```
Manuscript ID:
Manuscript title: van der Waals Interactions for Controlling Amide cis-trans
Isomerism
```

Authors: Sunil K. Gupta, Shreya Banerjee, Erode N. Prabhakaran*

Affiliation: Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka - 560012, India.

E-mail: eprabhak@iisc.ac.in; erodeprabhakaran02@gmail.com.
Tel.: +91 802293 3380; Fax: (+) 918023600529
Table of Contents Page No.
S1. Materials 3
S2. Methods 3
S3. NMR markers for C-H... π interactions at Pro-Pro-Xaa motifs 5
when Xaa = aromatic
S4. Crystal structure of Ibu-cisPro-Val-OMe (2) (Ibu = isobutyroyl) 5
S5. Experimental Section 8
S6. Purification and Spectral Details 9
S7. Conformational analyses from 2D-NMR spectra 16
S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Tables 21
S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 27
S10. Calculation of dihedral angles from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data 33
S11. Superimposed cis and trans conformations of 1-6 33
S12. Type a fold and $\mathrm{i}-1 . . \mathrm{i}+1$ vdW interactions in protein (3CXN) 35

S1. Materials

All the reactions were performed in oven dried apparatus and were stirred using magnetic stir-bars. Column chromatography was performed on silica gel (100-200 mess) (Acme's) purchased from Sd-fine chemicals. Thin Layer Chromatography (TLC) was carried out on Merck DC Kieselgel 60 F254 aluminium sheets. Compounds were visualized by one of the (or all of the) following methods: (1) fluorescence quenching, (2) spray with a 0.2% (w / v) ninhydrin solution in absolute ethanol, (3) spray with $1 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(1: 5 \mathrm{v} / \mathrm{v})$, (4) charring on hot plate. Ethylacetate and hexanes (or low boiling fractions of petroleum ether) were obtained from Sd-fine chemicals and were fractionally distilled at their respective boiling points, before use. Dichloromethane was dried by distillation over phosphorus pentoxide ($\mathrm{P}_{2} \mathrm{O}_{5}$). N-methyl Morpholine (NMM) was distilled over calcium hydride (CaH_{2}). NMR spectra were recorded on BRUKER-AV400 (400 MHz) spectrometer (Bruker Co., Faellanden, Switzerland). Chemical shifts are expressed in parts per million (ppm) from the residual non-deuterated chloroform in $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.00 \mathrm{ppm}\right) . J$ values are expressed in Hertz (Hz). Multiplicities are indicated using the following abbreviations: s (singlet), d (doublet), dd (doublet of doublets), dt (doublet of triplet), t (triplet), q (quartet), quin (quintet), sext (sextet), hept (heptet), m (multiplet), bs (broad singlet). 2D NMR spectra were recorded in phase sensitive mode using time-proportional phase incrementation for quadrature detection in the t_{1} dimension. Mass spectra were obtained with Micromass Q-Tof (ESI-HRMS). Melting points analyses were performed in VEEGO melting point apparatus (VEEGO Inst. Co., Mumbai, India).

S2. Methods

S2.1. HSQC Experiment:

The HSQC spectra were recorded at 300 K with a mixing time of 200 ms using the hsqctgpsi2 pulse sequence. An HSQC continuous wave spin-lock of 1.5 KHz was used to collect 2 K points in the $f 2$ domain and 512 points in the $f 1$ domain. The data were processed using Bruker TOPSPIN 3.0 version software.

S2.2. TOCSY Experiment:

The TOCSY spectra were recorded at 300 K with mixing time of 200 ms using the MLEVPH pulse sequence. A TOCSY continuous wave spin-lock of 1.5 KHz was used to collect 2 K points
in the $f 2$ domain and 512 points in the $f 1$ domain. The data were processed using Bruker TOPSPIN 3.0 version software. A 90° sine-squared window function was applied in both directions.

S2.3. ROESY Experiment:

The ROESY spectra were recorded at 300 K with mixing time of 300 ms using ROESYPH pulse sequence. A ROESY continuous wave spin-lock of 1.5 KHz was used to collect 2 K points in the $f 2$ domain and 512 points in the $f 1$ domain. The data were processed using Bruker TOPSPIN 3.0 version software. A 90° sine-squared window function was applied in both directions.

S2.4 Crystal Structure Determination

Single crystals of the peptide $\mathbf{2}$ was obtained by slow evaporation of solvent from a solution in a mixture of ethylacetate : hexane (1:2). X-ray diffraction data were collected at $-173^{\circ} \mathrm{C}$ on a Brucker KAPPA APEX2 diffractometer using Mo K_{α} radiation. The data were collected using multi-scan mode. The structure was obtained by using direct methods in SHELXD ${ }^{1}$ and was refined against F_{2} by the full matrix least squares method using SHELXL-97. ${ }^{2}$ Hydrogen atoms were fixed geometrically in idealized positions and were refined as riding over the heavy atoms to which they are bonded. The crystal and diffraction parameters are provided separately. CCDC 994103 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam. ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk).

1. Schneider, T. R.; Sheldrick, G. M., Substructure solution with SHELXD. Acta Crystallographica Section D 2002, 58 (10 Part 2), 1772-1779.
2. Sheldrick, G. M. SHELXL-97, A Program for Crystal Structure Refinement; University of Gottingen: Gottingen, 1997.

S3. NMR markers for C-H...匹 interactions at Pro-Pro-Xaa motifs when Xaa = aromatic

Figure 1.

$$
\begin{gathered}
\Delta \delta_{\mathrm{ppm}}=\Delta \delta(\text { trans-cis }) \mathrm{ppm}=\delta\left(\mathrm{H}_{\operatorname{Pro(i-1)}}^{\alpha} \text { in transPro rotamer }\right)-\delta\left(\mathrm{H}_{\mathrm{Pro(i-1)}}^{\alpha} \text { in cisPro rotamer }\right) \\
\text { Neither } \mathrm{ROESY} \text { nor } \Delta \delta \text { is observed when } \mathrm{i}+1=\text { Alp }
\end{gathered}
$$

Reference: Ganguly, H. K.; Majumder, B.; Chattopadhyay, S.; Chakrabarti, P.; Basu, G., Direct Evidence for CH $\cdots \pi$ Interaction Mediated Stabilization of Pro-cisPro Bond in Peptides with Pro-Pro-Aromatic motifs. J. Am. Chem. Soc. 2012, 134 (10), 4661-4669.

S4. Crystal structure of Ibu-cisPro-Val-OMe (2) (Ibu = isobutyroyl)

Figure 2. Stereoview of the crystal structure of Ibu-cisPro-Val-OMe (2). (Crystallized from EtOAc : Hexane (1:2))

Table 1. A list of selected dihedral angles obtained from the crystal structure of compound 2.
Conformational Angles (deg)

