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SMOOTH ENTRYWISE POSITIVITY PRESERVERS, A

HORN–LOEWNER MASTER THEOREM, AND SYMMETRIC

FUNCTION IDENTITIES
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To Roger A. Horn and the memory of Charles Loewner, with admiration

Abstract. A special case of a fundamental result of Loewner and Horn [Trans.
Amer. Math. Soc. 136 (1969), pp. 269–286] says that given an integer n � 1,
if the entrywise application of a smooth function f : (0,∞) → R preserves the

set of n×n positive semidefinite matrices with positive entries, then f and its
first n− 1 derivatives are non-negative on (0,∞). In a recent joint work with
Belton–Guillot–Putinar [J. Eur. Math. Soc., in press], we proved a stronger
version, and used it to strengthen the Schoenberg–Rudin characterization of
dimension-free positivity preservers [Duke Math. J. 26 (1959), pp. 617–622;
Duke Math. J. 9 (1942), pp. 96–108].

In recent works with Belton–Guillot–Putinar [Adv. Math. 298 (2016),
pp. 325–368] and with Tao [Amer. J. Math. 143 (2021), pp. 1863-1929] we used
local, real-analytic versions at the origin of the Horn–Loewner condition, and
discovered unexpected connections between entrywise polynomials preserving

positivity and Schur polynomials. In this paper, we unify these two stories via
a Master Theorem (Theorem A) which (i) simultaneously unifies and extends
all of the aforementioned variants; and (ii) proves the positivity of the first n
nonzero Taylor coefficients at individual points rather than on all of (0,∞).

A key step in the proof is a new determinantal / symmetric function calcu-
lation (Theorem B), which shows that Schur polynomials arise naturally from
considering arbitrary entrywise maps that are sufficiently differentiable. Of
independent interest may be the following application to symmetric function
theory: we extend the Schur function expansion of Cauchy’s (1841) determi-
nant (whose matrix entries are geometric series 1/(1 − ujvk)), as well as of
a determinant of Frobenius [J. Reine Angew. Math. 93 (1882), pp. 53–68]

(whose matrix entries are a sum of two geometric series), to arbitrary power
series, and over all commutative rings.
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1. Introduction and main results

Recently in [1,2,14,15], novel connections were discovered between polynomials
acting entrywise that preserve matrix positivity and symmetric functions, specifi-
cally Schur polynomials. We explore these connections in greater depth, and prove
that Schur polynomials emerge naturally from differentiating determinants involv-
ing arbitrary sufficiently differentiable functions. To the best of our knowledge,
this intriguing connection between analysis and symmetric function theory is not
recorded in the literature. This is our Theorem B, and as an application we prove
the Master Theorem A, on functions acting entrywise that preserve positive semi-
definite matrices. We also apply it to provide a novel symmetric function identity
that subsumes modern results as well as classical ones by Cauchy and Frobenius –
see Theorem 2.1.

1.1. Entrywise calculus and positivity: Notation and history. A real sym-
metric matrix An×n is positive semidefinite if all its eigenvalues are non-negative
real numbers – equivalently, the quadratic form x �→ xTAx, x ∈ Rn is non-negative
definite, i.e., takes values in [0,∞). Given an integer n � 1 and a domain I ⊂ R,
let Pn(I) comprise the positive semidefinite n × n matrices with entries in I. We
work only with domains I = (a, b) or [a, b) for 0 � a < b � ∞.

A function f : I → R acts entrywise on a vector or a matrix A = (ajk) ∈ Im×n for
integers m,n � 1 via: f [A] := (f(ajk)). If f(x) = xk is an integer power function,
we write f [A] = A◦k for the entrywise power – i.e., the k-fold Schur/Hadamard
product – of A. Let �m×n denote the m× n matrix with all entries 1.

A question of significant interest in the analysis literature throughout the past
century is to understand the entrywise functions1 that preserve positive semidefi-
niteness, which we occasionally term positivity in the sequel. The first result in this
area is the Schur product theorem [25], which asserts that the set Pn(I) is closed un-
der the entrywise product A◦B := (ajkbjk)

n
j,k=1 if I is closed under multiplication.

Using that Pn(R) is a closed convex cone, Pólya and Szegö [21] observed the fol-
lowing immediate consequence of the Schur product theorem: if f(x) =

∑∞
k=0 ckx

k

is a convergent power series on I and ck � 0 ∀k, then f [−] preserves positivity on
Pn(I). A celebrated result of Schoenberg [24], subsequently improved by Rudin [23],
shows that there are no other functions that preserve positivity in all dimensions
for I = (−1, 1). These results are motivated by and have connections to metric
geometry, positive definite functions, harmonic analysis, and analysis of measures
on Euclidean space and on tori.2 Similar results have been shown for I = (−ρ, ρ)
or (0, ρ) for 0 < ρ � ∞, as well as for complex domains – in both one and several
variables – in the years since Schoenberg’s and Rudin’s work.

Schoenberg’s theorem has a challenging mathematical refinement that is strongly
motivated by modern-day applications in high-dimensional covariance estimation.
Namely: is it possible to classify the entrywise positivity preservers in a fixed di-
mension n? This problem was resolved in 1979 by Vasudeva [26] for n = 2, but
remains open for every n � 3. In this paper, we focus on a necessary condition for
this to happen.

1We refer to polynomials – and more generally, functions – that act entrywise on matrices as
entrywise polynomials/functions, respectively.

2See the surveys [3, 4] for more on the classical and modern interest in entrywise positivity
preservers.
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1.2. The Horn–Loewner theorem and its variants. The focus of the present
paper is a fundamental result on entrywise preservers in fixed dimension n � 3.
This result can be found in Horn’s 1967 thesis, and Horn attributes it to Loewner3:

Theorem 1.1 (Necessary condition in fixed dimension, see [11]). Suppose I =
(0,∞) and f : I → R is continuous. Fix an integer n � 1 and suppose f [A] ∈
Pn(R) ∀A ∈ Pn(I). Then,

f ∈ Cn−3(I), f (k)(x) � 0, ∀x ∈ I, 0 � k � n− 3,

and f (n−3) is a convex non-decreasing function on I. In particular, if f ∈ Cn−1(I),
then f (k)(x) � 0 for all x ∈ I, 0 � k � n− 1.

Theorem 1.1 is important for several reasons:

(1) To our knowledge, this 1967 result (together with its refinements, which we
will discuss) remains to this day the only known necessary condition for a
function to be an entrywise positivity preserver in a fixed dimension.

(2) Theorem 1.1 is sharp in the number of non-negative derivatives of f on I.
We mention several such settings in Example 3.1, providing in each case
positivity preservers that work in dimension n but not n+ 1.

