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Abstract. We study several aspects of nonvanishing Fourier coefficients of elliptic modu-
lar forms mod �, partially answering a question of Bellaïche-Soundararajan concerning the
asymptotic formula for the count of the number of Fourier coefficients upto x which do not
vanish mod �. We also propose a precise conjecture as a possible answer to this question.
Further, we prove several results related to the nonvanishing of arithmetically interesting
(e.g., primitive or fundamental) Fourier coefficients mod � of a Siegel modular form with
integral algebraic Fourier coefficients provided � is large enough.We also make some efforts
to make this “largeness” of � effective.

1. Introduction

The aim of this article is to obtain mod � versions of some of the nonvanishing
results on the Fourier coefficients of Siegel modular forms. On the one hand, over
C such results (cf. [1,7,21]) have played important roles in many questions on
automorphic forms, and it seems interesting to investigate to what extent they hold
over other rings, possibly in a quantitative fashion. As an example, in [7] it was
proved that for any holomorphic Siegel modular form F of degree n, there exist
infinitely many inequivalent (modulo the unimodular group) half-integral matrices
T whose discriminants are fundamental, such that aF (T ) �= 0. Such results have
several applications to automorphic representations.

On the other hand, the theory of modular forms mod � has undergone exten-
sive development since the works of Serre, Swinnerton-Dyer. Let f be an elliptic
cuspidal newform of weight k, level �0(N ) and l is a prime ideal in the ring of
integers OK of a field K which lies over the odd prime �. Let us define

π( f, x; l) := {n ≤ x | a( f, n) �≡ 0 mod l}.
Serre used the Chebotarev density theorem applied to the setting of the Galois
representation attached to f , and in addition the Selberg-Delangemethod, to deduce
that for such l | � and f not constant mod l,
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#π( f, x; l) ∼ c( f ; l) x

(log x)α( f ;l) (1.1)

for some c( f ; l), α( f ; l) > 0. More recently, by the works of Bellaiche,
Soundararajan, Green [4–6], quantitative results like (1.1) has been extended to
arbitrary modular forms, possibly with half-integral weights.

In the first half of the paper (Sect. 3), we show that a simple sieving of
newforms (inspired by [4] and relying essentially on strong multiplicity-one for
Mk(�1(N ))) leads to quantitative results similar to (1.1) for arbitrary modular
forms in Mk(�1(N )) of the correct order of magnitude, when � is large enough.
Actually our results hold for all � not dividing a fixed algebraic integer in a number
field, see below, and Sect. 3.1 for more details. This technique of sieving newforms
has been useful in many places e.g. [1,10] and can also be adapted to count square-
free integers n for which a( f, n) �≡ 0 mod l, see Proposition 3.10. In general this
method works whenever a space of modular forms has the strong multiplicity-one
property, and the corresponding eigenforms (or newforms) possess the suitable
properties in question.

Let us explain the results of this article in somedetail. In Sect. 3,weprove several
results about the Fourier coefficients mod l of modular forms in Mk(�1(N )), the
mainstay being Proposition 3.4. In particular in Theorem 3.7, we show an analogue
of ‘oldform’ theory for modular forms mod l with fixed weight and level for all l
not dividing a certain algebraic integer L. This has an application to a result on
Siegel modular forms about non-zero ‘primitive’ Fourier coefficients mod l, see
Theorem 4.4. Our method however certainly does not generally work on the bigger
space of modular forms mod � of level N (let us denote it by ˜M(N )) as eg. in [5],
because after all by Jochnowitz [14] the number of systems of eigenvalues mod �

for any (�, 6N ) = 1 is finite. But for those f ∈ ˜M(N ) which are finite linear
combinations of eigenforms with pairwise distinct system of eigenvalues mod l,
the method clearly still works.

We next note several applications of Proposition 3.4. To discuss some of these,
let us introduce some notation. Let f ∈ Mk(�1(N )) be such that its Fourier
coefficients belong to the ring of integers OK of a number field K . Consider a
basis { f1, f2, . . . , fs} of newforms of weight k and level dividing N , including
Eisenstein-newforms (cf. [26]). Let their Fourier expansions be written as

fi (τ ) =
∞
∑

n=0

bi (n)qn, (1.2)

normalised so that bi (1) = 1 for all i . For each pair i �= j , let mi, j be the smallest
prime coprime to N such that bi (mi, j ) �= b j (mi, j ). For the rest of the paper, we
put

L :=
∏

i �= j

(

bi (mi, j ) − b j (mi, j )
)

. (1.3)

(Note thatL depends onmi, j , N , k. Laterwewould use some variants ofL however,
cf. Sect. 3.1.) Let l ∈ OK be any prime lying over � ∈ Z such that l � L. Note that
the primes mi, j do not depend on f . In course of this paper, we will call such a set
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of primes (perhaps with additional conditions, see Sect. 3.1) to be ‘admissible’ for
the modular form at hand.

In one of our results (cf. Proposition 3.10) we show that the quantity π( f, x; l)
satisfies

#π( f, x; l) := {n ≤ x |a( f, n) �≡ 0 mod l} � x

(log x)α( f ;l) (� odd), (1.4)

for some 3/4 ≥ α( f ; l) > 0 whenever f is non-constant mod l, k ≥ 1 and l �
L. These should be compared to the results in [5], which are actually valid for
the algebra ˜M(N ) consisting of all modular forms mod l on �1(N ) with Fourier
coefficients in OK and is an asymptotic formula. One of our results (cf. (1.4)) in
fact show that in their asymptotic formula in [5], namely

#π( f, x, l) ∼ x(log log x)h( f ;l)

(log x)α( f ;l) (� odd); (1.5)

the integer h( f ; l) appearing above is actually 0 if f ∈ Mk(�1(N )), provided
l � L (actually a slightly stronger result holds, see Proposition 3.13). This may shed
some light on the behaviour of h( f ; l), which the authors in [5] comment as being
rather mysterious, as � varies. Apart from this, the point here is that our proofs are
‘softer’, however note that we do not get an asymptotic formula. We make some
efforts in finding a constant C depending only on k, N such that (1.4) holds for all
� > C. The reader may look at Sect. 3.1. In fact it follows from Proposition 3.13
that h( f ; l) = 0 for all � > C with suitable C as above, see Remark 3.14. More
generally, as an outcome of our line of thought, in Proposition 3.15 we note that
for those f ∈ ˜M(N ) which not constants mod l and are finite linear combinations
of eigenforms with pairwise distinct system of eigenvalues and are non-constant
mod l , one would have h( f ; l) = 0. We speculate that the converse to the previous
statement is true as well and this is the content of Conjecture 3.16.

The reader may note that there is no contradiction with the examples in [5, 7]
since e.g. the prime � = 3 considered there dividesL (at level 1 and weight 24). See
example 3.12 concerning f = �2 (� is Ramanujan’sDelta function) for somemore
clarity on this. Moreover if the level N is square-free, we obtain results similar to
(1.5) for the setπsf( f, x; l) := {n ≤ x | n square-free, a( f, n) �≡ 0 mod l}. Several
such results are collected in Proposition 3.10. Finally let us mention that we briefly
discuss an algebraic way to approach some of our results in Sect. 3.2.

In the second half of the paper (Sect. 4) we derive analogous results for Siegel
modular forms. Let F ∈ Mn

k (�1(N )) be a Siegel modular form with Fourier coef-
ficients in the ring of integers OK of a number field K . We first prove a statement
which essentially says (see Theorem 4.4) that for F �≡ 0 mod l as above, there
exist infinitely many GL(n,Z)-inequivalent ‘primitive’ matrices T ∈ �n such that
the Fourier coefficients satisfy aF (T ) �≡ 0 mod l at least for all primes � large
enough. This generalises a result of Yamana [27] who proved a similar result when
� = ∞, showing the existence of at least one non-zero primitive Fourier coefficient.
Our proof uses a refinement of a method (of descending to elliptic modular forms)
presented in [9], some results on “oldforms mod l” on elliptic modular forms (The-
orem 3.7), and the existence of a Sturm’s bound for the space Mn

k (�1(N )), which
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is formulated and proved in Proposition 4.1 generalising the level one result from
[19].

Then we give lower bounds on the number of d ≤ x such that d = det(2T )

and that the Fourier coefficients aF (T ) �≡ 0 mod l for some T (also satisfying
additional arithmetic properties, see Theorem 4.9, Sect. 4). The proofs are based on
reduction of the question to spaces of elliptic modular forms via the Fourier-Jacobi
expansions, and using either the results from [4–6]; or sometimes using the lower
bounds (cf. Sect. 3.3) from this paper. In particular (see Theorem 4.9 (b)) we show
that the quantity 	(x; l) = πF (x, det; sf) (cf. Sect. 4.1) defined by

	(x; l) := {d ≤ x | d square-free, aF (T ) �≡ 0 mod l for some T ∈
�+

n such that det(2T ) = d}

satisfies for all � sufficiently large (see Remark 4.12) and any l lying over �, the
lower bound

#	(x; l) 
 x

(log x)β(F;l) , (n odd) (1.6)

for some constant 0 < β(F; l) ≤ 3/4 where the implied constant depends on F
and l. This was in fact our main motivation for writing this paper, and can be viewed
as a mod l version of the recent result [7, Theorem 1] on non-zero ‘fundamental’
Fourier coefficients of Siegel modular forms.

