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Abstract—We present a novel in-filter computing framework
that can be used for designing ultralight acoustic classifiers for
use in the smart Internet of Things (IoT). Unlike a conventional
acoustic pattern recognizer, where the feature extraction and
classification are designed independently, the proposed architec-
ture integrates the convolution and nonlinear filtering operations
directly into the kernels of a support vector machine (SVM).
The result of this integration is a template-based SVM whose
memory and computational footprint (training and inference)
is light enough to be implemented on a field-programmable
gate array (FPGA)-based IoT platform. While the proposed in-
filter computing framework is general enough, in this article, we
demonstrate this concept using a cascade of an asymmetric res-
onator with inner hair cells (CAR-IHCs)-based acoustic feature
extraction algorithm. The complete system has been optimized
using time-multiplexing and parallel-pipeline techniques for a
Xilinx Spartan 7 series FPGA. We show that the system can
achieve robust classification performance on benchmark sound
recognition tasks using only 1.5k lookup tables (LUTs) and 2.8k
flip-flops (FFs), a significant improvement over other approaches.

Index Terms—Cochlea, edge computing, field-programmable
gate array (FPGA), Internet of Things (IoT), neuromorphic,
support vector machine (SVM).

I. INTRODUCTION

INTERNET of Things (IoT) like unattended ground sen-
sors (UGSs) [1], intruder detection systems [2], [3], wild-

life tracking [4], or structural health monitoring systems [5]
generally operate in remote locations. They have to be active
at all times to ensure that it can detect events of interest. In
most cases, the events of interest are infrequent or rare. As
a result, most of these IoT systems use an embedded pat-
tern classifier to relax data storage and wireless transmission
requirements [6]. An example of such a system is illustrated
in Fig. 1. Here, the system wirelessly transmits alerts only
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Fig. 1. Smart IoT architecture using a classifier to reduce wireless
transmission bandwidth.

when it detects signatures (acoustic or visual) about a target
(for example a wild life species).

Based on this selective transmission, the IoT platform
can conserve a significant battery power and hence prolong
its operational life. However, the key challenge in design-
ing such IoT is that the integrated classifier needs to be
robust and highly energy efficient. While deep neural network
(DNN)-based classification systems can achieve very high
accuracy [7], [8], there exist certain limitations when apply-
ing them to IoT for rare-event detection. First, by the nature
of the problem, the training data corresponding to the rare
event is sparse and might not be suitable for DNNs. Even
if it were possible to train a DNN for deployment, a com-
pressed or a quantized variant of DNN, like the binary neural
networks (BNNs) [9], has to be used to optimize compu-
tational resources. Retraining BNNs on the IoT platform
to account for data and hardware drifts is challenging due
to quantization effects. Full-precision training is not pos-
sible due to limited computational resources. Also, if the
parameters of the DNNs can be quantized, the input fea-
tures cannot be significantly quantized without affecting the
classification accuracy. K-nearest neighbor (KNN) [10], [11]
and support vector machines (SVMs) [12], [13], on the other
hand, have been shown to generalize well with sparse train-
ing data [14]. However, SVM is more robust to outliers,
and the convexity of SVM training ensures any recalibration
is interpretable and stable. There have been many instances
where SVMs have performed well as an acoustic classi-
fier [15], [16]. In the literature, several approaches have been
proposed to reduce the computational and memory footprint
of SVMs [17]–[20]. However, in these platforms, computing
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features and classification are generally treated independently,
both during training and inference.

In this article, we present an in-filter computing framework
that exploits the computing and nonlinear primitives in the
feature extraction process to design ultralight IoT acoustic
classifiers. The approach is motivated by the fact that acoustic
front-ends like the neuromorphic cochlea [21] can be designed
to be highly computationally efficient using different degrees
of linear and nonlinear transformations. Our goal is to system-
atically exploit and map these nonlinear transformations into
the kernel functions used in SVMs, such that both classifica-
tion and feature extraction are co-optimized for training and
inference. This results in a template-based SVM [22], [23]
architecture that has an ultralow computational footprint for
inference and training. This feature not only relaxes commu-
nication bandwidth requirements on the IoT system but also
allows recalibration (retraining) to account for statistical drifts.
The main advantage of using template-based SVM is the abil-
ity of the framework to use arbitrary functions without any
restriction on its properties, like positive-definite kernels for
traditional SVM. This allows us to use hardware-friendly map-
ping or functions that need not be specified in a closed-form,
such as using an ordinary differential equation (ODE). This
property is beneficial especially for hardware implementation,
where the inherent nonlinearity of the device can be used as
a kernel rather than engineering a specific nonlinearity. As
a proof of concept, we have applied the in-filter computing
framework using an acoustic feature extractor based on the
cascade of asymmetric resonators with inner hair cells (CAR-
IHCs) [21], [24], [25]. The CAR-IHC model exhibits inherent
nonlinearity and hence performs well as a kernel for clas-
sification. We believe that our proposed framework has the
following key advantages.