(3) This fixed dimension result can be used to prove the dimension-free ver-
sion, i.e. Schoenberg’s theorem over I = (0, ρ) for 0 < ρ � ∞; the proof
uses Bernstein’s theorem on absolutely monotonic functions. In turn, the
dimension-free version over (0, ρ) (first shown by Vasudeva [26]) can be
used to prove Schoenberg’s theorem over I = (−ρ, ρ) by using less sophis-
ticated machinery compared to Schoenberg or Rudin’s works. In fact this
approach has proved even more successful: in recent joint work [5], we first
showed a stronger version of Theorem 1.1; then using it, a strengthening of
Schoenberg’s theorem; and finally, multivariable analogues of these results.

In this paper, we are interested in strengthening Theorem 1.1 in multiple ways.
We begin by stating several refinements proved in the analysis literature – our main
result simultaneously extends all of these variants.

The first strengthening begins with the observation that the argument in the
proof of Theorem 1.1 is entirely local. With this in mind, the domain of f can
be generalized to (0, ρ) for any 0 < ρ � ∞. Moreover, the continuity assumption
can be removed, in the spirit of Rudin’s strengthening [23] of Schoenberg’s theorem
[24]. Finally, Theorem 1.1 uses only a special sub-family of matrices of rank at
most 2. Thus, in [5,10], the following was shown (we state only the stronger of the
two results):

Theorem 1.2 (See [5, Theorem 4.2]). Suppose that 0 < ρ � ∞, I = (0, ρ), and
f : I → R. Fix u0 ∈ (0, 1) and an integer n � 1, and define u := (1, u0, . . . , u

n−1
0 )T .

Suppose that f [A] ∈ P2(R) for all A ∈ P2(I), and also that f [A] ∈ Pn(R) for all
Hankel matrices A = a�n×n + tuuT , with a ∈ I and t � 0 such that a + t ∈ I.
Then the conclusions of Theorem 1.1 hold.

Theorem 1.2 subsumes Theorem 1.1 and the aforementioned examples (see Ex-
ample 3.1).

3As the author has also observed in the Stanford Library archives, the argument in [11] was
outlined in a letter to Josephine Mitchell, written by Loewner on October 24, 1967.
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In this paper, we are interested in the case of smooth – i.e., infinitely differentiable
– functions f , from which the general case follows using a remarkable 1940 result
by Boas–Widder [6] (see Remark 3.7, which fixes a minor typo in their proof).
Thus, we henceforth work with smooth functions – in which case the assumption
in Theorem 1.2 concerning P2(I) is no longer required; see [5] for details.

For smooth functions, one requires weaker assumptions, and reaches stronger
conclusions. Indeed, in [1] and [15], we showed:

Lemma 1.3. Let n � 1 and 0 < ρ � ∞. Suppose that f(x) =
∑

k�0 ckx
k is

a convergent power series on I = [0, ρ) that is entrywise positivity preserving4 on
rank-one matrices in Pn(I). Further assume that cm′ < 0 for some m′.

(1) If ρ < ∞, then cm > 0 for at least n values of m < m′. In particular, the
first n nonzero Maclaurin coefficients of f , if they exist, must be positive.

(2) If instead ρ = ∞, then cm > 0 for at least n values of m < m′ and at least
n values of m > m′. In particular, if f is a polynomial, then the first n
nonzero coefficients and the last n nonzero coefficients of f , if they exist,
are all positive.

We further showed in [15] that these conditions are sharp, in that every other
nonzero Maclaurin coefficient of f can be negative. The conclusions of Lemma 1.3
are stronger than those of Theorem 1.1 – albeit at a = 0 and not at a > 0 –
and they also cover settings not covered in Examples 3.1: the case of all polyno-
mial preservers, not merely ones with the initial Maclaurin coefficients of orders
0, 1, . . . , n− 1.

1.3. The main theorems. We now propose a stronger version of the Horn–
Loewner theorem that addresses the positivity of the first n nonzero Taylor coeffi-
cients at a given point; and moreover, one that unifies Theorem 1.1 and Lemma 1.3,
which do not imply one another. This is our first main result; in the sequel, we
work with f smooth on [a, a+ ε), and we refer to f (k)(a+) as f (k)(a).

Theorem A (Horn–Loewner master theorem). Let 0 � a < ∞, ε ∈ (0,∞), I =
[a, a+ ε), and let f : I → R be smooth. Fix integers n � 1 and 0 � p � q � n, with
p = 0 if a = 0, and such that f(x) has q − p nonzero derivatives at x = a of order
at least p. Now suppose that

p � mp < mp+1 < · · · < mq−1

are the lowest orders (above p) of the first q − p nonzero derivatives of f(x) at
x = a.

Also fix pairwise distinct scalars u1, . . . , un ∈ (0, 1), and let u := (u1, . . . , un)
T .

If f [a�n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then f (k)(a) is non-negative for
0 � k � mq−1.

In particular, at p = 0 one obtains Corollary 1.4 for any a � 0, which strengthens
the conclusions of the Horn–Loewner Theorem 1.1 and of Theorem 1.2 for smooth
functions:

Corollary 1.4. Suppose that a, ε, I, f, n,u are as in Theorem A. If f [a�n×n +
tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the first n (or fewer) nonzero derivatives of
f(x) at x = a are positive.

4The results in [15] are stated for I = (0, ρ), but this is equivalent to using [0, ρ) if f is a power
series.

Licensed to Indian Institute of Science. Prepared on Fri Jul  8 05:28:55 EDT 2022 for download from IP 14.139.128.34.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HORN–LOEWNER THEOREM; SYMMETRIC FUNCTION IDENTITIES 2221

We make additional remarks about Theorem A and its special cases in Section 3.
For now, we note that it achieves several objectives:

(1) It unifies and further extends all of the above Horn–Loewner type variants
– see Proposition 3.4 (hence, the term master theorem).

(2) Theorem A yields more precise information than the theorems stated above
over I = (0, ρ): about the derivatives of f at each individual point a > 0 in
the domain (rather than at all points at once). The hypotheses employed
are also local, which clarifies that Theorem 1.1 is not merely local but in
fact a pointwise result.

(3) By Corollary 1.4, another strengthening accounts for the zero derivatives
at every point a � 0 – and it is this strengthening, whose sharpness (for
a = 0) we showed in [15] (see the discussion following Lemma 1.3).

(4) An additional strengthening is when a = 0 and ρ < ∞. In this case,
Theorem A holds for all smooth functions, not merely real analytic ones as
in Lemma 1.3(1).

