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Redatuming physical systems using symmetric autoencoders
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This paper considers physical systems described by hidden states and indirectly observed through repeated
measurements corrupted by unmodeled nuisance parameters. A network-based representation learns to disen-
tangle the coherent information (relative to the state) from the incoherent nuisance information (relative to the
sensing). Instead of physical models, the representation uses symmetry and stochastic regularization to inform
an autoencoder architecture called SymAE. It enables redatuming, i.e., creating virtual data instances where the
nuisances are uniformized across measurements.
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I. INTRODUCTION

In contemporary sciences, there is increasing reliance on
experimental designs involving measurements that are cor-
rupted by unmodeled and uncontrollable nuisance variations.
For example, in geophysics, specifically passive time-lapse
seismic monitoring, the recorded seismic data are generated
by uncontrollable sources related to tectonic stress changes
in the subsurface [1] or ocean-wave activity [2]. Similarly, in
astronomy, the fluorescent emissions which characterize the
lunar surface’s chemical composition fluctuate depending on
unmodeled solar flares [3,4]. Such designs introduce ambi-
guity when determining whether changes in data represent
coherent information, i.e., a signal indicating changes re-
lated to the underlying physical state, or conversely represent
nuisance information, i.e., incidental variations due to noise
inherent to the data acquisition. Nevertheless, these uncontrol-
lable experiments (along with others listed in Table I) remain
the only feasible avenue to measure and study certain physical
phenomena. This motivates the development of algorithmic
tools to reliably disentangle the nuisance noise from coherent
signals in these settings.

This paper focuses on a subclass of such experiments
where variations in the measurements occur across two differ-
ent scales: one in which the physical processes affecting the
coherent information occur, and the other scale corresponding
to noise processes that induce variations in the nuisance in-
formation. We assume there exists a strong scale separation in
which the noise processes occur at a significantly faster rate
than the former. This assumption is crucial as it enables us to
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neglect variations in the coherent information within a collec-
tion of closely spaced measurements. We refer to these closely
spaced (in scale) or repeated measurements as instances, and
groups of instances altogether describe a (physical) state; the
dichotomy in scaling and its relation to instances and states is
illustrated in Fig. 1.

We further assume that the experiments we consider abun-
dantly produce measurements describing the same physical
state, albeit with different nuisance variations. Examples
of experiments that satisfy these conditions are listed in
Table I. Critically, in principle, having access to a sufficiently
dissimilar collection of instances enables disentanglement of
coherent information from nuisance information without any
reference to the underlying physical model [5].

Our proposed approach to disentanglement decomposes
each measurement into separate latent codes which are cor-
related, but typically not equivalent, to the corresponding
(unknown) parametric representations underlying each source
of information. These coherent and nuisance latent codes are
determined from an autoencoding architecture with an en-
coder, which maps into the latent space, and a decoder, which
reconstructs the data in a near-lossless fashion. Notably, this
avoids explicit modeling of both the physics and the nuisances
by instead relying on data to inform these properties. This
framework can be seen as a vast generalization of multichan-
nel blind deconvolution [6], where neural networks replace the
convolutional signal model, the coherent information replaces
the unknown source, and the nuisance variations correspond
to the unknown filters.

Disentanglement into coherent and incoherent latent vari-
ables enables a reliable comparison of coherent information
between instances collected from different states. However,
this relegates the analysis into a latent space that is abstractly
related to the physical system. To that end, we propose an ad-
ditional mechanism, called redatuming, which converts from
latent coordinates back into the nominal data space repre-
sentation with specifically chosen properties. This involves
combining coherent information from one instance with the
nuisance information from a reference instance in order to
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TABLE I. A representative list of experiments, where numerous instances are measured at each state that describes the physical
phenomenon of interest. The instances exhibit dissimilarities due to the nuisance variations while sharing coherent information about the
state.

Components of informationin each instance

Experiment; goal is to
characterize the variation of . . .

Measured instances in each state
comprise . . .

