2
kÞ

2 , 14 by vðp2Þ1 and 16 by vðp2Þ2 :

As a result P��ðGÞ has an induced subgraph isomorphic to the graph C3: Therefore, in this case
P��ðGÞ is not a line graph.

Now suppose that order of each element of the Sylow subgroup P1 is 2. Then either P1 ffi
Z2  � � �  Z2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�2Þ times

or P1 ffi Z2: Therefore, either G ffi Z2  � � �  Z2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

kð�2Þ times

P2 or G ffi Z2  P2: In both of

the cases, G has at least one element vð2Þ (say) of order 2. Let H1 ¼ hvðp2Þ1 i, :::,H‘ ¼ hvðp2Þ‘ i be the
complete list of distinct cyclic subgroups of order p2 of the Sylow subgroup P2: Now by the claim
in Case 3 of the proof of Theorem 2.3 ‘ 6¼ 2: Again ‘ ¼ 1 implies that G is abelian by Lemma

1.6. Therefore, ‘ � 3: Consider K1 ¼ hvð2Þvðp2Þ1 i, :::,K‘ ¼ hvð2Þvðp2Þ‘ i: Clearly, each Ki is a cyclic

group of order 2p2: Moreover, for all i 6¼ j,Ki 6¼ Kj and Ki \ Kj ¼ hvð2Þi, where i, j 2
f1, :::, ‘g, ð‘ � 3Þ: Now we choose three generators vð2Þvðp2Þi1 , vð2Þvðp2Þi2 and vð2Þvðp2Þi3 from three dis-
tinct cyclic subgroups Ki1 ,Ki2 and Ki3 respectively, where i1, i2, i3 2 f1, :::, ‘g: Since Ki1 ,Ki2 and Ki3

are distinct cyclic subgroups, then vð2Þvðp2Þi1 , vð2Þvðp2Þi2 and vð2Þvðp2Þi3 are not adjacent to reach other in

P��ðGÞ: Also hvð2Þi is contained in each of the cyclic subgroups Ki1 ,Ki2 , and Ki3 : As a result,

P��ðGÞ contains an induced subgraph C1, 3ðvð2Þ, vð2Þvðp2Þi1 , vð2Þvðp2Þi2 , vð2Þvðp2Þi3 Þ: This completes the
proof. w
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Theorem 3.8. Let G be a non-abelian p-group, where p is an odd prime. Then there is a graph C
such that P��ðGÞ ¼ LðCÞ if and only if G ¼ Zpt1 [ � � � [ Zpt‘ , where ‘ is the number of distinct
subgroups of order p.

Proof. First suppose that G ¼ Zpt1 [ � � � [ Zpt‘ , where ‘ is the number of distinct subgroups of
order p. Now for any i 6¼ j,Zpti \ Zptj ¼ feg, the identity of the group G. In fact, for a non-

identity element a 2 Zpti \ Zptj , the p-order cyclic subgroup of hai is contained in Zpti \ Zptj :

And this contradicts that G ¼ Zpt1 [ � � � [ Zpt‘ , where ‘ is the number of distinct subgroups of
order p. As a result, for any i 6¼ j,Zpti \ Zptj ¼ feg: So, P��ðGÞ is a line graph of the

graph C1, pt1 � � � � � C1, pt‘ :

Conversely, suppose that there is a graph C such that P��ðGÞ ¼ LðCÞ: We show that G ¼
Zpt1 [ � � � [ Zpt‘ , where ‘ is the number of distinct subgroups of order p. Now G is a p-group. So
we can write G ¼ K1 [ � � � [ Kr, where

K1 ¼ fxð1Þ 2 G : hað1Þi � hxð1Þi and oðað1ÞÞ ¼ pg [ feg
K2 ¼ fxð2Þ 2 G : hað2Þi � hxð2Þi, að2Þ 2 Gnhað1Þi and oðað2ÞÞ ¼ pg [ feg

..

. ..
.