Finally let us mention that to obtain (1.6), we actually use its Archimedian
analogue (only the existence of a nonvanishing fundamental Fourier coefficient)
from [7] as an input. So we obtain no new proof of it, even though such a thing
is desirable (a preliminary inspection shows that even then � has to be large), and
seems hard. Moreover since our results, say for 	(x; l), hold only for large enough
�, merely having 	(x; l) > 0 is a tautology as we can fix T such that aF (T ) �= 0
and remove the finitely many � such that � | aF (T ). We therefore must at the least
aim for a statement like 	(x; l) → ∞ as x → ∞. The same remark applies to the
nonvanishing mod � of primitive Fourier coefficients as well. Before closing this
introduction, let us remark here that our method of treating Siegel modular forms
may in principle work for Hermitian modular forms of arbitrary degree, however
there should be several technicalities to be overcome.

Finally for the reader’s convenience, let us mention that the only place where
we use the results from [4–6] are in Theorem 4.9 and Proposition 4.14. Alongwith
this in remark 4.10, we also use results from Sect. 3.2.1, precisely Theorem 3.7.

2. Setting and notation

Following standard notation, let Mk(�1(N )) and Mn
k (�1(N )) denote the space of

elliptic (respectively Siegel) modular forms of weight k and level �1(N ) (respec-
tively �n

1 (N )). We denote their Fourier expansions as follows (H andHn being the
respective upper-half spaces):
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f (τ ) =
∑

n≥0

a( f, n)e(nτ) (τ ∈ H, f ∈ Mk(�1(N ))) (2.1)

F(Z) =
∑

T∈�n

aF (T )e(T Z), (Z ∈ Hn, F ∈ Mn
k (�1(N ))) (2.2)

where e(z) = exp(2π i z) for z ∈ C, e(T Z) = e(trace(T Z)), �n denotes the set of
half-integral positive semi-definite symmetric matrices over Z:

�n := {S = (si, j ) | S = St , si,i ∈ Z, si, j ∈ 1

2
Z, and S is positive semi-definite}.

Here and throughout we denote by At as the transpose of a matrix A. We also put
�+

n to be the positive-definite elements of �n . The corresponding spaces of cusp
forms are denoted by Sk(�1(N )) and Snk (�1(N )). To avoid any confusion, let us
mention that for this paper

�n
1 (N ) := {γ = (

A B
C D

) ∈ �n| det(A) ≡ det(D) ≡ 1 mod N , C ≡ 0 mod N }.

Further, if OK is the ring of integers of a number field K , we put

Mn
k (�1(N ))(OK ) := {F ∈ Mn

k (�1(N )) | aF (T ) ∈ OK for all T }, (2.3)

̂Mk(N ,OK ) := { f ∈ Mk(�1(N )) | a( f, n) ∈ OK for all n ≥ 1, a( f, 0) ∈ K }.
(2.4)

We denote by Sk(�1(N ))(OK ), Snk (�1(N ))(OK ) to be the respective spaces of cusp
forms.

For two positive functions on R, we write f (x) � g(x) if there exist two
positive constants c1, c2 such that c1g(x) ≤ f (x) ≤ c2g(x) for all x ≥ 1.

We now recall some notions about Fourier-Jacobi expansions of Siegel modular
forms.Wefirst recall that the content c(T ) for anymatrix T = (ti, j ) ∈ �n is defined
as gcd of all the tii and all the 2ti, j with i �= j . In particular, T is called primitive,
if c(T ) = 1.

For a fixed S ∈ �+
n−1 we consider a Jacobi form ϕ(Z) = φS(τ, z)e(SZ) (where

Z = ( τ z
z Z

) ∈ Hn) of index S on the group �1(N ) � Zn−1. Its theta expansion has
the form

φS(τ, z) =
∑

μ0

hμ0(τ )�S[μ0](τ, z) (2.5)

where μ0 runs over Zn−1/2SZn−1. We write the Fourier expansions of φS and hμ0

as

φS(τ, z) =
∑

r,μ

b(r, μ)e(rτ + μt · z),

hμ0(τ ) =
∑

r

b(r, μ0)e
(

(r − S−1[μ0/2]) · τ
)

(2.6)
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with r ∈ N0, μ ∈ Z(n−1,1) and for all L ∈ Z(n−1,1), note the following invariance
property

b(r, μ) = b(r + Lt · μ + S[L], μ + 2S · L). (2.7)

Here A[B] = At BA for matrices A, B of suitable sizes. We would be mainly
interested in the Fourier-Jacobi expansion of F ∈ Mn

k (�1(N )) of type (1, n − 1):

F(Z) =
∑

S∈�n−1

φS(τ, z)e(SZ) (Z = ( τ z
z Z

)

); (2.8)

then the φS are Jacobi forms in the above sense.

3. Elliptic modular forms

Let f ∈ Mk(�1(N ))(OK ). By the classical theory of newforms, there exist unique
αi,δ ∈ C such that f (τ ) can be written as

f (τ ) =
s

∑

i=1

∑

δ|N
αi,δ fi (δτ ), (3.1)

where { f1, f2, . . . , fs} constitute a basis of newforms ofweight k and level dividing
N , including the Eisenstein-newforms. For the above statement see [17] for cusp
forms, and [26] for an explicit description of Eisenstein series. In order to consider
congruences mod l, we require that the scalars αi,δ in (3.1) are all l-integral. We
would later prove that this is the case for suitable primes l, see Lemma 3.1. We
assume throughout this paper that k ≥ 2.

We note here that our normalisation for the Eisenstein newforms is that it’s
Fourier coefficient at n = 1 equals 1; for example in the case of level N new-
Eisenstein series, given two primitive Dirichlet characters χ1, χ2 mod N with
χ1, χ2 = χ, χ(−1) = (−1)k , we consider the newforms

Eχ1,χ2(τ ) := δ1,χ1L(1 − k, χ1) +
∑

n≥1

⎛

⎝

∑

d|n
χ1(n/d)χ2(d)dk−1

⎞

⎠ , (3.2)

when k ≥ 3. See [26] for more details. Here δ1,χ1 is 1 or 0 according as χ1 is
principal or not. Moreover L(s, χ1) is the Dirichlet L-function attached to χ1. In
the above notation, Eχ1,χ2 ∈ ̂Mk(N ,OK ). Since we would be mostly interested in
counting the number of non-zero Fourier coefficients a( f, n) for 1 ≤ n ≤ x , with a
large parameter x , this choice of normalisation would be sufficient for our purpose.

We recall here the Sturm’s bound for Mk(�1(N )): if G, H ∈ Mk(�1(N ))(OK )

and satisfy a(G, n) ≡ a(H, n) mod l for all

n ≤ S1(k, N ) := k

12
[SL(2,Z) : �1(N )], (3.3)

modulo some prime l ⊂ OK , then G ≡ H mod l. Later we would write down a
similar bound for Siegel modular forms. We would also require the Archimedian



Fourier coefficients mod� 411

version of the Sturm’s bound, and note that the bound in (3.3) also works in this
case.

Recall from (1.2) and (3.2) the Fourier expansion of the set of all newforms
{ fi } on �1(N ). Throughout the paper, we assume without loss of generality that
K contains the eigenvalues bi (n) (for all i and n ≥ 1) and is Galois over Q. See
Remark 3.11.

3.1. (Non)-congruences, analytic way

For our further requirements, we need to separate Hecke eigenvalues of two new-
forms mod l in an efficient way (for suitable l). For this we first discuss an analytic
way relying essentially on Deligne’s bound. In the next subsection, we sketch a
possible simple algebraic way to do this in certain special situations.

Let us now focus on (3.1). For all primes p and 1 ≤ i ≤ s, one has Tp fi =
bi (p) fi ( fi , bi as in (1.2), Tp being the p-th Hecke operator on �1(N )). By “strong
multiplicity-one”, if i �= j , we can find infinitely many primes p coprime to N
such that bi (p) �= b j (p). See [17, Theorem 4.6.19] for cusp forms and [26] for
Eisenstein series. We would like to have a more precise mod l version of this, with
effective bounds on p.

Let us consider a set of primes qi, j all coprime to N such that for all i �= j , one
has bi (qi, j ) �= b j (qi, j ) with bi (·) as above. Let us define the non-zero quantity

L({qi, j }; f ) :=
′

∏

(i, j)∈S f ×S f

(

bi (qi, j ) − b j (qi, j )
)

(3.4)

where S f is the set of indices i for which fi |Bδ (for some δ|N ) appears in f (cf.
(3.1)), i.e.,

S f = {1 ≤ i ≤ s | αi,δ �= 0 for some δ|N }. (3.5)

Moreover
′

∏

signifies that the product is over indices i �= j .
We call any such set of primes {qi, j } (i, j ∈ S f ) as admissible for f . By strong

multiplicity-one, there are infinitely many admissible sets for any f .

Lemma 3.1. Let {qi, j } be any set of admissible primes for f . With the notation and
setting as above, the αi,δ appearing in (3.1) are all l-integral for any prime l ⊂ OK

such that l � L({qi, j }; f ).

We postpone the proof of the lemma until that of the next proposition. In fact the
proof of the lemma follows the lines of that of Proposition 3.4 given below, and
this explains our choice.



412 S. Böcherer, S. Das

3.1.1. Ensuring non-congruences by using analytic estimates Recall our con-
vention on K from the previous section. For an arbitrary prime q such that
bi (q) �= b j (q) suppose now that there is a congruence

bi (q) ≡ b j (q) mod l. (3.6)

For clarity of presentation let us assume here that bi (q), b j (q) are the Fourier
coefficients of two cuspidal newforms fi , f j . At the end of this subsection we
consider the minor changes required to handle Eisenstein series. We would follow
this convention in the subsequent subsections as well.