Coherent information describing
the state Nuisance information

Seismic time-lapse imaging;
subsurface with time [7,8]

Waves propagating through a
given subsurface region, but

generated by different
uncontrollable sources

Mechanical properties of the
subsurface region

Source signature, location, and
mechanism

Seismology; source mechanism
among different earthquakes
[9,10]

Waves from an earthquake
measured at different receivers

Earthquake’s spectrum, geology
near epicenter region, etc.

Multipathing in the subsurface,
Doppler effects from rupture

propagation, etc.

Lunar x-ray fluorescence
spectroscopy; lunar geology with
location [4,11]

Fluorescence from regions that
share a given rock typeunder

different solar conditions

Elemental composition of the
rock type

Solar-flare information

Asteroseismology [12,13];
pulsating mechanism among
rapidly oscillating Ap [14] or
Delta Scuti [15] stars

Brightness of a given star
measured in different temporal

windows

Physics that is symmetrical
under time translation, e.g., star’s
internal structure, kappa opacity

mechanism, etc.

Short-lived excitation
mechanisms, e.g., surface
convection, variable radial

velocity, etc.

synthesize a virtual instance that is not originally measured
(i.e., not present in the dataset). The relevance of such virtual
data instances is that they can be engineered to share their
nuisance information with another (measured) data instance
so that any remaining discrepancy can be solely explained
from differences in the underlying coherent physical states.
This entire process can be alternatively viewed as “swapping
the physics” between states. We conjecture that this type of re-
datuming can help rethink how to approach inverse problems
with significant uncertainties in the forward model.

We illustrate redatuming using the example of time-lapse
geophysical subsurface monitoring cited in Table I. Here,
seismic surveys are conducted to measure the subsurface
properties (the coherent information) indirectly by recording
reflected and transmitted elastic waves generated by un-
controlled or unreliably modeled mechanisms (the nuisance
information). In this setting, it is reasonable to assume that
changes to the complex heterogeneous subsurface occur on a
significantly slower timescale (e.g., on the order of months)
than the variations in the uncontrollable seismic sources (on
the order of hours or days). As such, the variations in the
subsurface mechanical properties, as functions of the lateral

FIG. 1. Illustration of separation between two scales. The coher-
ent information (marker shape) related to the state varies on a much
slower scale compared to the nuisance information (marker distance
from the baseline). Here, each marker represents a measurement.

scale dependent on distance x and depth z, can be safely
neglected within each state. The goal is to detect and char-
acterize changes in subsurface between the states, e.g., to
distinguish between “state #1” and “state #2” along the ab-
scissa of Fig. 2 [16]. In each state, the measured instances
constitute the time-dependent (indexed using t) wave field
recorded at a given set of receivers (indexed using r) in the
medium [plotted in Figs. 2(a) and 2(c)].

In effect, the seismic sources are realized with randomized
signatures and locations (cf. the nuisance variations visualized
along the ordinate of Fig. 2) . This confounds direct visual
comparison between the measured instances Figs. 2(a) and
2(c) as it is unclear whether the localized changes (indicated
by the blue arrow) are to be attributed to changes in the
medium or the source. Redatuming overcomes this ambiguity
by generating a virtual instance, plotted in Fig. 2(d). This
virtual instance is engineered by replacing the subsurface
information of Fig. 2(a) with that of Fig. 2(c) while retain-
ing its source/nuisance information. As a result, the virtual
instance can be subtracted from the reference instance [here
Fig. 2(a)] to qualify or quantify potential subsurface changes
via standard imaging techniques. We emphasize that redatum-
ing enables domain experts to perform data analysis using
traditional tools without any reference to the implicit latent
space.

These ideas are inspired by recent machine learning liter-
ature where redatuming is instead referred to as styling, or
deep-fakes (see, e.g., [17–19]), and the reliance on multiple
instances is referred to as weak supervision [5,20]. However,
we note that these communities primarily apply these tools
to images with significant visual structure wherein nuisance
information relates to the “image style,” and the coherent
information relates to the “image content.” This paper instead
introduces the idea of redatuming to scientific signals, en-
abling us to quantify virtual-instance accuracy against explicit
synthetic models rigorously.
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FIG. 2. Redatuming is equivalent to swapping the coherent and
nuisance information in SymAE’s latent space. Here, as SymAE
learns to represent the information on medium (coherent) and in-
coming plane-wave sources (nuisance) separately, the recorded wave
field [(a) and (c)] in a seismic experiment (see Table I) can be
redatumed to generate virtual measurements [(b) and (d)]. A low
error confirms that the redatuming operator captures salient features
of the wave-equation modeling despite a multipath propagation due
to the complex medium inhomogeneities.