1) A template-based SVM architecture that allows an arbi-
trary function to be used as a kernel, unlike a conven-
tional SVM that requires a positive-definite kernel.

2) Combining the feature extraction and SVM kernel into
one function makes the system ultralight and computa-
tionally efficient.

3) The memory footprint of the proposed system is user-
defined and can be specified based on the IoT hardware
constraints.

4) A novel fast training algorithm with reduced train-
ing complexity in terms of memory and computational
complexity.

5) A system that can scale without affecting significant
hardware changes due to the time-multiplexing approach
allows the framework to deploy for more complex tasks.

As proof-of-concept IoT implementation, we have imple-
mented this inference framework on Xilinx Spartan 7 series
field-programmable gate array (FPGA) [26], a low-cost and
low-power FPGA. We have validated our architecture on var-
ious auditory data sets, such as the environmental sound data
set [27] and speech-based data set [28].

The remainder of this article is organized as follows. In
Section II, a brief discussion of related work is provided,
followed by Section III, where we present the modified
template-based SVM algorithm and explain the uniqueness

of the formulation. In Section IV, we explain the novel
training algorithm used for our framework. Section V pro-
vides the FPGA implementation details. Section VI provides
results obtained with an audio-based data set for detection and
surveillance applications. Section VII concludes this article
and provides some useful applications and discusses possible
future work using this framework. Table VI denotes the list of
symbols and acronyms used in this article.

II. RELATED WORK

Hardware implementations of SVM using FPGAs have been
successfully achieved over the years with high accuracy and
the least possible area and power. Binary classifications or
even multiclass classifications using a modified one-against-
all (M-OAA) approach for SVMs have been implemented on
FPGAs [29], [30]. Since the kernel is one of the most impor-
tant parts of the SVM algorithm, the kernel function consumes
maximum resources in implementation. This is demonstrated
in [17] with linear and nonlinear SVM implementations on
FPGA. The authors show that nonlinear kernel implementa-
tions use more resources than linear kernels. However, at the
same time, there is a drop in accuracy by more than 10%
when using a linear kernel compared to a nonlinear kernel. The
authors implement a kernel with parallel inputs enabling high
operating frequency but at the cost of high resource utilization
in terms of lookup tables (LUTs) and DSPs. This shows that in
order to get good classification, we require a nonlinear kernel,
but at the same time, we need to achieve hardware efficiency
for an ultralight implementation.

Regarding acoustic feature extraction, acoustic signals
require a certain amount of preprocessing to extract the salient
features before it is used for classification. One such FPGA-
based approach is detailed in [18]. The authors use discrete
wavelet transforms (DWTs) for feature extraction from a given
audio signal. This DWT feature extraction forms the input to
a standard SVM having a radial basis function (RBF) kernel,
which is nonlinear. This classification system is used for
phoneme recognition using data from the TIMIT data set. Due
to hardware constraints and the complexity of the DWT algo-
rithm, the authors chose to implement only the SVM classifier
on the FPGA. The acoustic signals are preprocessed using a
software implementation of the DWT algorithm and are pro-
vided as inputs to the SVM hardware. This implementation has
the disadvantage of offline software feature extraction, making
the hardware incapable of using unprocessed acoustic signals
as inputs. At the same time, the SVM hardware implementa-
tion consumes a high number of FPGA resources in terms of
LUTs and DSPs. Also, the weights and support vectors from
the SVM training are stored in external ROMs. This makes the
implementation impractical for a small IoT-based edge device.

Furthermore, time-series data need not always be a speech
signal, and there may be cases where we may need to classify
nonauditory time-series signals. Boujelben and Bahoura [19]
used Mel-frequency cepstral coefficients (MFCCs) technique
to extract salient features from pulmonary sounds to detect
wheezing using standard SVM classification. Here, MFCC,
as well as SVM, was implemented on FPGA. This imple-
mentation provided an end-to-end solution on hardware that
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Fig. 2. Architecture of (a) traditional SVM-based acoustic classifier and (b) proposed in-filter SVM framework.

could classify between a normal and an abnormal pulmonary
sound. In this implementation, MFCC itself is a resource-
heavy algorithm, and additional hardware is required for the
SVM classifier to be implemented. Also, ROMs store sup-
port vectors and weights along with additional registers to
store MFCC coefficients. The MFCC coefficient calculations,
which are being done on hardware, also contribute to high
DSP usage. The authors have demonstrated their hardware
capability using only a 6-kHz input sampling frequency, mak-
ing the hardware limited in terms of the flexibility of signals
that it can process. Hence, such a system cannot be used in
an IoT edge device due to the high resource utilization and
rigidity.