Theorem A is proved using a novel connection between analysis and symmetric
function theory – an explicit closed-form expression for the derivatives of a certain
determinant, which mixes calculus, matrix algebra, and symmetric function theory.
This is our second main theorem, and it shows how Schur polynomials arise nat-
urally in the entrywise calculus, from considering (Cauchy-type) determinants for
arbitrary sufficiently differentiable maps, not just polynomial maps as in [1, 15] –
and at all a ∈ R (not just a = 0 as in [1, 15]):

Theorem B. Fix integers n � 1 and 0 � m0 < m1 < · · · < mn−1, as well
as scalars ε > 0 and a ∈ R. Let M := m0 + · · · + mn−1 and let a function
f : [a, a+ ε) → R be M -times differentiable at a for some fixed ε > 0. Fix vectors
u,v ∈ Rn, and define Δ : [0, ε′) → R via:

Δ(t) := det f [a�n×n + tuvT ],

for a sufficiently small ε′ ∈ (0, ε). Then,

Δ(M)(0) =
∑
m�M

(
M

m0,m1, . . . ,mn−1

)
V (u)V (v)sm(u)sm(v)

n−1∏
k=0

f (mk)(a),

where the first factor in the summand is the multinomial coefficient, and we sum
over all partitions m = (mn−1, . . . ,m0) of M , i.e., M = m0 + · · · + mn−1 and
mn−1 � · · · � m0.

In particular, Δ(0) = Δ′(0) = · · · = Δ(N−1)(0) = 0, where N =
(
n
2

)
.

In Section 2, we explain another application of Theorem B, to a symmetric func-
tion master identity – see Theorem 2.1 (in the t-adic topology; followed by Corol-
lary 2.4 in the real topology). We now explain the notation required in Theorem B.
Our notation differs from that in the literature [20].

Definition 1.5 (Schur polynomials, Vandermonde determinants).

(1) Given integers m,N � 1 and 0 � n′
0 � n′

1 � · · · � n′
N−1, a column-strict

Young tableau, with shape n′ := (n′
N−1, . . . , n

′
0) and cell entries 1, 2, . . . ,m,

is a left-aligned two-dimensional rectangular array T of cells, with n′
0 cells

in the bottom row, n′
1 cells in the second lowest row, and so on, such that:

• Each cell in T has integer entry j for some j ∈ {1, 2, . . . ,m}.
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• Entries weakly increase in each row, from left to right.
• Entries strictly increase in each column, from top to bottom.

(2) Given variables u1, u2, . . . , um and a column-strict Young tableau T , define
its weight to be

wt(T ) :=
m∏
j=1

u
fj
j ,

where fj equals the number of cells in T with entry j.
(3) Given an increasing sequence of integers 0 � n0 < · · · < nN−1, define the

partitions/tuples

n := (nN−1, . . . , n1, n0), nmin := (N − 1, . . . , 1, 0),

and the corresponding Schur polynomial over u := (u1, u2, . . . , um)T to be

(1.1) sn(u) :=
∑
T

wt(T ),

where T runs over all column-strict Young tableaux of shape n′ := n−nmin

with cell entries 1, 2, . . . ,m. By convention, we set sn(u) := 0 if n does not
have pairwise distinct coordinates.

(4) Given a vector u = (u1, . . . , um)T with entries in a commutative ring, we
define its Vandermonde determinant to be 1 if m = 1, and

(1.2) V (u) :=
∏

1�j<k�m

(uk − uj) = det

⎛
⎜⎜⎜⎝
1 u1 · · · um−1

1

1 u2 · · · um−1
2

...
...

. . .
...

1 un · · · um−1
n

⎞
⎟⎟⎟⎠ , if m > 1.

The definition of Schur polynomials is due to Littlewood; notice that it holds over
the ground ring Z, and hence over any commutative unital ground ring. If m = N ,
then this definition is equivalent [20] to Cauchy’s definition of Schur polynomials:

det(u◦n0 | u◦n1 | . . . | u◦nN−1)N×N = V (u)sn(u).

This is consistent with setting sn(u) = 0 if n has two equal coordinates, since the
left-hand matrix has two equal columns in that case.

Remark 1.6. From the proof of Theorem B – see the expression (2.1) and the
discussion in the subsequent paragraph – it follows that if f is smooth and has at
most n− 1 nonzero derivatives at a, then Δ(m)(0) = 0 ∀m � 0.

Remark 1.7. A curious point is that since one takes derivatives in Theorem B,
one might expect one axis to deal with derivatives, and the other to deal with the
(anti-)symmetry in one set of variables – but in fact, the final answer reveals the
determinant’s derivative to be (anti-)symmetric in both sets of variables u,v.

We close this section by returning to our starting point: the original work of
Loewner and Horn. We now explain how Theorem B extends a determinant com-
putation by Loewner (in a 1967 letter, see footnote 3 – and also found in Horn’s
1967 thesis and paper [11]) in several ways:

(1) Loewner’s computation was for u = v; Theorem B decouples the two vec-
tors u,v.
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(2) Loewner showed Theorem B only for M �
(
n
2

)
(this is all that is required

to obtain the original conclusions of the Horn–Loewner Theorem 1.1). In
particular, Loewner showed that for M <

(
n
2

)
the derivative Δ(M)(0) = 0

vanishes; this can be seen from Theorem B via the pigeonhole principle and
since sm(u) = 0 if m has two equal coordinates. Moreover, for M =

(
n
2

)
,

there is a unique partition: M = 0+ 1+ · · ·+ (n− 1), and for it the result
has a simpler form since the Schur polynomial factor is not manifested:
sm(u)2 = 1.

(3) In Proposition 2.3, we generalize Loewner’s computation even further, to
work over any commutative ground ring.

2. Theorem B: From any smooth function to Schur polynomials, to

symmetric function identities

In this section we prove Theorem B, and use it to extend classical symmetric
function identities by Cauchy and Frobenius, as well as modern variants in [1, 15],
to a unifying master identity; see Theorem 2.1.

Proof of Theorem B. Let wk denote the kth column of a�n×n+ tuvT ; thus wk has
jth entry a+ tujvk. To differentiate Δ(t), we use the multilinearity of the determi-
nant and the Laplace expansion of Δ(t) into a linear combination of n! monomials,
each of which is a product of n terms f(a+ tujvk). By the product rule, taking the
derivative yields n terms from each monomial, and one may rearrange all of these
terms into n clusters of terms (grouping by the column that gets differentiated),
and regroup using the Laplace expansion to obtain:

Δ′(t) =
n∑

k=1

det(f [w1] | · · · | f [wk−1] | vku ◦ f ′[wk] | f [wk+1] | · · · | f [wn]).

Now apply the derivative repeatedly, using this principle. By the Chain Rule,
Δ(M)(0) is an integer linear combination of terms of the form

det(vm0
1 u◦m0 ◦ f (m0)[a�n×1] | · · · | vmn−1

n u◦mn−1 ◦ f (mn−1)[a�n×1])

= det(f (m0)(a)vm0
1 u◦m0 | · · · | f (mn−1)(a)vmn−1

n u◦mn−1),
(2.1)

where �n×1 = (1, . . . , 1)T ∈ Rn, and m0 + · · ·+mn−1 = M with all mk � 0.