II. OUR CONTRIBUTIONS

To achieve redatuming, we propose an unsupervised deep-
learning architecture called symmetric autoencoder (SymAE).
Achieving the requisite disentangled latent representation
with SymAE requires two deliberate architectural design
choices: (1) The encoder for the coherent latent variables is
constrained to be symmetric with respect to the ordering of the
instances indexed by nuisance variations. (2) The remaining
latent-code dimensions are encouraged to encode independent
information by stochastic regularization that promotes dissim-
ilarity among the instances [21]. Therefore, these remaining
latent components are designed to not represent the coherent
information and correspond only to the nuisance variations.

Once the coherent and nuisance information are disentan-
gled in the latent space, redatuming is equivalent to decoding a
hybrid latent code, specifically, a hybridization of the coherent
code from one state and the nuisance code of an instance from
another state. We provide numerical evidence that SymAE’s
redatuming preserves and captures the salient features of the
underlying physical modeling operator, thus enabling the use
of virtual data points for subsequent downstream tasks such
as parameter estimation. We numerically validate that the
virtual instances generated without reference to the physics
satisfy the governing wave equation up to a low relative
mean-squared error. This indicates that SymAE redatuming is
consistent with, or preserves, the physics of wave propagation.

The concept of redatuming appears in the context of tra-
ditional seismic inversion [22–26]. The major differences
with our current generalized approach, however, are (1) the
seismic-specific redatuming is limited to swapping sources or
receivers from one state to another—in contrast, SymAE aims
to swap any information that is coherent across the instances;
and (2) seismic redatuming either requires prior knowledge
about the subsurface or uses physics-derived relations with
convolutions or cross-correlations—in contrast, SymAE de-
rives the redatuming operators from the recorded data in
an unsupervised manner, unlocking processing for far more
general situations than cross-correlations allow. We refer the
reader to [27–29] for examples of analytical-based redatuming
applied to specific geophysical settings.

SymAE heavily relies on imposing symmetries in the en-
coder to separate the latent code. This idea of using symmetry,
or equivalently physical priors, to promote structure in the
neural networks has been proposed in various works; for in-
stance, [30] embedded even/odd symmetry of a function and
energy conservation into a neural network by adding special
hub layers; [31] propose gauge equivariant CNN layers to
capture rotational symmetry; and [32] structures their net-
works following a Hamiltonian in order to learn physically
conserved quantities and symmetries. The choice of symmetry
is bespoke to each application, and the identification of valid
symmetries in our physical prior is one of the contributions
and insights of SymAE.

III. DATA POINTS AND NOTATION

In this section, we describe the training set {Xi}i=1,...,nX that
SymAE encodes to produce a compressed and disentangled
representation. We reiterate that we presume the scale sepa-
ration illustrated in Fig. 1 in our dataset. As such, each data
point Xi contains multiple instances that repeatedly capture the
same physical state εi, but each instance may differ on account
of nuisance variations. We uniformly sample from 1 to nε

to generate the state labels {εi}i=1,...,nX for our synthetic ex-
periments; in practice, the experimental conditions determine
this sampling distribution. We emphasize that knowledge of
the state labels is not necessary for either training or testing
since our framework is purely unsupervised. We index the
instances in data point as Xi[τ ] for τ = 1, . . . , nτ such that
Xi = [Xi[1]; . . . ; Xi[nτ ]]. Each instance Xi[τ ] is represented as
k-dimensional vectors, and the determination of k is specific
to each experiment. For the seismic experiment depicted in
Fig. 2(a), each instance is a source gather, where the di-
mension k is the product of the number of receivers and the
length of the time series. Each Xi comprises several sources
that illuminate the same subsurface region. In our notation,
[A; B] denotes a vertical concatenation of two vectors A and
B. Again, the collection of instances {Xi[τ ]}τ=1,...,nτ

for a fixed
index i shares the same coherent information to the state εi but
varies by τ -specific nuisance variations.