Peptide Backbone	A	B	Pyrrolidine Ring	A	B
$\omega_{1}\left(\mathrm{C}^{\alpha}{ }_{\text {Ibu }}-\mathrm{C}_{\text {Ibu }}^{\prime}-\mathrm{N}_{\mathrm{Pro}}-\mathrm{C}^{\alpha}{ }_{\mathrm{Pro}}\right)$	-1.7(7)	-4.9(6)	$\theta\left(\mathrm{C}^{\delta} \mathrm{Pro}^{-} \mathrm{N}_{\mathrm{Pro}}-\mathrm{C}^{\alpha}{ }_{\mathrm{Pro}}-\mathrm{C}^{\beta} \mathrm{Pro}\right)$	-11.2(8)	-11.1(1)
$\phi_{1}\left(\mathrm{C}_{\text {Ibu }}^{\prime}-\mathrm{N}_{\mathrm{Pro}}-\mathrm{C}^{\alpha}{ }_{\text {Pro }}-\mathrm{C}_{\text {Pro }}^{\prime}\right)$	-77.5(4)	-73.1(6)	$\chi^{1}{ }_{\text {Pro }}\left(\mathrm{N}_{\text {Pro }}-\mathrm{C}^{\alpha}{ }_{\text {Pro }}-\mathrm{C}^{\beta}{ }_{\text {Pro }}-\mathrm{C}^{\gamma}{ }_{\text {Pro }}\right)$	31.3(8)	30.4(8)
$\psi_{1}\left(\mathrm{~N}_{\mathrm{Pro}} \mathrm{C}^{\alpha}{ }_{\text {Pro }}-\mathrm{C}^{\prime} \mathrm{Pro}^{-}-\mathrm{N}_{\mathrm{Val}}\right)$	158.4(7)	150.5(8)	$\chi^{2} \mathrm{Pro}\left(\mathrm{C}^{\alpha} \mathrm{Pro}^{-} \mathrm{C}^{\beta} \mathrm{Pro}^{\prime} \mathrm{C}^{\gamma} \mathrm{Proro}^{-} \mathrm{C}^{\delta} \mathrm{Pro}^{\prime}\right)$	-39.7(1)	-38.7(0)
$\omega_{2}\left(\mathrm{C}^{\alpha}{ }_{\text {Pro }}-\mathrm{C}_{\text {Pro }}^{\prime}-\mathrm{N}_{\mathrm{Val}}-\mathrm{C}^{\alpha}{ }_{\text {Val }}\right)$	169.0(7)	163.8(0)	$\chi^{3}{ }_{\text {Pro }}\left(\mathrm{C}^{\beta}{ }_{\text {Pro }}-\mathrm{C}^{\gamma} \mathrm{Pro}^{-} \mathrm{C}^{\delta} \mathrm{Pro}-\mathrm{N}_{\mathrm{Pro}}\right)$	32.5(0)	31.5(7)
$\phi_{2}\left(\mathrm{C}_{\text {Pro }}^{\prime}{ }^{\left.-\mathrm{N}_{\mathrm{Val}}-\mathrm{C}^{\alpha}{ }_{\mathrm{Val}}-\mathrm{C}^{\prime}{ }_{\mathrm{Val}}\right)}\right.$	-120.0(4)	-75.0(8)	$\chi^{4} \mathrm{Pro}\left(\mathrm{C}^{\gamma} \mathrm{Pro}^{-} \mathrm{C}^{\delta} \mathrm{Pro}^{-}-\mathrm{N}_{\mathrm{Pro}}-\mathrm{C}^{\alpha}{ }_{\text {Pro }}\right)$	-13.1(9)	-12.7(2)
	-59.7(5)	-59.8(6)			

Figure 3. Packing diagram of compound $\mathbf{2}$ indicating intermolecular hydrogen bonds with the assembly of molecules proceeding along the \mathbf{c} axis. Hydrogen atoms are not shown for clarity.

Table 2. Crystal and diffraction parameters of 2.

	2
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
Crystal shape	Block
Crystal size (mm^{3})	$0.30 \times 0.20 \times 0.15$
Crystal Colour	White
Crystallizing solvent	EtoAc-Hex
Space group	P 1
Space latice	Triclinic
Cell parameters	
$\mathrm{a}(\mathrm{A})$	8.900(2)
b (\AA)	8.958(2)
c (A)	10.397(2)
α (deg)	92.153(13)
β (deg)	96.035(13)
γ (deg)	94.714(12)
Volume (\AA^{3})	820.6(3)
Z	1
Molecular weight	298.38
Density ($\mathrm{g} / \mathrm{cm}^{3}$) (cal)	1.208
F (000)	324
Radiation (0.71073 A)	Mo K ${ }^{\text {d }}$
Temperature (K)	100
2θ max (deg)	52.00
Scan type	ω scan
Measured reflections	12266
Independent reflections	5408
Unique reflections	5408
Observed reflections $[\|F\|>4 \sigma(F)]$	4838
Final R (\%)	4.31
Final wR2 (\%)	12.18
Goodness-of-fit (S)	0.845
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.192
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	-0.194
No. of restraints / parameters	3/389

S5. Experimental Section

S5.1. Synthesis of $\mathrm{Ibu}_{i-1}-\mathrm{PrO}_{i-}-\mathrm{Xaa}_{\mathrm{i}+1}-\mathrm{OMe}(1-6)$:

The syntheses of the analogues 1-4, $\mathbf{6}$ was accomplished using the standard solution phase mixed anhydride peptide coupling protocol in the presence of ethylchloroformate (ECF). The N -terminal of L-Pro ($\mathrm{a}, 0^{\circ} \mathrm{C}, 86.8 \mathrm{mmol}$) was protected with the acid labile t-butyloxycarbonyl (Boc) group in the presence of ditertiarybutyl dicarbonate (Boc$)_{2} \mathrm{O}(91.2 \mathrm{mmol})$ and two equivalents of potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, 173.6 \mathrm{mmol}\right)$ in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$: tetrahydrofuran (THF) solvent mixture (1:1) to get N -Boc-Pro-OH (b) in excellent yields. N -Boc protected proline was coupled with the desired amino ester hydrochloride salt in the presence of ethyl chloroformate and N -methyl morpholine in THF : DMF solvent mixture to get the corresponding Boc-Pro-Xaa-OMe dipeptides ($\mathbf{c}_{1}-\mathbf{c}_{4}, \mathbf{c}_{6}$) in good yields. Boc deprotection of \mathbf{c}_{1} $\mathbf{c}_{4}, \mathbf{c}_{6}$ in the presence of 20% trifluoroacetic acid in dichloromethane followed by coupling of the resulting secondary ammonium salt with isobutyric acid in the presence of ethyl chloroformate and N -methyl morpholine yielded the desired dipeptide analogues (1-4, 6) in good yields.

Scheme 1. Synthesis of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Xaa}_{i+1}-\mathrm{OMe}(1-4,6)$.
For the synthesis of $\mathbf{5}$, to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of Ibu-Pro-OH (1.08 mmol), 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide (EDC. HCl) $(1.40 \mathrm{mmol})$ and $\mathrm{HOBt}(1.40 \mathrm{mmol})$ in acetonitrile (MeCN) H-Cha-OMe.HCl (1.19 mmol) was added followed by Diisopropylethylamine (DIPEA) (4.32 mmol) under N_{2} atmosphere and vigorously stirred.

After 20 min the mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred further until TLC indicated complete consumption of the starting material acid.

Scheme 2. Synthesis of $\mathrm{Ibu}_{i-1}-$ Pro $_{i}-\mathrm{Cha}_{i+1}-\mathrm{OMe}(5)$.

S6. Purification and Spectral Details

S6.1. ((tert-butoxycarbonyl)-L-proline 2 (b):

THF was removed and extracted with diethyl ether ($2 \times 5 \mathrm{~mL}$) to remove the unreacted $(\mathrm{Boc})_{2} \mathrm{O}$. The aqueous layer was acidified to $\mathrm{pH}=2$, followed by extraction of the product with copious volumes of ethyl acetate to obtain the desired product as white solid ($18.1 \mathrm{gm}, 84.2$ mmol, 97%), which was used further without any purification.

S6.2. tert-butyl (S)-2-(((S)-1-methoxy-1-oxopropan-2-yl)carbamoyl)pyrrolidine-1carboxylate c_{1} :

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (20 mL), washed with 10 mL water ($2 \mathrm{X} \mathrm{5mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and
concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane - $1: 8$) yielded the desired product as a white solid (1291 $\mathrm{mg}, 4.30 \mathrm{mmol}, 93 \%$ yield); (mp 71-73 ${ }^{\circ} \mathrm{C}$); (TLC- EtOAc $\left.-R_{f}=0.56\right)$; IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3419, 3323, 2984, 1743, 1682, 1516, 1455, 1394, $1256 \mathrm{~cm}^{-1}$; HRMS m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na} 323.1583(\mathrm{M}+\mathrm{Na})$, Found 323.1583.

