Supporting Information

A High-Performance Li-Metal Free Sulfur Battery Employing Lithiated Anatase TiO₂ Anode and Free Standing Li₂S-Carbon Aerogel Cathode

Ravindra Kumar Bhardwaj¹, Homen Lahan¹, Venkataraman Sekkar^{2#}, Bibin John² and Aninda J. Bhattacharyya^{1*}

¹Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru-560012, India

²ISRO-VSSC, Thiruvananthapuram, 695022, India

*Email: anindajb@iisc.ac.in

Number of pages: 15 Number of figures: 17 Number of tables: 02

[#] Present Address: School of Environmental Studies, Cochin University of Science and Technology (CUSAT), Kochi - 682 022; Kerala, India

Table of content

Figure S1	X-ray diffraction pattern of TiO2 nanoparticles	Page 3
Figure S2	Schematic of cell used for operando Raman measurements	Page 4
Figure S3	Bright-field TEM image of Li ₂ S nanostructure	Page 4
Figure S4	Bright-field TEM image of pelletized Li ₂ S/CA cathode	Page 5
Figure S5	Powder-XRD pattern of Li_2S powder (blue), CA (green) and Li_2S/CA pellet red	Page 5
Figure S6	N2 adsorption/desorption isotherms of CA	Page 6
Figure S7	SEM image and elemental mapping of Li_2S	Page 6
Figure S8	SEM image and elemental mapping of CA	Page 7
Figure S9	SEM image and elemental mapping of Li_2S/CA composite cathode	Page 7
Figure S10	SEM image and elemental mapping of Li_2S/CA cathode after activation cycle	Page 7
Figure S11	Schematic of the symmetric cell employed for measuring the tortuosity of the Li_2S/CA pellet	Page 8
Figure S12	Nyquist plot and equivalent circuit for the Li ₂ S/CA pellet	Page 8
Figure S13	Electrochemical Impedance spectroscopy (EIS, Nyquist plot) of the Li/S cell with Li_2S/CA cathode	Page 9
Figure S14	Galvanostatic charge/discharge profile of Li ₂ S/Gr full cell	Page 10
Figure S15	Cyclic voltammograms of Li ₂ S/Gr full cell	Page 10
Figure S16	Electrochemical Impedance spectroscopy (EIS, Nyquist plot) of the $Li\ TiO_2\;$ cell and $Li\ Gr\;$ cell	Page 11
Figure S17	Galvanostatic charge/discharge profile at various current rate	Page 11
Table S1	Comparison of the energy density of the present work with other previously reported Li_2S based full cells	Page 12
Table S2	A comparison of the energy density of the $Li_2S/CA TiO_2$ cell with the commercial LIBs comprising intercalation compounds cathode and graphite anode	Page 14

Figure S1. X-ray diffraction pattern of TiO₂ nanoparticles

Figure S2. Schematic of cell used for operando Raman measurements

Figure S3. Bright-field TEM image of Li_2S nanostructure

Figure S4. Bright-field TEM image of pelletized Li₂S/CA cathode.

Figure S5. Powder-XRD pattern of Li_2S powder (blue), CA (green) and Li_2S /CA pellet red.

Figure S6. N₂ adsorption/desorption isotherms of CA

Figure S7. SEM image and elemental mapping of Li_2S

Figure S8. SEM image and elemental mapping of CA

Figure S9. SEM image and elemental mapping of Li_2S/CA composite cathode

Figure S10. SEM image and elemental mapping of Li_2S/CA cathode after activation cycle.

Figure S11. Schematic of the symmetric cell employed for measuring the tortuosity of the Li_2S/CA pellet.

Figure S12. Nyquist plot and equivalent circuit for the Li_2S/CA pellet obtained (a) Without separator, (b) With separator.

The Li₂S/CA pellet is placed between separators placed between lithium foil electrodes. The tortuosity was obtained using the following expression:

$$\sigma_{\rm P} = \sigma \phi \tau^{-1} \dots S1$$

where,

- $\sigma_{\rm P}$: effective conductivity (with separator as figure S10) = 7.14 × 10⁻⁵ S/cm
- σ : intrinsic conductivity (without separators) = 1.2×10^{-4} S/cm
- φ : Volume fraction of pores = 0.60
- τ : Tortuosity of the materials as per equation S1 = 1.06

 σ_P and σ are ionic conductivity in the presence and absence of separator. Volume fraction of pores were obtained by estimating the density from calculated sample volume and weight.