If we take norms on both sides of (3.6), we get a divisibility relation in Z:

NK |Q(l) | NK |Q
(

(bi (q) − b j (q))
)

. (3.7)

Let us recall Deligne’s bound for the Fourier coefficients of a newform of level N :

|a(g, n)| ≤ σ0(n)n(k−1)/2

⎛

⎝σ0(n) =
∑

d|n
1

⎞

⎠ ,

and Shimura’s result about the existence of a basis of Sk(�1(N )) with (ratio-
nal) integral Fourier coefficients which implies that for any σ ∈ Aut (C), gσ :=
∑

n σ(ag(n))qn ∈ Sk(�1(N )) whenever g is. Therefore by the triangle inequality
we have for any prime q

|bi (q) − b j (q)| ≤ 4q(k−1)/2 (3.8)

and from the above, the same inequality as in (3.8) holds with the fi replaced by
f σ
i for any σ in the Galois group of K |Q.
We further let d = [K : Q] and h to be the inertia degree of l over �. Therefore

the validity of the congruence in (3.6) imples that

�h = NK |Q(l) ≤ (4q
k−1
2 )d; (3.9)

and equivalently that if � > (4q
k−1
2 )d/h, then the congruences (3.6) cannot hold at

q. In particular if we put P := maxi �= j mi, j withmi, j as in (1.3), then the condition

� > (4P
k−1
2 )d/h (3.10)

imples that l � L, where L is as in (1.3).
Now we briefly consider the cases if at least one of the fi , f j above is an

Eisenstein newform. Analogous to (3.8), from (3.2) we see that in this case

|bi (q) − b j (q)| ≤ 2(1 + qk−1),

and by slight abuse of notation, using the same letter P , we see that l � L provided

� > (2 + 2Pk−1)d/h,

where P = maxi �= j mi, j .
In the next subsection we show how to bound themi, j in a slightly more general

situation.
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3.1.2. Effective bounds for the mi, j and ensuring l � L({mi, j }; f ) For future
applications, we need to choose primes {qi, j } separating the newforms { f j } such
that (qi, j , 2NQ) = 1, where Q is an arbitrary given integer. We would first bound
the elements of the “smallest” such admissible set of primes (each coprime to a
fixed integer M) in terms of k, N , M , and then provide a constant C = C(k, N , M)

such that for all � > C and all l | �, one has l � L({qi, j }; f ).
To this end we consider as before, for any fi ∈ { f1, . . . , fs} and for any given

M ≥ 1 containing all the prime factors of N , the modified modular form

f (M)
i (τ ) =

∑

n≥1

bi (n)qn :=
∑

(n,M)=1

bi (n)qn ∈ Mk(�1( ˜M)), (3.11)

where ˜M = N 2 if M = N , and NM2 otherwise. Observe that all of the f (M)
i are

non-zero and moreover that f (M)
i �= f (M)

j whenever i �= j . Now there are two
cases, and our treatment would be slightly different in each case.

We record here a lemma about bounding the smallest prime p such that for two
distinct newforms f, g on Mk(�1(N )), one has a( f, p) �= a(g, p).

Proposition 3.2. Let fi , f j , M be as above and i �= j . Let mi, j be the smallest
prime p coprime to M such that bi (p) �= b j (p). Then for any given ε > 0 there
exist cε > 0 depending only on ε and absolute constants c, c′ > 0 such that

mi, j ≤ H(k, ˜M) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

cε
˜Mεk1+εN 3/2+ε if fi , f j are cuspidal,

c ˜M if only one of them is cuspidal,

c′
˜M if both are non-cuspidal.

(3.12)

Proof. For the case of cusp forms see [2, (2.14, and proof of Prop. 2.1)] and [13,
Remark following Prop. 5.22, p. 118]. The basic idea is that if bi (p) = b j (p) for
all primes p ≤ x which are coprime to an integer D, then by multiplicativity one
has bi (n) = b j (n) for all square-free n ≤ x coprime to D. Therefore on the one
hand for any smooth compactly supported function ω, we find that

0 =
∑

n

|bi (n)|2ω(n/x) −
∑

n

bi (n)b j (n)ω(n/x), (3.13)

where the summation is over square-free integers ≤ X which are coprime to M .
On the other hand, by applying a modified version of the Rankin-Selberg method
to fi ⊗ fi and fi ⊗ f j (i �= j) respectively, the asymptotic properties of the first
and second sums allows us to finish the proof. For the convenience of the reader,
let us give some more details of this argument.

We follow [2, proof of Prop. 2.1)]. Namely, analogously to [2, (2.6)] we start
with

L�( fi × f j , s) :=
∑#

n≥1, (n, ˜M)=1

bi (n)b j (n)n−s =
∏

p� ˜M

(1 + bi (p)b j (p)p
−s),

(3.14)
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where
∑� signifies sum over square-free integers. The successive definitions and

calculations can now be obviously modified – replacing ‘N ’ by ˜M wherever rel-
evant: we do not repeat them here. We remark that the Dirichlet series H1 (loc.
cit.) remains the same, and H (loc. cit.)) will be given by an Euler product away
from ˜M . Finally the lower bound of H(1) should be in our case (for any ε > 0)
H(1) 
ε

˜M−ε . Rest of the bounds remain the same as in [2, (2.12)]. We note
the final outcome. Taking c = 1/2 + ε (loc. cit.) for all x > 0, one arrives at the
following asymptotic formula:

∑#

n≥1, (n, ˜M)=1

bi (n)b j (n)ω(n/x) = δ( fi , f j )C( fi , ω)x + O(x1/2+εk1/2+εN
3
4+ε),

(3.15)

where δ(·, ·) is the Kronecker’s delta function, C( fi , ω) a positive constant as
defined in [2]. It is now easy to derive from (3.15) an upper bound for x so that
(3.13) cannot hold.

The second case is easy to deal with; and we only mention a prototype example
when k ≥ 3. Namely if fi = Eχ1,χ2 and f j = g (g a cuspidal newform), then the
inequalities

|χ1(p) + χ2(p)p
k−1| ≥ pk−1 − 1 > 2p(k−1)/2

hold for any p � N provided p ≥ 9 say. Therefore the smallest prime such that
9 ≤ p < M does the job if M > 9, since by Deligne’s bound we have |a(g, p)| ≤
2p(k−1)/2. A very crude bound for all values of M is p � M .

The remaining case is handled very similarly and we give a prototype example.
Let fi = Eχ1,χ2 , f j = Eψ1,ψ2 . If χ1 = ψ1 or χ2 = ψ2, clearly any prime p ≤ M ,
p � M works. Otherwise suppose one has for p � N

pk−1(χ2(p) − ψ2(p)) = ψ1(p) − χ1(p) �= 0. (3.16)

Now χ j (p), ψ j (p) are φ(N )-th roots of unity, and so are their Galois conjugates.
Consider the above equation in the cyclotomicfieldQ(ζφ(N ))where ζm is a primitive
m-th root of unity. If we take norms to Q in (3.16) and note that |N (χ2(p) −
ψ2(p))| ≥ 1 we get (putting T = [Q(ζφ(N )) : Q])

p(k−1)T ≤ 2T , or pk−1 ≤ 2,

which forces p = 2 if k = 2 and a contradiction otherwise. Thus a very crude
bound for such p is p � M . ��
Remark 3.3. If we are concerned with the spaces Mk(N , χ) for a fixed χ instead of
Mk(�1(N )), a much simpler argument about the effective separation of newforms
by finitely many primes could be given by usingmultiplicativity and Sturm’s bound
as in (3.3). This is because in this case bi (p) = b j (p) implies that bi (pm) = b j (pm)

for all m ≥ 1. This is not necessarily true on �1(N ).
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(A) Not necessarily distinct primes
We want to choose primes qi, j such that for all i �= j ,

bi (qi, j ) �≡ b j (qi, j ) mod l (3.17)

and (qi, j , M) = 1.We simply choose themi, j to be the smallest prime (necessarily
less or equal to the quantity H(k, ˜M)) such that bi (mi, j ) �= b j (mi, j ) and then
choose l such that l � L(M)({mi, j }; f ) where (recall S f from (3.5))

L(M)({mi, j }; f ) :=
′

∏

i, j∈S f ×S f

(

bi (mi, j ) − b j (mi, j )
)

. (3.18)

Note that in particular maxi, j {mi, j } ≤ H(k, ˜M) and from our definition (3.11),
necessarily (mi, j , M) = 1.

Now by the arguments in Sect. 3.1.1 we see that the following � (and any l | �)
work:

� >
(

4H(k, ˜M)
s(s−1)(k−1)/4

)d/h
. (3.19)

In particular when M = N , by our choice we havemi, j = mi, j (cf. (1.3)) and thus
an effective upper bound for L({mi, j }; f ).
(B) Distinct primes If we insist that the primes qi, j requested as above are also
pairwise distinct, we can proceed similarly as in (A) with some modifications.

We start by picking the prime p1,2 := m1,2 coprime to M from an admissi-
ble set for f as in (A) above. We then reiterate this procedure as follows. Next

we consider the forms f
(Mp1,2)
1 and f

(Mp1,2)
3 (both are non-zero modular forms)

and find a prime p1,3 ≤ H(k, NM2 p21,2) such that b1(q) �≡ b3(q) mod l and
(p1,3, Mp1,2) = 1. We carry on this procedure to get primes p1, j (2 ≤ j ≤ s)
satisfying (p1, j , Mp1,2 · · · p1, j−1) = 1. We finally do this for the indices other
than 1 and find that maxi, j {pi, j } � S(k, N , M), where

S(k, N , M) = H(k, NM2
∏

i< j

p2i, j ), pi, j ≤ H(k, NM2
∏

i<t< j

p2i,t ). (3.20)

We thus consider l � L(M)
sf ({pi, j }; f ) where

L(M)
sf ({pi, j }; f ) :=

′
∏

i, j∈S f ×S f

(

bi (pi, j ) − b j (pi, j )
)

. (3.21)

If M = 1, we omit it from the notation.
By using Deligne’s bound we again deduce that if

� > (4S(k, N , M)
s(s−1)(k−1)

4 )d/h, (3.22)

none of the congruences bi (pi, j ) ≡ b j (pi, j ) mod l in particular hold for i �= j
where (pi, j , M) = 1 and pi, j are pairwise distinct.
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We can now state themainworkhorse of this paper. For suitable prime ideals l, if
f is not a constant mod lwe show that by considering the Heckemodule generated
by f one can extract a newform g ocurring in f , such that the Fourier coefficients
of g are integral linear combinations of those of f . This would allow us to reduce
our nonvanishing questions to those about newforms mod l. Also from the point
of view of this paper, as we discussed before, modular forms which are constant
mod l play no role and thus should be avoided.