Another representative example of an IoT for acoustic clas-
sification is a speaker identification system used in security
systems. One such system was realized on FPGAs in [20].
Similar to the implementation in [19], Boujelben and Bahoura
implemented an SVM classifier with MFCC as the feature
extractor on hardware. The input data was sampled at 8 kHz,
making it resource efficient, but at the same time, it was
less flexible in terms of processing signals of higher sam-
pling frequency. External SRAM was used to store the MFCC
coefficients and training parameters. Despite having a slight
improvement in terms of hardware efficiency compared to the
previous implementation, this implementation lacked flexibil-
ity and still had a significant amount of resource usage, given
the hardware constraints applicable for an IoT device.

Our framework addresses all the shortcomings of prior
works by having a neuromorphic cochlea-based CAR-IHC
kernel integrated inside a template-based SVM system. This
kernel exhibits nonlinearity for better classification and, at
the same time, inherently provides a robust feature extract-
ing capability in order to get a good classification. This kernel
has multiple tunable parameters which can be adjusted to get
the best feature extraction depending on the application. The
template-based SVM provides the flexibility of choosing the
right number of templates as support vectors, which can be
tuned as per the application. This avoids the additional require-
ment for the storage of support vectors. Flexibility, scalability,

low resource usage, and low power make this framework
ultralight and ideal for IoT deployment for many applications.

III. TEMPLATE-BASED SVM AND IN-FILTER

COMPUTING FORMULATION

Rooted in statistical learning theory, an SVM minimizes the
structural risk by maximizing a classification margin over a set
of training samples [31]. In the case of acoustic classification
where the input is a time-series signal, one can define a data
vector (for training and inference) at a time-instant n as Xn ∈
R

W constructed using a window Xn = {xn, xn−1, . . . , xn−W+1}
of previous W samples of the signal xn. An SVM-based
binary classifier produces a decision label yn ∈ {+1,−1}
corresponding to the data vector Xn according to

yn = sgn(f (Xn)) (1)

where f : RW → R is given by

f (Xn) =
S∑

s=1

αsysK(Xs, Xn) + b. (2)

Here, Xs ∈ R
W is a subset of the training vector called

support vectors with their a priori known decision labels
ys ∈ {+1,−1}. K : RW ×R

W → R is a positive-definite kernel
function that is also chosen a priori and plays an important
role in implementing nonlinear decision functions. αs ∈ R

and b are training parameters, corresponding to the support
vector xs and is determined by solving a standard quadratic
program-based training procedure [31]. Note that the memory
requirements to implement an SVM inference engine in hard-
ware are proportional to the number of support vectors S, and
hence, in the literature, numerous techniques exist to reduce
S using heuristic methods [32], [33].

For conventional SVM-based acoustic classifiers [34], as
shown in Fig. 2(a), the raw input signal is preprocessed by a
feature extraction module or function � : RW → R

D before
providing as an input to the SVM kernel. D is the feature
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dimension. Equation (2) can be re-expressed as

f (Xn) =
S∑

s=1

αsysK(�(Xs),�(Xn)) + b. (3)

In the literature, the kernel function K(., .) and the feature
extraction function �(.) are typically chosen independently.
As a result, the memory footprint S of the SVM is deter-
mined by the complexity of the problem and the discriminative
power of feature extraction. Note that a typical acoustic feature
extraction function �(.), itself comprises several nonlinear
transformations that could directly be used as SVM kernels.
However, for the SVM formulation to be valid, the nonlin-
ear transformations must be mapped to a positive-definite
kernel. In [22], we reported a mechanism to design SVMs
using arbitrary template functions within a fixed memory
footprint. The approach expressed the kernel in (2), as an
outer product over P template functions �p : R

W → R as
K(Xs, Xn) = ∑P

p=1 �p(Xs)�p(Xn). The template functions
�p(·), p = 1, . . . , P, then could represent P feature extraction
modules. Following the derivations in [22], the SVM function
f (.) can be rewritten as:

f (Xn) =
P∑

p=1

Qp�p(Xn) + b. (4)

Here, Qp = ∑S
s=1 αsys�p(Xs) can be viewed as a consolidated

training parameter that can be estimated using a reduced-
complexity training procedure described in Section IV. Note
that the memory footprint of the reformulated template-SVM
is determined by the number of template functions P, and
each of the template functions �p(·) could be chosen arbi-
trarily. Here, �p(·) can be any function that can be used to
express the input features in order to make a classification.
This makes this framework flexible to implement various func-
tions for classification. For example, in Fig. 2(b), we illustrate
how a cascade of filters a CAR-IHC feature extraction mod-
ule could be used to implement �p(·), and described in the
following section.