From each such determinant, one may factor out the product
∏n−1

k=0 f
(mk)(a).

Now Δ(M)(0) is obtained by summing the determinants corresponding to apply-
ing m0,m1, . . . ,mn−1 derivatives to the columns in some order, for all partitions
m = (mn−1, . . . ,m0) of M . We first compute the integer multiplicity of each such
determinant, noting by symmetry that these multiplicities are all equal. As we are
applying M derivatives to Δ (before evaluating at 0), the m0 derivatives applied

to get f (m0) in some (fixed) column can be any of
(
M
m0

)
; now the m1 derivatives

applied to get f (m1) in a (different) column can be chosen in
(
M−m0

m1

)
ways; and so

on. Thus, the multiplicity is(
M

m0

)(
M −m0

m1

)
· · ·

(
M −m0 − · · · −mn−2

mn−1

)
=

M !∏n−1
k=0 mk!

=

(
M

m0,m1, . . . ,mn−1

)
.
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The next step is to compute the sum of all determinant terms. Each term
corresponds to a unique permutation of the columns σ ∈ Sn, with say mσk−1

the order of the derivative applied to the kth column f [wk]. Using (2.1), the
determinant corresponding to σ equals

n−1∏
k=0

f (mk)(a)v
mσk−1

k · (−1)σ · det(u◦m0 | u◦m1 | · · · | u◦mn−1)

= V (u)sm(u)
n−1∏
k=0

f (mk)(a) · (−1)σ
n−1∏
k=0

v
mσk−1

k .

Summing this term over all σ ∈ Sn yields:

V (u)sm(u)
n−1∏
k=0

f (mk)(a)
∑
σ∈Sn

(−1)σ
n−1∏
k=0

v
mσk−1

k

= V (u)sm(u)
n−1∏
k=0

f (mk)(a) · det(v◦m0 | v◦m1 | · · · | v◦mn−1)

= V (u)sm(u)

n−1∏
k=0

f (mk)(a) · V (v)sm(v).

Now multiply by the (common) integer multiplicity to complete the proof. �

2.1. General power series determinants and Schur polynomials. We next
present a novel application of Theorem B, which unifies and extends classical and
modern determinantal identities. Begin by recalling an identity for Cauchy’s deter-
minant [7]: if B is the n × n matrix with entries (1 − ujvk)

−1 :=
∑

M�0(ujvk)
M

for variables uj , vk and 1 � j, k � n, then

(2.2) detB = V (u)V (v)
∑
m

sm(u)sm(v),

where the notation was explained in Definition 1.5, and the sum runs over all
partitions m with at most n parts. See [20, Chapter I.4, Example 6] for a proof.
Usually this is written with infinitely many indeterminates uj , vk; we work with
u1, . . . , un; v1, . . . , vn by specializing the other variables to zero. See also [18, Section
5] and the references therein, as well as [12,13,16,17,19,20] for other such identities
involving symmetric functions.

In particular, one can apply to all entries of the matrix uvT power series other
than f(x) = 1/(1 − x) =

∑
M�0 x

M , and then compute the determinant. For

instance, if f(x) has fewer than n monomials then f [uvT ] is a sum of fewer than
n rank-one matrices, so it is singular. The case when f has precisely n or n + 1
monomials was crucially used in joint works [1, 15], to study entrywise positivity
preservers. Another explicit formula – see (2.3) – was shown by Frobenius [9] in
greater generality than (2.2). This formula also appears in Rosengren–Schlosser
[22, Corollary 4.7], with (1 − cx)/(1 − x) in place of 1/(1 − x) as in (2.2). In this
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case, one has:

det

(
1− cujvk
1− ujvk

)n

j,k=1

(2.3)

= V (u)V (v)(1− c)n−1

( ∑
m : m0=0

sm(u)sm(v) + (1− c)
∑

m : m0>0

sm(u)sm(v)

)
.

With this background, we can state the master identity that extends Equa-
tions (2.2) and (2.3) from (1 − cx)/(1 − x) for a scalar/parameter c, to all power
series – including arbitrary polynomials – and with an additional Z�0-grading:

Theorem 2.1. Fix a commutative unital ring R and let t be an indeterminate. Let
f(t) :=

∑
M�0 fM tM ∈ R[[t]] be an arbitrary formal power series. Given vectors

u,v ∈ Rn for some n � 1, and with the notation in Definition 1.5, we have:

(2.4) det f [tuvT ] = V (u)V (v)
∑

M�(n2)

tM
∑

m=(mn−1,...,m0) �M
sm(u)sm(v)

n−1∏
k=0

fmk
.

All of the aforementioned examples are special cases of the t = 1 case of Theo-
rem 2.1.

Multiple approaches can be used to show Theorem 2.1; we present one approach
and outline another. We begin by formulating Theorem B in greater generality,
algebraically. Fix a commutative (unital) ring R and an R-algebra S. The first step
is to formalize the notion of the derivative, on a sub-class of S-valued functions.
This is more than just the commonly used notion of a derivation, so we give it a
different name.

Definition 2.2. Given a commutative unital ring R, a commutative R-algebra S
(with R ⊂ S), and an R-module X, a differential calculus is a pair (A, ∂), where A is
an R-subalgebra of functions : X → S (under pointwise addition and multiplication
and R-action) that contains the constant functions, and ∂ : A → A satisfies the
following properties:

(1) ∂ is R-linear:

∂
∑
j

rjfj =
∑
j

rj∂fj , ∀rj ∈ R, fj ∈ A, ∀j.

(2) ∂ is a derivation (product rule):

∂(fg) = f · (∂g) + (∂f) · g, ∀f, g ∈ A.

(3) ∂ satisfies a variant of the Chain Rule for composing with linear functions:
if x′ ∈ X, r ∈ R, and f ∈ A, then the function g : X → S, g(x) := f(x′+rx)
also lies in A, and moreover,

(∂g)(x) = r · (∂f)(x′ + rx).

For example, the algebra of smooth functions from the real line to itself is a
differential calculus, with R = S = X = R and ∂ = d/dx.

We can now state an algebraic generalization of Loewner’s calculations. The
proof is essentially the same as for Theorem B, and is hence omitted.
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Proposition 2.3. Suppose R,S,X are as in Definition 2.2, with an associated
differential calculus (A, ∂). Fix an integer n > 0, two vectors u,v ∈ Rn, a vector
a ∈ X, and a function f ∈ A; and Δ : X → R via:

Δ(t) := det f [a�n×n + tuvT ], t ∈ X.

Then,

(∂MΔ)(0X) =
∑
m�M

(
M

m0,m1, . . . ,mn−1

)
V (u)V (v)sm(u)sm(v)

n−1∏
k=0

(∂mkf)(a),

where we sum over all partitions m = (mn−1, . . . ,m0) of M . In particular,

Δ(0X) = (∂Δ)(0X) = · · · = (∂(
n
2)−1Δ)(0X) = 0R.

