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Abstract

This article is an attempt at offering a new perspective for the mechanics of solids using Cartan’s moving frames, specifically
iscussing a mixed variational principle in non-linear elasticity. We treat quantities defined on the co-tangent bundles of reference
nd deformed configurations as primary unknowns along with deformation. Such a treatment invites compatibility of the fields
defined on the co-tangent bundle) with the base-space (configurations of the solid body) so that the configuration can be
ealized as a subset of the Euclidean space. Using the moving frame, we rewrite the metric and connection through differential
orms. These quantities are further utilized to write the deformation gradient and Cauchy–Green deformation tensor in terms of
rame and co-frame fields. The geometric understanding of stress as a co-vector valued 2-form fits squarely within our overall
rogram. We also show that, for a hyperelastic solid, an equation similar to the Doyle–Ericksen formula may be written for
he co-vector part of the stress 2-form. Using this kinetic and kinematic understanding, we rewrite a mixed functional in
erms of differential forms, whose extremum leads to the compatibility of deformation, constitutive relations, and equations of
quilibrium. Finite element exterior calculus is then utilized to construct a finite-dimensional approximation for the differential
orms appearing in the variational principle. These approximations are then used to construct a discrete functional which can
e numerically extremized. The discretization leads to a mixed model as it involves independent approximations of differential
orms related to stress and deformation gradient. The mixed variational principle is then specialized for the 2D case, whose
iscrete approximation is applied to problems in nonlinear elasticity. From the numerical study, it is found that the present
iscretization does not suffer from locking and related convergence issues.
2022 Elsevier B.V. All rights reserved.

eywords: Non-linear elasticity; Differential forms; Cartan’s moving frame; Kinematic closure; Hu–Washizu variational principle; Finite element
xterior calculus

1. Introduction

Mixed or complementary variational principles have a long history in solid mechanics [1]. These variational
rinciples are of significant utility in developing approximation schemes where conventional or single field
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approximations perform poorly [2,3]. The Hu–Washizu (HW) principle, for instance, is a three-field variational
statement commonly used to construct finite element approximations in nonlinear solid mechanics. The HW
variational principle takes deformation gradient and stress as additional inputs along with deformation. From a
geometric perspective, deformation gradient and stress are infinitesimal (tangent space based) quantities whose
origins can be traced to the geometric hypothesis placed on the configurations of the body. However, scarce
little has been achieved in understanding these principles from a geometric standpoint. The method of moving
frames developed by Cartan [4,5] is an effective tool to describe geometry using differential forms. Built on the
theory of exterior calculus, Cartan’s moving frames can encode the connection information on a manifold, an
indispensable tool for differentiating vector fields on a manifold. To each point of the configuration, the method of
moving frames assigns a bunch of orthonormal vectors called frame fields. The rate at which these frame fields
vary across the configuration defines the connection 1-forms. These connection 1-forms must however satisfy
the structure equations so that the parallel transport they encode conforms to the underlying manifold structure,
which will presently be assumed Euclidean. Apparently, attaching a set of vectors to a material point is nothing
new in continuum mechanics. Many such models have been put forth, starting from Cosserat to micro-morphic
theories; these theories are sometimes referred to as micro-continuum theories [6]. None of them, however, encode
the connection information of the deforming body whilst evolving the frames or the directors. For these models,
directors are just additional degrees of freedom to hold energy. A major difficulty with this point of view is that it
does not clarify the geometry within which the model is working. An immediate consequence is that it is impossible
to give a co-ordinate independent meaning to the derivatives appearing in the equations of motion.

An attempt at utilizing Cartan’s moving frames to formulate the equations of elasticity was made by Frankel [7];
owever his efforts went largely unnoticed and fell short of offering an appropriate computational implementation.
n this work, we formulate the kinematics of an elastic body in the language of differential forms. The advantages of
aving the kinematics formulated in terms of moving frames are twofold. First, important kinematic quantities are
escribed using differential forms that explicate on issues related to compatibility. Second, the geometric hypothesis
ehind the kinematics is made explicit. The hypothesis that the geometry of non-linear elasticity is Euclidean [8]
onforms well with the tensor fields that typically describe the local state of deformation — the right Cauchy–Green
eformation tensor to wit, whose roots can be traced to the (Euclidean) metric tensor. Moreover, compatibility
quations for both the deformation gradient and Cauchy–Green deformation tensor [9] depend on the geometry of
he configuration. Compatibility in terms of the deformation gradient is related to the vanishing of the torsion tensor
hile compatibility in terms of the Cauchy–Green deformation tensor is related to the vanishing of the curvature

ensor [10]. Both notions of compatibility are however related to the affine connection placed on the configuration.
he continuum mechanical definition of stress also has a geometric meaning; Frankel [7] describes Cauchy stress
s a bundle valued differential form. The basic idea in his construction is to decompose the stress tensor into a
raction (1-form) and an area component (2-form). Such a program was later pursued by Segeve and Rodnay [11]
nd Kanso et al. [12]. However, both Segeve and Rodnay and Kanso et al. did not pursue a variational principle
sing this description. From the decomposition of Cauchy stress, it is clear that the constitutive rule needs to be
ritten only for the traction component since the area component is determined kinematically.
Conventionally, numerical techniques for nonlinear elasticity were largely based on single field approximations.

t was soon realized that these methods suffered from numerical instabilities, thus affecting the convergence.
isplacement based methods with additional stabilization, is a common technique to circumvent these difficulties.
ethods like assumed strain and enhanced strain techniques belong to this class; these methods introduce addition

erms in the energy function whose origin is purely numerical. Within nonlinear elasticity, techniques based on mixed
E methods are already the preferred choice [13–15] for large deformation problems since they avoid numerical

nstabilities like locking and preserve important conserved quantities. However, constructing stable mixed finite
lements is difficult even in the case of linear elasticity. A few researchers have turned to ideas from differential
eometry to construct stable, well performing mixed-FE techniques for nonlinear elasticity; we cite Yavari [16]
s an example of one such attempt where tools from discrete differential forms [17] were utilized to construct
table discretization schemes. In case of hyperbolic problems, Yin et al. [18] presented a space–time discontinuous
alerkin formulation which is element-wise conservative. This approach was latter extended in Abedi et al. [19]

o linearized elastodynamics, where conservation of linear and angular momenta was ensured element-wise; the
uthors extensively used exterior calculus to set up the equations of motion. The single-field formulation of

bedi et al. was extended to a three-field space–time discontinuous Galerkin formulation by Miller et al. [20],
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with independent approximations for displacement, velocity and strain fields. These developments in space–time
discontinuous Galerkin approximation were later applied to dynamic brittle fracture problems [21].

Finite element exterior calculus (FEEC) [22] is an FE technique developed by Arnold and co-workers to unify
nite elements like Raviart–Thomas, Nédélec [23–25] and other carefully handcrafted elements under a common

umbrella. FEEC relies on the theory of differential forms to achieve this unification [22,26–28]. The algebraic and
geometric structures brought forth by differential forms are instrumental in achieving this. Recently, Angoshtari
et al. [15] and Shojaei and Yavari [13] have brought on ideas from algebraic topology to discretize the equations
of nonlinear elasticity. These authors have constructed mixed FE techniques using HW variational principle. The
discretization was based on a R3 valued de Rham complex, as described in Angoshtari and Yavari [29]. These
methods still require stabilization terms in the three-dimensional case [14]. Moreover, from the description of the
complex given in Angoshtari et al., it is not clear how the HW variational principle is related to the complex and
how the operators defining the complex are affected by the connection placed on the configuration.

The goals of this article are twofold. The first is to develop a mixed variational principle for nonlinear elasticity
that takes differential forms as its input argument. Towards this, we first reformulate the kinematics and kinetics of
an elastic solid using differential forms. The kinematics of deformation is laid out via Cartan’s method of moving
frames. The structure equations associated with the moving frames establish the important relationship between the
geometric hypothesis of the configuration and measures of deformation. The geometric understanding of stress as
a bundle valued differential form is then exploited to write the kinetics in terms of differential forms. These two
ideas are then used to rewrite the conventional HW variational principle, which now has a bunch of differential
forms and deformation as its input arguments. The proposed mixed functional is then extremized with respect to
these differential forms to arrive at the equations of mechanical equilibrium, constitutive relation and compatibility
constraints. The second goal of this work is to use FEEC to discretize the proposed mixed variational principle.
Towards this end, the spaces PrΛ

1 and P−
r Λ1 are used to discretize the differential forms describing the kinetics

and kinematics. Using these approximations, a discrete mixed functional is arrived at, which can then be extremized
using numerical optimization techniques.

The rest of the article is organized as follows. A brief introduction to Cartan’s moving frames and the associated
structure equations are presented in Section 2. The kinematics of an elastic body is then reformulated in Section 3,
using the idea of moving frames. In this section, important kinematic quantities like deformation gradient and
right Cauchy–Green deformation tensor are described using frame and co-frame fields. This section also contains a
discussion on affine-connections using connection 1-forms. In Section 4, we introduce stress as a co-vector valued
differential 2-form; this interpretation is originally due to Frankel [7]. We then derive a relationship similar to
the Doyle–Ericksen formula relating the stored energy density function to the traction 1-form. In Section 5, we
rewrite the mixed variational principle in terms of differential forms describing the kinematics and kinetics of
motion. We then show that variation of the mixed functional with respect to different input arguments leads to the
compatibility of deformation, constitutive rule and equations of equilibrium. We also remark on the interpretation of
stress as a Lagrange multiplier enforcing compatibility of deformation. Section 6 discusses a discrete approximation
of differential forms on a simplicial manifold. While these ideas have their roots in the work of Whitney [30], we
adopt a description of the FEEC within the framework of Cartan’s moving frames. These are utilized to construct a
discrete approximation to the mixed variational principle, which is numerically extremized using Newton’s method.
This FE approximation is then applied to standard benchmark problems in nonlinear elasticity in order to assess the
performance of the numerical technique against instabilities like volume and bending locking. Finally, in Section 9,
we discuss on the usefulness of the moving frames in formulating other theories in nonlinear solid mechanics (like
Kirchhoff shells and dislocation mechanics) and the extension of the present numerical techniques to such nonlinear
theories.