Kr ¼ fxðrÞ 2 G : haðrÞi � hxðrÞi, aðrÞ 2 Gnhað1Þi [ � � � [ haðr�1Þi, and oðaðrÞÞ ¼ pg [ feg
(Note that r 6¼ 1: If r ¼ 1, then G is a group with unique minimal subgroup. Again p is an odd
prime, therefore, G is a cyclic p-group, it contradicts that G is non-abelian). Clearly, Ki \ Kj ¼
feg for any i 6¼ j: Now it is enough to show that each Ki ¼ Zpti , for some ti � 1: Let there is at
least one j such that Kj is not a cyclic subgroup of G. Then we can write Kj as a union cyclic sub-

groups of G. In fact, since Kj is not a cyclic group there exists at least one element say xðp
rÞ

ðjÞ 2 Kj

such that oðxðprÞðjÞ Þ ¼ pr, r � 2, (if order of each element of Kj is p then Kj would be cyclic by the

construction of KjÞ: Consider Kr
ðjÞ ¼ hxðprÞðjÞ i: Clearly, it is a cyclic subgroup of Kj: Since Kj is not

cyclic group then there is an element say
~

xðp
rÞ

ðjÞ 2 KjnKr
ðjÞ such that oð ~

xðp
rÞ

ðjÞ Þ ¼ ps, s � 2ðs ¼
1 implies Kj ¼ ZprÞ: Let Ks

ðjÞ ¼ h ~
xðp

sÞ
ðjÞ i: Note that neither Kr

ðjÞ is a subgroup of Ks
ðjÞ nor Ks

ðjÞ is a

subgroup of Kr
ðjÞ and Kr

ðjÞ \ Ks
ðjÞ contains the cyclic subgroup haðjÞi: Now p � 3 implies that

/ðpÞ,/ðprÞ and /ðpsÞ � 2: Let aðjÞ1, aðjÞ2 be two p-ordered elements of Kj, x
ðprÞ
ðjÞ1 , x

ðprÞ
ðjÞ2 be two pr-

ordered elements of Kr
ðjÞ and xðp

sÞ
ðjÞ1 , x

ðpsÞ
ðjÞ2 be two ps-ordered elements of Ks

ðjÞ: Now we replace the

vertices of the graph C3 in Figure 1 in the following way:

11 by aðjÞ1, 13 by aðjÞ2, 12 by xðp
rÞ

ðjÞ1 , 15 by xðp
rÞ

ðjÞ2 , 14 by xðp
sÞ

ðjÞ1 and 16 by xðp
sÞ

ðjÞ2 :

Clearly the resulting graph is isomorphic to the graph C3: Therefore, P��ðGÞ has an induced sub-
graph isomorphic to C3: This contradicts the fact that P��ðGÞ is a line graph. Therefore, each
Ki ¼ Zpti , for some ti 2 N: Clearly r ¼ ‘ and hence G ¼ Zpt1 [ � � � [ Zpt‘ , where ‘ is the number
of distinct cyclic subgroup of order p. w

Proof of Theorem 1.8. Clearly, Theorems 3.1, 3.4, 3.6, 3.7, 3.8 complete the proof. w

Now we concentrate on non-abelian 2-group. For that we need the structures of dihedral
groups and generalized quarternion groups. For n � 2, the dihedral group of order 2n is defined
by the following presentation:
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D2n ¼ hr, s : rn ¼ s2 ¼ e, rs ¼ sr�1i:
We also consider the generalized quarternion groups Q2n : Let x ¼ ð1, 0Þ and y ¼ ð0, 1Þ: Then
Q2n ¼ hx, yi, where
(a) x has order 2n�1 and y has order 4,
(b) every element of Q2n can be written in the form xa or xay for some a 2 Z,
(c) x2

n�2 ¼ y2,
(d) for each g 2 Q2n such that g 2 hxi, such that gxg�1 ¼ x�1:

For more information about D2n, and Q2n see [13, 15, 29].

Proof of Theorem 1.9. We know that Q2n has exactly one cyclic subgroup H of order 2n�1: Also
each element in Q2nnH is of order 4. So, there are 2n�2 distinct 4-ordered cyclic subgroups in
Q2n : Clearly, P��ðQ2nÞ is the graph K2n�1 � K2�� � ��K2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

2n�2 times

: Therefor, P��ðQ2nÞ is the line graph of

the graph C1, 2n�1 � C1, 2�� � ��C1, 2
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2n�2 times

: w

Proof of Theorem 1.10. Suppose n is not a power of 2. Then clearly jDnj has a prime divisor p 6¼
2: Therefore by Theorem 3.7 P��ðDnÞ is not a line graph.

Conversely, let n ¼ 2k, then Dn is 2-group. Also Dn ¼ Z2k [ Z2 [ � � � [ Z2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

2k times

and the number of

distinct 2-ordered cyclic subgroup is 2kþ1: Then by Theorem 1.8, P��ðDnÞ is line graph. w
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