A. CAR-IHC Model as SVM Kernel

The biological cochlea is a nonlinear and causal system.
This nonlinearity makes it ideal to use a cochlea model as
an SVM kernel since it would give robust classification in
higher dimensional space [35]. One such auditory filter model
is the cascade of asymmetric resonators with fast-acting com-
pression (CARFAC) model, which is a digital version of the
cascade of pole-zero filter [21], [25], [36]. It consists of CAR
block, which mimics basilar membrane (BM) functionality,
IHC, Ganglion cells, and outer hair cell (OHC). We use the
CAR and IHC modules of this model for our kernel.

Given Xn with W samples and each sampled input data as
xn described previously. The system receives an audio sample
at each sampling clock which is fed to the first CAR block H1.
There are P CAR blocks arranged in a cascaded manner as
shown in Fig. 3. Equation (5) denotes the two-pole two-zero

Fig. 3. Neuromorphic cochlea-based CAR-IHC model.

filter which mimics BM implemented as a CAR filter

Hp = H(z) = gp

[
z2 + (−2a0,p + kpc0,p

)
rpz + r2

p

z2 − 2a0,prpz + r2
p

]
(5)

a0,p, c0,p, and kp are the resonator filter coefficients for each
filter, rp is the pole-zero radius in the z-plane, and gp is the dc
gain factor. The CAR block transfer function H(z) is derived
in detail in the Appendix.

For the first CAR filter, the input is xn, and due to the cas-
cade nature of the CAR filters, the output of one filter becomes
the input of the next stage filter. The output of each CAR fil-
ter is denoted by bp,n as shown in Fig. 3, which forms the
input to the IHC blocks in parallel. We use a simplified model
of the IHC implemented using half-wave rectifier (HWR),
HWR(·) ∈ R, as per

HWR(q) = max(0, q). (6)

From Fig. 3, q = bp,n in (6), which gives

dp,n = HWR
(
bp,n

)
. (7)

The IHC generates output as per (7). The IHC output is
summed over W samples, and this forms the input for the
standardization (std) blocks in parallel

sp =
W∑

n=1

dp,n. (8)

Here, sp ∈ R

std
(
Sp,i

) = Sp,i − μp

σp
(9)

where {sp ∈ Sp,i|1 ≤ i ≤ N} with N as the train-
ing samples, μp = mean(Sp,1, Sp,2, . . . , Sp,N) and σp

=
√

[1/(N − 1)]
∑N

i=1(Sp,i − μp)2

�p = std
(
Sp,i

)
. (10)

Here, �p ∈ R. The summation over W samples of the
output of IHC is taken as per (8) for each filter. Then
standardization technique, commonly used in neural network
optimizations [37], is applied across N training input samples
as per (9). Note that μp and σp are calculated only during
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training, and these vectors are passed as learned parameters to
the inference engine. Therefore, an input signal vector Xn sam-
pled at a sampling frequency fs generates W samples with each
sample denoted as xn. It is then processed by a cascade par-
allel arrangement of neuromorphic cochlea-based CAR-IHC
filters to estimate the kernel function �p with p as the fil-
ter stage out of P filters as per (10). The output is a P × 1
kernel vector, as shown in Fig. 3. The classification output is
produced using (4) employing this kernel vector, the output
weight vector Q ∈ R

P, and the bias b ∈ R obtained after the
training process.

IV. TEMPLATE-SVM TRAINING

A conventional SVM training involves solving a quadratic
optimization problem over a set of training data (Xm, ym), m =
1, . . . , M, of size M [31]. The optimization can be expressed as

min
αm

1

2

M∑

m=1

M∑

n=1

αmαnymynK(Xn, Xm) −
M∑

m=1

αm (11)

M∑

m=1

αmym = 0 (12)

0 ≤ αm ≤ C. (13)

Here, C is a hyperparameter that is chosen through cross-
validation and n = 1, . . . , M. Due to the quadratic nature of
the optimization problem, the worst case complexity of SVM
training scales as O(M2). In practice, the training complexity
scales as O(MS), where S is the number of support vectors.
However, the number of support vectors is unknown, so any
SVM formulation has to accommodate the worst case scenario.