S6.3. tert-butyl (S)-2-(((S)-1-methoxy-3-methyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1carboxylate (c_{2}):

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (20 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution (2 X 5 mL). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane - $1: 15$) yielded the desired product as a white solid (1388 $\mathrm{mg}, 4.23 \mathrm{mmol}, 91 \%$ yield); (mp $\left.64-66^{\circ} \mathrm{C}\right)$; (TLC- $\mathrm{EtOAc}-R_{f}=0.63$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3417, $3318,2972,1741,1682,1603,1517,1438,1394,1265 \mathrm{~cm}^{-1}$; HRMS m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na} 351.1896(\mathrm{M}+\mathrm{Na})$, Found 351.1892.

S6.4. tert-butyl (S)-2-(((2S,3R)-1-methoxy-3-methyl-1-oxopentan-2-yl) carbamoyl) pyrrolidine-1-carboxylate (c_{3}):

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water (2 X 5 mL) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and
concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane-1:9) yielded the desired product as a viscous liquid (683 $\mathrm{mg}, 2.00 \mathrm{mmol}, 86 \%$ yield); (TLC- EtOAc $-R_{f}=0.63$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3422, 3315, $2960,1743,1682,1602,1518,1438,1394,1262 \mathrm{~cm}^{-1}$; HRMS m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$ $365.2052(\mathrm{M}+\mathrm{Na})$, Found 365.2054.

S6.5. tert-butyl (S)-2-(((S)-1-methoxy-4-methyl-1-oxopentan-2-yl)carbamoyl)pyrrolidine-1carboxylate (c_{4}):

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water (2 X 5 mL) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc: Hexane - $1: 9$) yielded the desired product as a white solid (883 $\mathrm{mg}, 2.58 \mathrm{mmol}, 92 \%$ yield); (mp 89-91 ${ }^{\circ} \mathrm{C}$); (TLC- EtOAc $-R_{f}=0.63$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl ${ }_{3}$): 3422, 3313, 2960, 1743, 1682, 1624, 1518, 1438, 1395, $1291 \mathrm{~cm}^{-1}$; HRMS m/z Calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na} 365.2052(\mathrm{M}+\mathrm{Na})$, Found 365.2052.

S6.6. tert-butyl (S)-2-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (c_{6}) :

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (20 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution (2 X 5 mL). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane - 1 : 9) yielded the desired product as a white solid (1594 $\mathrm{mg}, 4.24 \mathrm{mmol}, 91 \%$ yield); (mp $72-74{ }^{\circ} \mathrm{C}$); (TLC- EtOAc $-R_{f}=0.63$); FTIR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in
$\left.\mathrm{CHCl}_{3}\right): 3420,3311,2983,1745,1681,1516,1438,1394,1258 \mathrm{~cm}^{-1}$. HRMS m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na} 399.1896(\mathrm{M}+\mathrm{Na})$, Found 399.1893.

S6.7. Methyl-N-isobutyroyl-L-prolyI-L-alaninate (1)

After Boc-deprotection, solvent was removed under vacuum connected to KOH trap to obtain the desired TFA salt product as viscous oil ($314 \mathrm{mg}, 1.00 \mathrm{mmol}, 100 \%$ yield), which was directly used for further reactions.

Removal of solvent after coupling reaction resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution (2 X 5 mL). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc: Hexane - $3: 7$) yielded the desired product as a viscous liquid ($211 \mathrm{mg}, 0.78 \mathrm{mmol}, 78 \%$ yield); (TLC- EtOAc) $-R_{f}=0.34$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in $\left.\mathrm{CHCl}_{3}\right): 3447,3422,3291,2983,1743,1677,1624,1522,1436,1321,1241 \mathrm{~cm}^{-1} ; \mathrm{HRMS} \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 293.1477(\mathrm{M}+\mathrm{Na})$, Found 293.1478 .

S6.8. Methyl-N-isobutyroyl-L-prolyl-L-valinate (2):

1) 20% TFA, DCM, 3 h
2) Isobutyric acid (1eq) NMM (4eq). ECF (1.03 eq) THF (0.3M), $-15^{\circ} \mathrm{C}-\mathrm{rt}$.

After Boc-deprotection, solvent was removed under vacuum connected to KOH trap to obtain the desired TFA salt product as viscous oil ($313 \mathrm{mg}, 0.91 \mathrm{mmol}, 100 \%$ yield), which was directly used for further reactions.

Removal of solvent after coupling reaction resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium
sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc: Hexane-1:4) yielded the desired product as a white solid ($207 \mathrm{mg}, 0.69 \mathrm{mmol}, 76 \%$ yield); ($\mathrm{mp} 91-93^{\circ} \mathrm{C}$); (TLC-EtOAc) $-R_{f}=0.50$); IR (NaCl , 10 mM in CHCl_{3}): 3426, 3297, 2971, 1742, 1678, 1620, 1537, 1431, 1322, $1210 \mathrm{~cm}^{-1}$; HRMS m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 321.1790(\mathrm{M}+\mathrm{Na})$, Found 321.1793.

S6.9. Methyl-N-isobutyroyl-L-prolyI-L-alloisoleucinate (3):

1) $20 \% \mathrm{TFA}, \mathrm{DCM}, 3 \mathrm{~h}$
2) Isobutyric acid (1eq)

NMM (4eq). ECF (1.03 eq) THF (0.3 M), $-15^{\circ} \mathrm{C}-\mathrm{rt}$.

After Boc-deprotection, solvent was removed under vacuum connected to KOH trap to obtain the desired TFA salt product as viscous oil ($312 \mathrm{mg}, 0.88 \mathrm{mmol}, 100 \%$ yield), which was directly used for further reactions.

Removal of solvent after coupling reaction resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane - $1: 4$) yielded the desired product as a viscous liquid ($212 \mathrm{mg}, 0.68 \mathrm{mmol}, 77 \%$ yield); (TLC-EtOAc) $-R_{f}=0.50$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3423, 3298, 2962, 1743, 1678, 1621, 1532, 1431, 1322, $1259 \mathrm{~cm}^{-1}$; HRMS m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 335.1947(\mathrm{M}+\mathrm{Na})$, Found 335.1947.

S6.10. Methyl-N-isobutyroyl-L-prolyl-L-leucinate (4):

1) 20% TFA, DCM, 3 h
2) Isobutyric acid (1eq) NMM (4eq). ECF (1.03 eq) THF (0.3 M), $-15^{\circ} \mathrm{C}$-rt.

After Boc-deprotection, solvent was removed under vacuum connected to KOH trap to obtain the desired TFA salt product as viscous oil ($312 \mathrm{mg}, 0.88 \mathrm{mmol}, 100 \%$ yield), which was directly used for further reactions.

Removal of solvent after the coupling reaction resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution (2 X 5 mL) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc: Hexane - $1: 4$) yielded the desired product as a viscous liquid ($215 \mathrm{mg}, 0.69 \mathrm{mmol}, 78 \%$ yield); (TLC- EtOAc) $-R_{f}=0.50$); IR (NaCl , 10 mM in CHCl_{3}): 3422, 3293, 2962, 1743, 1679, 1619, 1540, 1436, 1321, $1279 \mathrm{~cm}^{-1}$; HRMS m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 335.1947(\mathrm{M}+\mathrm{Na})$, Found 335.1943.