The algebra A is supposed to remind the reader of smooth functions. One
can instead work with an appropriate algebraic notion of M -times differentiable
functions in order to generalize Theorem B to a finite degree of differentiability.

Proposition 2.3 helps provide one approach to proving the master identity:

Proof of Theorem 2.1. The idea is to apply Proposition 2.3 to the differential cal-
culus

X := t R[[t]], S = A := R[[t]],

where f(t) ∈ A acts on g(t) ∈ X by composition: f(g(t)). We set a = 0 here,
and the composition converges in the t-adic topology by choice of X. Since a = 0,
we have det f [tuvT ] = Δ(t). The problem in proceeding thus is that one needs to
clear denominators and work with Δ(M)(0R)/M ! and fmk

= f (mk)(0R)/mk!, the
Maclaurin coefficients of Δ and f respectively; but to work with these requires R
to have characteristic zero.

Thus, we begin by observing that the identity (2.4) is of a universal nature: if it
holds for the polynomial ring

R = Z[X1, . . . , Xn, Y1, . . . , Yn, Z0, Z1, . . . ]

with uj = Xj , vk = Yk, fm = Zm ∀j, k,m algebraically independent elements, then
one may specialize to any given ground ring R – or more precisely, to the subring of
R generated by 1, u1, . . . , un, v1, . . . , vn, f0, f1, . . . . Hence we assume in the rest
of the proof that

R = Z[u1, . . . , un, v1, . . . , vn, f0, f1, . . . ],

with uj , vk, fm being algebraically independent.
We first work over a slightly larger ring:

R′ := R⊗Z Q = Q[{uj , vj : 1 � j � n, fm : m � 0}].
In this setting, apply Proposition 2.3 with X := t R′[[t]], S = A := R′[[t]], and
a := 0R′ , and define ∂ : A → A to be the usual derivative:

∂
∑
M�0

gM tM :=
∑
M�1

MgM tM−1 (gM ∈ R, ∀M � 0).

One verifies that (A, ∂) is a differential calculus for the data (R′, S,X).
We now prove the result over R′. Notice that Δ(t) = det f [tuvT ] is a lin-

ear combination of finite products of elements of R′[[t]], hence lies in R′[[t]]. If
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Δ(t) =
∑

M�0 δM tM , then by Proposition 2.3 one can compute each of its Maclau-

rin coefficients δM ∈ R′ via: δM = (∂MΔ)(0R′ )
M ! , and hence each of its Taylor–

Maclaurin polynomials as well. Taking limits in the t-adic topology, and recalling
from Proposition 2.3 that δM = 0R′ for M <

(
n
2

)
, we compute:

Δ(t) =
∑

M�(n2)

tM
(∂MΔ)(0R′)

M !

=
∑

M�(n2)

tM
∑
m

V (u)V (v)sm(u)sm(v)

n−1∏
k=0

(∂mkf)(0R′)

mk!
,

and this concludes the proof for R′ = Q[u1, . . . , un, v1, . . . , vn, f0, f1, . . . ].
While we just showed the identity (2.4) over R′, here both sides of (2.4) belong

to R[[t]], where R = Z[{uj , vj : 1 � j � n, fm : m � 0}]. By our discussion on
universality, the result follows for a general commutative unital ring. �

We also sketch an alternative approach to proving Theorem 2.1, via matrix
calculus. In the t-adic topology, f(t) = limM→∞ f�M (t), where f�M (t) is the Mth

Taylor–Maclaurin polynomial of f for M � 0, given by f�M (t) :=
∑M

m=0 fmtm.
But for f�M we have an explicit matrix factorization:

f�M [tuvT ]

=

⎛
⎜⎜⎜⎝
1 u1 · · · uM

1

1 u2 · · · uM
2

...
...

. . .
...

1 un · · · uM
n

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
f0 0 · · · 0
0 f1t · · · 0
...

...
. . .

...
0 0 · · · fM tM

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎝
1 v1 · · · vM1
1 v2 · · · vM2
...

...
. . .

...
1 vn · · · vMn

⎞
⎟⎟⎟⎠

T

and hence one can compute det f�M [tuvT ] via the Cauchy–Binet formula. Now
take the t-adic limit and rearrange terms to deduce via the t-adic continuity of the
determinant function:

(2.5) det f [tuvT ] = V (u)V (v)
∑

0�m0<m1<···<mn−1

sm(u)sm(v)
n−1∏
k=0

fmk
tmk ,

where m = (mn−1, . . . ,m0). But this sum equals the right-hand side of (2.4).
We conclude this section by returning to the real topology and working again

over R. As Theorem 2.1 holds in the t-adic topology, it is natural to ask about
the convergence of the series (2.4) as a real function. This indeed holds, as a
consequence of Theorem B:

Corollary 2.4. Fix scalars ε > 0 and a ∈ R, and vectors u,v ∈ Rn for some
integer n > 0. If f : [a, a+ ε) → R has the power series expansion

f(x) =
∑
M�0

fM (x− a)M , x ∈ [a, a+ ε), fM ∈ R,

and we define Δ(t) := det f [a�n×n+tuvT ] for sufficiently small t, then Δ(t) equals
the right-hand side of Equation (2.4) for sufficiently small t.

Proof. If f has a power series expansion around/near a, then so does Δ near 0,
since it is a linear combination of finite products of f -values near a. Thus Δ (real
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analytic near 0) can be recovered from its Maclaurin coefficients by repeating the
same computation as in the proof of Theorem 2.1. The Maclaurin coefficients of Δ
are computed in Theorem B. �

3. Horn–Loewner master theorem A: Additional remarks, and proof

Finally, we return to the Horn–Loewner Theorem 1.1 and its variants. The goal
of this section is to prove our Master Theorem A; however, we begin by filling in
the details omitted in the Introduction.

One reason why the Horn–Loewner Theorem 1.1 (and its variants) was significant
was because it is sharp in the number of non-negative derivatives. We now provide
several examples of this phenomenon.

Example 3.1.

(1) If one restricts to the class of power functions f(x) = xα – with α possibly
non-integral – then FitzGerald and Horn [8] showed that such entrywise
preservers of positivity on Pn((0,∞)) correspond precisely to α ∈ Z�0 ∪
[n − 2,∞) – note that the case of α ∈ Z�0 follows immediately from the
Schur product theorem [25]. Thus if α ∈ (n − 2, n − 1), then f(x) = xα

satisfies Theorem 1.1; moreover, f (n) is negative on I = (0,∞), showing
that Theorem 1.1 is sharp.