In the template-based SVM, the kernel is expressed as an
outer product over a set of P templates as K(Xn, Xm) =∑P

p=1 �p(Xn)�p(Xm). Substituting in (11), the template-SVM
training reduces to a lower complexity quadratic optimization
problem as

min
Qp,αm

1

2

P∑

p=1

Q2
p −

M∑

m=1

αm (14)

s.t Qp =
M∑

j=1

αjyj�p
(
Xj

)
(15)

M∑

m=1

αmym = 0 (16)

0 ≤ αm ≤ C. (17)

Here, j is iterated over M training samples.
Equations (15)–(17) are the constraints imposed on (14).
Equation (14) shows that the optimization complexity has
been reduced to O(P + M) with P additional constraints
that can be controlled based on the number of templates
required for the application. This reduced complexity enables
us to use this training algorithm to implement IoT devices,
making them adaptive and deployable in dynamic environ-
ments. Thus, our framework is capable of online training.
For the in-filter computing, the features or templates are
computed as an input stream. Training the template SVM

entails solving a simplified constrained quadratic problem.
Thus, the architecture can be trained in an online manner.
However, in a traditional SVM, the features would first need
to be accumulated and fed to a kernel module. Note that
there are several ways to efficiently solve the constrained
optimization in (14), including both batch and online variants.
In the accompanying software for template-based SVM [23],
we have used a growth-transform-based approach [38] to
solve (14).

V. FPGA IMPLEMENTATION OF OUR SVM CLASSIFIER

We demonstrate the efficiency of our in-filter computing
architecture by implementing it on FPGA. This system is con-
figurable as the in-filter parameters, and weight vectors are
tunable based on the application. The weight vector and biases
are trained offline, as mentioned in the previous sections.

Initially, we simulated this framework in floating point in
MATLAB software tool. In order to estimate the appropriate
FPGA implementation, we simulated the model in fixed-point
code. The CAR-IHC kernel is implemented in a 12-bit fixed-
point code. The trained weights (Qp) and bias (b) are stored
as 8 bit, and the mean (μp) and standard deviation (σp) are
stored as 12 bits. In our experiments, we analyzed that using 12
bits for inputs, filter coefficients and standardization parame-
ters (mean and standard deviation) with 8 bits for weights and
bias resulted in minimal accuracy degradation and reduced
hardware resource utilization. We use pipelining to speed up
the kernel execution in FPGA. The CAR-IHC kernel filters are
executed using the time-multiplexed technique where each fil-
ter uses the same hardware for generating output which makes
the design small in area.

Fig. 4 shows the hardware execution flow, and Fig. 5 shows
the FPGA block architecture of the system. The input sample
(xn) sampled at fs is provided as input to CAR block and fil-
ter coefficients (a0, c0, r, k, g), stored in the FCMEM memory
block. The CAR block performs filtering as per (5) followed
by the IHC block, which performs half-wave rectification as
per (6). The detailed implementation of the CAR-IHC block
is shown in Fig. 6. The time-multiplexed processing of each
cascaded filter is determined by the CAR Done select signal. If
this signal is set, then the next sample (xn+1) enters the CAR
block. This signal is set only when the processing of all the
filters is done. Hence, the same CAR block is used to process
P filters using the stored filter coefficients for each filter (p).
The sel1 and sel2 select lines control this filter coefficient flow.
So the input to output delay is directly proportional to the
number of cascaded blocks, P in this case, i.e., the number of
filters used. The multipliers have been designed to operate in a
pipelined manner, where the multiplication of the coefficients
will take multiple clock cycles for producing the output by
reusing the hardware. The half wave rectification operation
in the IHC block depends on the most significant bit (MSB)
select signal, determining the sign bit of CAR output (bp,n).
This results in discarding the values below zero to produce
the rectified output.
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Fig. 4. High-level hardware execution flow diagram of the framework.

The output of IHC block (dp,n) is summed over the entire
window of the input data, i.e., summation of W input sam-
ples across p filters. Standardization of the output (sp) of
summation is performed based on (9) in the STD block. The
size of sp is 26 bit due to 16 000 (fs) additions, and the
standardization parameters, i.e., mean (μp) and standard devi-
ation (σp), are 12 bits, which are fetched from the SMEM
memory block. We quantize sp to 12 bit and further perform
another level of quantization to 8 bit after the standard-
ization operation. Heuristically, we found that using these
multiple quantization levels achieves the lowest possible hard-
ware resource utilization without impacting the classification
accuracy. The output of standardization block (�p) is now
used to perform multiply–accumulate (MAC) operation with
the learned weights (Qp), which are also 8 bits, stored in
the WMEM memory block. Finally, the classified output is
obtained after the bias (b), stored in the BMEM memory block,
is added to the output of the MAC block, as per (4).