Proposition 3.4. Let f be as in (3.1) and let Q ≥ 1 be arbitrary. Let {qi, j } be a set
of admissible primes for f such that (qi, j , QN ) = 1. Then there exists a newform
g of level dividing N such that one has the relation

a(g, n) ≡
∑

t |N
βt a( f, γt�n) mod l (3.23)

for all n ≥ 1 such that (n, QN ) = 1, for some �|N; for some βt which are
l-integral; and where

(a) γt ∈ Q are all square-free with (γt , QN ) = 1 provided l � L(QN )
sf ({qi, j }; f )

and f is not constant mod l;
(b) γt ∈ Q with (γt , QN ) = 1 provided l � L(QN )({qi, j }; f ) and f is not constant

mod l.

Note that the set {pi, j } constructed in Sect. 3.1.2 (B) above satisfy the properties
requested for the admissible set in (a). Similarly the set {mi, j } is an example for
the admissible sets in (b).

Proof. For ease of notation, in (a) let us assume without loss of generality that
the admissible set is {pi, j }. Also we put L1 := L(QN )

sf ({pi, j }; f ) and L2 :=
L(QN )({qi, j }; f ).

We start from (3.1). To talk about congruences, we need that all the αi,δ are
l-integral under the hypotheses on l. This is guarranteed by Lemma 3.1. By our
assumption on f , not all of theαi,δ can be≡ 0 mod l.Wemay, after renumbering the
indices, assumeα1,δ � �≡ 0 mod l for some δ|N . Let q := p1,2 or q := q1,2 according
as we are in case (a) or (b) be the prime chosen as before (see the discussion pre-
ceeding this theorem) for which b1(q) �≡ b2(q) mod l. Note that p1,2 � QN , q1,2 �
QN . Then consider the form g1(τ ) = ∑∞

n=1 a1(n)qn := T (q) f (τ ) − b2(q) f (τ )

so that

g1(τ ) =
s

∑

i=1

(bi (q) − b2(q))
∑

δ|N
αi,δ fi (δτ ).

The modular forms f2(δτ ) for any δ|N , do not appear in the decomposition of
g1(τ ) but f1(δτ ) does for some δ|N . Proceeding inductively in this way, we can
remove all the non-zero newform components fi (δτ ) for all i = 2, ..., s one by
one, to obtain a modular form F (= g|S f |−1 in the above inductive procedure) in
Mk(�1(N )) such that on the one hand, we have

F(τ ) =
∞
∑

n=1

A(n)qn :=
∏

2≤ j≤s

(b1(p1, j ) − b j (p1, j ))
∑

δ|N
α1,δ f1(δτ ). (3.24)
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By the construction of admissible sets, the product in (3.24) is �≡ 0 mod l,
provided l � L1 or l � L2 according as we are in case (a) or (b). Therefore rescaling
F , and calling the resulting function again as F , we on the other hand note that the
inductive procedure gives us finitely many algebraic numbers βt (polynomials in
the pi, j ’s or the qi, j ’s and Dirichlet characters) and positive rational numbers γt
(which quotients of the pi, j ’s or the qi, j ’s) such that for every n

A(n) =
∑

δ|N
α1,δb1(n/δ) ≡

∑

t

βt a( f, γt n) mod l. (3.25)

Let δ1 be the smallest divisor of N such that α1,δ1 �≡ 0 mod l in (3.25). Then
choosing n = nδ1 in (3.25) such that (n, QN ) = 1, we get

α1,δ1b1(n) ≡
∑

t

βt a( f, γtδ1n) mod l (3.26)

as desired. The square-freeness of γt in part (a) follows from the pairwise distinct-
ness of the pi, j (cf. Sect. 3.1.2 (B) preceeding this theorem, and from the formula
for the action of Hecke operators at primes). This completes the proof. ��
Remark 3.5. It is obvious from the above proof that we do not really need all the
primes qi, j from an admissible set for f to make the proof work. Only primes qi0, j
with j �= i0 (eg. we assumed i0 = 1 in the above proof) for some fixed i0 such that
αi0,· �≡ 0 mod l are required. Accordingly one could have modified the definition
of L(· · · ). We do not do this to avoid additional notational burden. However in
practice, this is what should be done.

Proof of Lemma 3.1. The method or idea of the proof (not the proof itself) is
inspired from the proof of Theorem 3.7, if we take � = ∞ (see [1]). We fol-
low it in principle, indicating suitable changes. Namely we start with αi,δ ∈ C in
(3.1). If i is an index for which αi,δ �= 0 (for some δ) we carry out the procedure
of removing the newforms one by one, we would arrive at (3.26) corresponding
to i . Here we choose δ1 to be the minimum such that αi,δ1 �= 0 (not modl!). Then
choosing n = δ1 in (3.26) shows that αi,δ1 · ∏

2≤ j≤s, j �=i (b1(qi, j ) − b j (qi, j )) is
an algebraic integer (in fact in OK ). Note that the product appears since we had
normalised F by this factor in the proof of Proposition 3.4. Thus by the definition
of an admissible set, if l � L({qi, j }; f ) (in particular if � is large enough, cf. sec-
tion 3.1.1) αi,δ will be l-integral. Then inductively, we can ensure that all the αi,δ

are l-integral. Since i was arbitrary, we get the lemma. ��
Remark 3.6. We point out another way of proving Lemma 3.1 by using some
arguments from [16, proof of Lemma 2.1]. Working with the Sturm’s bound
for Mk(�1(N )) (see (3.3)) as in our proof, this boils down to ensuring that
ν�(det(bi,t (n j ))) = 0; where fi (tτ) = ∑

n bi,t (n)qn with { fi } is the set of all
newforms in Mk(�1(N )) of level dividing N , and for each such i , t = t (i) runs
over divisors of N/level( fi ).Moreover {n j } are certain indices less than the Sturm’s
bound for Mk(�1(N )). It is however not clear how one can ensure that ν�(· · · ) = 0
without using ‘analytic’ inputs as in our paper, it does not help that we do not have
much control on the set {n j } from [16]. If analytic inputs are used, then the ensuing
bound on � would be similar to ours.
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3.2. (Non)-Congruences, algebraic way

There is of course an algebraic way to ensure non-congruences. Even though we
would not really use this in the sequel (since we face some trouble, see below),
except for some examples, we include this for completeness and possible further
interest.

For each 1 ≤ i ≤ s, from [12] let c( fi ) denote the number whose square
(which is in Z) determines the congruence primes for fi . We assume that the
Galois-orbits of each fi is singleton (i.e. fi has Fourier coefficients in Z). We
note that c( fi ) is closely related to the adjoint L-value L(1, Ad( fi )), and there is
the principle: “the prime factors of the denominators of the adjoint L-value give
the congruence primes of fi”. This is proved in the seminal papers [11,12,20]. Let
us put

C(k, N ) = lcm{c2( f1), . . . , c2( fs)}. (3.27)

Then from the aforementioned references, for any prime

� � 6NC(k, N ) such that � ≥ k, (3.28)

one can ensure that for all i �= j , and all L lying over such � in Z,

fi �≡ f j mod L. (3.29)

This will imply the existence of a prime q with bi (q) �≡ bi (q) mod L, and let us
assume (q, N ) = 1. We do not know how to remove the assumption on Galois-
orbits algebraically. However when k = 2, there are results by Ventosa ( [25,
Lem. 2.10.1]) which say that if a newform g is congruent to one of it’s Galois-
conjugates, then the congruence prime must divide the discriminant of the polyno-
mial Qg,p(X) = ∏

σ (X − σ(a(g, p))) for any prime p � N�. So in this case we
would be able to produce admissible sets based on the remarks above, and therefore
our method would work for all � ≥ k and � � (some fixed integer).

3.2.1. An application of Proposition 3.4 to oldforms mod l Proposition 3.4 has
many consequences, which we now discuss in the next couple of results. The first
one is a statement about “oldform theory mod l”. Let f ∈ Mk(�1(N ))(OK ) and
l | �. Consider any admissible set {qi, j } whose elements are coprime to M = QN .
The admissible set {mi, j } from section 3.1.2 (A) is an example.

Theorem 3.7. Let f be as above and suppose that f is not constant mod l. Let
Q ≥ 1 be given. Assume that l � L(QN )({qi, j }; f ) for any admissible set {qi, j } such
that (qi, j , QN ) = 1. Also assume � > 2. Then the following hold.

(a) If (Q, N ) = 1, there exists infinitely many integers n ≥ 1 such that a( f, n) �≡
0 mod l and (n, Q) = 1.

(b) If (Q, N ) > 1, and we request that the f is not congruent mod l to an l-
integral linear combination of modular forms g|BMg for some g ∈ ̂Mk(N ,OK )

(notation as in (2.4)) of level Mg dividing (Q, N ) and Mg > 1; the same
conclusion as in (a) above holds. (Here g|BMg (τ ) = g(Mgτ).)
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Note that when f is a cusp form, Theorem 3.7 is a generalisation mod l of the
classical oldform theory over C for all but finitely many �.