1.1. Remarks on notations

We do not use bold face letters to distinguish between a scalar, a vector or a tensor. Indices are used to index
objects of the same kind and not the components; for example, if we have three 1-forms, we may denote the
th 1-form by θ i . A symbol with one index does not mean that it is a component of a vector or a 1-form.

The objects featured in the theory are defined wherever they appear first. Often in nonlinear elasticity, lower
and upper case indices are used to distinguish objects in the reference and deformed configurations. We do
3
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not follow this convention since we adopt separate notations for the same object defined in the reference and
deformed configurations. We follow the convention of Einstein summation over repeated indices. In places where
the summation convention is not followed, we make it explicit.

2. Cartan’s moving frame

In this section, we present a brief introduction to the method of moving frames; our motive being to review some
asic results so that the kinematics of an elastic solid can be written in terms of moving frames. For a detailed
xposition on moving frames, the reader may consult [4,5]. Cartan introduced the method of moving frames as
tool to study the geometry of surfaces. These techniques were later extended to study the geometry of abstract
anifolds. Common examples of moving frames include the Frenet frame for a curve and Durboux frame for a

urface.
We denote the reference and deformed configurations of a body by B and S; the respective tangent bundles are

denoted by TB and TS. Both B and S are smooth manifolds with boundaries; their boundaries are denoted by ∂B
and ∂S. These configurations are endowed with a C∞ chart from which they inherit their smoothness. Positions
placements) of a material point in the reference and deformed configurations are denoted by X and x respectively.

At each tangent space of a configuration, we choose a collection of orthogonal vectors, which we call the frame.
he orthogonality of the frame field is with respect to the Euclidean inner product of the respective configuration.
he frame fields of the reference and deformed configurations are denoted by Ei and ei respectively. A collection
f frame fields that span the tangent spaces constitutes a moving frame or simply a frame. We denote frames
or the reference and deformed configurations by FB = {E1, . . . , En} and FS = {e1, . . . , en}. Given a frame for
angent bundle, the natural (algebraic) duality between tangent and co-tangent spaces induces a co-frame for the
o-tangent bundle as well. These co-frames (at a point) constitute a basis for the co-tangent spaces of the respective
onfigurations. We denote the co-frames of the reference and deformed configurations by F∗

B = {E1, . . . , En
} and

∗

S = {e1, . . . , en
} respectively, where E i and ei are sections from the cotangent bundles of the reference and

eformed configurations. The natural duality between frame and co-frame fields of the reference and deformed
onfigurations may be written as,

E i (E j ) = δi
j ; ei (e j ) = δi

j ; E i
∈ T ∗B, ei

∈ T ∗S (1)

or a material point in the reference configuration, the differential of position is denoted by dX . In terms of the
rame and co-frame fields, it can be written as,

dX = Ei ⊗ E i (2)

imilarly, in terms of the frame and co-frame fields in the deformed configuration, the differential of position is
iven by,

dx = ei ⊗ ei (3)

rom the definition of dX (2), it follows that a tangent vectors from the reference configuration is mapped to itself
nder dX . To see this, choose V ∈ TXB with V = ci Ei . Substituting the latter and using the definition of dX ,
e arrive at dX (V ) = c j Ei E i (E j ). Using the duality between the frame and co-frame fields, we conclude that
X (V ) = V . Similarly, dx maps a tangent vector from the deformed configuration to itself. The differential of a
osition vector in the reference or deformed configuration is thus an identity map on the corresponding tangent
pace.

Similar to the differential of position, one may also define the differential of a frame, which in the reference
onfiguration is given by,

dEi = γ
j

i ⊗ E j (4)

here, γ i
j is called the connection matrix; it contains 1-forms as its entries. Because of the orthogonality between

he frame fields, the connection matrix is skew symmetric, i.e. γ i
j = −γ

j
i . Similarly, the differential of a frame for

he deformed configuration is given by,

dei = ω̄
j
i ⊗ e j (5)

i i j

¯ j is the connection matrix of the deformed frame fields. It is also skew, i.e. ω̄ j = −ω̄i .

4
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For a given choice of connection 1-forms and co-frame fields, there are certain compatibility conditions (Poincaré
elations) which guarantee the existence of the placements X and x . These equations are called Cartan’s structure
quations. In the present context (of all manifolds being Euclidean), the first compatibility condition establishes
he torsion-free nature of the configuration. For the reference and deformed configurations, this condition may be
ritten as,

d2 X = 0; d2x = 0 (6)

lugging (2) and (3) into the above equation and making use of (4) and (5) leads to,

dE i
= γ i

j ∧ E j
; dei

= ω̄i
j ∧ e j (7)

he second compatibility condition presently establishes that the reference and deformed configurations are
urvature-free. This leads to the following conditions on the reference and deformed frame fields,

d2 Ei = 0; d2ei = 0 (8)

sing the differential of the frame fields in the above equations yields,

dγ i
j = γ i

k ∧ γ k
j ; dω̄i

j = ω̄i
k ∧ ω̄k

j (9)

or a simply connected body, the structure equations (7) and (9) (for the reference and deformed configurations)
rovide the necessary kinematic closure to ensure that the configurations can be embedded with an Euclidean space.
ndeed, without this closure effected by the structure equations, a model cannot in general produce a deformed
onfiguration which is a subset of an Euclidean space.

.1. Differentials of position and frame

We now present the geometric meaning of the infinitesimal quantities (differentials of position and frame)
ntroduced in the last subsection. This interpretation is valid only when the parallel transport encoded by the frames
s path independent or Euclidean. Consider the differential of the position for the reference configuration given in
2). For a given coordinate system, the position X is a smooth function of its coordinates (X1, X2, X3). Let Γ be
curve parametrized by its arc length, Γ : [a, b] → B, G

( dΓ
ds ,

dΓ
ds

)
= 1, where G(., .) denotes the metric tensor

of the reference configuration. The frame fields Ei can be constructed by an orthonormalization (Gram–Schmidt
procedure) of the tangent vectors to the coordinate curves. Fig. 1 shows the coordinate curves and frame at X (a) and
X (b). The tangent vector to the curve Γ is written as dΓ

ds = ci Ei , where ci are real numbers. Now, the differential
of position, which is a vector valued 1-form, can be integrated along the curve Γ to produce a vector; this vector
translates the position X (a) to X (b). This translation may be formally written as,

X (b) − X (a) =

∫ b

a
dX (ci Ei )ds

=

∫ b

a
ci E j E j (Ei )ds,

=

∫ b

a
ci E jδ

j
i ds,

=

∫ b

a
ci Ei ds. (10)

In the last equation, Ei and ci can vary along the curve Γ . The above interpretation of dX is very similar to that
of 1-forms as real numbers defined on curves.

We now consider the differential of frame. Integrating (4) along Γ , we have,∫ b

a
dEi =

∫ b

a
dEi

(
dΓ
ds

)
ds.

valuating γ i
j on the tangent vector produces a skew symmetric matrix with real co-efficients. In other words, the

bove integration can be written as a solution to the ordinary differential equation,

˙ j
Ei = γi E j , (11)

5
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Fig. 1. The coordinate lines and the frame field generated from these coordinate lines are shown in (a). The frame fields at X (a) and X (b)
are shown in (b); we have moved the frames to the same point so that it is convenient to interpret the change. We have used the notation
Ei (a) and Ei (b) to indicate the frame at the material points X (a) and X (b).

˙(.) may be understood as the derivative with respect to the parameter s. Alternatively, one can understand (11), as
a restriction of (4) to a curve. Given E j (a), the solution to (11) is a rotation matrix R which relates the frames
between two points on the curve Γ . This is formally written as,

Ei (s) = R(s)Ei (a). (12)

Fig. 1(b) depicts this idea by overlaying the frames at a and b. From this discussion, it is clear that the vector
translating the point X (a) to X (b) is dependent on the frame, the co-frame and the curve chosen for integration.
However, the vector X (b)− X (a) is path and frame independent since the body B is a subset of an Euclidean space.
This path independence is exactly what the structure equations enforce.

2.2. Affine connection via frame fields

We now discuss the affine connection and covariant differentiation encoded by the connection 1-forms discussed
in the previous subsection. An affine connection on a smooth manifold is a device used to differentiate sections of
vector and tensor bundles in a co-ordinate independent manner. Let w =

∑n
i=1w

i ei be an arbitrary section from
TS. The covariant derivative of w in the direction of ei is given by,

∇eiw = dw j (ei )e j + w j ω̄k
j (ei )ek (13)

It is easy to check that the above definition is a differential satisfying the properties,

∇ f eiw = f ∇eiw; f ∈ Λ0

∇ei (w + v) = ∇eiw + ∇ei v; w, v ∈ T S (14)

∇ei ( fw) = ei [ f ]w + f ∇eiw

Using these properties, it is possible to extend the above definition of covariant differentiation to arbitrary tensor

fields [8].