S6.11. Methyl-N-isobutyroyl-prolyl-phenylalaninyl-ester (6):

After Boc-deprotection, solvent was removed under vacuum connected to KOH trap to obtain the desired TFA salt product as viscous oil ($311 \mathrm{mg}, 0.80 \mathrm{mmol}, 100 \%$ yield), which was directly used for further reactions.

Removal of solvent after the coupling reaction resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution (2 X 5 mL) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc: Hexane - $1: 4$) which yielded the desired product as a white solid ($218 \mathrm{mg}, 0.63 \mathrm{mmol}, 79 \%$ yield); (mp $53-55^{\circ} \mathrm{C}$); (TLC- EtOAc) $-R_{f}=0.5$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3422, 3287, 2960, 1745, 1676, 1623, 1520, 1438, 1217 cm^{-1}; HRMS m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na} 369.1790(\mathrm{M}+\mathrm{Na})$, Found 369.1785.

S6.12. methyl (S)-3-cyclohexyl-2-((S)-1-isobutyroylpyrrolidine-2-carboxamido)propanoate (5):

H-Cha-OMe.HCl (1.1 eq) $\overrightarrow{\operatorname{EDC}(1.3 \mathrm{eq}) .} \mathrm{HOBt}(1.3 \mathrm{eq})$ DIPEA (4eq.), $\mathrm{CH}_{3} \mathrm{CN}(0.3 \mathrm{M})$, $0^{\circ} \mathrm{C}-\mathrm{rt}$.
Cha = cyclohexylalanine

Removal of solvent resulted in a residue which was dissolved in ethyl acetate (EtOAc) (15 mL), washed with 10 mL water ($2 \times 5 \mathrm{~mL}$) and 1 N HCl solution ($2 \times 5 \mathrm{~mL}$) and saturated NaHCO_{3} solution ($2 \times 5 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to get a residue which was purified by silica gel (100-200 mesh) flash column chromatography (EtOAc : Hexane - $1: 4$) yielded the desired product as a viscous liquid (27 $\mathrm{mg}, 0.08 \mathrm{mmol}, 79 \%$ yield); (TLC- EtOAc) $-R_{f}=0.50$); IR ($\mathrm{NaCl}, 10 \mathrm{mM}$ in CHCl_{3}): 3427, 3294, $2928,1743,1676,1621,1526,1436,1322,1217 \mathrm{~cm}^{-1}$. HRMS m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$ $375.2260(\mathrm{M}+\mathrm{Na})$, Found 375.2259.

S7. Conformational analyses from 2D-NMR spectra

The ${ }^{1} \mathrm{H}$ NMR signals sets corresponding to the cis/trans rotamers were assigned based on analyses of their 2D TOCSY, HSQC and ROESY spectra ($20 \mathrm{mM}, 300 \mathrm{~K}$). Homonuclear H,H 2D TOCSY spectra revealed the ${ }^{1} \mathrm{H}$ signals corresponding to each of the individual spin systems in every single rotamer as they exhibit ${ }^{n} J_{H, H}$ scalar coupling with each other through bonds.

S7.1. 2D NMR spectra of Ibu_-1 $_{-1}$ Pro $_{i}-$ Xaa $_{i+1}$-OMe (1-6) analogues

Figure 4. Relevant portions of the 2D TOCSY spectrum of $\mathrm{iBu}_{i-1}-\mathrm{PrO}_{i}-$ Phe $_{i+1}-\mathrm{OMe}(6)$ in DMSO$\mathrm{d}_{6}, 20 \mathrm{mM}, 300 \mathrm{~K}$.

Figure 5. Relevant portions of the 2D HSQC spectrum of $\mathrm{iBu}_{\mathrm{i}_{-1}-\text { Proi }_{i}-\text { Phe }_{i+1}-\mathrm{OMe}(6) \text { in DMSO- }}$ $\mathrm{d}_{6}, 20 \mathrm{mM}, 300 \mathrm{~K}$.

Figure 6. Relevant portions of the 2D ROESY spectrum of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Phe}_{\mathrm{i}+1}-\mathrm{OMe}(6)$ in DMSO$\mathrm{d} 6,20 \mathrm{mM}, 300 \mathrm{~K}$, highlighting the cross peaks characteristic for cisPro and transPro rotamers.

The ROESY spectrum showed a $C^{\alpha}{ }_{1 b u(i-1)}-H^{\alpha} \cdots H^{\delta}-$ Phe $_{i+1}(i-1 \ldots i+1)$ cross peak exclusively in the cisPro conformer. No such cross peaks were observed in the transPro isomer of 6.

Figure 7. Relevant portions of the 2D ROESY spectrum of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Phe}_{\mathrm{i}+1}-\mathrm{OMe}$ (6) in DMSO$\mathrm{d} 6,20 \mathrm{mM}, 300 \mathrm{~K}$, highlighting the cross peaks characterizing the $\mathrm{C}^{\alpha}{ }^{\boldsymbol{l b b u}(\mathrm{i}-1)}{ }^{-} \mathrm{H} \cdots \mathrm{Phe}_{\mathrm{i}+1}$ interaction in the cisPro rotamer.

Note that these $H^{\alpha}{ }_{1 b u(i-1)} \cdots{ }^{\text {S.C. }}{ }_{i+1}$ cross peaks (DMSO- d_{6}) are either too weak to observe or are absent in the Ala analogue 1.

Figure 8: Partial 2D ROESY spectrum of $\operatorname{lbu}_{i-1}-$ Pro $_{i}-$ Ala $_{i+1}-O M e(1)$, showing no cross peaks between the Ala side chain and the $H^{\alpha}{ }_{1 b u}$ signals.

Remarkably the 2D ROESY spectrum of Leu analogue (4) (DMSO-d ${ }_{6}$), containing the longer aliphatic side chain, reveals the presence of the crucial $H^{\alpha}{ }_{1 b u(i-1)} \cdots H^{\delta 2}{ }_{\text {Leu }}(i+1)$ NOE weak cross peak.

Figure 9: Partial 2D ROESY spectrum of $\mathrm{Ibu}_{i-1}-$ Pro $_{i-}-\mathrm{Leu}_{i+1}-\mathrm{OMe}$ (4) highlighting the $\mathrm{H}^{\alpha}{ }_{\mathrm{Ibu}(\mathrm{i}}$ 1) $\cdots H^{\delta 2^{2}}$ Leu(i+1) cross peak, signifying the proximity between isopropyl groups of the Ibu group and the Leu residue.

The aliphatic region of 2D ROESY spectrum of Cha analogue (5) is complicated due to presence of a number of overlapping groups and hence cannot be interpreted without sufficient ambiguity.

Figure 10a,b. Partial 2D TOCSY spectra of $\mathrm{Ibu}_{i-1}-$ Pro $_{i}-$ Cha $_{i+1}-\mathrm{OMe}(5)$ and $\mathrm{Ibu}_{i-1}-$ Pro $_{i-}-\mathrm{Leu}_{i+1}-\mathrm{OMe}$ (4) in DMSO-d d_{6} (Cha is cyclohexylalanine).

Figure 11a,b. Partial 2D HSQC spectra of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Cha}_{\mathrm{i}+1}-\mathrm{OMe}(5)$ and $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{i}-\mathrm{Leu}_{i+1}-\mathrm{OMe}$ (4) in $\mathrm{DMSO}_{-} \mathrm{d}_{6}$.

Figure 12. Relevant ROESY spectrum of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{i}-$ Cha $_{i+1}-\mathrm{OMe}(5)$, $\mathrm{DMSO}^{-d_{6}}, 10 \mathrm{mM}$.