IV. ARCHITECTURE

We refer the reader to [33] for an accessible tutorial on
autoencoders [16]. Functionally, autoencoders are comprised
of two components: an encoder Enc that maps each data
point Xi into latent code Hi = Enc(Xi ), and a decoder Dec
that attempts to reconstruct to Xi from the code. Traditionally,
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FIG. 3. Architecture of symmetric autoencoder [37]. The information that is coherent across the instances of a data point can only propagate
through the network via solid arrows—notice the stochastic regularization employed to prevent its propagation. We used colored arrows to
indicate the propagation of the remaining instance-specific nuisance information—notice that a symmetric function, i.e., symmetric with
respect to the order of the instances, prevents its propagation. As a result, the autoencoder disentangles the coherent information from the
nuisance variations in the latent space. We omitted the subscript i for X , C, and N .

both functions Enc and Dec are determined by minimizing the
reconstruction loss

Enc, Dec = arg min
Enc, Dec

∑
i

‖Xi − Dec[Enc(Xi )]‖2 (1)

over the training dataset. When nonlinear parametrizations are
used for both Enc and Dec, the latent representation no longer
describes the geometry of the datasets using linear subspaces
[35]. However, this representation can efficiently compress the
information [36].

SymAE builds on nonlinear autoencoders but requires ad-
ditional modifications as a direct application of traditional
autoencoding ideas will not ensure that the coherent and
nuisance information are encoded into separate components
(dimensions) in the latent space. To achieve this separation,
SymAE relies on the unique encoder structure as depicted
in Fig. 3 [21]. The encoder structure can be mathematically
described by

Enc(Xi ) = [CEnc(Xi ); NEnc(Xi[1]); . . . ; NEnc(Xi[nτ ])]. (2)

This output corresponds to a latent code Hi which is parti-
tioned into interpretable components. Specifically, each data
point Xi = [Xi[1]; . . . ; Xi[nτ ]] is represented as a structured
latent code Hi = [Ci; Ni[1]; . . . ; Ni[nτ ]] in which the sub-
components Ci = CEnc(Xi ) contain coherent information in
Xi while the remaining subcomponents Ni[τ ] = NEnc(Xi[τ ])
encode the complementary instance-specific nuisance infor-
mation. Note the dimensions l and m of the latent codes
Ci ∈ Rl and Ni[·] ∈ Rm are user-specified hyperparameters
which need not coincide.

Subsequently, SymAE’s decoder Fuse nonlinearly com-
bines code Ci with each instance-specific code Ni[·] to
reconstruct the original data point, instance by instance, viz.,

X̂i = Dec(Hi ) = Dec([Ci; Ni[1]; . . . ; Ni[nτ ]])

= [Fuse([Ci; Ni[1]]); . . . ; Fuse([Ci; Ni[nτ ]])]. (3)

We do not enforce any constraints on Fuse in our experi-
ments and parametrize it with standard deep-learning building
blocks [34].

We ensure that CEnc, the coherent encoder, encodes at
most the coherency or similarity among the instances in Xi

by enforcing invariance with respect to permutations of the
instances within the data point. Mathematically, this condition
requires that

Ci = CEnc(Xi ) = CEnc(Xi[�(1:nτ )]) (4)

for all permutations � along the instance dimension of the
output. This symmetry invokes the dichotomy of scale as-
sumed in the data; since only nuisance variations are assumed
to vary along the “fast scale” τ and that any coherent changes
are negligible, this permutation invariance ensures that nui-
sance information cannot be encoded using CEnc without
significant loss of information. It follows from the pigeonhole
principle that only coherent information can remain in Ci if a
low autoencoding loss is achieved.