Our system uses a 25-MHz system clock, and 16-bit input
sampled at a 16-kHz audio sampling rate. We have used
30 filters in all the reported results here. However, it is
parameterizable and can be changed based on the application
requirements. Every input data sample takes about 300 clock
cycles, i.e., 12 μs, to be executed through the pipeline. We

Fig. 5. Block diagram for FPGA implementation.

Fig. 6. CAR-IHC kernel hardware microarchitecture implementation. The
filter coefficients (a0, c0, r, k, g) stored in block RAM and the input sampled
at fs are used as inputs to this block. This block is used in pipelined manner
using select lines to enable the FSM for the design.

have an audio input sample being given to the system every
1562 clock cycles, i.e., 62.5 μs. We have a buffer of around
1200 clock cycles, i.e., about 48 μs, before the arrival of the
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TABLE I
FPGA IMPLEMENTATION SUMMARY

next sample, where the system is idle. This shows that we
can increase the sampling frequency to 80 kHz, i.e., sample at
every 312 clock cycles without impacting the hardware archi-
tecture. On the other hand, for a sample of 16-kHz frequency,
we can also increase the number of filters to up to 120 to use
up the extra 48 μs. The number of clock cycles required to
execute a single audio sample increases linearly with the num-
ber of filters. There is an increase of about 2.5% of the area
in overall hardware and 0.23 mW increase in power for every
addition of a filter. The increase in the number of filters may
be required for complex auditory tasks. We can also reduce
the operating frequency to as low as 400 kHz to reduce the
power consumption of the system to below 1 mW. We can
reduce it further to a few kHz if we reduce the input sam-
pling frequency to a few Hz in other time-series data such as
EEG/ECG signals. Hence, this shows that our system is highly
flexible and scalable to suit any application in the time-series
domain.

We use Xilinx Spartan series part xc7s6cpga196, a low-
power FPGA manufactured on a 28-nm technology node.
The Spartan series FPGA caters to edge computing and IoT
platform systems, as the area footprint and power envelope
are low. The dynamic power consumption for our system on
FPGA is 8 mW. The logic design, i.e., LUTs and registers,
consumes around 2 mW of power, whereas the control sig-
nals take up 4 mW. DSPs consume 1 mW of power, and the
clocks take up the remaining 1 mW of power. The weights
and bias generated from the training procedure are quantized
to 8 bit, and the CAR-IHC model uses 16-bit input samples
to generate 16-bit output. This 16-bit kernel output data on
accumulation over 16k samples increases to 30 bit, which is
then reduced to 8 bit after a standardization and quantization
operation. For this design, 16-kHz sampling rate with 30 fil-
ters uses 1517 LUTs and 2864 flip-flops (FFs) summarized
in Table I. This exhibits that the system can be implemented
with the minimum area and low power and hence suitable for
IoT deployable edge devices.

The resource utilization comparison contrasts related work
with our system, as shown in Table II. Our work has the advan-
tage of being low in resource utilization compared to other
works. Most of these systems use acoustic signals as input,
with MFCC as the feature extractor and SVM as the classi-
fication algorithm. MFCC is a widely used feature extractor
for acoustic signals since it extracts linearly separable features
amongst most acoustic signals. Our framework uses a neuro-
morphic cochlea-based kernel that acts as a feature extractor as

well as a nonlinear kernel for the SVM algorithm. This avoids
the need for a separate feature extractor compared to other
works. Our framework also does not require separate storage
for support vectors, and at the same time, we have control
over the number of weights that have to be stored based on
the required application. Another advantage our system has
over other systems is that it is highly tunable and is scalable
for higher or lower sampling frequency input signals.

VI. RESULTS AND DISCUSSION

We use data sets from two domains, namely, speech and
environmental sounds. Speech data sets prove the usability
of our framework in security like voice-based access, where
we can identify the speaker and provide biometric access.
The environmental sounds showcase the framework’s versa-
tility which can be deployed for multiple sounds as the target
for robust classification. We use MATLAB for software sim-
ulations and verification of the algorithm. The FPGA design
implements the MATLAB code using fixed-point arithmetic.