6
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3. Kinematics

The deformation map sends the placement of material points in the reference configuration to their corresponding
lacements in the deformed configuration. We denote the deformation map by ϕ so that x = ϕ(X ). The differential
f the deformation or the deformation gradient, denoted by dϕ, maps the tangent space of the reference configuration
o the corresponding tangent space in the deformed configuration. For an assumed frame field (for both reference
nd deformed configurations), the differential of deformation can be obtained by pulling the co-vector part of the
eformed configuration’s differential of position back to the reference configuration.

dϕ = ei ⊗ ϕ∗(ei )

= ei ⊗ θ i
; θ i

∈ T ∗B, ei ∈ FS (15)

n writing (15), we have introduced the following definition: θ i
:= ϕ∗(ei ). The definition of deformation gradient

iven in (15) is not new; it had previously appeared in the work of Yavari [16]. In our construction, the 1-forms
i contain local information about the deformation map ϕ. The 1-forms θ i are a primitive variable in our theory;
e call these differential forms, the deformation 1-forms. From (15), we see that the vector leg of the deformation
radient is from the deformed configuration, while the co-vector leg is from the reference configuration, making it
two-point tensor [8]. The action of the deformation gradient on a vector V (X ) ∈ TXB is given by,

dϕ(V ) = eiθ
i (V ) (16)

ince θ i (V ) are real numbers, the above equation is a linear combination of tangent vectors from the deformed
onfiguration. Conventionally, deformation gradient is introduced as the differential of deformation; we have not
aken this perspective since our interest is in constructing mixed variational principles for nonlinear elasticity.
nother important aspect of the above construction is that, we have written the deformation gradient using a frame

nd a co-frame. Contrast this with a conventional mixed method, where the deformation gradient is identified with
ts components in a particular coordinate system.

.1. Strain and deformation measures

The notion of length is central to continuum mechanics; important kinematic quantities like strain and rate
f deformation are derived from it. Indeed, it may not be possible to assess the state of deformation without
metric structure (notions of length and angle) for both reference and deformed configurations. The notion of

ength is encoded by a symmetric and positive definite tensor, defined on the tangent space of the respective
onfiguration. The metric tensor of the reference and deformed configurations are denoted by G and g respectively;

G : TXB × TXB → R and g : TxS × TxS → R. In this work, we assume the metric structures of both reference
nd deformed configurations to be Euclidean. In terms of the co-frame field, the metric tensor of the reference
onfiguration is given as,

G = dX · dX

= (E j
⊗ E j ) · (Ei ⊗ E i ) (17)

= δi j E i
⊗ E j . (18)

he dot product introduced in the above equation is the inner product between the vector legs of dX , which is
omputed using the Euclidean inner product. Similarly, the metric tensor in the deformed configurations may be
ritten as,

g = dx · dx

= (e j
⊗ e j ) · (ei ⊗ ei ) (19)

= δi j ei
⊗ e j . (20)

n terms of the frame fields, the inverses of the metric tensors for the reference and deformed configurations are
ritten as,

G−1
= δi j E ⊗ E ; g−1

= δi j e ⊗ e . (21)
i j i j

7
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Now, the right Cauchy–Green deformation tensor may be obtained as the pull-back of the deformed configuration’s
metric tensor. In terms of the deformation 1-forms, this relationship may be written as,

C = ϕ∗(g)

= ϕ∗(δi j ei
⊗ e j )

= δi jθ
i
⊗ θ j . (22)

An alternative way to compute the C is to use the usual definition in continuum mechanics, C = dϕt dϕ. Here, (.)t

s understood to be the adjoint map induced by the metric structure. Using the orthonormality of the frame field
e arrive at,

C = (θ i
⊗ ei ) · (e j ⊗ θ j )

= δi jθ
i
⊗ θ j . (23)

he calculations leading to (22) and (23) are exactly the same; only the sequence in which pull-back and inner
roduct are computed differs. The Green–Lagrangian strain tensor may now be written as,

E =
1
2

(C − G)

=
1
2
δi j [(θ i

⊗ θ j ) − (E i
⊗ E j )]. (24)

he first invariant of the right Cauchy–Green tensor is given by,

I1 = ⟨θ i , θ i
⟩G . (25)

ere ⟨., .⟩G denotes the inner product induced by G. The area forms induced by the co-frame of the reference
onfiguration are given by,

A1
= E2

∧ E3
; A2

= E3
∧ E1

; A3
= E1

∧ E2, (26)

imilarly, the area-forms induced by the co-frame of the deformed configuration are given by,

a1
= e2

∧ e3
; a2

= e3
∧ e1

; a3
= e1

∧ e2, (27)

hese area forms Ai and ai serve as a basis for the space of 2-forms defined on their respective configurations. The
rea forms in the deformed configuration may be pulled back to the reference configuration under the deformation
ap. These pulled-back area forms are denoted by Ai

:= ϕ∗(ai ). In terms of the deformation 1-forms, the pulled
ack area forms can be written as,

A1
= θ2

∧ θ3
; A2

= θ3
∧ θ1

; A3
= θ1

∧ θ2. (28)

n terms of the pulled-back area forms, the second invariant of C may now be written as,

I2 = ⟨Ai ,Ai
⟩G (29)

n terms of the co-frame fields, the volume forms of reference and deformed configurations may be written as,

V = E1
∧ E2

∧ E3
; v = e1

∧ e2
∧ e3. (30)

he pull back of the volume form in the deformed configuration to the reference configuration is denoted by
:= ϕ∗(v). In terms of the deformation 1-forms, V may be written as,

V = θ1
∧ θ2

∧ θ3 (31)

inally, in terms of the pulled-back volume-form, the third invariant of C is given by,

I3 = (⋆V)2 (32)

n the above equation ⋆(.) denotes the Hodge star operator, which establishes an isomorphism between the space of
√

I or simply J = V.
-forms and 3-forms. We also define J := 3 ⋆

8
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Fig. 2. For an infinitesimal area in the deformed configuration sustaining a traction t , Piola transform applies a pull-back on the area leg,
while the traction remains unaltered.

4. Stress as co-vector valued two-form

In the previous section, we reformulated the deformation gradient and right Cauchy–Green deformation tensor
in terms of differential forms. We now present a geometric approach to stress, originally due to Frankel [7] and
subsequently developed by Segeve and Guy [11] and Kanso et al. [12]. Even though this approach is intuitive and
geometric, it was never used to construct a variational principle. This geometric approach to stress has its origins
in classical dynamics [31], where force is understood as a co-vector. Identifying force with a co-vector permits us
to write power as a pairing between force and velocity (action of a 1-form on a vector) without the use of a metric
tensor. Extending this concept to stress in continuum mechanics is non-trivial and requires the machinery of bundle
valued differential forms [12]. As in classical dynamics, this interpretation of stress as a bundle valued differential
form permits us to write the power expended by stress upon deformation without using a metric.

We denote the Cauchy stress tensor by σ . The traction acting on an infinitesimal area element with unit normal
n̂ is denoted by t , which is given by the well known formula t = σ n̂. The traction t is a force which depends on the

aterial point and the area sustaining it. The Cauchy stress theorem establishes a linear relationship between the
rea’s normal and the traction sustained by it. In the language of differential forms, an infinitesimal area is regarded
s a 2-form, while from classical dynamics we also know that force is a co-vector or a 1-form. Putting these two
deas together, we are led to a geometric definition of Cauchy stress given by,

σ = t i
⊗ ai

; (33)

ecall that ai is the area form of the deformed configuration, which sustains the traction vector t i . The tensor product
in the above equation is due to the linearity between traction and area forms. From this equation, it is easy to see
that the area form changes orientation if the order of the co-vectors in the area form is reversed. Geometrically, if
there are m linearly independent area forms on the manifold, the stress tensor assigns to each area form a 1-form
called traction. With this understanding, Cauchy stress may now be identified with a section from the tensor bundle
Λ1

⊗ Λ2 which has the deformed configuration as its base space.1

In contemporary continuum mechanics, Nanson’s formula describes the transformation of an infinitesimal area
under the deformation map [32]. Geometrically, Nanson’s formula is nothing but the pull-back of an area-form in
the deformed configuration under the deformation map. These pulled-back area forms are given in (28) (see Fig. 2).
The first Piola stress may now be obtained by pulling back the area leg of the Cauchy stress under the deformation
map. This partial pull-back of the Cauchy stress is termed the Piola transform. This relationship may be formally
written as,

P = t i
⊗ ϕ∗(ai )

= t i
⊗ Ai (34)

1 Λi denotes the space of differential forms of degree i .
9
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Note that in the definition of Piola transform, traction 1-form is left untouched. Thus, contrary to convention, Cauchy
and first Piola stresses are now identified as third order tensors, not the usual second order. This ambiguity can be
removed if one applies the Hodge star on the area leg of these two stresses. In three dimensions, the Hodge star
in question establishes an isomorphism between differential forms of degree 2 and 1. The usual definition of stress
may thus be recovered as,

σ = t i
⊗ ⋆(ai ) (35)

P = t i
⊗ ⋆(Ai ). (36)

Kanso et al. made a distinction between the stress tensors given in (33), (34) and (35), (36). However we do not
see a need for it, since both the usual and geometric definitions of stress contain exactly the same information; only
the ranks of these tensors are different.