SymAE’s coherent encoder explicitly achieves the invari-
ance mentioned above using permutation-invariant network
architectures following [39] which provide universal approx-
imation guarantees for symmetric functions. These architec-
tures use pooling functions such as the mean or the max
across the instances to ensure permutation invariance. We
refer to [40] for a review of alternative pooling functions,
including attention-based pooling. In our experiments, the
data due to each source instance are transformed using CEnc1

and summed along the instance dimension. This output is then
processed by CEnc2 resulting in

Ci = CEnc2

(
1

nτ

nτ∑
τ=1

CEnc1(Xi[τ ])

)
, (5)

yielding the network architecture of CEnc. Intuitively, CEnc1

extracts coherent information from each of the instances while
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the summation encourages them to be aligned. This informa-
tion is further compressed using CEnc2. The functions CEnc1

and CEnc2 are parametrized by compositions of fully con-
nected layers and convolutional layers. We emphasize that
the key observation in Eq. (5) is that the summation of the
transformed instances CEnc1(Xi[τ ]) is symmetric with respect
to the ordering of instances. This ensures that the desired
symmetry [Eq. (4)] is achieved.

In contrast, the purpose of NEnc, the nuisance encoder, is
to capture the nuisance information specific to each instance
of a data point. Critically, we do not want the decoder Fuse
to ignore the Ci component in favor of using purely Ni[·]
information for reconstruction. We desire disentanglement of
the latent codes. Whereas CEnc achieves this via symmetry,
for the nuisance encoder this separation is encouraged through
the use of stochastic regularization, viz.,

Ni[τ ] = NEnc(Xi[τ ]) + “strong noise”. (6)

Intuitively, this idea hinges on the assumption that coherent in-
formation does not vary with the “fast scale” τ indexing each
instance. As such, obfuscating each element Ni via noise intro-
duces artificial dissimilarities along this scale; this, therefore,
encourages the decoder to instead rely on the coherent code
(held constant for each instance [cf. Eq. (3)] to reconstruct the
coherent information. Similarly, as before, it follows from the
pigeonhole principle that the nuisance codes Ni must contain
at most information relevant to nuisance information if a low
autoencoding loss is achieved.

In our experiments, we implement this noise using ei-
ther Bernoulli dropout regularization [41] with probability p
or Gaussian dropout with unit mean and p(1 − p) variance
[42,43]. In either case, the strength of the noise is propor-
tional to p, which is a hyperparameter the user must tune
[38]. Critically, however, each Ni must still be expressive
enough to encode nuisance-specific information. The balance
between regularization strength p and the dimension (i.e.,
expressivity) of the latent codes is user determined on an
external validation set. The SymAE components NEnc, CEnc,
and Fuse are trained concurrently by minimizing Eq. (1) with
the regularization mechanism just described. At test time, the
entirety of the Ni code is sent unaltered and unobfuscated into
the decoder. We emphasize that the stochastic regularization
for NEnc is not employed to reduce overfitting and improve
generalization error in the conventional sense (see, e.g., [44]
for a survey on stochastic techniques used in neural network
training). Instead, the intention of this regularization is to
promote learning dissimilar representations across nuisance
codes. Our numerical results did not observe the need for
an additional regularization mechanism to prevent overfitting.
The low dimensionality and symmetry of the coherent latent
code is in itself a form of regularization against overfitting.
However, if necessary, stochastic regularization can still be
employed for CEnc, provided the symmetry constraint re-
mains intact during training.

Finally, note that we only constrained the encoders to avoid
“cross talk” while disentangling the coherent and nuisance
information. Implicitly the success of SymAE, therefore, re-
quires a sufficiently large number of instances with dissimilar
nuisance variations in order to achieve the desired structure of
the latent space. We leave an examination of characterizations

of physical models which are amenable to disentanglement to
future work.

V. REDATUMING INTO VIRTUAL INSTANCES

A trained SymAE learns a representation with disentangled
coherent and nuisance information. Redatuming data becomes
equivalent to manipulations in the latent space, as illustrated
in Fig. 2, where virtual instances are generated by swapping
latent coordinates. In general, the coherent information in the
τ th instance of a data point Xi can be swapped with that of
another data point Xj using

X̂i→ j[τ ] = Fuse([CEnc(Xj ); NEnc(Xi[τ ])]). (7)

Here, Xj is an observation of a different state compared to Xi.
Notice that the nuisance information in the virtual data point
X̂i→ j is identical to that of the original data point Xi. Conse-
quently, we attribute the difference between Xi and X̂i→ j to the
changes between the physical states. As a demonstration, the
observed and virtual instances from the seismic experiment
are embedded into the SymAE’s latent space in Fig. 2.