Environmental Sounds Classification (ESC-10) data set [27]
consists of sound clips constructed from recordings publicly
available through the Freesound project. It consists of 400
environmental recordings with ten classes, i.e., 40 clips per
class and 5 s per clip. Each class contains 40 wav format
audio files. These clips had a lot of silence, so we trimmed
the silence part and further trimmed the remaining clips into
1 s version belonging to the same class, thus increasing the
data set’s number of samples. Table III shows the class labels,
which depict the wide variety of data samples used. The
classes include sounds from dog bark, rain, sea waves, cry-
ing baby, clock ticking, person sneezing, helicopter, chainsaw,
crawing rooster, and fire crackling. Here, the data set was used
to create balanced classes to identify one class versus other
classes arranged randomly. The train and test accuracy values
are shown with the train-to-test ratio mentioned in the bracket.
One thing to note from these results is that with less amount
of data too, our framework could classify the sounds. We have
compared our results with traditional SVM, which uses inputs
after being preprocessed using the same CAR-IHC filters. For
the traditional SVM, we use the in-built MATLAB library with
default command lines. The number of support vectors for
traditional SVMs is significantly higher than the number of
filters used in our work, indicating that we can get compara-
ble accuracy with lower hardware resources and can be used
in low-powered devices. As the number of samples is low,
we see lower accuracy for classes like clock tick and person
sneeze. These classes have a lot of overlapping information
with other classes, causing confusion.

The Free Spoken Digit Data Set (FSDD) [28] is an open
data set consisting of recordings of spoken digits in wav files
at a sampling rate of 8 kHz. The recordings are trimmed so
that they have near minimal silence at the beginning and ends.
It consists of four speakers with 500 recordings per speaker,
amounting to an overall of 2000 recordings. These record-
ings are English pronunciations of each digit from 0 to 9 by
each speaker. We use our framework to identify the speaker
based on the recordings. We create recordings of each speaker
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TABLE II
COMPARISON OF ARCHITECTURE AND RESOURCE UTILIZATION OF RELATED WORK

TABLE III
ESC-10 DATA SET CLASSIFICATION ACCURACY RESULTS IN PERCENT. THE FIXED POINT CODE CONSISTS OF 16-BIT

INPUTS AND 8-BIT WEIGHTS AND BIASES. THE NUMBER OF FILTERS FOR OUR WORK IS FIXED AT 30

TABLE IV
FSDD CLASSIFICATION ACCURACY RESULTS IN PERCENT. THE FIXED POINT CODE CONSISTS OF 16-BIT INPUTS

AND 8-BIT WEIGHTS AND BIASES. THE NUMBER OF FILTERS FOR OUR WORK IS FIXED AT 30

versus a random pool of remaining speakers. We can tune
our system to each speaker and get a classification to iden-
tify whether our target speaker is speaking or not. Similar to
ESC data set results, FSDD results in Table IV also show
that traditional SVM requires many more support vectors than
the number of filters used in this work. As the number of
support vectors is significantly higher for traditional SVMs,
we see a slight reduction in accuracy for few classes in-filter
SVM. For the proposed in-filter SVM, the number of tem-
plate vectors is determined by the fixed number of filters.
The training algorithm tries to find the best possible solu-
tion within this fixed constraint. However, adhering to this
constraint is one of the reasons for the reduction in accu-
racy. The other constraint with the proposed in-filter SVM
approach is that the final solution is linear for the CAR-
IHC (filter) function. Any nonlinear mapping is implemented
only by the CAR-IHC function. Whereas in a standard SVM
formulation that uses the CAR-IHC filter output as features,
there is additional nonlinearity in the kernel mapping. Thus,
the traditional SVM may be able to exploit this cross-filter
nonlinearity to achieve better accuracy. FSDD classification

showcases the capability of the framework to identify the right
person, which can be used in giving access to a secure area or
facility.

We see from Tables III and IV that the number of sup-
port vectors (S) for the traditional SVM is always greater than
the number of templates, i.e., filters (P) used for the proposed
SVM (P < S). Traditional SVM has a computational complex-
ity of O(S + MS), where O(MS) is the complexity of a linear
kernel. In contrast, the complexity of the proposed work is
O(P). Thus, the computational complexity of traditional SVM
increases with an increase in support vectors. We see from
the results that the number of filters for in-filter SVM is less
than the support vectors used in traditional SVM. As a case
study, we take Yweweler class data from the FSDD data set.
The number of MAC operations required to classify this class
in traditional SVM is 5096 compared to 30 MAC operations
for in-filter SVM. We know that MAC operations consume
maximum resources and, in turn, would increase the power
consumption in any hardware design. Hence, our framework
is efficient in comparison to an equivalent SVM hardware
implementation.
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Fig. 7. Impact of increasing the number of filters on accuracy for the FSDD
(Yweweler) data set.