(2) Let I = (−ρ, ρ) or [0, ρ) with 0 < ρ < ∞. If one restricts to polyno-
mial functions f(x) =

∑
k�0 ckx

k acting on I, then in [1] we showed that

for any scalars c0, . . . , cn−1 > 0, there exists cn < 0 such that f(x) =∑n
k=0 ckx

k preserves positivity on Pn(I); moreover, f (n)(0) = n! cn < 0,

hence f (n)(x) < 0 for x > 0 small. This has two consequences: first,
it produces the first examples of polynomials / power series with a neg-
ative coefficient that preserve positivity in a fixed dimension. Moreover,
this produces polynomial functions (the previous example produces power
functions) that preserve positivity in dimension n but not n+ 1.

(3) Suppose that I = (0,∞). In [15], we constructed polynomials of the special

form
∑2n

k=0 ckx
k with cn < 0 < ck for all k �= n, which entrywise preserve

positivity on Pn((0,∞)). These are the first examples with negative co-
efficients, and in particular, the first polynomial examples that work over
Pn(I) but not over Pn+1(I). Proposition 3.2 provides an explicit family of
such polynomials – in fact, the simplest such family – when n = 2. This is
followed by a remark about all polynomials of the special form above when
n = 2; the case of general n � 2 is in [15].

Proposition 3.2. For ε > 0, define fε(x) = 1 + x− εx2 + x3 + x4. If 0 < ε � 1
10 ,

then fε[−] preserves positivity on P2([0,∞)).

In particular, such entrywise polynomials fε[−] preserve positivity on P2((0,∞)),
but not on P3((0, ρ)) for any 0 < ρ � ∞, by Lemma 1.3.

Proof. We first claim that fε is positive on (0,∞) if ε � 2. This follows by adding
the inequalities x2 < 1 + x4 and x2 < x+ x3, for any x > 0.

Next suppose that u = (u1, u2)
T ∈ (0,∞)2 is a column and A = uuT ∈

P2((0,∞)) has rank one. We claim that fε[A] is positive semidefinite if 0 < ε � 1
10 .

By relabelling indices and continuity, it suffices to show this for 0 < u1 < u2.
First note that all entries of fε[uu

T ] are non-negative, by the preceding paragraph.
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Next, we apply (2.5) – with n = 2, v = u, t = 1, and f = fε – to compute the
determinant:

det fε[uu
T ](3.1)

= V (u)2

⎡
⎣ ∑
0�j<k�3

s(nk,nj)(u)
2 − ε

1∑
j=0

s(M,nj)(u)
2 − ε

3∑
j=2

s(nj ,M)(u)
2

⎤
⎦ ,

where, for ease of exposition, we define and work with

(3.2) (n0, n1,M, n2, n3) := (0, 1, 2, 3, 4).

To show that det fε[uu
T ] is non-negative, we employ bounds on Schur polyno-

mials in two variables. Given integers 0 � j < k, notice that

s(k,j)(u1, u2) =
uk
2u

j
1 − uj

2u
k
1

u2 − u1
= (u1u2)

j(uk−j−1
2 + uk−j−2

2 u1 + · · ·+ uk−j−1
1 ).

If 0 < u1 < u2 as above, then the largest among the k−j monomials here is uj
1u

k−1
2 ,

so

(3.3) uj
1u

k−1
2 � s(k,j)(u1, u2) � (k − j)uj

1u
k−1
2 , ∀0 < u1 < u2, 0 � j < k.

(See [15, Proposition 3.1] for the corresponding bounds on general Schur polyno-
mials.) In particular, dividing (3.1) by V (u)2 > 0 and using (3.3), we have:

det fε[uu
T ]

V (u)2
�

∑
0�j<k�3

u
2nj

1 u
2(nk−1)
2 − ε

∑
0�j�3

(M − nj)
2u

2min(nj ,M)
1 u

2max(nj ,M)−2
2 .

We claim that the right-hand side is non-negative when 0 < ε � 1
10 . This is

equivalent to showing that if 0 < u1 < u2, then

ε−1 � 10 =

3∑
j=0

(M − nj)
2 �

∑
0�j�3(M − nj)

2u
2min(nj ,M)
1 u

2max(nj ,M)−2
2∑

0�j<k�3 u
2nj

1 u
2(nk−1)
2

.

For this, it suffices to show that each monomial u
2min(nj ,M)
1 u

2max(nj ,M)−2
2 in the nu-

merator is bounded above by the sum in the denominator. We claim more strongly
that each such monomial is bounded above by one summand in the denominator.
This is because for each j, there exist indices i �= k in {0, 1, 2, 3} \ {j} such that
ni < M < nk. Now for instance if j = 1, then

u2n1
1 u2M−2

2 �
{
u2n0
1 u

2(n1−1)
2 , if u2 < 1,

u2n1
1 u

2(n3−1)
2 , if u2 � 1,

and similarly for the other three summands.
This shows the result for all rank-one matrices in P2((0,∞)). For the gen-

eral case, we use the extension principle [15, Theorem 3.5], which says that if
f : (0,∞) → R is a continuously differentiable function such that f [−] preserves
positivity on rank-one matrices in Pn((0,∞)) and f ′[−] preserves positivity on
Pn−1((0,∞)) for some n � 2, then f [−] preserves positivity on Pn((0,∞)). Via this
result, it suffices to show that f ′

ε[−] preserves positivity on P1((0,∞)) if 0 < ε � 1
10 .

But this follows by noting that

f ′
ε[(x)1×1] = f ′

ε(x) � f ′
1/10(x) > (1− x

10
)2 � 0, ∀x > 0.
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Thus if 0 < ε � 1
10 , then fε[−] preserves positivity on P2((0,∞)), so on P2([0,∞))

by continuity. �

Remark 3.3. In this remark, we consider the more general family of polynomials

fε(x) = cn0
xn0 + cn1

xn1 − εxM + cn2
xn2 + cn3

xn3 , ε > 0,

where 0 � n0 < n1 < M < n2 < n3 are integers, and cnj
∈ (0,∞) are fixed scalars.

If

(3.4) 0 < ε � ε0 := min{cnj
: 0 � j � 3} ·

⎛
⎝ 3∑

j=0

(M − nj)
2

⎞
⎠

−1

,

then we claim that fε[−] preserves positivity on P2([0,∞)). Here we outline the
argument when it differs from the proof of Proposition 3.2, mainly due to the
integers nj � 0 being arbitrary.

The first reduction is to the case when all cnj
= 1. Note that for any positive

semidefinite matrix An×n, one has fε[A] − gε[A] ∈ Pn, where gε(x) := minj cnj
·∑3

j=0 x
nj − εxM . This is because A◦nj ∈ Pn for all j, by the Schur product

theorem [25]. Thus if the result holds for (minj cnj
)−1gε(x) – with the bound

ε−1 �
∑3

j=0(M − nj)
2 – then the result holds for fε as desired.