Figure S13. Electrochemical Impedance spectroscopy (EIS, Nyquist plot) of the Li/S cell with Li₂S/CA cathode, at OCV (green), after activation (pink).

Figure S14. Galvanostatic charge/discharge profile of Li₂S/Gr full cell

Figure S15. Cyclic voltammograms of Li₂S/Gr full cell.

Figure S16. Electrochemical Impedance spectroscopy (EIS, Nyquist plot) of the Li||TiO₂ cell (red) and Li||Gr cell (green). Inset shows the equivalent circuit for fitting the data.

Figure S17. Rate capability of the Li-S cell with (a) Li_2S/CA cathode and lithium anode, (b) Li_2S/CA cathode and TiO_2 anode

Table S1. A comparison of the energy density of the present work with other previouslyreported Li_2S based full cells.

Cathode	Anode	Capacity @	Number of	Energy Density	Reference
		first discharge	cycles	(Wh/kg)	
Li ₂ S	Silicon nanowire	423 mAh g ⁻¹	20	720	1
mesoporous	anode				
carbon					
composite					
cathode					
Li ₂ S-MCMB	Si-O-C anode	228 mAh g ⁻¹	50	390	2
composite					
Li ₂ S/C	Graphite anode	750 mAh g ⁻¹	300	1300	3
composite					
Cathode					
Nano	Graphene	800 mAh g ⁻¹	100	1400	4
compacted					
Li ₂ S/Graphene					
composite					
Li ₂ S/Carbon	Anatase TiO ₂	566 mAh g ⁻¹	200	1300	Current
aerogel pellet	anode				work
cathode					

Cell parameters of the Li₂S/TiO₂ cell using TiO₂ anode and Li₂S/CA cathode

Materials	Weight (mg)
Li ₂ S	7.8
Carbon aerogel (CA)	3.4

TiO ₂	27.3
Carbon (acetylene black)	3.4
PVDF binder	3.4
Al-Current collector	5.0
electrolyte	87.5
Separator	13.2
Total weight	151

Cell capacity (mAh) = 4.41

Nominal cell voltage (V) = 2.3 V

Energy density of the cell based on the active mass of $Li_2S = \frac{Cell \text{ capacity}}{weight of Li2S(g)} \times Cell \text{ voltage}$

..S2

$$= \frac{4.41}{7.8 \times 10^{-3}} \times 2.3$$

Energy density of the cell based on the total weight of the cell = $\frac{\text{Cell capacity}}{\text{total weight (g)}} \times \text{Cell voltage}$

$$= \frac{4.41}{151 \times 10^{-3}} \times 2.3$$

\$\approx 30 Wh/Kg

Table S2. A comparison of the energy density of the $Li_2S/CA||TiO_2$ cell with the commercialLIBs comprising intercalation compounds cathode and graphite anode.

Cell Chemistry	Anode	Cathode	Nominal	Energy Density
			Voltage	(Wh/kg)
Lithium cobalt oxide	Graphite	LiCoO ₂	3.7	195
Lithium iron	Graphite	LiFePO ₄	3.2	160
phosphate				
Lithium nickel cobalt	Graphite	NCA	3.6	220
<u>aluminium oxides</u>				
Lithium nickel	Graphite	NMC	3.6	205
manganese cobalt				
oxide				
Li ₂ S/Carbon aerogel	Anatase TiO ₂	Li ₂ S/CA pellet	2.3	1300
pellet cathode	anode			(Current work)

REFERENCES

- Hwang, J.; Shin, S.; Yoon, C. S.; Sun, Y.; Shin, S.; Yoon, C. S.; Sun, Y. Nano-Compacted Li2S/Graphene Composite Cathode for High-Energy Lithium–Sulfur Batteries. ACS Energy Lett. 2019, 4, 2787–2795, DOI 10.1021/acsenergylett.9b01919.
- (2) Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y. New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy. *Nano Lett.* 2010, *10* (4), 1486–1491, DOI 10.1021/nl100504q.
- (3) Agostini, M.; Hassoun, J.; Liu, J.; Jeong, M.; Nara, H.; Momma, T.; Osaka, T.; Sun, Y. K.; Scrosati, B. A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode. ACS Appl. Mater. Interfaces 2014, 6 (14), 10924–10928, DOI 10.1021/am4057166.

(4) Seita, T.; Matsumae, Y.; Liu, J.; Tatara, R.; Ueno, K.; Dokko, K.; Watanabe, M. Graphite-Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. *ACS Energy Lett.* 2020, 5 (1), 1–7, DOI 10.1021/acsenergylett.9b02347.