S8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Tables

S8.1. Assignment of ${ }^{1} \mathrm{H}$ NMR peaks in DMSO-d6

Table 3. ${ }^{1} \mathrm{H}$ NMR of Ibu-Pro-Alp-OMe (1-5) in DMSO-d $6(400 \mathrm{MHz}, 10 \mathrm{mM})$

	Ibu-Pro-Ala-OMe (1)(DMSO-d6)		Ibu-Pro-Val-OMe (2) (DMSO-d6)	
	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { trans } \\ \delta(\mathbf{p p m}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathrm{ppm}) \\ \hline \end{gathered}$
Ibu- \mathbf{H}^{α}	$\begin{gathered} 2.36(\text { sept, } \mathbf{J}=6.8 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 2.67(\text { sept, } \mathrm{J}=6.8 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 2.39(\text { sept, } \mathrm{J}= \\ 6.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.68(\mathrm{sept}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$
$\mathbf{H}^{\text {® }}$	0.98 (d, J = 6.4 Hz)	0.98 (d, J = 6.4 Hz)	$\begin{gathered} 0.86(\mathrm{~d}, \mathrm{~J}=6.8 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 0.99(\mathrm{~d}, \mathrm{~J}=6.4 \\ \mathrm{Hz}) \end{gathered}$
	0.92 (d, J = 6.4 Hz)	0.97 (d, J = 6.4 Hz)		-
Pro-H ${ }^{\text {a }}$	$\begin{gathered} 4.39(\mathrm{dd}, \mathrm{~J}=8.4, \\ 2.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.30(\mathrm{dd}, \mathrm{~J}=8.8, \\ 3.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.54(\mathrm{~d}, \mathrm{~J}=7.2 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{aligned} & 4.42(\mathrm{dd}, \mathrm{~J}= \\ & 9.2,2.4 \mathrm{~Hz}) \\ & \hline \end{aligned}$
$\mathbf{H}^{\text {B }}$	$\begin{gathered} 2.19(\mathrm{qu}, \mathrm{~J}=8.8 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	2.07-1.98 (m)	2.27-2.15 (m)	2.25-1.94 (m)
	1.97-1.90 (m)	1.88-1.79 (m)		1.87-1.82 (m)
$\mathbf{H}^{\text {r }}$	1.80-1.71 (m)	1.95-1.80 (m)	1.81-1.71 (m)	1.91-1.83 (m)
$\mathbf{H}^{\text {¢ }}$	3.48-3.40 (m)	3.59-3.48 (m)	3.48-3.38 (m)	3.59-3.48 (m)
	3.33 (t, J = 8.0 Hz)		$3.37-3.27$ (m)	
Aro N-H	8.49 (d, J = 7.2 Hz)	8.20 (d, J = 7.2 Hz)	$\begin{gathered} 8.39(\mathrm{~d}, \mathrm{~J}=8.4 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 8.05(\mathrm{~d}, \mathrm{~J}=7.6 \\ \mathrm{Hz}) \end{gathered}$
\mathbf{H}^{α}	$\begin{gathered} 4.30(\mathrm{qu}, \mathrm{~J}=7.2 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 4.22(\mathrm{qu}, \mathrm{~J}=7.2 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 4.23(\mathrm{dd}, \mathrm{~J}= \\ & 8.0,6.4 \mathrm{~Hz}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.12(\mathrm{dd}, \mathrm{~J}= \\ & 7.6,6.4 \mathrm{~Hz}) \\ & \hline \end{aligned}$
$\mathbf{H}^{\text {® }}$	1.28 (d, J = 7.2 Hz)	1.27 (d, J = 7.2 Hz)	2.14-2.07 (m)	2.06-1.94 (m)
$\mathbf{H}^{\text {® }}$			$\begin{gathered} 0.86(\mathrm{~d}, \mathrm{~J}=6.8 \\ \mathrm{Hz}) \end{gathered}$	$\begin{gathered} 0.88(\mathrm{~d}, \mathrm{~J}=6.4 \\ \mathrm{Hz}) \end{gathered}$
OCH_{3}	3.62 (s)	3.61 (s)	3.64 (s)	3.62 (s)

	$\begin{gathered} \text { Ibu-Pro-Ile-OMe (3) } \\ \text { (DMSO-d }{ }^{\text {(DI }} \end{gathered}$		$\begin{gathered} \text { Ibu-Pro-Leu-OMe (4) } \\ \left(\text { DMSO-d }{ }^{\text {(}}\right. \text {) } \end{gathered}$		$\begin{gathered} \text { Ibu-Pro-Cha-OMe (5) } \\ \text { (DMSO-d }{ }^{\text {(D) }} \text {) } \end{gathered}$	
	$\begin{gathered} \text { cis } \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} \text { cis } \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$
Ibu- ${ }^{\text {a }}$	$\begin{gathered} 2.38(\mathrm{sept}, \mathrm{~J} \\ =6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 2.36(\text { sept } \\ 6.4 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 2.67 \text { (sept, } \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 2.69 \text { (sept, J } \\ =6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 2.35(\text { sept, J } \\ =6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 2.68(\text { sept, J = } \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$
$\mathbf{H}^{\boldsymbol{\beta}}$	$\begin{gathered} 0.98(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.97(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.98(\mathrm{~d}, \mathrm{~J}= \\ 6.4 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.99(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.98(\mathrm{~d}, \mathrm{~J}= \\ 6.4 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.99(\mathrm{~d}, \mathrm{~J}=6.4 \\ \mathrm{Hz}) \end{gathered}$
	$\begin{gathered} 0.88(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.90(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.97(\mathrm{~d}, \mathrm{~J}= \\ 6.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.98(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.92(\mathrm{~d}, \mathrm{~J}= \\ 6.4 \mathrm{~Hz}) \end{gathered}$	
Pro- ${ }^{\text {a }}$	$\begin{aligned} & 4.53(\mathrm{dd}, \mathrm{~J}= \\ & 8.8,2.4 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 4.41(\mathrm{dd}, \\ 8.4,1.6 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 4.32(\mathrm{dd}, \mathrm{~J}= \\ & 9.2,2.8 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \hline 4.42(\mathrm{dd}, \mathrm{~J}= \\ & 7.2,2.8 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & \hline 4.42(\mathrm{dd}, \mathrm{~J}= \\ & 8.8,2.4 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 4.33(\mathrm{dd}, \mathrm{~J}= \\ & 8.4,2.4 \mathrm{~Hz}) \end{aligned}$
$\mathbf{H}^{\boldsymbol{\beta}}$	$\begin{gathered} 1.91- \\ 1.85(\mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.21(\mathrm{qu}, \mathrm{~J}= \\ 8.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.00(q u, \mathrm{~J}= \\ 8.0 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 1.90-1.82 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.93- \\ 1.87(\mathrm{~m}) \end{gathered}$	1.89-1.80(m)
	$\begin{gathered} 2.24-2.18 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.93-1.87 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.87-1.80 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 2.01-1.93 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 2.25- \\ 2.17(\mathrm{~m}) \\ \hline \end{gathered}$	2.04-1.94(m)
\mathbf{H}^{γ}	$\begin{gathered} 1.81-1.73 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.82-1.73 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.92-1.82 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.92-1.82 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.82-1.72 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	1.94-1.82 (m)
$\mathbf{H}^{\boldsymbol{\delta}}$	$\begin{gathered} 3.46-3.41 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 3.48-3.44 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 3.57-3.48- \\ (\mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} 3.58-3.48 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.49- \\ 3.43(\mathrm{~m}) \end{gathered}$	3.54-3.48(m)
	$\begin{gathered} 3.36-3.30 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 3.36-3.28 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 3.53-4.48 \\ (\mathrm{~m}) \end{gathered}$		$\begin{gathered} 3.36- \\ 3.30(\mathrm{~m}) \end{gathered}$	3.58-3.52(m)
Aro N-H	$\begin{gathered} 8.39(\mathrm{~d}, \mathrm{~J}= \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 8.47(\mathrm{~d}, \mathrm{~J}= \\ 8.0 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 8.11(\mathrm{~d}, 7.2 \\ \mathrm{Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 8.03(\mathrm{~d}, \mathrm{~J}= \\ 8.4 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 8.47(\mathrm{~d}, \mathrm{~J}= \\ 8.4 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 8.09(\mathrm{~d}, \mathrm{~J}=7.2 \\ \mathrm{Hz}) \end{gathered}$
$\mathbf{H}^{\text {a }}$	$\begin{gathered} \hline 4.26(\mathrm{dd}, \mathrm{~J}= \\ 8.0 \mathrm{~Hz}, 6.8 \\ \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.38-4.33 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 4.23-4.17 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 4.17(\mathrm{dd}, \mathrm{~J}= \\ 8.0 \mathrm{~Hz}, 6.4 \\ \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \hline 4.37(\mathrm{dd}, \mathrm{~J}= \\ 8.4,5.2 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 4.26(\mathrm{dd}, \mathrm{~J}= \\ & 14.8,7.6 \mathrm{~Hz}) \end{aligned}$
$\mathbf{H}^{\boldsymbol{\beta}}$	$\begin{gathered} 1.88-1.80 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.66-1.59 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.58-1.44 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.80-1.72 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.60-1.54 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	1.53-1.49 (m)
\mathbf{H}^{γ}	$\begin{gathered} 1.24-1.14 \\ \text { (m) } \end{gathered}$	$\begin{gathered} 1.55-1.44 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.55-1.44 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.24-1.14 \\ \text { (m) } \end{gathered}$		
\mathbf{H}^{γ}	$\begin{gathered} 1.44-1.34 \\ (\mathrm{~m}) \end{gathered}$			$\begin{gathered} 1.44-1.34 \\ (\mathrm{~m}) \end{gathered}$		
\mathbf{H}^{γ}	$\begin{gathered} 0.86-0.82 \\ (\mathrm{~m}) \end{gathered}$			$\begin{gathered} 0.86-0.82 \\ (\mathrm{~m}) \end{gathered}$		
\mathbf{H}^{δ}	$\begin{gathered} 0.86-0.82 \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & 0.90-0.89 \\ & \text { (merged) } \\ & \hline \end{aligned}$	$\begin{gathered} 0.89(\mathrm{~d}, \mathrm{~J}= \\ 6.0 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.86-0.82 \\ (\mathrm{~m}) \\ \hline \end{gathered}$		
$\mathbf{H}^{\delta^{\prime}}$		$\begin{gathered} 0.82(\mathrm{~d}, \mathrm{~J}= \\ 6.0 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 0.84(\mathrm{~d}, \mathrm{~J}= \\ 6.0 \mathrm{~Hz}) \end{gathered}$			
OCH_{3}	3.64 (s, 3H)	3.62 (s)	3.60 (s)	3.62 (s, 3H)	3.62 (s)	3.60 (s)
Others					$\begin{gathered} \hline 1.71-1.59 \\ (\mathrm{~m}) \\ 1.22-1.06 \\ (\mathrm{~m})(4 \mathrm{H}) \\ 1.03-0.87 \\ (\mathrm{~m}) 4 \mathrm{H}) \\ 0.83-0.75 \\ (\mathrm{~m})(2 \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} 1.71-1.59(\mathrm{~m}) \\ 1.22-1.06(\mathrm{~m}) \\ (4 \mathrm{H}) \\ 1.03-0.87(\mathrm{~m}) \\ 4 \mathrm{H}) \\ 0.83-0.75(\mathrm{~m}) \\ (2 \mathrm{H}) \end{gathered}$