Thus, suppose that cnj
= 1 ∀j and fε(x) = xn0 +xn1 − εxM +xn2 +xn3 , akin to

its special case in Proposition 3.2. Now ε0 � 1
10 , so the same arguments as in the

preceding proof show: (i) fε(x) > 0 if 0 < ε � 2 and x > 0; and (ii) fε[−] preserves
positivity on rank-one matrices in P2((0,∞)), if 0 < ε � ε0. The final step – as
in the preceding proof – is to use the extension principle, and here we claim the
stronger assertion: hε0(x) := n1x

n1−1−Mε0x
M−1+n2x

n2−1 � 0 ∀x > 0. To prove
this, it suffices to multiply by x > 0 and show that n1(x

n1 + xn2) � Mε0x
M . This

would follow from Mε0 � n1, which in turn follows from the sub-claim that

2(M − n1)
2 � M/n1, where M � n1 + 1, n1 � 1.

This sub-claim is proved by considering the function h(x) := 2(x − n1)
2 − n−1

1 x
on [n1,∞). Note that h′(x) � 0 for x � n1 + 1/(4n1), so h(M) � h(n1 + 1) =
1− n−1

1 � 0. �
Our next observation explains why we call Theorem A a master theorem: it

encompasses all of the previously known versions.

Proposition 3.4. Theorem A specializes to all results stated prior to it, for f
smooth.

Proof. We first show how Theorem A implies Theorem 1.2 (which in turn implies
Theorem 1.1). Since f is smooth, by the discussion following Theorem 1.2 we may
disregard the hypothesis concerning P2(I). Choose any a ∈ I = (0, ρ), and set

ε := ρ− a, p = q := n, uk := uk−1
0 ∀k ∈ [1, n].

Theorem 1.2 now follows from Theorem A, for smooth f .
Next we show how Theorem A implies a stronger version of Lemma 1.3(1) –

for smooth functions, not merely power series. Set a = 0 and suppose that f has
N � ∞ nonzero derivatives at a = 0. Let l := min(n,N) and denote the smallest
l of these orders of derivatives by m0, . . . ,ml−1. Now set ε := ρ, p := 0, q := l.
It follows by Theorem A that the first l nonzero Maclaurin coefficients of f(x) at
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x = 0 are non-negative, hence positive as desired. This shows the result – and with
a smaller test set used here than in Lemma 1.3(1).

Finally, we show how Lemma 1.3(2) follows from Theorem A. By Lemma 1.3(1),
it suffices to consider only the coefficients of degree > m′. Thus, suppose that the
assumptions of Lemma 1.3(2) hold, and yet cm′ < 0 is not followed by n positive
coefficients of higher degree. First, if cm′ is followed by infinitely many negative
coefficients of higher degree, then f(x) < 0 for x � 0. But then f [x�n×n] �∈ Pn(R),
contradicting the hypotheses.

Thus cm′ is followed by finitely many nonzero higher-order coefficients. Without
loss of generality, we may redefine m′ to be the highest degree coefficient that is
negative; thus,

f(x) =

d∑
j=0

cnj
xnj + cm′xm′

+

l−1∑
k=0

cmk
xmk ,

where 0 � n0 < · · · < nd < m′ < ml−1 < · · · < m0 are integers. Now define

g(x) :=
l−1∑
k=0

cmk
cm0−mk + cm′xm0−m′

+
d∑

j=0

cnj
xm0−nj .

In other words, g(x) = xm0f(1/x) for x > 0. We claim that g(x) entrywise preserves
positivity on rank-one matrices uuT ∈ Pn((0,∞)). Indeed,

g[uuT ] = (uuT )◦m0 ◦ f [(uuT )◦−1] = [u◦m0(u◦m0)T ] ◦ f [u◦−1(u◦−1)T ],

and this is positive semidefinite by the Schur product theorem and since u◦−1 ∈
(0,∞)n as well. But this reduces us to the previous case of Lemma 1.3(1), which
follows from Theorem A and implies that g has at least n positive coefficients of
degree lower than xm0−m′

. Therefore l � n, contradicting the assumption. �

Remark 3.5. For completeness, we briefly discuss what happens if one tries to
weaken the smoothness hypothesis in Theorem A. The way that Horn/Loewner
originally proved Theorem 1.1 was to appeal to a result of Boas and Widder [6] by
using mollifiers, that is, convolving f with φ(x/δ) for δ > 0 and a certain smooth
function φ : (−1, 0) → (0,∞). We now explain why it is not possible to repeat this
argument for Theorem A outside of the setting of the Horn–Loewner setting p = n.

Indeed, suppose p < n, which we may take to mean mp > p < n. To repeat the
mollifier argument would at least involve changing the hypothesis

f [a�n×n + tuuT ] ∈ Pn(R), ∀t,

from each fixed a, to all a belonging to an interval J ′. But now if we want f
(p)
δ (a) =

0, then assuming that f is nice enough (e.g., if f, f ′, . . . , f (p) are bounded on J ′),
we compute:

f
(p)
δ (a) =

∫ 0

−δ

f (p)(a− u)φ
(u
δ

)
= 0.

From this and since f (p) � 0 on I for p < n (by Theorem 1.1), it follows that f (p)

vanishes on some interval J containing a, hence so does f (r) for all r � p. But this
does not reconcile with f (mp)(a) �= 0 for mp > p.

Given Theorem A and the discussion in Remark 3.5, we next observe that the
original non-pointwise Theorem 1.1, as well as its strengthening in Theorem 1.2,
admits a small generalization: the domain need not begin at 0.
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Corollary 3.6. Theorems 1.1 and 1.2 hold for every open subinterval I ⊂ (0,∞).

This result is equivalent to the formulation for I = (0,∞), and this equivalence
is immediate. Indeed, if I = (r, s) with 0 < r < s � ∞), then one works instead
with the function g : (0, s− r) → R, g(x) := f(x + r), and this reduces the result
to Theorems 1.1 and 1.2 respectively.

Our final remark, before proving the Master Theorem A, addresses a classical
result by Boas and Widder:

Remark 3.7. As discussed in [5, 10, 11], the Horn–Loewner theorem for general
functions – on all open intervals (0, ρ) for 0 < ρ � ∞ – in fact follows from its
smooth version, using mollifiers and a 1940 result by Boas and Widder. Here we
record a minor typo in Boas and Widder’s proof of their (rather remarkable!) main
result in [6]. The authors begin the proof of [6, Lemma 13] by claiming that if
I ⊂ R is an open interval and f : I → R is continuous and has non-negative
forward differences of order k � 3, then f ′ is monotonic. However, this is not true
as stated: for any k � 3, the function f(x) = x3 satisfies these hypotheses on
I = (−1, 1), but f ′ is not monotone on I.

We now explain how to fix this issue. One has to claim instead that f ′ is
piecewise monotone on I. This claim follows by applying in turn [6, Lemmas 9, 4,
and 11]. The piecewise monotonicity then suffices to imply the existence of f ′(x±)
at every point in I, and the remainder of the proof of Lemma 13 in [6] goes through
verbatim.