VI. EXPERIMENTS

We now detail the application of SymAE towards experi-
ments that monitor subsurface changes using seismic waves.
As noted earlier, the measurements vary on two different
(time) scales. (1) The slower timescale is associated with the
subsurface changes that typically occur in the order of months.
As such, the goal is to detect or determine variations in the
coherent (subsurface) information between seismic surveys
(e.g., baseline and monitor). (2) The faster time is usually
on the order of the duration of the seismic survey, i.e., ei-
ther hours or days; the variation in the coherent information
is negligible on this scale. During each survey, waves from
numerous uncontrollable sources, here taken to be the nui-
sance information, are recorded as instances. For our synthetic
experiments, an instance is modeled as the pressure wave
field u(x, t ) from a finite-difference solver with absorbing
boundary conditions for the acoustic wave equation:

1

c2(x)

∂2u

∂t2
− ∇ · (∇u) = δ(x − xs)w(t ). (8)

Here, x = [x, z] denotes the Cartesian coordinate vector and
t denotes time. The medium is parametrized using the wave
velocity c(x). During the forward modeling, we vary c at a
slower rate compared to source parameters, i.e., position xs

and signature w(t ) that determine the nuisance variation in
each modeled instance.

We justify that SymAE captures the salient features of
the physics of wave propagation using a simple illustration.
Consider the wave velocity of a medium that varies in a
2 km × 2 km region, shown in Figs. 4(a)–4(c), across three
states with εi ∈ {1, 2, 3} as described in Table II. Point
sources at xs = [R cos(θ ), R sin(θ )] with signature w(t ) are
used for modeling instances. The random variables R and θ

are uniformly distributed on [0.8, 1.0] km and [0, 2π ], re-
spectively. The random source wavelet w(t ) has a duration
of 0.13 s, is sampled from a standard normal distribution,
and is convolved with a 25 Hz high-cut filter. After solving
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FIG. 4. Deep redatuming of waves recorded on ∂D due to point sources in the dotted region. This experiment illustrates that SymAE can
isolate (coherent) information on the medium (Gaussian) perturbation in its representation; however, the perturbation has to lie within ∂D.
(a) X1[1:4]; original instances from the first state with a homogeneous medium. (b) X̂1→2[1:4]; virtual instances generated after swapping
code C1 of the first state with code C2 of the second state. A high MSE in X̂1→2[4] indicates that C2 fails to represent the effects of the
Gaussian perturbation entirely. Note that this perturbation extends beyond ∂D. (c) X̂1→3[1:4]; same as (b), except a lower MSE, means that C3

satisfactorily represents the medium when the perturbations lie within ∂D.

Eq. (8), the acoustic wave field is sampled at 160 time steps
and 100 evenly distributed receiver locations on a circle ∂D
to form an instance of dimension k = 16 000. We generated
8000 instances per state and considered a total of 6000 data
points (with nτ=20) for training and testing. It is important
to note that the distribution of the forcing term in Eq. (8) is
independent of the state ε to facilitate disentanglement.

We have invariably used the same medium parameters
during the forward modeling of the instances in each state.
Therefore, we hypothesize that (1) the medium parameters
c(x) characterize the coherent information represented by the

TABLE II. A time-lapse seismic experiment that justifies the
SymAE’s capture of the physics of wave propagation.