Table 4. ${ }^{1} \mathrm{H}$ NMR of Ibu-Pro-Phe-OMe (6) in DMSO-d $\mathbf{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$

	$\begin{gathered} \text { Ibu-Pro-Phe-OMe (6) } \\ \text { (DMSO-d6) } \end{gathered}$	
	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathrm{ppm}) \end{gathered}$
$\mathbf{I b u}-\mathbf{H}^{\text {a }}$	$\begin{aligned} & 2.03 \text { (sept, } \\ & \mathrm{J}=7.2 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 2.64(\mathrm{sept}, \\ 6.8 \mathrm{~Hz}) \\ \hline \end{gathered}$
\mathbf{H}^{β}	$\begin{gathered} 0.88(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 0.97(\mathrm{~d}, \mathrm{~J}= \\ 6.8 \mathrm{~Hz}) \end{gathered}$
	$\begin{gathered} 0.70(\mathrm{~d}, \mathrm{~J}= \\ 6.4 \mathrm{~Hz}) \\ \hline \end{gathered}$	
$\mathbf{P r o}$ - $\mathbf{H}^{\boldsymbol{\alpha}}$	$\begin{gathered} 4.27(\mathrm{dd}, \mathrm{~J} \\ =8.4,2.0 \\ \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 4.32(\mathrm{dd}, \mathrm{~J} \\ =9.2,2.8 \\ \mathrm{~Hz}) \\ \hline \end{gathered}$
\mathbf{H}^{β}	$\begin{aligned} & 2.12(\mathrm{qu}, \mathrm{~J} \\ & =6.8 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 2.00-1.93 \\ (\mathrm{~m}) \end{gathered}$
	$\begin{gathered} 1.80-1.72 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} 1.85-1.80 \\ (\mathrm{~m}) \end{gathered}$
\mathbf{H}^{γ}	$\begin{gathered} 1.73-1.57 \\ (\mathrm{~m}) \\ \hline \end{gathered}$	$\begin{gathered} 1.80-1.78 \\ (\mathrm{~m}) \end{gathered}$
$\mathbf{H}^{\text {¢ }}$	$\begin{gathered} 3.39(\mathrm{ddd}, \mathrm{~J} \\ =19.2,7.6, \\ 3.6 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 3.56-3.44 \\ (\mathrm{~m}) \end{gathered}$
	$\begin{gathered} 3.32-3.26 \\ (\mathrm{~m}) \end{gathered}$	
Aro N-H	$\begin{gathered} 8.49(\mathrm{~d}, \mathrm{~J}= \\ 7.2 \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 8.10(\mathrm{~d}, \mathrm{~J}= \\ 7.6 \mathrm{~Hz}) \\ \hline \end{gathered}$
Ha	$\begin{gathered} \hline 4.57 \text { (ddd, J } \\ =19.2, \\ 10.8,4.4 \\ \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} 4.42(\mathrm{q}, \mathrm{~J}= \\ 7.2 \mathrm{~Hz}) \end{gathered}$
\mathbf{H}^{β}	$\begin{gathered} 3.12(\mathrm{dd}, \mathrm{~J} \\ =13.6,4.4 \\ \mathrm{~Hz}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.90(\mathrm{dt}, \mathrm{~J} \\ =13.6,6.0 \\ \mathrm{~Hz}) \end{gathered}$
\mathbf{H}^{β}	$\begin{gathered} \hline 2.91(\mathrm{dd}, \mathrm{~J} \\ =13.2, \\ 10.8 \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 2.95(\mathrm{~d}, \mathrm{~J}= \\ 8.0 \mathrm{~Hz}) \end{gathered}$
HAro	$\begin{gathered} \hline 7.29-7.20 \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \hline 7.29-7.20 \\ (\mathrm{~m}) \\ \hline \end{gathered}$
OCH_{3}	3.64 (s)	3.56 (s)

S8.2. Assignment of ${ }^{13} \mathrm{C}$ NMR peaks in DMSO-d6

Table 5. ${ }^{13}$ C NMR of Ibu-Pro-Alp-OMe (1-5) in DMSO-d6 ($100 \mathrm{MHz}, 60 \mathrm{mM}$)