Proof. For the proof we have to go back to (3.23) in Proposition 3.4. It is easy
to see that since � is odd there are infinitely many primes p with (p, QN ) = 1,
such that b1(p) �≡ 0 mod l. This follows from the fact the set of primes such that
b1(p) ≡ 0 mod l is ‘Frobenian’ of density which is positive but less than 1 (see
[23, cf. proof of Théorème 4.7 (ii1) on p. 13]).

Therefore if (Q, N ) = 1, in (3.23) we see that there exists t such that n = γt�n
is coprime to Q and a( f, n) �≡ 0 mod l. This proves part (a).

If (Q, N ) > 1 and the condition in the statement of part (b) is satisfied, this
will imply that in (3.1) αi,1 �≡ 0 mod l for at least one 1 ≤ i ≤ s, say i = i(0).
Then we would remove all the newforms except fi(0) and arrive at (3.26). However
now, we can choose δ1 = 1 in (3.26) and hence we get part (b). ��
Remark 3.8. It follows from the above proof that if the level N is square-free, then
in Theorem 3.7 we can ensure that n is also square-free, for l as in the theorem.

Of course Theorem 3.7 can be rephrased as a mod l version of the familiar
result in oldform theory for elliptic modular forms over C.

Corollary 3.9. Let f and � be as in Theorem 3.7. Suppose that for some Q ≥
1, a( f, n) ≡ 0 mod l for all n with (n, Q) = 1. Then f is constant mod l if
(Q, N ) = 1, otherwise f is “old” mod l; i.e., there exist primes �1, . . . , �m such
that � j |(Q, N ) and f ≡ ∑

j α j h j |B� j mod l for some h j ∈ ̂Mk(�1(N j )), where
� j N j |N, and α j being l integral.

3.3. Quantitative results: elliptic modular forms

In [5] (resp. [6]) an asymptotic formula (resp. a lower bound) for the number of mod
�-non-zero Fourier coefficients of modular forms of integral (resp. half-integral)
weights of level N was obtained. Following the notation in [5] let us define for f ∈
Mk(�1(N ))(OK ) which is not constant mod l, the counting function π( f, x; l) by

π( f, x; l) := {n ≤ x |a( f, n) �≡ 0 mod l};
πQ( f, x; l) := {n ≤ x, (n, Q) = 1|a( f, n) �≡ 0 mod l},
πsf( f, x; l) := {n ≤ x |n square-free, a( f, n) �≡ 0 mod l},

and πsf,Q( f, x; l) defined analogously.
Here we want to show quite elementarily using Proposition 3.4 that one can at

least obtain upper and lower bounds of same order of magnitude for the quantities
π( f, x; l) and πsf( f, x; l), however for f ∈ Mk(�1(N )) of fixed weight and level.
Similar considerations already seem to appear in [4]. These results in turn imply
elementarily analogous results for Siegel modular forms.

Let {qi, j } be an admissible set for f and recall the admissible set {pi, j } con-
structed in Sect. 3.1.2 (B). We define the integers P := ∏

i, j qi, j and U =
∏

i �= j pi, j , (i, j ∈ S f ).
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Proposition 3.10. Let the setting be as above and � be odd. Then

|π( f, x; l)| � x

(log x)α( f )
(N ≥ 1, l � L({qi, j }; f )); (3.30)

|πsf( f, x; l)| � x

(log x)α( f )
, (N square-free, l � Lsf({pi, j }; f )). (3.31)

The implied constants depend only on k, N , P,U, and 0 < α( f ) ≤ 3/4.

Remark 3.11. Note that we assumed K to be a bit large – containing the field L
generated by all the eigenvalues of newforms of level dividing N . However this is
just for notational convenience; one could have passed to the normal closure, say
˜K of K L and noted that π( f, x;B) = π( f, x; l) for any B ∈ ˜K lying over l.

Proof. We start from (3.23) in Proposition 3.4 in the special case when Q = 1. On
the left hand side of (3.23) we get hold of a newform g of level dividing N . For
each n such that (n, N ) = 1 and a(g, n) �≡ 0 mod l, from (3.23) there exists a t | N
such that βt a( f, nγt�) �≡ 0 mod l. Choose the smallest such t , call it t (n). Then
the map

πPN�(g, x; l) −→ π( f, PNx; l), n �→ γt (n)�n,

where P = ∏

i, j qi, j as recalled above, is clearly injective since n is away from
PN . Note that γt (n), in this case, is a polynomial in the pi, j ’s. Therefore for all
x ≥ 1,

#πPN�(g, x; l) ≤ #π( f, PNx; l); (3.32)

and the lower bound in (3.30) then follows from (3.32) and from results of Serre
[23, (4.6)] (note that � is odd) for newforms. Indeed, if either

Clearly Serre’s asymptotic formulae for πPN�(g, x; l) also hold if we omit
finitelymany primes from the ensemble that he starts with (loc. cit.).More precisely
from [23], via the Galois representation attached with g, the primes p � N� are
“Frobenian” and has analytic density α(g) with 0 < α(g) ≤ 3/4 (cf. [23, (6.3)]);
andSerre shows that from this one can, using analytic techniques, give an asymptotic
formula for πN�(g, x; l). For us, we additionally need omit the primes dividing P .
Since the asymptotic formula depends only on the density of primes concerned,
our claim holds true. We take α( f ) := α(g).

For the upper bounds, we look instead at (3.1) and apply the same argument
just presented. Here we consider the map n �→ ( {i(n), δ(n)}, n/δ(n)) where i(n)
is the smallest index i for which αi,δa( fi |Bδ, n) �≡ 0 mod l for some δ|N in
(3.23) and once i(n) has been chosen, δ(n) is the smallest divisor of N such that
αi(n),δ(n)a( fi(n)|Bδ(n), n) �≡ 0 mod l. This is clearly an injective map, whence

π( f, x; l) ↪→ �i,δπ( fi |Bδ, x; l),
� being the disjoint union. We get

#π( f, x; l) ≤
∑

i,δ

#π( fi |Bδ, x; l)

≤ dim Mk(�1(N )) · max
i,δ

{#π( fi |Bδ, x; l)} � max
i

{#π( fi , x; l)}



Fourier coefficients mod� 421

and again results of Serre from [23] (cf. (1.1)) does the job.
Moreover if N is square-free, the above argument also works almost verbatim

for πsf( f, x; l). In this case we have the additional information:

(i) � is square-free,
(ii) all the γt appearing in Proposition 3.4 are square-free rational numbers such

that (γt , N ) = 1 (so that if n is square free and (n, γt N ) = 1, γt (n)�n is also
square-free in (3.32)), and

(iii) Serre’s asymptotic results clearly hold when we count over square-free integers
as well. By this we mean an asymptotic formula of the form

πsf,UN�(g, x; l) ∼ c f ;l
x

(log x)α( f ;l) (g newform) (3.33)

for some constants c f ;l, α( f ; l) as before. This follows from the proof
in [23, p. 5], in our case the generating function F(s) of πsf,UN (g) :=
{n square-free , (n,UN�) = 1, a(g, n) �≡ 0 mod l} is just
F(s) = ∑

n∈πsf,UN (g) n
−s = ∏

p∈πsf,UN�(g)(1+ p−s) and the subsequent argu-
ments in [23] hold verbatim, leading to the asymptotic formula (3.33).

These take care of the lower bound for πsf( f, x; l). The argument for the upper
bound remains the same as before. ��
Example 3.12. We work out an explicit set of primes P outside of which one has
an asymptotic formula for π(�2, x) which conforms to Proposition 3.10. We refer
the reader to the LMFDB database for some of our calculations here. Namely
dim S24(1) = 2, and is spanned by two newforms say X1 and X2 written as

X1(τ ) = q + (540 − β)q2 + · · · , X2(τ ) = q + (540 + β)q2 + · · · ;

which are conjugate under the Galois group G � Z/2Z of the coefficient field
L = Q(X1) = Q(X2) = Q(

√
D) where the fundamental discriminant D equals

144169. The Sturm’s bound here is S1(24, 1) = 2 and the smallest prime q such
that a(X1, q) �= a(X2, q) is q = 2. Following LMFDB, we put β = 12

√
D.

Finally note that L has class number one, and that D is a prime number.
We let l ⊂ OL lie over �. One easily checks that (again by using Sturm’s bound)

�2 = −1

2β
X1 + 1

2β
X2. (3.34)

Hence if we request that

l � 2β = 24
√
D ⇐⇒ � � 2 · 3 · D,

we would be able to write over l-integral numbers

�2 ≡ −1

2β
X1 + 1

2β
X2 mod l. (3.35)
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This is all we need (of course here we got it much more directly, without using
any analytic means like the Hecke bound) to obtain, by considering T2(�2) −
a(X2, 2)�2 that

a(X1, n) ≡ a(�2, 2n) − a(�2, n/2) − a(X2, 2)a(�2, n) mod l.

Then considering n such that (n, 6D�) = 1, we find that

a(X1, n) ≡ a(�2, 2n) − (540 + β)a(�2, n) mod l,

which shows by a simple counting that

π(X1, x; l) ≤ π(�2, 2x; l). (3.36)

Moreover (3.35) immediately implies (since X1, X2 are Galois conjugate) for any
j = 1, 2,

π(�2, x; l) ≤ π(X j , x; l). (3.37)

Combining (3.36) and (3.37), we see that for x ≥ 2 and � � 6 · 144169
π(X1, x/2; l) ≤ π(�2, x; l) ≤ π(X j , x; l),

and by Serre [23] there is a constant c(X1, �) such that for any ε > 0 and x large
enough

1

2
(1 − ε)c′(X1, �)

x

(log x)α(X1)
≤ π(�2, x; l)

≤ (1 + ε)c(X1, �)
x

(log x)α(X1)
, (3.38)

for some positive quantities c(X1, �), c′(X1, �) not depending on x . This is in
contrast to the result in [5, 7.1.1] where � = 3 and an additional factor of log log x
was obtained in (3.38).