3.1. Proof of the Master Theorem A. We conclude the paper by using Theo-
rem B to show the Horn–Loewner Master Theorem A. Definition 3.8, which may
seem somewhat opaque at first glance, will feature in the proof.

Definition 3.8. Let a ∈ R and ε ∈ (0,∞). Define I := [a, a + ε) and suppose
f : I → R is smooth. We say that a tuple of integers

0 � m0 < · · · < mn−1

is admissible for these data if, for all tuples (l0, . . . , ln−1) of non-negative integers
such that

∑
k lk �

∑
k mk, at least one of the following three possibilities holds:

(1) The lk are not pairwise distinct.
(2) There exists k such that f (lk)(a) = 0.
(3) {l0, . . . , ln−1} = {m0, . . . ,mn−1}.

Notice that this definition is independent of ε > 0. We now characterize all
admissible tuples of each given length:

Lemma 3.9. Given a ∈ R, ε > 0, an integer n > 0, and f : [a, a+ ε) → R smooth,
an integer tuple 0 � l0 < · · · < ln−1 is admissible for these data if and only if:

(1) Either f has at most n− 1 nonzero derivatives at a; or
(2) If the integers 0 � m0 < · · · < mn−1 denote the n lowest-order nonzero

derivatives of f(x) at x = a, then either lk = mk ∀k or
∑

k lk <
∑

k mk.

In particular, given a, ε, f, n, there are either finitely many length n admissible tu-
ples, or every length n tuple of pairwise distinct non-negative integers is admissible.

The tuple mk = k, 0 � k < n was used in Loewner’s determinant computation
and proof of Theorem 1.1, and this tuple is easily seen to be admissible. As dis-
cussed in the discussion following Remark 1.6, in this special case the argument is
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somewhat less involved and the underlying use of admissibility is not revealed; but
this subtlety is made clear in the proof of Theorem A.

Proof. Clearly if f has at most n − 1 nonzero derivatives at a, then every integer
tuple 0 � l0 < · · · < ln−1 forms an admissible tuple, by the pigeonhole principle.

Now suppose that f (mk)(a) �= 0 for all 0 � k � n − 1, and the mk are min-
imal with this property, as well as pairwise distinct. One checks that the mk

form an admissible tuple. For any tuple (m′
k) such that

∑
k m

′
k �

∑
k mk but

{m′
0, . . . ,m

′
n−1} �= {m0, . . . ,mn−1}, we can choose lk := mk in Definition 3.8 to

verify that (m′
k) is not admissible.

Finally, if
∑

k m
′
k <

∑
k mk, then we claim that (m′

k) is an admissible tuple.
Indeed, choose any tuple (lk) of pairwise distinct integers lk � 0 with

∑
k lk �∑

k m
′
k <

∑
k mk. Then conditions (1), (3) in Definition 3.8 fail to hold, so condi-

tion (2) holds by the minimality of the mk. �

Finally, we have:

Proof of Theorem A. At the outset, set

m0 := 0, . . . , mp−1 := p− 1.

Notice that it suffices to show that f (mk)(a) � 0 for 0 � k � q − 1. The remaining
derivatives at x = a of f(x) of order � mq−1 lie in [p,mq−1] \ {mp, . . . ,mq−1}, and
hence are zero by the choice of the mk.

The second observation is that the given test set of n × n matrices contains as
principal submatrices a corresponding test set of q × q matrices. Hence we may
restrict to the leading principal q × q submatrices of the given test set, and work
with only this reduced test set. In other words, we may assume without loss of
generality that q = n.

Having made these reductions, we prove the result. For each 0 � δ small enough,
define fδ(x) := f(x) + δxp−1 with x ∈ I. For the data a � 0, any ε > 0, and fδ
with any δ > 0, note by Lemma 3.9(2) that the tuple (mk) is indeed admissible,
since the mk denote the orders of the first n nonzero derivatives5 of fδ(x) at x = a.

Now given a, t and the vector u as in the theorem, define Δ(t) := det fδ[a�n×n+
tuuT ] as in Theorem B (i.e., replacing f,v by fδ,u respectively). Then Δ(t) � 0
for t > 0, by the hypotheses and using the Schur product theorem for xp−1. From
this we obtain:

0 � lim
t→0+

Δ(t)

tM
, where M := m0 + · · ·+mn−1,

provided this limit exists.
We now claim that Δ(0) = Δ′(0) = · · · = Δ(M−1)(0) = 0, so that one can com-

pute the limit using L’Hôpital’s rule. Indeed, going through the proof of Theorem B,
if we choose any tuple (lk) of non-negative integers, the determinant (2.1) vanishes if
any two lk are equal, or if f (lk)(a) = 0. Thus if

∑
k lk �

∑
k mk, then the admissibil-

ity of the tuple (mk) (shown above) implies that {l0, . . . , ln−1} = {m0, . . . ,mn−1}.

5In the original proof in [11] for p = q = n, Horn/Loewner use fδ(x) := f(x) + δxn; but for
their purposes they could just as well have used any power � n− 1. As the present proof reveals,
in order to examine the coefficients of nonzero derivatives of order up to n− 1, the optimal power
to use in the original Horn–Loewner setting would be n− 1.
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In particular, Δ(L)(0) = 0 for all 0 � L < M , by Theorem B. Continuing the
computation,

0 � lim
t→0+

Δ(t)

tM
=

Δ(M)(0)

M !
= V (u)2sm(u)2

n−1∏
k=0

f
(mk)
δ (a)

mk!
,

where the equalities are by L’Hôpital’s rule, and by Theorem B and the admissibility
of m. In particular, the right-hand side here is non-negative. Since u has distinct
coordinates, we can cancel all positive factors to conclude that

(3.5)

n−1∏
k=0

f
(mk)
δ (a) � 0.

Notice that for n = 1, this proves the inequality, by sending δ → 0+.
We now prove the result by induction on n = q. For the induction step, we know

that f (mk)(a) � 0 for 0 � k � n−2, since the given test set of n×nmatrices contains
as leading principal submatrices a corresponding test set of (n−1)×(n−1) matrices.
There are now two cases. If a = 0, then with δ = 0 and 0 � k � n − 2, we have

f
(mk)
δ (0) > 0 as was just discussed, so we may divide and obtain f (mn−1)(0) � 0,
as desired.

If instead a > 0 and δ > 0, then

f
(mk)
δ (a) = f (mk)(a) + δ p(p− 1) · · · (p−mk + 1)ap−mk ,

and this is positive for 0 � k � n−2 by the induction hypothesis. (Here we consider
separately the cases 0 � k < p and k � p.) Hence by (3.5),

f
(mn−1)
δ (a) = f (mn−1)(a) + �p=n δ ·mn−1! � 0, ∀0 < δ  1,

and it follows that f (mn−1)(a) � 0. �
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