4.1. Traction 1-form via stored energy function

The Doyle–Ericksen formula is an important result in continuum mechanics [33], which relates the Cauchy
stress and the metric tensor of the deformed configuration. For a stored energy density function W , Doyle–Ericksen
formula gives us the following relationship,

σ = 2
∂W
∂g

. (37)

n writing (37), we have assumed that W is frame-invariant. From the discussion presented so far, it is seen that
he area leg of the Cauchy stress tensor is determined by the choice of coordinate system (frame and co-frame
elds) for the tangent bundle of the deformed configuration. On the other hand, the area leg of the first Piola stress

s determined by both the deformation map and the co-ordinate system for the tangent bundle of the deformed
onfiguration. Clearly, the area leg of a stress tensor does not require a constitutive rule; it is only the traction
omponent that demands a constitutive rule.

We now claim that for a stored energy function W , the traction 1-form has the following constitutive rule,

t i
=

1
J
∂W
∂ei

(38)

he last equation is in the same spirit as the Doyle–Ericksen formula. To establish this result, we first compute the
irectional derivative of W along ei ,

∂W
∂ei

=
∂W
∂(dϕ)

∂(dϕ)
∂ei

(39a)

= (t j
⊗ ⋆Ak)(ei

⊗ e j ⊗ θ k) (39b)

= ⟨⋆A j , θ j
⟩t i (39c)

= (⋆V)t i (39d)

= J t i (39e)

We used the chain rule to arrive at the right hand side of (39a). In (39b), the expression for Piola stress (as a two
tensor) in terms of W and the directional derivative of dϕ along ei are used to get the right hand side and performing
the required contractions lead to (39c). The claim is finally established by using the definitions of pull-back and
Hodge star for volume forms. In three dimensions, constitutive relations have to be supplied to the three traction
1-forms. From these calculation, it is found that the traction 1-forms are conjugate to the frame fields.

If the Cauchy stress (the usual definition) generated by a stored energy function is known, then the expression
for the traction 1-form can be computed using the simple relation t i

= σ i j n̂ j , where the vector fields n̂i are chosen
to be elements from the frame of the deformed configuration.

5. Mixed variational principle

We first present the conventional HW variational principle for a finitely deforming elastic body. As mentioned, the
HW variational principle takes the deformation gradient, first Piola stress and deformation map as input arguments.
10
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In the reference configuration, the HW functional for a non-linear elastic solid can be written as,

IH W =

∫
B

[W (C) − P : (F − dϕ)]dV −

∫
∂B

⟨t, ϕ⟩dA. (40)

n the above equation, t = P N is the traction defined on the surface ∂B, whose unit normal is N . The integration
in the above equation is with respect to the volume and area forms of the reference configuration. In (40), the
deformation gradient is assumed to be independent; this tensor field is denoted by F . On the other hand, the
deformation gradient computed as the differential of deformation is denoted by dϕ. It is worthwhile to note that
the second term in the above equation is bilinear in the Piola stress and the deformation gradient. The variation of
the HW functional with respect to deformation, deformation gradient and first Piola stress leads to the equilibrium
equation, constitutive rule and compatibility of deformation gradient. This form of HW variational principle has been
previously exploited to formulate numerical solution procedures for non-linear problems in elasticity; see [13–15].

5.1. Mixed variational principle with geometric definitions of stress and deformation

We now use the definitions of Cauchy and Piola stresses given in (33) and (34) respectively to rewrite the HW
variational principle such that it takes deformation 1-forms, traction 1-forms and deformation map as inputs. We also
assume that compatible frames for the reference and deformed configurations are given. This assumption permits
us to eliminate the frame fields from the list of unknowns. The mixed functional may be now written as,

I (θ i , t i , ϕ) =

∫
B

W (θ i )dV − (t i
⊗ Ai )∧̇(ei ⊗ (θ i

− dϕi )) −

∫
∂B

⟨t♯, ϕ⟩d A. (41)

n (41), ∧̇ denotes a bilinear map. For α ∈ T ∗S, v ∈ TS and a, b ∈ Λn(B), n ≥ 1, the action of this map is
iven by (α⊗ a)∧̇(v⊗ b) = α(v)a ∧ b. Note that the definition of ∧̇ given here is a little different from the one in
anso et al. [12]. Specifically, we do not use the metric tensor. From our definition of ∧̇, it is seen that the work
one by stress on deformation is metric independent. This property of our current variational formulation brings the
ontinuum mechanical definition of stress a step closer to the definition of force (as a 1-form) in classical mechanics
31]. We did not write the volume form in the second term on the RHS of (41), since the outcome of ∧̇ is a 3-form
hich can be integrated over the reference configuration to produce work done by traction 1-forms on deformation.
lso note that the second term on the RHS in (41) is equivalent to the second term in (40); however now the

elationship between the different arguments is multi-linear. The functional given in (41) can also be discussed
ithin the framework given by Oden and Reddy [1] for the construction of dual and complementary variational
rinciples.

emark 1. In writing (41), we have postulated that the geometry of the body is Euclidean and it is frozen
uring the deformation process. Indeed, within the present set-up, this assumption can be relaxed by permitting
on-integrability in the connection and deformation 1-forms (i.e. by incorporating source terms in the structure
quations).

emark 2. For a frame to represent Euclidean geometry, it is not required that the connection 1-forms be identically
ero. It is only required that the structure equations have a zero source term.

emark 3. It should be mentioned that in the present calculation of critical points, the reference configuration and
he ambient space are assumed to Euclidean.

We now proceed to obtain the Euler–Lagrange equations or the condition that determines the critical points of
he functional I . We use the Gateaux derivative for this purpose. Let ϵ denote a small parameter and ˆ(.) the direction
n which the change in the functional I is computed; this change is often referred to as the variation of I .

We first calculate the variation of I with respect to traction 1-forms; t i
↦→ t i

+ ϵ t̂ i , where t̂ i are assumed to be
rom the tangent space of T ∗S. The perturbed functional in the direction of t̂ i can be written as,

I (ϵ) =

∫
W (θ i )dV − ((t i

+ ϵ t̂ i ) ⊗ Ai )∧̇(e j ⊗ (θ j
− dϕ j )) −

∫
⟨t♯, ϕ⟩d A. (42)
B ∂B
11
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Using the definition of ∧̇ and Gateaux derivative, we get a vector valued 3-form for each i . These three 3-forms have
o be equated to zero to get the condition for critical points in the direction of traction 1-forms. These conditions

ay be formally written as,⎡⎣(A1
∧ (θ1

− dϕ1)) −(A1
∧ dϕ2) −(A1

∧ dϕ2)
−(A2

∧ dϕ1) (A2
∧ (θ2

− dϕ2)) −(A2
∧ dϕ2)

−(A3
∧ dϕ1) −(A3

∧ dϕ2) (A3
∧ (θ3

− dϕ3))

⎤⎦ ⊗

⎡⎣e1
e2
e3

⎤⎦ =

⎡⎣0
0
0

⎤⎦ . (43)

ince ei are orthonormal with respect to a positive definite metric, the above equation can be true only when the
oefficient matrix on the LHS is zero, which leads to the following conditions,

(A1
∧ (θ1

− dϕ1)) = 0; (A1
∧ dϕ2) = 0; (A1

∧ dϕ2) = 0 (44a)

(A2
∧ dϕ1) = 0; (A2

∧ (θ2
− dϕ2)) = 0; (A2

∧ dϕ2) = 0 (44b)

(A3
∧ dϕ1) = 0; (A3

∧ dϕ2) = 0; (A3
∧ (θ3

− dϕ3)) = 0 (44c)

sing the definition of Ai , the above equations may be recast as,⎡⎣θ1
− dϕ1 dϕ1 dϕ1

dϕ2 θ2
− dϕ2 dϕ2

dϕ3 dϕ3 dθ3
− dϕ3

⎤⎦ ∧

⎡⎣θ2
∧ θ3

θ3
∧ θ1

θ1
∧ θ2

⎤⎦ =

⎡⎣0
0
0

⎤⎦ . (45)

or these equations to hold, the following conditions must be met,

θ1
− dϕ1

= 0; θ2
− dϕ2

= 0; θ3
− dϕ3

= 0 . (46)

he above condition simply states that there exist three 0-forms whose exterior derivatives are the deformation
-forms; or in other words, the deformation 1-forms are exact and ϕi are the potentials for the corresponding
eformation 1-forms.