State ε Medium perturbationa MSEb Virtual MSEc

1 None; homogeneous <0.01
2 Not entirely inside ∂Dd <0.01 High (>0.3)
3 Inside ∂Dd <0.01 Low (<0.1)

aGaussian perturbation.
bNormalized mean-squared error between the true X and recon-
structed X̂ data points for both training and testing.
cBetween virtual and synthetic instances after redatuming.
dReceiver circle with center [0, 0] and radius 600 m.

code Ci, i.e., CEnc encodes the information related to the
entire medium in each state; and (2) the forcing term w(t ) and
the source position xs characterize the nuisance information,
represented by Ni, of a given instance. We test these hy-
potheses numerically and show that CEnc does not encode the
entire medium but only a portion that is coherently illuminated
by all the sources. After redatuming, we compute relative
mean squared error (MSE) between the virtual instances (gen-
erated by deep redatuming) and synthetic instances; a low
MSE signifies that the virtual instance satisfies the governing
wave equation in Eq. (8) with appropriate medium and source
parameters. We now redatum four sources, X1[1:4] as in
Fig. 4(a), picked from the first state (ε = 1). First, we swapped
C1 of these measurements with C2 to include the physics of
wave propagation related to the Gaussian perturbation in ε =
2. The virtual instances X̂1→2 are plotted in Fig. 4(b); it can
be observed that source information (position and signature)
remained intact during redatuming, confirming that C2 does
not represent any of the source effects. Furthermore, notice
that most of the virtual instances have low MSE, for example,
X̂1→2[1:3], indicating that C2 captured a significant portion of
the Gaussian perturbation. However, the virtual instances with
source locations close to that of X̂1→2[4], plotted in Fig. 4(b),
have high MSE. What is unique about these sources? It is
evident from the ray paths in Fig. 4(a) that these high-MSE
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FIG. 5. Seismic Marmousi experiment of Fig. 2 where incident plane waves on the bottom of the medium undergo multipath propagation
due to the complex inhomogeneities; three original instances (solid arrows) from each state are plotted and reveal the complex wave field.
Each instance results from a plane wave with a unique source wavelet and angle of arrival. Virtual instances (dashed arrows) generated after
swapping the coherent code from (a) to (b) and vice versa have a low error, showcasing the success of deep redatuming with SymAE.

source locations illuminate the portion of the Gaussian pertur-
bation outside ∂D. On the other hand, the region inside ∂D
is coherently illuminated irrespective of the source position.
We infer that SymAE’s coherent code only represents the
propagation effects of inhomogeneities inside ∂D. In order to
further confirm this inference, we then generated virtual in-
stances corresponding to the state ε = 3, where the Gaussian
perturbation is entirely inside ∂D as depicted in Fig. 4(c). We
notice that all the virtual instances have low MSE. Therefore,
we conclude that SymAE learned to differentiate the coher-
ently illuminated portion of the medium by the waves without
the need for physics. This means, for seismic monitoring
experiments, all the sources must coherently illuminate the
time-lapse medium changes of interest.

The experiment in Fig. 2 involves seismic-wave propaga-
tion in a complex two-dimensional structural model, which is
commonly known as the Marmousi model [45] in exploration
seismology. The structural complexities will lead to multi-
path propagation. The P-wave velocity plots of this model
for ε = 1 and ε = 2, with source-reciever geometry, are in
Figs. 5(a) and 5(b), respectively. The forcing term represents
a random plane-wave source input at the bottom of the model.
The source wavelet w(t ; τ ) is generated by convolving a
Ricker wavelet whose dominant frequency is sampled from
{10, −12.5, . . . , 20} Hz, with a random time series (of 0.4 s
duration) sampled from a standard normal distribution. In this
case, the change in the medium parameters from ε = 1 to

ε = 2 is coherently illuminated by all the plane-wave sources,
similar to the ε = 3 Gaussian perturbation of the previous ex-
ample. Therefore, the virtual measurements after redatuming
are expected to have low MSE, as confirmed by the results in
Fig. 5.

VII. CONCLUSIONS

We propose an autoencoder architecture for poorly con-
trolled scientific experiments that produce an abundance of
incompletely modeled measurements of a physical system.
The autoencoder learns a data representation that disentangles
the coherent information inherent to the physical state, from
the nuisance modifications inherent to the experimental con-
figuration, in a model-free fashion. Two ideas are critical: (1)
leveraging symmetry under reordering of the data instance in
order to represent the coherent information in a first encoder,
and (2) stochastic regularization in order to prevent coherent
information from being represented by the second encoder.
As a result, the architecture can perform redatuming, i.e., the
swapping of physics in order to create virtual measurements.

Following the double-blind review process, a Github repos-
itory containing reproducible code is available at [46].
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