3.3.1. The quantity h( f ; l) We now turn our attention to the quantity h( f ; l),
which is the exponent of log log x appearing in (1.5).

Proposition 3.13. Let k, N be fixed and l be a prime in K lying over an odd prime
�. Suppose that for some f ∈ Mk(�1(N ))(OK ) which is not constant mod l, one
has h( f ; l) �= 0. Then the following statements hold.

(i) l | L({qi, j }; f ) for any set of primes {qi, j } admissible for f .
(ii) Suppose in addition that f ∈ Mk(N , χ) for someDirichlet characterχ mod N.

There exists a pair i, j ∈ S f (i �= j ) such that the congruences bi (n) ≡
b j (n) mod l hold for all n ≥ 1 with (n, N ) = 1.

Remark 3.14. In particular, (i) says that the quantity h( f ; l) in (1.5) is 0 for all
but finitely many �. Moreover, choosing the admissible set to be {mi, j } from the
introduction, and the bounds on mi, j from section 3.1.2, we see that h( f ; l) = 0
for all � > C, where C depends only on k and N .
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Proof. Let f be as in the proposition and {qi, j } be admissible for f . If l �
L({qi, j }; f ) then the sieving procedure described in the proof of Proposition 3.4
works, and then Proposition 3.10 shows that h( f ; l) = 0. This proves (i).

For (i i), suppose that for all pairsu �= v (u, v ∈ S f ) onehasbu(n) �≡ bv(n) mod
l for some (n, N ) = 1. Multiplicativity of the Fourier coefficients and Hecke
relations imply that for each such pair u �= v there must be a prime, say qu,v with
(qu,v, N ) = 1 such that bu(qu,v) �≡ bv(qu,v) mod l. Indeed this follows from the
relation

bt (p
j ) = bt (p)bt (p

j−1) − pk−1χ(p)bt (p
j−2) ( j ≥ 2, p � N ),

which shows that if bu(p) = bv(p) on a set of primes P, then bu(n) = bv(n) for
all n away from P. That fu, fv have the same nebentypus is crucial here.

Then clearly {qu,v} is an admissible set for f , and thus by the quantitative result
from Proposition 3.10 we must have h( f ; l) = 0. This contradiction finishes the
proof of (i i). ��

We record here another feature of the quantity h( f ; l), whose proof is omit-
ted since it is verbatim similar to that of Proposition 3.10. Let ˜M(N ) be the
OK /l-vector space consisting of the reduction mod l of elements of the algebra
⊕

k Mk(�1(N ))(OK ). Recall from [14] that a set {λ(p)}(p,N )=1 is called a system
of eigenvalues mod l if there is an eigenform g ∈ ˜M(N ) such that T (p)g = λ(p)g
for all p.

Proposition 3.15. Let � be an odd prime and l|�. Let f ∈ ˜M(N ) be non-constant
mod l. Suppose that f can be written as a finite linear combination of eigenforms
(of all Hecke operators) mod l whose system of eigenvalues are pairwise distinct.
Then h( f ; l) = 0.

This leads us to formulate the following conjecture.

Conjecture 3.16. Let � be an odd prime and l|�. Let f ∈ ˜M(N ) be non-constant
mod l. Then h( f ; l) = 0 if and only if f can bewritten as a finite linear combination
of eigenforms (of all Hecke operators) mod l whose system of eigenvalues are
pairwise distinct.

The conjecture, if true, implies via Jochnowitz’s result [14] onfinitelymany systems
of eigenvalues mod � that there are only finitely many f ∈ ˜M(N ) with h( f ; l) =
0.

4. Siegel modular forms

First we discuss a Sturm bound for Siegel modular forms with level. This would be
required to quantify the congruence primes in our results to follow. For the Sturm
bound, we follow some arguments by Ram Murty [18]. For T ∈ �+

n we put

M(T ) := max{t1,1, . . . , tn,n}. (4.1)
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Proposition 4.1. Let F ∈ Mn
k (�1(N ))(OK ) be such that F �≡ 0 mod l. Then there

exist T ∈ �n with

M(T ) ≤
(

4

3

)n k

16
[Sp(n,Z) : �1(N )] =: Sn(k, N ) (4.2)

such that aF (T ) �≡ 0 mod l.

Proof. The proof is analogous to the argument used in [18] (essentially by reducing
to the case of level one as in [19] by using the ‘norm’ map) and we do not repeat it.
We just note that the main two ingredients that go into the proof in [18], namely:

(i) Mn
k (�1(N )) has a basis consisting of elements with Fourier coefficients in Z;

(ii) if F ∈ Mn
k (�1(N ))(OK ), then in each cusp, it’s Fourier coefficients are also in

a number field and have bounded denominators;

are available from the work of Shimura [24]. ��
Nextwe recall the notion of a singular Siegelmodular formof degree n. Namely,

F as Proposition 4.1 is called singular mod l if aF (T ) ≡ 0 mod l for all T ∈ �+
n .

We would not directly apply the following lemma in this paper, but would use it
indirectly in order to provide a convenient hypothesis in Theorem 4.9. Also we
believe this is not written down in the literature, and could be useful elsewhere.

Lemma 4.2. Assume that N is coprime to � (� odd), F ∈ Mn
k (�1(N ))(OK ) and

let l be a prime of K dividing �. Assume that F is l singular of rank t, i.e.

t = max{rank(T ) | T ∈ �n, aF (T ) �≡ 0 mod l}
with 1 ≤ t ≤ n − 1. Then 2k − t is divisible by � − 1.

This is just a �1(N ) variant of Corollary 3.7 in [8] so we only give a brief sketch
of proof.

Proof. The basic strategy is to associate with F an elliptic modular form g such
that g is congruent mod l to a unit in Ol. We would see that g would be on �1(R)

for some R such that R is coprime to p. The weight k′ of such a modular form g
must be divisible by � − 1 by Serre et al., and this would imply the same for the
weight of F .

To do this, we may choose T ∈ �n of rank t with aF (T ) �≡ 0 mod l to be of the
form T = ( 0 0

0 T0

)

with T0 ∈ �+
t . Also, we may apply Siegel’s �-operator several

times to go to a modular form f of degree t + 1. Then we consider the Fourier-
Jacobi coefficient φT0 of f and its theta decomposition; the modular form h0 in this
theta decompositon is then congruent to a constant (unit) mod l. Furthermore h20 is
a modular form for �1(N ) ∩ �0(M) with nebentypus character

(−4
∗

)

where M is
the level of 2T0; the weight is 2k− t . If M is coprime to �we may take g := h20 and
apply the statement from above. Otherwise, we write M = �s ·M ′ with M ′ coprime
to � and by standard level changing, there is a modular form g for �1(NM ′) of
weight 2k − t + m · (� − 1) for some nonnegative integer m with g ≡ h20 mod l;
now we argue as before with this g. ��
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Let us recall now the following result due to Böcherer-Nagaoka, which was
used to prove that congruences between Siegel modular forms imply congruences
between their weights. For F ∈ Mn

k (�1(N ))(OK ) we put

νl(F) := min
T∈�n

νl(aF (T )).

Proposition 4.3. ([9]) Let l ⊂ OK be a prime ideal. For every F ∈
Mn

k (�1(N ))(OK ) there exists for all sufficiently large R ∈ N an elliptic modu-
lar form f ∈ Mk(�1(N R2))(OK ) such that the Fourier coefficients of f are finite
sums of those of F; and νl( f ) = νl(F).

For future use, let us briefly recall the setting of the proof of the above proposi-
tion, in a slightly more general situation than that in [9]. LetP be a certain property
satisfied by some of the Fourier coefficients of F .

As in [9], we consider the set

T = {T ∈ �n | aF (T ) satisfies P}.
We let d to be the minimum of the quantitiesM(T ) (as defined in (4.1)) for T ∈ T .
Then we fix any T0 ∈ T withM(T0) = d and put diag(T0) = (d1, . . . , dn).

We now consider the finite set

Td = {T ∈ T |M(T ) = d}. (4.3)

We next choose R ≥ 1 ‘large enough’ (possiblywith suitable additional conditions)
such that {T ∈ Td |T ≡ T0 mod R} = {T0}.

We then put, borrowing the notation from [9]

F (R,T0)(Z) :=
∑

T≡T0 mod R

aF (T )e(T Z), (4.4)

and define

f (τ ) =
∞
∑

r=0

a( f, r)qr ∈ Mk(�1(N R2)) (4.5)

by

a( f, r) =
∑

T≡T0 mod R, diag(T )=(r,d2,...,dn)

aF (T ); (4.6)

then one has

a( f, d1) = aF (T0). (4.7)

We now show that an adaptation of this technique to our setting can be used
to show that any F is not constant mod l as above has infinitely many GL(n,Z)-
inequivalent ‘primitive’ Fourier coefficients which are non-zero mod l when � is
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large enough. This generalises previous results on this topic by Zagier [28], Yamana
[27] where the Fourier coefficients were in C.

We need a bit of more notation. For T ∈ �n (n ≥ 2), let D(T ) denote the
greatest common divisor of all the diagonal elements of T except the first:

D(T ) = gcd(t2,2, . . . , tn,n). (4.8)

Note that D(T ) ∈ N and that if c(T ) denotes the content of T , then c(T ) | D(T ).

Theorem 4.4. Let F, which is not constant mod l be as in Proposition 4.3. Sup-
pose there exist T ∈ �n such that aF (T ) �≡ 0 mod l with (D(T ), N ) = 1. Then
there exist infinitely many GL(n,Z)-inequivalent primitive matrices T ∈ �n such
that aF (T ) �≡ 0 mod l for all � (lying under l) effectively large enough in terms of
only k, N; and in particular we request that � > k + 1.