We now compute the variation of I with respect to the deformation 1-forms. Incremental changes in the
eformation 1-forms may be written as, θ i

↦→ θ i
+ ϵθ̂ i , where ϵθ̂ i is assumed to be an element from the tangent

pace T ∗B. The perturbed functional in the direction of deformation 1-forms may be written as,

I (ϵ) =

∫
B

W (θ i
+ ϵθ̂ i )dV − (t i

⊗ Ai (ϵ))∧̇(e j ⊗ (θ j (ϵ) − dϕ j )) −

∫
∂B

⟨t♯, ϕ⟩dA. (47)

sing the definition of the Gateaux derivative, for each θ i we have,
∂W
∂θ1 = [t1(e1)⋆(θ2

∧ θ3) − t2(e1)⋆(dϕ1
∧ θ3) + t2(e2)⋆((θ2

− dϕ2) ∧ θ3) − t2(e3)⋆(dϕ3
∧ θ3)

− t3(e1)⋆(θ2
∧ dϕ1) + t3(e2)⋆(θ2

∧ dϕ3) + t3(e3)⋆(θ2
∧ (θ3

− dϕ3))]
♯

(48a)
∂W
∂θ2 = [t1(e1)⋆(θ3

∧ (θ1
− dϕ1)) − t1(e2)⋆(θ3

∧ dϕ2) − t1(e3)⋆(θ3
∧ dϕ3) − t2(e2)⋆(θ3

∧ dθ1)

− t3(e1)⋆(dϕ1
∧ θ1) − t3(e2)⋆(θ2

∧ θ1) + t3(e3)⋆((θ3
− dϕ3) ∧ θ1)]

♯
(48b)

∂W
∂θ3 = [t1(e1)⋆((θ1

− dϕ1) ∧ θ2) − t1(e2)⋆(dϕ2
∧ θ2) − t1(e3)⋆(dϕ3

∧ θ2) − t2(e1)⋆(θ1
∧ dϕ1)

− t2(e2)⋆(θ1
∧ (θ2

− dϕ2)) + t2(e3)⋆(θ1
∧ dϕ3) + t3(e3)⋆(θ1

∧ θ2)]
♯
. (48c)

f we now take into account the compatibility equations previously established in (46), the last equations reduce to,

∂W
∂θ1 = [t1(e1)⋆(θ2

∧ θ3) + t2(e1)⋆(θ3
∧ θ1) + t3(e1)⋆(θ2

∧ θ1)]♯ (49a)

∂W
∂θ2 = [t1(e2)⋆(θ2

∧ θ3) + t2(e2)⋆(θ3
∧ θ1) + t3(e2)⋆(θ1

∧ θ2)]♯ (49b)

∂W
∂θ3 = [t1(e3)⋆(θ2

∧ θ3) + t2(e3)⋆(θ3
∧ θ1) + t3(e3)⋆(θ1

∧ θ2)]♯. (49c)

From these equations, we see that a 2-form accompanies the components of traction 1-forms; this is indeed true
since we use a Piola transform to write the constitutive rule in the reference configuration. From a comparison of
12
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(48) and (49), we note that the expressions for traction in the former have additional terms. These additional terms
may be related to incompatibilities created by the emergence of defects (such as dislocations) as the deformation
evolves.

Finally, we compute the variation of I with respect to deformation; ϕi
↦→ ϕi

+ ϵϕ̂i , where ϕ̂ belongs to TB.
Using the definition of the superimposed incremental deformation in I and upon computing the Gateaux derivative,
we have the following equation,∫

B
(t i

⊗ Ai )∧̇(e j ⊗ dϕ̂i ) = 0 (50)

To complete the variation, we need to shift the differential from ϕ̂. We first calculate the following,

d(ϕk t j (ek)A j ) = dϕk
∧ t j (ek)A j

+ ϕkd(t j (ek)) ∧ A j
+ ϕk t j (ek)dA j (51)

This equation invites a few comments. The first is that we are calculating the exterior derivative of a 2-form, with
ϕk t j (ek) being a scalar. Using the product rule of differentiation, we have expanded the right hand side of (51). The
second term in (51) should be evaluated using the connection 1-forms since it involves the exterior derivative of a
vector. This term is relevant when one works with a frame field whose connection 1-forms are different from zero.
If we invoke the compatibility of deformation, we have dAi

= 0, which leaves (51) in the following form,

d(ϕk t j (ek)A j ) = dϕk
∧ t j (ek)A j

+ ϕkd(t j (ek)) ∧ A j (52)

An expression similar to (52) was utilized by Kanso et al. [12] to define the mechanical equilibrium. The expression
for the exterior derivative defined in (52) involves the connection 1-forms of the manifold, which is similar to the
covariant exterior derivatives used in gauge theories of physics [34]. Using (51) in (50) leads to,∫

B
d(ϕ̂k t j (ek)A j ) − ϕ̂kd(t j (ek)) ∧ A j

= 0 (53)

he first term in the above equation may be converted to a boundary term via Stokes’ theorem leading to,∫
∂B
ϕ̂k t j (ek)A j

−

∫
B
ϕ̂kd(t j (ek)) ∧ A j

= 0 (54)

sing the arbitrariness of ϕ̂k , we conclude that,

d(t j (ek)) ∧ A j
= 0 (55)

his is the condition for the critical point of the mixed functional in the direction of deformation, which represents
he balance of forces. Note that the connection 1-forms of the deformed configuration appear through the exterior
erivatives of the frame fields of the deformed configuration.

.2. Stress a Lagrange multiplier

For a hyper-elastic solid, stress is derived from the stored energy which may be written as a function of the
eformation gradient. This assumption permits us to write the equations of equilibrium as the Euler–Lagrange
quation of the stored energy functional. In a certain sense, the stress generated in a hyper-elastic solid should
atisfy certain integrability condition (i.e. the existence of the stored energy function). Moreover, if we assume the
tored energy function to be translation and rotation invariant, it implies equilibrium of forces and moments. Thus
or the hyper-elastic solid, balances of forces and moments are consequences of translation and rotation invariance;
tress is only a secondary variable introduced for writing the equations of equilibrium in a convenient way.

When formulated as a mixed problem, the stress tensor or more specifically the traction 1-form has a completely
ifferent role. Our mixed functional has deformation, deformation 1-forms and stress 2-forms as inputs. For the
tored energy, viewed as a function of deformation 1-forms, translation and rotation invariance cannot be discussed
irectly, since nothing about the geometry of the co-tangent bundle from which the deformation 1-forms were pulled
ack is known. In other words, there is nothing in the stored energy function that requires the base space for the
eformed configuration to be Euclidean. The second term in (41) is introduced to impose this constraint. Observe
hat, in (41), the second term is multilinear in the input arguments, i.e., stress 2-form, differential of deformation
nd deformation 1-form. The traction 1-form may now be thought of as a Lagrange multiplier introduced to impose
he equality between the differential of deformation and deformation 1-forms. Alternatively, the equality between

he differential of deformation and deformation 1-forms implies that the deformed configuration is Euclidean.

13
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Fig. 3. Reference triangle (2-simplex); a red dot indicates a vertex, while the arrow along an edge indicates its orientation.

6. Discretization of differential forms

In this section, we consider local finite element spaces which are suitable for approximating differential forms
ver a simplicial complex. A simplicial complex in Rm , denoted by K , is a set with simplices as its elements. By

an n-simplex, we mean the convex hull of n + 1 points in Rm . We denote a general n-simplex by K n and a specific
n-simplex by [v0, . . . , vn], where vi ∈ Rm ; these vi are referred to as the vertices of the simplex. We may also call

simplex K n
∈ K , n ≤ m a n-face of K . We expect every face of K to be an element in K and if two faces

K1, K2 ∈ K intersect, then their intersection is also a face in K . The dimension of K is defined as the largest
imension of the simplex contained in K . Finite element mesh created by triangulating a two dimensional domain
s a good example of a two dimensional simplicial complex. Such a finite element mesh has nodes, edges and faces,
hich are simplices of dimensions 0, 1 and 2 respectively.
From now on we restrict ourselves to two spatial dimensions; techniques discussed here can be extended to any

patial dimensions. The just stated assumption also permits us to work with a simplicial complex of dimension 2.
e denote the barycentric coordinates of a 2-simplex (triangle) by λi , i = 0, . . . , 2. These coordinates satisfy the

elation
∑n

i=0 λ
i

= 1. In terms of the Cartesian coordinates, the barycentric coordinates of the reference triangle
re given by,

λ0
= 1 − x1

− x2
; λ1

= x1
; λ2

= x2, (56)

here, x1 and x2 are the Cartesian coordinates of a point within the triangle. The reference triangle, along with the
ertices and orientation of edges is presented in Fig. 3; we denote this reference triangle by K̂ 2 or simply by K̂ .

.1. Spaces PrΛ
n and P−

r Λn

We denote the space of m variable polynomials of degree r by Pr (Rm). The space of polynomial differential
orms with form degree n and polynomial degree r is denoted by PrΛ

n(Rm), n ≤ m. Often we suppress Rm from
ur notation and simply denote these spaces by Pr and PrΛ

n . For vector fields, v1, . . . , vn ∈ TRm ,

PrΛ
n

= {ω ∈ Λn(Rm)|ω(v1, . . . , vn) ∈ Pr }. (57)

n other words, for a polynomial differential form ω, the coefficient functions are polynomials of degree r . From
he definition of the spaces Pr and PrΛ

n , their dimensions can be computed as
(r+m

m

)
and

(n+r
n

)(n
k

)
respectively. For

differential form ω of degree n, the interior product of ω with a vector v|x , x ∈ Rm , is given as,

κvω = ω(v, v1, . . . , vn−1) (58)

or any vectors, v1, . . . , vn−1. From the above definition it is easy to see that κvω is a differential form of degree
− 1.
For any point x ∈ Rm , the vector field X ∈ TRm translates the origin to x ∈ Rm . Using this vector field X , a

oszul type operator on the space of polynomial differential forms with form degree n can be defined. This operator
s given as,

1 n−1
κXω = ω(X, v , . . . , v ) (59)

14
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Table 1
Basis functions for different FE spaces.

