# **Supplementary Material**

## Quantum Confinement Effect on Defect Level of Hydrogen Doped rutile VO<sub>2</sub> Nanowires

Manoj Dey<sup>1</sup>, Suman Chowdhury<sup>1</sup>, Sonu Kumar<sup>1</sup>, and Abhishek K. Singh<sup>\*†</sup>

<sup>†</sup>Materials Research Centre, Indian Institute of Science, Bangalore-560012, India

\*abhishek@iisc.ac.in

### **Surface Configurations**



Figure S1: Relaxed structures of stoichiometric low-indexed surfaces (a) (100), (b) (001), and (c) (110) of VO<sub>2</sub>(R).

### **Nanowire Structures : Side View**



Figure S2: The side view of relaxed structures of (a) NW9, (b) NW16, (c) NW25, and (d) NW36. The V octahedral are shown in green.

#### **Band-Decomposed Charge Density of Band-edges**



Figure S3: Band-decomposed charge density of valence band maximum and conduction band minimum of all the nanowires. Isosurface value is set to 10% of maximum.

We have calculated the band decomposed charge density of band edges of corresponding nanowires as shown in Figure S3. This clearly shows that the valence band maximum (VBM) is composed of V-d and O-p hybridized orbital spatially localized in nanowire diameter. However, the conduction band minimum (CBM) consists of only V-d orbitals.

#### **Fitting of Band Gaps**

We have calculated several goodness-of-fit parameters to determine the best fit of  $E_g$  versus d. The coefficient of determination ( $R^2$ ) is calculated as,

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \tag{S1}$$

where,  $SS_{res}$  and  $SS_{tot}$  are the sum of squares of residuals and the total sum of squares, respectively. The root-mean-square-error (RMSE) is the standard deviation of the residuals. The best power-law fit (d<sup>-0.48</sup>) has the highest R<sup>2</sup> (0.96) and lowest RMSE (0.04) values among the curves.

| Expression       | а    | b     | $\mathbb{R}^2$ | RMSE (eV) |
|------------------|------|-------|----------------|-----------|
| a d <sup>b</sup> | 1.64 | -0.48 | 0.96           | 0.04      |
| a $\exp^{bd}$    | 2.00 | -0.26 | 0.93           | 0.06      |
| a d $^b$         | 1.48 | -0.3  | 0.82           | 0.08      |
| a d <sup>b</sup> | 1.94 | -0.8  | 0.59           | 0.12      |

Table S1: Band gap fitting parameters.



Figure S4: (a) Inverse power and exponential fitting plot of band gap with NW diameter. (b) The linear fitting of  $E_g$  versus d<sup>-0.48</sup> contains the zero band gap of metallic bulk VO<sub>2</sub>(R).

#### Workfunction of Nanowires

In order to calculate the work function of all the NWs, we first determine the vacuum potentials ( $\phi$ ). We have taken sufficiently large vacuum spacing for all the configurations such that the planar averaged electrostatic potential converges to a constant value, as shown in Figure S5. The work function (W) is then calculated with reference to this converged value as,

$$W = \phi - \epsilon_F \tag{S2}$$

where,  $\epsilon_F$  is the Fermi level of corresponding nanowires. The calculated values of work functions are 6.09 eV, 6.30 eV, 6.00 eV, and 6.18 eV for NW9, NW16, NW25 and NW36, respectively.



Figure S5: Planar averaged potential along x direction of (a) NW9, (b) NW16, (c) NW25, (d) NW36 nanowires.

#### **Defect Formation Energy**



Figure S6: Formation energy and charge transition levels for (a)  $H_i$ , and (b)  $H_O$  defects in oxygen rich growth condition. The black (NW9), red (NW16), and green (NW25) lines denote the variation of formation energies with Fermi level. The position of donor level  $\epsilon$ (+1/0) is shown by hollow circle.

In order to study the correlation between the H doping and size effect, we have compared the formation energies of H related defects in NWs with the bulk VO<sub>2</sub> as a function of growth conditions. We note that the bulk VO<sub>2</sub> in rutile phase shows metallic behaviour. Therefore, we have calculated the defect formation energies of both H<sub>i</sub> and H<sub>O</sub> in neutral charge states in bulk VO<sub>2</sub> and compared them with the same in NWs. The formation energy of hydrogen related neutral defects (q=0) defects (H<sub>i</sub> and H<sub>O</sub>) in NW is,

$$E_f(D^0) = E(D^0) - E(NW) + n_i \mu_i$$
(S3)

The formation energy is the comparison between the total energy  $E(D^0)$  of the system containing H defect (NW+H system) in charge state 0 with the total energy of NW E(NW) without H doping. The  $n_i$  represents the number of atoms removed or added having chemical potential  $\mu_i$ . Similarly, the formation energies of H defects in bulk VO<sub>2</sub> are calculated as,

$$E_f(D^0) = E'(D^0) - E(BulkVO_2) + n_i\mu_i$$
(S4)

where, the total energy  $E'(D^0)$  of bulk VO<sub>2</sub> containing H defect is compared with the total energy  $E(bulk VO_2)$  of pristine bulk VO<sub>2</sub> supercell. The thermodynamic defect formation energy of H<sub>i</sub> is independent of the growth condition (See Figure S7(a)), whereas it increases for H<sub>O</sub> in O-rich condition (See Figure S7(b)). Both H<sub>i</sub> and H<sub>O</sub> defect incorporation are more favourable in the lowest diameter NW, as the formation energies are low in NW9. The formation energies of neutral defects in large diameter NWs (in NW16 and NW25) converge to the bulk VO<sub>2</sub> as shown in Figure S7.



Figure S7: Calculated formation energies for (a) hydrogen interstitial (H<sub>i</sub>), (b) hydrogen substitution (H<sub>O</sub>) defects in nanowires (NW9: black; NW16: red; NW25: green) and bulk (blue)  $VO_2(R)$  as a function of O chemical potentials.