Proof. We will freely refer to the discussion preceeding this theorem. Here the
property P is that aF (T ) �≡ 0 mod l and (D(T ), N ) = 1. Fix a T = T with this
property.

The next three paragraphs are meant to show how to effectively bound the
integer R from (4.4) in our situation. This would then tell us how large our � has
to be.

With such a T chosen, we now claim the existence of T0 ∈ �n with the prop-
erties: aF (T0) �≡ 0 mod l, (D(T0), N ) = 1 and M(T0) = maxi {di } ≤ Sn(k, N 2),
where Sn(k, N ) denotes the Hecke-Sturm bound for Mn

k (�1(N )). Here for sim-
plicity we have put diag(T0) = (d1, d2, . . . , dn).

Suppose to the contrary. Taking 1N to be the trivial Dirichlet character mod N
and L = Lt ∈ Mn(Z) satisfying the conditions:

Li, j ≡ 0 mod N (i �= j), L1,1 ≡ 0 mod N ,

n
∑

j=2

L j, j d j = gcd(d2, · · · , dn) = D(T);

we then consider the Fourier series

G(Z) =
∑

T

1N (tr(LT ))aF (T )e(T Z). (4.9)

FromAndrianov [3] we know thatG ∈ Mn
k (�), which is contained in Mn

k (�1(N 2))

in view of the inclusions �1(N 2) ⊂ � ⊂ �1(N ), with � = {γ = (

A B
C D

) ∈
�1(N )|C ≡ 0 mod N 2}. Further our hypothesis on F shows that G �≡ 0 mod l
(indeed aG(T) �≡ 0 mod l).

By using the Sturm bound for �n
1 (N

2) we get the existence of T0 as claimed
above, because the Fourier expansion of G in (4.9) is supported only on those T
for which (D(T ), N ) = 1.

We work with this T0 as per the set-up described following Proposition 4.3 and
also assume (without loss) that M(T0) = d is the minimum with respect to the
property P . We then consider Td as in (4.3) and proceed to choose R suitably.
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We require three properties of such an R: it should be effectively bounded in
terms of k, N ; should be coprime to D(T0); and should be big enough so that

{T ∈ Td |T ≡ T0 mod R, (D(T ), N ) = 1} = {T0}.
We note that the following choice R = ([2H(k, N 2)]+1) ·D(T0)+1 is good. This
will ensure that one of the diagonal congruences for T ≡ T0 mod R does not hold
in view of the definition of Td ; further this choice also ensures that (R,D(T0)) = 1.

Next, we consider themodular form f ∈ Mk(�1(N R2)) from (4.5)with Fourier
expansion as in (4.6) obtained from our F . Recall that by construction νl( f ) = 0,
and we consider the Fourier coefficients a( f, r) of f . Since � > k + 1, f is
not constant mod l. From (4.7) it follows that if a( f, r) �≡ 0 mod l, there must
exist T ≡ T0 mod R with aF (T ) �≡ 0 mod l such that diag(T ) = (r, d2, ..., dn).
Since (D(T0), N R2) = 1 by our construction, we can apply Theorem 3.7 with
Q := D(T0) (note that the level of f divides N R2) to deduce that there must exist
infinitely many r such that a( f, r) �≡ 0 mod l such that (r,D(T0)) = 1.

The crucial point is that for all the Fourier coefficients aF (T ) (T ≡ T0 mod R)
of F (R,T0), one infers from (4.6) that D(T ) = D(T0) (= (d2, . . . , dn)). Therefore
we get the existence a sequence of infinitely many matrices T such that aF (T ) �≡
0 mod l with the property that their diagonal entries have gcd to be 1. This implies
that the T under consideration are all primitive.

Unfortunately this does not imply that all the primitive T obtained in this
way are inequivalent under the action of GL(n,Z). However if T ∈ �+

n , we
can directly invoke Proposition 4.6, whose statement and proof however are
deferred until the end of this proof, to get hold of infinitely many such matri-
ces which are pairwise distinct modGL(n,Z). Otherwise if rank(T ) = s < n,

we can find U ∈ GL(n,Z) such that T [U ] =
(

˜T 0
0 0

)

. Then we can con-

sider G(Z) := �n−s(F)(Z) = ∑

S∈�s
aF (

(

S 0
0 0

)

)e(SZ), (Z ∈ Hs). Clearly
G �≡ 0 mod l and in particular aG(˜T ) �≡ 0 mod l with ˜T ∈ �+

s primitive. Thus we
can again invoke Proposition 4.6 to G to conclude the existence of infinitely many
primitive S ∈ �+

s /GL(s,Z) such that aG(S) �≡ 0 mod l. To conclude the same
result for F , note that the matrices

(

S 0
0 0

)

obtained above as also pairwise distinct
modGL(n,Z). This follows from the statement that S1, S2 ∈ �+

s are GL(s,Z)

equivalent if and only if
(

S1 0
0 0

)

and
(

S2 0
0 0

)

are GL(n,Z) equivalent. One side of the

implication is trivial, to see the other; suppose that U =
(

U1 U2
U3 U4

)

∈ GL(n,Z) be

such that
(

Ut
1 Ut

3
Ut
2 Ut

4

) (

S1 0
0 0

)(

U1 U2
U3 U4

)

=
(

S2 0
0 0

)

.

A short calculation shows that Ut
1S1U1 = S2 and Ut

2S1U2 = 0. The positive-
definiteness of S1 forces U2 = 0 and thus U1 ∈ GL(s,Z). Since the content is
preserved under the action of GL(n,Z), we are therefore done.

While applying Theorem 3.7 we needed to ensure that � is large enough only
in terms of k, N , R. But since D(T0), and hence R (see our choice of R) can be
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estimated (explicitly) as a polynomial in k, N ; � is large enough depending only
on k, N . We do not work this out. ��

It remains to prove Proposition 4.6. Let us recall the Fourier-Jacobi expansion
of F of type (1, n − 1) from (2.8). Let φS be the Fourier-Jacobi coefficients. By
tacitly identifying φS with the associated function ϕS = φS · e(SZ) (cf. section 2),
we refer to the Fourier coefficients of φS as supported on matrices of the form
( ∗ ∗∗ S

) ∈ �n . From (2.6) the Fourier expansion of the theta components hμ of φS :

hμ(τ) =
∑

r

b(r, μ)e
(

(r − S−1[μ/2]) · τ
)

. (4.10)

Lemma 4.5. With the above notation, suppose that for all S ∈ �+
n−1 and all

μ ∈ Zn−1/2SZn−1 we have b(r, μ) �≡ 0 mod l only for finitely many values
of r − S−1[μ] with r coprime to γ (μ), where γ (μ) := gcd(μ, c(S)). Then the

Fourier expansion of φS mod l is supported on matrices T =
(

r μt

μ S

)

∈ �n, with

rank(T ) ≤ n − 1.

Proof. We start from the theta expansion (2.5) of φS . We observe that for a Fourier
series as in (2.6) the invariance property (2.7) is equivalent to the possibility writing
down a “theta expansion” as in (2.5). This observation will be used soon.

We put b(r, μ)∗ := b(r, μ) if the gcd of r , μ and of the content c(S) is one
and we define b(r, μ)∗ to be zero otherwise. We observe that the gcd of r , μ and
of c(S) is the same as the gcd of r + Lt · μ + S[L], μ + 2S · L and of c(S). This
implies that the subseries of φS , defined by

φ∗
S(τ, z) =

∑

r,μ

b(r, μ)∗e(rτ + μt z)

still has an expansion (keeping in mind the observation from the first paragraph)

φ∗
S(τ, z) =

∑

μ0

h∗
μ0

(τ )�S[μ0](τ, z)

where the h∗
μ0

are given by subseries of the Fourier expansion of hμ0 , more precisly,
we have

h∗
μ0

(τ ) =
∑

r

b(r, μ0)
∗e

(

(r − S−1
[μ0

2

]

) · τ
)

.

For fixed μ0 we may rephrase the condition defining b(r, μ0)
∗ as saying that the

gcd of r and γ (μ0) is one where γ (μ) := gcd of μ and of c(S).
This can be rephrased in terms of the summation index r − S−1[μ0

2 ] by

r − S−1
[μ0

2

]

/∈ −S−1
[μ0

2

]

+ q · Z
for any prime q dividing γ (μ0). In particular, h∗

μ0
is still a modular form of some

level because it is extracted from the modular form hμ0 by some coprimality con-
dition for its summation index.
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By hypothesis, for all μ0 there are only finitely many r − S−1[μ0] with r
coprime to γ (μ0) such that b(r, μ0) �≡ 0 mod l. Then by [22] or Theorem 3.1 in
[8] the h∗

μ0
are constant functions mod l:

φ∗
S ≡

∑

b(r, μ0)�S[μ0](τ, z) mod l

where r and μ0 satisfy r = S−1[μ0
2 ] (see (4.10)) and (r, γ (μ0)) = 1. In partic-

ular, the Fourier expansion of φ∗
S mod l is supported on matrices T ∈ �n , with

rank(T ) ≤ n − 1. ��
Proposition 4.6. If F ∈ Mn

k (�1(N )) is such that it is not constant mod l; then the
set

{T ∈ �+
n | T primitive , aF (T ) �≡ 0 mod l}/GL(n,Z)

is either empty or infinite.

Remark 4.7. The same statement, but without primitivity condition appears in [8].