FE space Node [i] Edge [i, j] Face [i, j, k]

P1Λ
0 λi – –

P−

1 Λ1 – λi dλ j
− λ j dλi –

P1Λ
1 – λi dλ j , λ j dλi –

Fig. 4. Vector plot of the basis functions from the space P−

1 Λ1, the 1-form basis functions are converted to vector fields by using the
uclidean metric.

here, v1, . . . , vn−1 are arbitrary vector fields form TRm . From the definition, it is easy to see that κX decreases
the degree of a differential form by 1 and increases the polynomial degree by 1. An important property of κX is
κ2

X = 0. The operator κX also commutes with affine pull-back. If T is an affine linear map, T : Rm
→ Rm , then

T ∗κXω = κX T ∗ω. The polynomial spaces P−
r Λn , can be defined as,

P−

r Λk
= {ω ∈ PrΛ

k
|κX (ω) ∈ PrΛ

k−1
} (60)

The dimension of the space P−
r Λ(Rm) can be computed as

(r+k−1
k

)(m+r
m−k

)
which is larger than that of Pr−1Λ

n but
smaller than that of PrΛ

n . In the case of polynomial differential forms with form degree 0, we have P−
r Λ0

= PrΛ
0;

hese spaces can be identified with the Lagrange family of finite element spaces. The spaces PrΛ
n and P−

r Λn

onstitute a large family of finite elements. Well known members of this family include the Raviart–Thomas [23] and
édélec [25] type vector finite elements. These subspaces of polynomial differential forms were proposed by Arnold

nd co-workers [22] to unify the vector finite elements used in the construction of mixed finite element techniques.
hese finite dimensional polynomial spaces form the cornerstone for the finite element techniques developed under

he umbrella of finite element exterior calculus.

.2. Degrees of freedom and finite element bases

In the previous subsection, we introduced the polynomial spaces P−
r Λn and PrΛ

n . We now restrict these
olynomial spaces to the reference triangle and construct basis functions suitable for computation. The description
f the computational basis functions for the spaces P−

r Λn and PrΛ
n closely follows the work of Arnold et al. [35]

here a geometric decomposition was utilized to construct the computational basis function on a simplex. The idea
f the geometric decomposition is to index the DoF’s of a finite element (FE) space using the sub-simplices of
he simplex on which the FE space is constructed. For Lagrange finite elements over simplices, this amounts to
ssigning DoF’s to the vertices of the simplex. For finite elements in the family PrΛ

n and P−
r Λn , DoF’s may be

ndexed with edges, faces and volume. Table 1 gives the basis functions for the spaces P1Λ
0, P1Λ

1 and P−

1 Λ1.
rom Table 1, it can be seen that P1Λ

0 has DoF only on the vertex, while P−

1 Λ1 has one DoF on each edge and
1Λ

1 has two DoFs per edge. A vector plot of the basis functions for the spaces P−

1 Λ1 and P1Λ
1 are show in Fig. 4
nd Fig. 5 respectively.
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Fig. 5. Vector plot of the basis functions from the space P1Λ
1; the 1-form basis functions are converted to vector fields by using the

uclidean metric.

.3. Whitney forms and P−

1 Λn

Differential forms of degree n are functions that take n vectors and produce real numbers. Alternatively, one
can also view an n-form as a real number defined on a plane spanned by n tangent vectors. The latter definition
is more suitable for the construction of discrete differential forms on a simplicial complex. On a k-simplex, a
discrete differential form of degree n can be thought as a real number defined on the k-subsimplex. Using this idea,
Hirani [17] constructs a discrete analog of the exterior calculus. For such a discrete approximation, Whitney [30]
gave a formula for interpolating these differential forms on a k-simplex. By producing basis functions whose degrees

f freedom are the real numbers defined on subsimplices, Whitney was able to interpolate these differential forms
ithin the simplex. The basis functions, constructed by Whitney to approximate differential forms over a simplex

re now-a-days referred to as Whitney forms. In terms of the barycentric coordinates, these polynomial differential
orms are given by the formula,

φn
i = r !

∑
ϵi ∈C(k,r )

(−1)iλϵi
(
dλϵ0 ∧ · · · ∧ d̂λϵi ∧ · · · ∧ dλϵr

)
. (61)

In the above expression C(k, r ) is the r combination of k-element sets from {1, . . . , k}. The superscript n in φn
i

ndicates the degree of the differential form and i indicates the i th basis function. The symbol (̂.) means that the
erm should be removed. Arnold showed that the space spanned by Whitney forms is exactly P−

1 Λn [22].
Using Whitney’s forms, we now produce basis functions for the space P−

1 Λn for different values 0 ≤ n ≤ 2.
hese basis functions can be used to interpolate differential forms of degrees 0, . . . , 2 defined on a 2-simplex.
hitney forms reduce to the usual linear Lagrange basis functions on a triangle for the case n = 0. For n = 1,
hitney forms produce three basis functions; they span the space P−

1 Λ1. These basis functions are given by,

φ1
1 = λ1dλ2 − λ2dλ1; φ1

2 = λ2dλ3 − λ3dλ2; φ1
3 = λ3dλ1 − λ1dλ3. (62)

or differential forms of degree 2, the space of Whitney forms produces one basis function given by,

φ2
1 = 2 (−λ1(dλ2 ∧ dλ3) + λ2(dλ1 ∧ dλ3) − λ3(dλ1 ∧ dλ2)) . (63)

Table 2 gives a summary of the dimensions and locations of the DoF’s for the spaces P−

1 Λn , for different values

f n on a 2-simplex.
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Table 2
Dimensions of spaces P−

1 Λn on a 2-simplex.

Form degree Location of DoF Dimension of FE space

0-form Nodes 3
1-form Edges 3
2-form Face 1

6.4. Coordinate transformation for the FE basis

The FE spaces we have just discussed are affine invariant [27]. This property allows us to construct the finite
lement basis functions in terms of the barycentric coordinates and then use an affine transformation to write the
hape functions in terms of the Cartesian coordinates. The coordinate transformation between Cartesian coordinates
nd barycentric coordinates of a triangle is given by,[

x1

x2

]
= λ1 P1 + λ2 P2 + λ3 P3 (64)

ere Pi are the vertices of the triangle and x i denote the Cartesian coordinates of the triangle given by the vertices
P1, P2, P3]. From the above equation, the relationship between the differentials of the Cartesian and barycentric
oordinates can be expressed as,[

dx1

dx2

]
= (P1 − P3)dλ1

+ (P2 − P3)dλ2. (65)

n writing the above equation, we have eliminated λ3 using λ1
+ λ2

+ λ3
= 1. In matrix form, the above relation

an be written as,[
dx1

dx2

]
= T

[
dλ1

dλ2

]
, (66)

here the matrix T has P1−P3 and P2−P3 as its columns. From the constraint involving the barycentric coordinates,
e have,

dλ1
+ dλ2

+ dλ3
= 0 (67)

n Table 1, the shape functions for the 1-form spaces, P1
1λ

1 and P1−

1 λ1 are presented in the barycentric coordinate
ystem. These shape functions can be transformed to the Cartesian coordinate system using (64) and (66). These
alculations used to transform the 1-form basis functions are consistent with the laws of transformation of
-forms [36].

. Discretization of modified mixed functional

We now undertake a discrete approximation for the mixed functional discussed in Section 5. To achieve this, we
rst construct discrete approximations to the configurations and fields defined on it. The configurations of the body
re discretized using a simplicial approximation, with K (B) and K (S) denoting the simplicial approximation for

and S respectively. In a 2-dimensional case, a simplicial approximation amounts for placing a triangular finite
lement mesh on a configuration. The objective now is to find a simplicial map, which can produce K (S) given

K (B), material and boundary data. By a simplicial map we mean a function which sends the vertices of K (B) to
he vertices of K (S). In the present study, we require the simplicial map to preserve the topology of K (B); that is,
he connectivity of the edges and faces should be preserved by the deformation.

The next step in discretizing the new functional is to get a discrete approximation for the fields defined on the
wo configurations of the body. An important point here is that, the proposed variational principle has differential
orms (not functions) as input. In a conventional (scalar) FE method, Lagrange basis functions may be used to
pproximate the trial solution on a 2-simplex, DoF’s are often associated with the vertices. In the present context, we
nderstand scalar valued functions as 0-forms and a conventional FE approximation (using Lagrange basis functions)

s a finite dimensional approximation of differential forms of degree zero. As in the conventional finite element
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Table 3
FE spaces used to approximate different fields.

Field FE space # DoF per element

Displacement P1Λ
0 3

Deformation 1-form P1Λ
1 6

Traction 1-form P−

1 Λ1 3

method, constructing an FE approximation for a differential form amounts to identifying a suitable finite dimensional
approximation space and enumerating a basis set for this space. Basis functions and DoF’s associated with the finite
dimensional approximation of differential forms defined on an n-simplex have been discussed in Section 6. We use
these finite dimensional spaces of differential forms to discretize our variation principle in Section 5. Since we
are dealing with two dimensional problems, we expect the approximation for deformation to be in a suitable finite
dimensional subspace of Λ0

× Λ0. The approximate deformation and traction 1-forms should be from a subspace
ontained in Λ1. Yavari and co-workers [13–15] have presented an alternative approach to the discretization of an
W-type variational principle; they construct tensorial analogs of Raviart–Thomas and Nédélec finite elements to
iscretize the Piola stress and displacement gradient. In contrast, the variational principle considered in this work
ermits us to use FE approximations for scalar valued differential forms (Raviart–Thomas, Nédélec and other well
nown finite elements) directly without the need for constructing the so-called approximation spaces for vector
alued differential forms.