	Ibu-Pro-Ala-OMe (1) (DMSO-d6)		Ibu-Pro-Val-OMe (2) (DMSO-d6)	
	$\begin{gathered} c i s \\ \delta(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \boldsymbol{\delta}(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$
Ibu - \mathbf{C}^{α}	31.5	31.2	31.4	31.3
Ibu - \mathbf{C}^{β}	19.6, 19.1	19.0, 18.8	$\begin{aligned} & 19.0, \\ & 196 \end{aligned}$	18.7,
Ibu - \mathbf{C}^{\prime}	175.0	174.4	174.8	174.7
Pro - \mathbf{C}^{α}	59.2	58.6	58.9	58.6
C^{β}	31.6	29.0	31.7	28.5
\mathbf{C}^{7}	22.1	24.2	22.2	24.3
\mathbf{C}^{δ}	46.4	46.6	46.4	46.6
C^{\prime}	172.1	171.9	172.6	171.96
Alp - \mathbf{C}^{α}	47.5	47.4	57.2	57.3
C^{β}	16.83	16.85	29.7	29.96
C^{7}	-	-	$\begin{aligned} & 18.0, \\ & 18.94 \end{aligned}$	$\begin{aligned} & 18.1, \\ & 18.9 \end{aligned}$
\mathbf{C}^{δ}	-	-		
OMe-C'	172.7	173.1	171.8	171.96
$\mathrm{OMe}-\mathrm{CH}_{3}$	51.9	51.8	51.8	51.6
Others	-	-		

	Ibu-Pro-Ile-OMe (3) (DMSO-d6)		$\begin{gathered} \hline \text { Ibu-Pro-Leu-OMe (4) } \\ \text { (DMSO-d6) } \end{gathered}$		Ibu-Pro-Cha-OMe (5)(DMSO-d6)	
	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$
Ibu - \mathbf{C}^{α}	31.4	31.6	31.3	31.3	31.5	31.2
Ibu - $\mathbf{C}^{\boldsymbol{\beta}}$	19.6	19.6	19.0	19.04	19.0	18.7
Ibu - \mathbf{C}^{β}	19.0	19.01	18.8	18.7	19.5	18.9
Ibu - ${ }^{\prime}$	174.8	174.9	174.5	174.7	174.8	174.5
Pro - $\mathbf{C a}^{\alpha}$	58.9	59.2	58.7	58.6	59.1	58.7
C^{β}	31.6	31.6	28.9	28.5	31.6	28.7
C^{7}	22.1	22.2	24.2	24.3	22.0	24.2
\mathbf{C}^{δ}	46.4	46.5	46.6	46.6	46.4	46.5
C^{\prime}	171.8	172.4	172.0	171.9	172.3	172.0
$\mathbf{A l p}-\mathbf{C}^{\alpha}$	56.2	50.0	50.3	56.3	49.2	49.5
C^{β}	36.0	39.3	39.6	36.4	37.7	38.4
C^{7}	24.6	24.31	24.28	24.7		
C^{\prime}	15.41			15.39		
\mathbf{C}^{δ}	10.9	22.9	22.7	11.2		
\mathbf{C}^{δ}		20.8	21.4			
$\underset{\mathbf{C}^{\prime}}{\overline{\mathrm{OMM}--}}$	172.5	172.7	173.0	171.9	172.7	173.0
$\begin{gathered} \mathrm{OMe}- \\ \mathrm{CH}_{3} \end{gathered}$	51.7	51.9	51.7	51.6	51.9	51.7
Others	-			-	$\begin{gathered} \hline 33.6 \\ 33.0 \\ 31.1 \\ 25.88 \\ 25.79 \\ 25.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 33.2 \\ 33.1 \\ 31.6 \\ 25.94 \\ 25.7 \\ 25.4 \end{gathered}$

Table 6. ${ }^{13} \mathrm{C}$ NMR of Ibu-Pro-Phe-OMe (6) in DMSO-d $6(100 \mathrm{MHz}, 60 \mathrm{mM})$

	Ibu-Pro-Phe-OMe (6) (DMSO-d6)	
	$\begin{gathered} c i s \\ \delta(\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { trans } \\ \delta(\mathbf{p p m}) \end{gathered}$
$\mathbf{I b u}-\mathbf{C}^{\alpha}$	31.4	31.2
$\mathbf{I b u}-\mathbf{C}^{\beta}$	19.4	18.8
$\mathbf{I b u}-\mathbf{C}^{\beta}$	18.9	18.7
Ibu - C ${ }^{\prime}$	174.9	174.7
Pro - \mathbf{C}^{α}	59.2	58.8
\mathbf{C}^{β}	31.5	28.7
\mathbf{C}^{y}	21.9	24.1
\mathbf{C}^{δ}	46.3	46.5
C^{\prime}	171.78	171.73
Aro - $\mathbf{C}^{\text {a }}$	53.0	53.5
\mathbf{C}^{β}	36.2	36.7
OMe - ${ }^{\prime}$	171.84	172.0
$\mathrm{OMe}-\mathrm{CH}_{3}$	52.0	51.7
Aromatic	$\begin{gathered} 137.4, \\ 129.0, \\ 128.15, \\ 126.5 \end{gathered}$	$\begin{gathered} 137.0 \\ 129.1, \\ 128.07, \\ 126.4 \end{gathered}$

S9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

Figure 13. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-$ Ala $_{\mathrm{a}_{i+1}-\mathrm{OMe}}$ (1) in $\mathrm{DMSO}_{-\mathrm{d}_{6}}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 14. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Ala}_{\mathrm{i}+1}-\mathrm{OMe}(\mathbf{1})$ in $\mathrm{DMSO}_{-} \mathrm{d}_{6}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

Figure 15. ${ }^{1} \mathrm{H}$ NMR of of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Val}_{\mathrm{i}+1}-\mathrm{OMe}(2)$ in $\mathrm{DMSO}-\mathrm{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 16. ${ }^{13} \mathrm{C} \mathrm{NMR}$ of of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Val}_{\mathrm{i}+1}-\mathrm{OMe}(2)$ in $\mathrm{DMSO}_{-\mathrm{d}_{6}}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

Figure 17. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Ile}_{\mathrm{i}+1}-\mathrm{OMe}(3)$ in $\mathrm{DMSO}-\mathrm{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 18. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Ile}_{\mathrm{i}+1}-\mathrm{OMe}$ (3) in $\mathrm{DMSO}_{-\mathrm{d}_{6}}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

Figure 19. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Leu}_{\mathrm{i}+1}-\mathrm{OMe}$ (4) in $\mathrm{DMSO}-\mathrm{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 20. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Leu}_{\mathrm{i}+1}-\mathrm{OMe}$ (4) in $\mathrm{DMSO}_{-\mathrm{d}_{6}}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

Figure 21. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Cha}_{\mathrm{i}+1}-\mathrm{OMe}(5)$ in $\operatorname{DMSO}-\mathrm{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 22. ${ }^{13} \mathrm{C}$ NMR of Ibui $_{\mathrm{i}-1}-$ Pro $_{\mathrm{i}}-\mathrm{Cha}_{\mathrm{i}+1}-\mathrm{OMe}(5)$ in DMSO- $_{6}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

Figure 23. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Phe}_{\mathrm{i}+1}-\mathrm{OMe}$ (6) in $\mathrm{DMSO}_{-} \mathrm{d}_{6}(400 \mathrm{MHz}, 10 \mathrm{mM})$.

Figure 24. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{Ibu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Phe}_{\mathrm{i}+1}-\mathrm{OMe}(6)$ in $\mathrm{DMSO}_{-} \mathrm{d}_{6}(100 \mathrm{MHz}, 60 \mathrm{mM})$.