Proof. We assume that the set in question is indeed non-empty and finite with
{L1, . . . , Lt } (t ≥ 1) as a set of representatives. Let φS be the Fourier-Jacobi
coefficients of F of type (1, n − 1). Then φS can carry a mod l nonzero primitive
Fourier coefficient only if S = Li [G] for some primitive G ∈ Z(n,n−1). To see this,
recall we have identified φS with ϕS . Suppose ϕS carries a Fourier coefficient at
˜S ∈ �n . Necessarily ˜S = Li [U ] for some U ∈ GL(n,Z):

˜S =
(

r μ0
μt
0 S

)

, ˜S = Li [U ] =
(∗ ∗

∗ Li [G]
)

.

Furthermore, for fixed S we observe that det Li = det(S) ·(r− S−1[μ0]) and hence
r−S−1[μ0] is fromafinite set. Since Li is primitive, necessarily gcd(r, γ (μ0)) = 1,
where recall that γ (μ0) = gcd(μt

0, c(S)). We may now apply Lemma 4.5 to see
that the rank condition for the Li cannot be satisfied. This contradiction finishes
the proof. ��
Remark 4.8. The reasoning above also works in the Archimedean setting.

4.1. Quantitative results: Siegel modular forms

In this subsection, we collect various quantitative results on the number of nonva-
nishing Fourier coefficients mod l of Siegel modular forms, which essentially fol-
low from the corresponding statements about elliptic modular forms. For M ∈ �+

n
denote by dM its ‘absolute discriminant’ (i.e., ignoring the usual sign), defined by

dM := |disc.(2M)| =
⎧

⎨

⎩

det(2M) if n is even,

1
2 det(2M) if n is odd.

(4.11)
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Note that dM ∈ N. Let F ∈ Mn
k (�1(N ))(OK ) and define the sets (suppressing the

dependence on l for convenience, unless there is a danger of confusion):

πF (x, det) := {d ≤ x |aF (T ) �≡ 0 mod l for some T ∈ �+
n such that dT = d},

πF (x, det; sf) := πF (x, det) ∩ {Odd square-free numbers},
πF (x, det; pr) := πF (x, det) ∩ {Odd prime numbers},

πF (x, tr) := {d ≤ x |aF (T ) �≡ 0 mod l for some T ∈ �+
n such that tr(T ) = d}.

Theorem 4.9. Let F ∈ Mn
k (�1(N )) be non-singular mod l. Then for some 0 <

β(F) ≤ 3/4,

(a1) |πF (x, det)| 
F
x

(log x)β(F)
(n odd),

(a2) |πF (x, det)| 
F

√
x

(log log x)
(n even),

(b) |πF (x, det; sf)| 
 x

(log x)β(F)
(n odd, N = 1, k ≥ (n + 3)/2, � 
F 1),

(c) |πF (x, det; pr)| 
 x

(log x)
(n odd, N = 1, k ≥ (n + 3)/2).

In view of Lemma 4.2, parts (a1), (a2), (c) the above theorem therefore hold for
all � such that � − 1 ≥ k − n.

Proof. Since F is non-singular mod l, we first get hold of T ∈ �+
n such that

aF (T ) �≡ 0 mod l, say for concreteness that det(T ) is minimal with this property.
Let T0 be the right lower diagonal block of T of size n−1. We look at the T0-th

Fourier-Jacobi coefficient, say φ, of F . We consider any of it’s theta components,
say hμ (μ ∈ Zn−1/2T0 · Zn−1), which is �≡ 0 mod l. Such a hμ exists since
φ �≡ 0 mod l. It is well-known that H(τ ) := hμ(4dT0τ) is in Mκ(�1(M)) with
M = 16d2T0N and κ := k − (n − 1)/2. We note that the Fourier coefficients of H
and F are related as (for this and the above facts, see e.g., [7, section 2.3]):

a(H, n) = aF (

(

n/4dT0 + T−1
0 [μ/2] μ/2

μt/2 T0

)

),

(n/4dT0 + T−1
0 [μ/2] ∈ N). (4.12)

We now have two avenues. Since T0 is fixed, we can get (in an elementary way)
(a1) from (4.12) by applying Proposition 3.10 to H (which is non-constant mod l)
and taking β(F) := α(H) if n is odd. However we use the stronger result in [5,
Theorem 1] which holds for all �. Since n is even in (a2), we apply [6, Theorem 1]
to H and are done.

For (b), by combining the main result Theorem 1.1 with Proposition 3.8 of [7]

we choose T =
(

n r/2
r t/2 T0

)

∈ �+
n to be such that aF (T) �= 0, dT0 being odd,

square-free and r is ‘T0-primitive’, i.e., the denominator of T−1
0 (r/4) is exactly dT0 .

We then choose a prime l ⊂ OK such that l � aF (T) by requesting � 
F 1 to be
large enough (here l | �), e.g., by using the Hecke’s bound on Fourier coefficients
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of modular forms. We can additionally ensure that dT is odd and square-free as
well; this follows by combining the last assertion in Proposition 3.8 of [7] with
Theorems 4.3 and 4.6 of [7] and of course can be read off from [7, Theorem 1.1].

Arguing as in the previous paragraph we now put H(τ ) := hμ(dT0τ) and note
that H has level �1(d2T0) such that H is not a constant mod l and H is related

to F by (4.12) where we replace 4dT0 by dT0 . Additionally we define ˜H(τ ) =
∑

(n,2)=1 a(H, n)qn . We can also write ˜H as ˜H(τ ) = ∑

(n,2dT0 )=1 a(H, n)qn since
dT0 is odd and a(H, n) �= 0 only if (n, dT0) = 1. The latter assertion follows since
r is ‘T0-primitive’, see [7, subsection 3.4.1]. Then [7, Lemma 4.1] shows that
˜H �= 0. This construction of ˜H is required to assure the existence of odd and
square-free integers n such that a(H, n) �≡ 0 mod l. This is so that we can consider
‘fundamental’ Fourier coefficients of F , which are our objects of interest, adjusting
signs if necessary.

We note that a( ˜H , ñ) �≡ 0 mod l for some square-free ñ. For example we can
choose ñ := dT0(n−T−1

0 [r/4]), simply because ñ = dT and dT is odd and square-
free. See [7, subsection 3.4.1]. Therefore we are done by applying the first part of
[5, Theorem 26] to ˜H . The lower bound in (b) then follows from that of ˜H , upon
using (4.12).

Finally arguing exactly as in the proof of (b) above, but this time using [7,
section 5, Theorem 5.1], (c) follows from [4, Thm. I]. This completes the proof. ��
Remark 4.10. It is possible to prove (b) by not invoking the full force of the main
result (Theorem 1.1) from [7] but only by using the weaker hypothesis that F has
a Fourier-Jacobi coefficient φT0 of index T0 ∈ �+

n−1 such that φT0 is not a constant
mod l and dT0 is odd and square-free. This amounts to not assuming that dT in the
above proof is odd and square-free to begin with. For completeness we include a
proof, which is as follows.

Keeping the above notation and assumption, we look at ˜H . We claim that ˜H is
not a constant mod l. Otherwise a(H, n) ≡ 0 mod l for all n such that (n, 2) = 1
and this implies that H is a constant mod l upon using Corollary 3.9. Next recall
from [7], a(H, n) �= 0 only if (n, dT0) = 1. This is because r , as in the above proof,
is ‘T0-primitive’. If there exists a square-free n such that a( ˜H , n) �≡ 0 mod l, then
we are done. Otherwise from the condition in (the second half of) [5, Theorem 26],
we conclude that a( ˜H , n) �≡ 0 mod l only for those n which are divisible by
ν2 with ν | 4dT0� for some prime v (recall that the level of ˜H divides 4dT0 ). If
a(H, ν2m) �≡ 0 mod l is such a Fourier coefficient, it must be true that ν � dT0 .
Otherwise there will exist a Fourier coefficient a(H, ν2m) �≡ 0 mod l in the Fourier
expansion of H such that (ν2m, dT0) > 1, contradicting the support of the set
a(H, n) mod l as n varies.

Thus ν = 2 or � and in any case we see that (2�, dT0) = 1. Therefore from
Theorem 3.7 (a) (again using that � is large enough so as to satisfy the hypothesis
of Theorem 3.7) we would then have a contradiction unless ˜H is a constant mod l.
The lower bounds would then follow from H as before.

Remark 4.11. It is not clear whether the arguments of [6] can be adapted to deal
with square-free Fourier coefficients. In this regard, the method of this paper also
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does not work for half-integral weight modular forms, since the Hecke operators
there are indexed by squares. If one had such a result, then part (b) above would
have a version for even n as well.

Remark 4.12. The lower bound on � in (b) can be made more explicit if we know
bounds on the smallest dT (say of the form dT � kan Nbn ) for the fundamental T
such that aF (T ) �= 0 for all n. This seems known only for n = 1 from [2].

Remark 4.13. In light of Theorem 4.9 (b), it may seem that Theorem 4.4 is redun-
dant; but the former is only for odd n, whereas the latter is for all n. Moreover the
lower bound on � in Theorem 4.4 is effective only in terms of the weight and level
of the concerned space, whereas in the case of Theorem 4.9 (b), it is dependent on
the modular form.

We end by noting a nonvanishing result in terms of the trace function.

Proposition 4.14. Let F ∈ Mn
k (�1(N )) such that F is not constant mod l. Then

for all primes l,

|πF (x, tr)| 
 x

(log x)β(F)
. (4.13)

Proof. We apply the procedure discussed after Theorem 4.4 to F . Here the property
P is that aF (T ) �≡ 0 mod l. The proof then follows trivially from (4.6), (4.7) and [5,
Thm. 1]. If onewishes to settle formore simpleminded proof, then Proposition 3.10
may be used, but at the price of � being large. In any case we put β(F) := α( f ),
where f is as given in (4.5). ��
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