In the following, we use FE spaces with polynomial degree 1 to approximate the mixed variational principle. A
ummary of different finite element spaces used to approximate the different fields is presented in Table 3. A detailed
tudy discussing the stability of various combinations of FE spaces used to approximate displacement, displacement
radient and Piola stress was under taken by Angoshtari at al. [15]; it was found that the not all combinations of

FE spaces introduced in CSMFEM were stable. Using the FE approximation for a 1-form, the deformation 1-forms
θ i may be written as,

θ i
h =

n∑
j=1

θ̂ i
jψ

j , (68)

where, ψ j span the space P1Λ
1. A subscript h is utilized in the above equation to indicate that the right hand side

is only an approximation to θ i . This finite dimensional approximation may be conveniently written as,

θ i
h = ψθ i . (69)

where, ψ is a matrix with ψ i as its columns, θ i is a vector containing the DoF’s of θ i as its components. Similarly,
he finite dimensional approximation for the traction 1-forms may be written as,

t i
h =

n∑
j=1

t̂ i
jφ

j , (70)

ere, φ j are 1-forms spanning the space P−
r Λ1 and t̂ i

j are the DoF’s associated with t i . In matrix form, the above
approximation becomes,

t i
h = φti , (71)

where, φ is a matrix with the basis of P−
r Λ1 as its columns. The finite dimensional approximation for deformation

nd its differential can be written as,

ϕi
h =

n∑
j=1

ϕ̂i
jλ

j
; dϕi

h =

n∑
j=1

ϕ̂i
j dλ

j , (72)

here, λ j denotes the Lagrange basis functions and ϕ̂i
j denotes the DoF associated with the i th deformation

omponent. In matrix form, the finite dimensional approximation of the differential of deformation can be written
s,

i i
dϕh = dNϕ , (73)
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Here, dN denotes the matrix with exterior derivatives of the Lagrange shape functions as its columns and ϕi is the
oF vector associated with ϕi . Having introduced the discrete approximation for configuration and fields, we may
ow write the discrete approximation for the mixed functional as,

I h
=

∫
K (B)

W h(θ i
h)dV − (t i

h ⊗ dAi
h)∧̇(Ei ⊗ (θ i

h − dφi
h)) −

∫
K (∂B)

⟨t♯,ϕ⟩dA. (74)

n the last equation t is the traction impressed on the boundary ∂B of B. Also notice that in (74), we have assumed
he frame fields for both deformed configuration to be same as that of the reference configuration. Our aim here is
o construct numerical approximations for the 2-dimensional case. Recall that for an n-dimensional body, stress is
co-vector-valued differential form of degree n − 1. Hence the Piola stress becomes a co-vector valued 1-form, the

rea-forms in the Piola stress can be identified as dA1
= θ2 and dA2

= θ1. Incorporating these details in (74), the
ixed functional for the 2-dimensional case can be written as,

I h
=

∫
K (B)

W h(θ1
h , θ

2
h )d A−

∫
K (B)

(t1
h ⊗θ2

h +t2
h ⊗θ1

h )∧̇(E1⊗(θ1
h −dφ1

h)+E2⊗(θ2
h −dφ2

h))−
∫

K (∂B)
⟨t♯,ϕ⟩dL . (75)

In the above equation, dL denotes the infinitesimal line element of the boundary curve ∂B.

.1. Residue and tangent operator

We first recall the definition of Gateaux derivative. Let I h
: Vn ×· · ·×Vn → R be a real valued function defined

n the product space V1 ×· · · .×Vn , each Vi being a vector space of finite or infinite dimension. If we pick elements
w1, . . . , wi , . . . , wn) ∈ V1 × · · · ×Vi × · · · ×Vn , the Gateaux derivative of I in the direction vi ∈ Vi is denoted by
wi I [vi ] and is given by the following limit,

Dwi I [vi ] = lim
ϵ→0

1
ϵ

[I (w1, . . . , (wi + ϵvi ), . . . , wn) − I (w1, . . . , wi , . . . , wn)]

=
d
dϵ

[I (w1, . . . , (wi + ϵvi ), . . . , wn) − I (w1, . . . , wi , . . . , wn)] (76)

he derivative is thus evaluated at (wi , . . . , wn) and it produces an element from V∗

i . Similarly, one may also define
he second derivative of I by applying the above definition twice. The second derivative of I h is thus denoted by
wi Dw j I h . We now apply the definition of Gateaux derivative to compute the first and the second derivatives of

he discrete functional. As discussed earlier, the discrete functional is obtained by restricting the spaces Vi to a
uitable finite dimensional subspace; we denote these spaces by Vh

i . Formally, the discrete variational functional
I h can be written as, I h

: Vh
θ1 × Vh

θ2 × Vh
t1 × Vh

t2 × Vh
ϕ1 × Vh

ϕ2 → R; here Vh
θ i , Vh

t i and Vh
ϕi denote the finite

dimensional approximation spaces for deformation 1-form, traction 1-form and deformation respectively. In the
discrete functional, we do not discretize the frame fields E i since we choose a fixed Cartesian frame for the
eference configuration. The dimension of the product space on which the extremization problem is posed largely
epends on the FE mesh and the finite dimensional approximation space utilized to discretize different fields. Strain
nergy functions associated with non-linear elasticity is non-quadratic; thus finding extremizers for the discrete
unctional now falls within the realm of numerical optimization. We utilize Newton’s method to numerically find the
xtremizers of the discrete functional. Newton’s method involves the computation of the first and second derivatives
ssociated with the discrete functional given in (75). In the finite element literature, the first and second derivatives of
he discrete energy functional are often called the residual vector and tangent operator respectively. The components
f a residual vector are the generalized forces acting on the respective DoF. Thus the global residual vector is
btained by stacking the first derivatives of the discrete functional with respect to different DoF one above the
ther. Formally, the residue vector can be written as,

R =
[
D I h, D I h, D I h, D I h, D I h, D I h]t

θ1 θ2 t1 t2 ϕ1 ϕ2 (77)

19



B. Dhas, Jamun Kumar N., D. Roy et al. Computer Methods in Applied Mechanics and Engineering 393 (2022) 114756

I
W

T

8

b

The matrix form of the tangent operator may now be written as,

K =

⎡⎢⎢⎢⎢⎢⎢⎣

Dθ1Dθ1 I h Dθ1Dθ2 I h Dθ1Dt1 I h Dθ1Dt2 I h Dθ1Dϕ1 I h Dθ1Dϕ2 I h

Dθ2Dθ2 I h Dθ2Dt1 I h Dθ2Dt2 I h Dθ2Dϕ I h Dθ2Dϕ2 I h

Dt1Dt1 I h Dt1Dt2 I h Dt1Dϕ1 I h Dt1Dϕ2 I h

Symmetric Dt2Dt2 I h Dt2Dϕ1 I h Dt2Dϕ2 I h

Dϕ1Dϕ1 I h Dϕ1Dϕ2 I h

Dϕ2Dϕ2 I h

⎤⎥⎥⎥⎥⎥⎥⎦ (78)

t should be noted that the tangent operator is symmetric since it is obtained as the Hessian of an energy functional.
e now present the expressions for the first and second derivatives of the discrete functional.

Dθ1 I h
=

∫
TB

Dθ1 W h
− t1

h (E2)ψ ∧ θ2
h + t2

h (E1)ψ ∧ θ2
h + t1

h (E1)ψ ∧ dϕ1
h + t1

h (E2)ψ ∧ dϕ2
h (79)

Dθ2 I h
=

∫
TB

Dθ2 W h
+ t1

h (E2)ψ ∧ θ1
h − t2

h (E1)ψ ∧ θ1
h + t2

h (E1)ψ ∧ dφ1
h + t2

h (E2)ψ ∧ dϕ2
h (80)

Dt1 I h
=

∫
TB
θ1

h ∧ (dϕ2
h − θ2

h )φt E2 + (θ1
h ∧ dϕ1

h)φt E1 (81)

Dt2 I h
=

∫
TB
θ2

h ∧ (dϕ1
h − θ1

h )φt E1 + (θ2
h ∧ dϕ2

h)φt E2 (82)

Dϕ1 I h
=

∫
TB

−t1
h (E1)dN ∧ θ1

h − t2
h (E1)dN ∧ θ2

h (83)

Dϕ2 I h
=

∫
TB

−t1
h (E2)dN ∧ θ1

h − t2
h (E2)dN ∧ θ2

h (84)

he second derivative of the discrete functional may be computed as,

Dθ1Dθ1 I h
=

∫
TB

Dθ1Dθ1 W h
; Dθ2Dθ2 I h

=

∫
TB

Dθ2Dθ2 W h (85)

Dθ2Dθ1 I h
=

∫
TB

Dθ2Dθ1 W h
+ (t2

h (E1) − t1
h (E2))(φ ∧ φ) (86)

Dt1Dt1 I h
= 0; Dt2Dt2 I h

= 0; Dt1Dt2 I h
= 0 (87)

Dϕ1Dϕ1 I h
= 0; Dϕ2Dϕ2 I h

= 0; Dϕ1Dϕ2 I h
= 0 (88)

Dt1Dθ1 I h
=

∫
TB

−(ψ ∧ θ2
h ) ⊗ φt E2 + (ψ ∧ dϕ1

h) ⊗ φt E1 + (ψ ∧ dϕ2
h) ⊗ φt E2 (89)

Dt2Dθ1 I h
=

∫
TB

(ψ ∧ θ2
h ) ⊗ φE1; Dt1Dθ2 I h

=

∫
TB

(ψ ∧ θ1
h ) ⊗ ψ t E2 (90)