S10. Calculation of dihedral angles from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data
Table 7.
iBu-Pro-Xaa-OMe

Xaa cis	${ }^{13} C_{\beta}{ }^{i}$ ppm	$\begin{aligned} & { }^{13} \mathrm{C}_{\gamma} \mathrm{i} \\ & \mathrm{ppm} \end{aligned}$	$\Delta \delta_{\beta \gamma} \mathrm{i}$ ppm	$\Psi_{\text {Proi }}$ deg	$\begin{gathered} { }^{3} J_{N N^{i}}{ }^{1+1} \\ H z \end{gathered}$	$\begin{aligned} & \phi \text { Yaa } \\ & \text { deg } \end{aligned}$	Xaa trans	${ }^{13} \mathrm{C}_{\beta} \mathrm{i}$ ppm	$\begin{aligned} & { }^{13} \mathrm{C}_{\gamma} \mathrm{i} \\ & \mathrm{ppm} \end{aligned}$	$\Delta \delta_{\beta \gamma}$ ppm	$\Psi_{\text {Proi }}$ deg	$\begin{gathered} { }^{3} J_{N a^{i+1}} \\ H z \end{gathered}$	$\phi_{\text {Yaa }}$ deg
1	31.6	22.1	9.5	146.8	7.2	-83.8	1	29.0	24.2	4.8	173.1	7.2	-83.8
2	31.7	22.2	9.5	146.8	8.4	-94.7	2	28.5	24.3	4.2	156.4	7.6	-87.2
3	31.6	22.1	9.5	146.8	8.4	-94.7	3	28.5	24.3	4.2	156.4	8.4	-94.7
4	31.6	22.2	9.6	148.0	8.0	-90.8	4	28.9	24.2	4.7	170.3	7.2	-83.8
5	31.6	22.0	9.4	145.6	8.4	-94.7	5	28.7	24.2	4.5	164.7	7.2	-83.8
6	31.5	21.9	9.6	148.0	7.2	-83.8	6	28.7	24.1	4.6	167.5	7.6	-87.2

$\Delta \delta_{\beta \gamma}={ }^{13} \mathrm{C}_{\beta-}{ }^{13} \mathrm{C}_{\gamma} ; \quad \Delta \delta_{\beta \gamma}=\mathrm{a}|\theta|+\mathrm{b} ; \quad \theta=\left(\Delta \delta_{\beta \gamma}-\mathrm{b}\right) / \mathrm{a} ; \quad \psi_{\text {Pro }}=\theta+60^{\circ}$;
$\theta_{\text {cis }}: a=0.081, b=2.47 ; \theta_{\text {trans }}: a=0.036, b=0.73$;

S11. Superimposed cis and trans conformations of 1-6

Figure 25.

Table 8. Dihedral angles and distances in 1-6

Xaa	$\begin{gathered} \omega_{\text {pro }} \\ \text { (deg) } \end{gathered}$	$\begin{gathered} \varphi_{\text {Pro }} \\ (\mathrm{deg}) \end{gathered}$	$\psi_{\text {Pro }}$	$\omega_{\text {Xaa }}$ $($ deg $)$	$\begin{aligned} & \varphi_{\text {Xaa }} \\ & (\mathrm{deg}) \end{aligned}$	$\chi^{1}{ }_{\text {xas }}$ (deg)	$\begin{aligned} & \mathbf{x}_{\mathrm{xaaa}}^{(\mathrm{deg})} \end{aligned}$	r_{c} or r_{t} (Å)
1 cis	0	-71	146.8	-180	-83.8	-	-	5.317
1 trans	-180	-71	173.1	-180	-83.8	-	-	5.494
2 cis	0	-71	146.8	-180	-94.7	-62.9	-	5.317
2 trans	-180	-71	156.4	-180	-83.8	-62.9	-	5.392
3 cis	0	-71	146.8	-180	-94.7	-60	177	5.317
3 trans	-180	-71	156.4	-180	-94.7	-60	177	5.392
4 cis	0	-71	145.6	-180	-90.8	-60	-62.2	5.307
4 trans	180	-71	170.3	-180	-83.8	-60	-62.2	5.479
5 cis	0	-71	145.6	-180	-94.7	-60	-120	5.327
5 trans	180	-71	164.7	-180	-83.8	-60	120	5.447
6 cis	0	-74.9	148	-178.3	-83.8	-60	-60	5.250
6 trans	-180	-74.9	167.5	-178.3	-87.2	-60	-60	5.404

Table 9. Length ($\mathrm{d} \AA$), surface area ($\mathrm{A} \AA^{2}$) and vdW zone of residence ($V \AA^{3}$) of the Alp $\mathrm{p}_{\mathrm{i}+1}$ side chains in 1-5.

No.	Xaa	$\begin{gathered} d^{\mathrm{d}} \AA \\ \left(\times 10^{-10}\right) \end{gathered}$	$\begin{gathered} A^{\mathrm{b}} \AA^{2} \\ \left(\times 10^{-20}\right) \end{gathered}$	$\begin{gathered} V^{c} A^{3} \\ \left(\times 10^{-30}\right) \end{gathered}$	$\mathrm{K}_{\mathrm{c} / \mathrm{t}}{ }^{\text {d }}$	ΔG^{e} kcal mol^{-1}
1	Ala	1.546	18.1	3.9	0.55	0.36
2	Val	2.582	50.6	18.0	0.58	0.32
3	lle	2.535	48.9	17.1	0.56	0.34
4	Leu	3.905	116.0	62.4	0.78	0.15
5	Cha	5.439	224.0	168.6	0.82	0.12

${ }^{\mathrm{b}}$ Area of cone of radius d and height $\mathrm{h}:\left(\pi \mathrm{d} \times\left(\mathrm{d}+\sqrt{ }\left(\mathrm{d}^{2}+\mathrm{h}^{2}\right)\right)\right)$ where $\mathrm{d}=\mathrm{h}$
${ }^{\text {c }}$ Quarter-sphere volume for fully extended side chain;
${ }^{d} \mathrm{~K}_{\mathrm{c} / \mathrm{t}}=[\mathrm{cis}] /[$ trans $] ;{ }^{\mathrm{e}} \Delta \mathrm{G}=-\mathrm{RT} \ln \mathrm{K}_{\mathrm{c} / \mathrm{t}}, 300 \mathrm{~K}$.

S12. Type a fold and $\mathrm{i}-1 . . . \mathrm{i}+1 \mathrm{vdW}$ interactions in Urease Accessory Protein UreF (3CXN)

(a)

(b)

Torsion (deg)	994103	PCDC
$\phi_{\text {Proi }}$	-77.54	-88.36
$\psi_{\text {Proi }}$	158.47	167.70
ϕ_{i+1}	-120.04	-122.97
χ_{i+1}	-59.75	-55.97

Figure 26. (a) PDB trimeric (multicolored, left) and the monomeric (red) structures of urease accessory protein UreF (3CXN). The type a fold at Val197-Pro-Leu sequence in one of the monomers (red) is highlighted. (b) Superimposed Alp-Pro-Alp segments of 3CXN (green) and crystal structure of $\mathrm{BBu}_{\mathrm{i}-1}-\mathrm{Pro}_{\mathrm{i}}-\mathrm{Val}_{\mathrm{i}+1}-\mathrm{OMe} \mathbf{2}$ (orange) showing remarkably similar Type a folds. The key $\mathrm{i}-1 \cdots \mathrm{i}+1 \mathrm{Alp}_{\mathrm{i}-1} \cdots \mathrm{Alp}_{\mathrm{i}+1}$ distances and torsions are presented.