Dt2Dθ2 I h
=

∫
TB

−(ψ ∧ θ1
h ) ⊗ φt E1 + (ψ ∧ dϕ1

h) ⊗ φt E1 + (ψ ∧ dϕ2
h) ⊗ φt E2 (91)

Dϕ1Dθ1 I h
=

∫
TB

t1
h (E1)(ψ ∧ dN); Dϕ2Dθ1 I h

=

∫
TB

t1
h (E2)(ψ ∧ dN) (92)

Dϕ2Dθ1 I h
=

∫
TB

t2
h (E1)(ψ ∧ dN); Dϕ2Dθ2 I h

=

∫
TB

t2
h (E2)(ψ ∧ dN) (93)

Dϕ1Dt1 I h
=

∫
TB

−φE1 ⊗ (dN ∧ θ1
h ); Dϕ2Dt1 I h

=

∫
TB

−φE2 ⊗ (dN ∧ θ1
h ) (94)

Dϕ1Dt2 I h
=

∫
TB

−φE1 ⊗ (dN ∧ θ2
h ); Dϕ2Dt2 I h

=

∫
TB

−φE2 ⊗ (dN ∧ θ2
h ) (95)

. Numerical results

We apply the mixed FE approximation based on our variational principle to numerically study solutions of a few

enchmark problems; the objective is to demonstrate its efficacy against numerical instabilities such as volume and
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Fig. 6. (a) Boundary conditions used to study the Cook’s membrane; (b) representative sequence of mesh used in the convergence study.

ending locking. We consider only two-dimensional problems. The material response in the simulations is calculated
sing a neo-Hookean type stored energy function with the density given by [37],

W (θ1, θ2) =
µ

2
(I1 − 2) − µ ln J +

κ

2
(ln J )2. (96)

discrete approximation to the stored energy density is obtained by replacing the deformation 1-forms by their
nite dimensional approximations. Using the discrete stored energy functional, the contribution of the stored energy
ensity to the residue and tangent may be computed as the first and second derivatives of (96). These derivatives
re computed using the definition of Gateaux derivative in (76). The first derivative of the stored energy function
an be evaluated as,

Dθ i W h
=
µ

2
Dθ i I h

1 +

(
κ ln J h

J
−
µ

J h

)
Dθ i J h . (97)

ere, I h
1 and J h denote the finite dimensional approximations for I1 and J . The first derivative of I h

1 with respect
o θ i may be computed as,

Dθ i I h
1 = 2ψθ i . (98)

imilarly, the first derivative of J h with respect to θ i may be computed as,

Dθ1 J h
= ψ ∧ θ2

; Dθ2 J h
= −ψ ∧ θ1 (99)

The stiffness associated with 1-form degrees of freedom may be evaluated as,

Dθ j Dθ i W h
=
µ

Dθ j Dθ i I h
1 +

[
µ

h 2 +
κ

h 2 −
κ ln J h

h 2

]
Dθ j J h

⊗Dθ i J h
+

[
−µ

h
+
κ ln J h

h

]
Dθ j Dθ i J h . (100)
2 (J ) (J ) (J ) J J
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Fig. 7. Deformed configuration of Cook’s membrane for a load level of 32 N/mm2. The colors indicate the norm of the first Piola stress.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Explicit expressions for the second derivatives of I h
1 may be computed as,

Dθ i Dθ j I h
1 =

{
2ψ tψ; i = j
0; i ̸= j.

(101)

Similarly, the second derivatives of J h may be computed as,

Dθ i Dθ j J h
=

{
0; i = j
ψ ∧ ψ; i ̸= j.

(102)

The convergence of deformation 1-forms is assessed through the integral
∫
B

θ1
2

+
θ2

2 dV . Here ∥.∥ is given
by the metric tensor of the reference configuration. The convergence of stress is evaluated using

∫
B ∥P∥ dV , where

P is the first Piola stress in the conventional sense, which can be constructed using the traction and deformation
1-forms in the following manner,

P = t1
⊗ θ2

+ t2
⊗ θ1. (103)

In writing the above equation, use has been made of the definition of stress as a co-vector valued 1-form.

8.1. Cook’s membrane problem

We first study the performance of our finite element model against bending locking at the incompressible
limit. Cook’s membrane is a standard benchmark problem used to test the efficiency of a finite element model
against bending induced numerical instabilities. Cook’s membrane is a trapezoidal cantilever beam; the domain
and boundary conditions used in the simulations are shown in Fig. 6(a). A representative sequence of the finite
element mesh used to numerically study the convergence is shown in Fig. 6(b). We choose the material constants as
µ = 80.194 N/mm2, κ = 400889.8 N/mm2; these parameters correspond to a quasi-incompressible material. The
onvergence of the tip displacement (at point P) is shown in Fig. 8. The convergence plot obtained by Reese [37]
nd Angoshtari et al. [15] is also plotted alongside. Results on convergence of the deformation 1-form and first
iola stress are given in Fig. 9. In Fig. 7, the deformed configuration predicted by our mixed FE method along with
he norm of the first Piola stress is presented.
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Fig. 8. Convergence of displacement at point P for different load levels and mesh refinements. For comparison, we have plotted the
convergence curves given in Reese and Wriggers [38] (in green) and Angoshtari et al. [15](in red). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Convergence of deformation 1-form and first-Piola stress for different load levels.

8.2. Compression of a rectangular block

We now use the finite element approximation to study the compression of a rectangular block under quasi-
incompressible conditions. The neo-Hookean material model with the same material constants as in Cook’s
membrane problem is used in this simulation. The domain and boundary conditions are shown in Fig. 10.
The convergence of displacement at the point A for different finite element meshes is shown in Fig. 12. For
comparison, the displacement convergence plot obtained using the present FE approximation is reported along with
the corresponding convergence plots obtained by Reese [37] and Angoshtari et al. [15]. The deformed configuration
predicted by our finite element model is also shown in Fig. 11. It should be mentioned that our present FE
approximation, which is of polynomial degree 1, performs comparable to the FE approximation of Angoshtari et al.
which uses polynomial degree 2. The convergence of deformation 1-forms and Piola stress are also computed and
23
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Fig. 10. (a) Boundary conditions used to study the compression of the rectangular block; (b) representative sequence of mesh used in the
convergence study.

Fig. 11. Deformed shape predicted by our FE simulation; the deformation is mirrored about the y-axis for clarity. Colors on the deformed
configuration indicate the norm of displacement. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

presented in Fig. 13. From these convergence curves, it is amply clear that the field quantities of interest converge
well even with a relatively coarse mesh.

8.3. Extension of plate with hole

Here, we numerically study the extension of a square plate with a circular hole under applied displacement field.
The plate has a side length of 2 cm and a hole of radius 0.5 cm placed at the centroid. neo-Hookean material
model (96) with the material parameters κ = 1000 and µ = 10 is used to study the response of the plate; the

assumed material parameters correspond to a compressible hyperelastic material. The simulation is performed under
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Fig. 12. Convergence of displacement at the point P for different load levels. For comparison we have plotted the convergence results of
Reese and Wriggers [38] and Angoshtari et al. [15].

Fig. 13. Convergence plots for the deformation 1-form and first-Piola stress for different load levels.

a displacement controlled condition, with displacements prescribed along the face whose normal is along the positive
x direction. Taking into account the symmetry of the problem, only a quarter of the domain is modeled. Boundary
conditions used to simulate the deformation of the plate are presented in Fig. 14. The convergence of the deformation
1-form and Piola stress is shown in Fig. 15. The deformed configuration along with the norm of first Piola stress
computed using different finite element meshes is shown in Fig. 16.

9. Conclusions

In this study, an entirely new perspective to mixed variational principle in nonlinear elasticity using Cartan’s
moving frames is presented. This approach to the mixed variational principle facilitates a reformulation of the
mixed functional in terms of differential forms. It is also demonstrated that the equations of mechanical equilibrium,
constitutive rule, and compatibility could be obtained as conditions for the critical point of the reformulated mixed
functional. A closer examination of the critical points reveals that in the absence of compatibility, additional stresses
25
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Fig. 14. Boundary conditions and FE mesh used in the convergence study.

Fig. 15. Convergence plots of deformation 1-form and first-Piola stress for different load levels.

could appear in the body, without altering the constitutive rule. These additional stresses, though spurious in a strictly
Euclidean setup, offer a pointer to an extension of the present variational principle to problems with incompatibilities
like dislocations and disclinations. Our present approach to the kinematics of continua using Cartan’s moving frame
may play a pivotal role in such an endeavor, since the setup readily permits the incorporation of torsion and curvature
into the formulation. These aspects of the proposed variational approach require further study and should be pursued.

The mixed variational principle based on differential forms is utilized to construct novel mixed FE model to solve
2D problems in nonlinear elasticity. This finite element approach uses finite element exterior calculus to discretize
the differential forms appearing in the variational principle. The present finite element model does not require
additional stabilization terms, since it strictly adheres to the algebraic and geometric structures defined by differential
forms, even at the discrete level. The numerical studies using our finite element model clearly demonstrate its
superior convergence characteristics. The extension of the present numerical approach to 3D problems in nonlinear
elasticity is the immediate work that is awaiting.
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Fig. 16. Deformed configuration of the square plate with a circular hole for an extension of 1 cm. Color profile indicates the norm of the
first Piola stress. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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