We can tune the number of filters based on the application.
The number of filters is determined by the tradeoff between
the hardware constraints (memory and speed) versus accuracy.
Empirically, we were able to determine the optimum number
of filters required for most data sets. Reducing the number of
filters reduces the discriminatory information encoded by the
features, and hence we observe a reduction in accuracy. We
can tune the number of filters based on the application. As seen
in the added Fig. 7, increasing the number of filters beyond
a specific value yields a marginal increase in accuracy. Thus,
this marginal increase in accuracy would come at the cost of
latency and increase in hardware resources, as explained in
Section V. We chose 30 filters to satisfy the constraints of our
implemented design. Hence, the same number of filters was
used for the data sets. This shows that we can fix the number
of filters based on the constraints and still obtain comparable
results.

We performed an experiment to check the classification
robustness of our framework. For this purpose, we added
white Gaussian noise to the test input signals from the existing
data set and observed the accuracies across different signal-
to-noise ratios (SNRs). We used the MATLAB tool function
awgn to add the white Gaussian noise to the signals. Fig. 8
shows the mean and variance plot of the test accuracy due
to the addition of noise over ten iterations. Here, we see
that our framework is quite robust when we train the data
with the added noise, and with no noise in training data,
the test accuracy falls below 80% as we reduce the SNR to
below 25 dB.

In general, we can see from the data set results that our
work produces comparable results when the number of filters
is close to the number of support vectors used in traditional
SVM. This shows that we can choose the number of fil-
ters beforehand and arrive at an acceptable accuracy for the
required application without relying on the algorithm to decide
this hardware parameter. For each type of data set, we need
to tune the filter parameters for efficient classification. We

Fig. 8. Impact of noise on test accuracy for the FSDD (Yweweler) data set.

TABLE V
LIST OF POSSIBLE DOMAINS WHERE OUR FRAMEWORK

CAN BE IMPLEMENTED BY TUNING THE FREQUENCY

RANGES OF THE CAR FILTERS

also need to determine the number of filters used, i.e., the
template vectors in SVM formulation based on multiple runs.
This makes our framework highly flexible and tunable as per
the application’s needs. In all our experiments, we have used
30 filters. The fixed point code consists of 16-bit CAR-IHC
kernel output generated using 16-bit input, and the weight
and bias are limited to 8-bit values. From the results across
these data sets, we see that our framework is good at identify-
ing a person using speech. Also, the ESC-10 data set results
exhibit the framework’s capability even to classify inanimate
sounds that can be used in systems where such classifications
can trigger a more fine-tuned action for corrective measures.
Hence, by tuning the CAR filters to a certain frequency range,
we can classify different time-series data as per Table V.
Here, our framework can be configured for a wide range
of frequencies, enabling it to use various sensors generating
time-series data. This gives the flexibility of programming the
framework for a specific application. Also, by determining the
number of filters required for each type of classification, we
can optimize the classification accuracy for any time-series
data.

VII. CONCLUSION

In this article, we have demonstrated our novel SVM-
based acoustic classifier using the cochlea module as kernel
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TABLE VI
LIST OF SYMBOLS AND ACRONYMS

and feature extraction stage simultaneously. The neuromorphic
cochlea kernel of our unique algorithm does not require the
kernel to be positive definite. This lack of restriction compared
to traditional SVM enabled us to use the cochlea-based
CAR-IHC function as a kernel in our framework. Furthermore,
the proposed system has the flexibility of handling differ-
ent kinds of time-series data, as the kernel filter parameters
can be tuned as per the frequency range of the input signal.
This template-based SVM has a fixed number of templates in
contrast to varying support vectors in traditional SVMs. We
can control the operating frequency by controlling the number
of kernel filters, making it power efficient. This can be fine-
tuned by matching the hardware constraints with the required
application speed. Also, since the complexity of this novel
SVM is low compared to traditional SVM, our framework
is capable of performing online training. This flexibility and
dynamic behavior make the framework ideal for implement-
ing in IoT edge devices. In this article, we have demonstrated
the hardware efficiency of the in-filter computing framework
on FPGA. However, this can be extended to create a custom
hardware and used as a battery-powered edge device. In the
future, we plan to deploy this framework in different envi-
ronments as an edge classification device. We can use this

algorithm on an embedded system like a microcontroller for
greater flexibility in programming the device. Leveraging the
reprogrammability of our framework, we can build an IoT
system that can be used to monitor various time-series data
using a network of sensors placed at various locations for
different applications. The proposed system can have several
potential applications ranging from identifying animal behav-
ior pattern for ecologists using sensors placed in strategic
locations in a forest area to healthcare data analysis using
wearable sensors which provide time-series data like ECG
or EEG data. Based on bird species sounds or any animal
sound, we can track the presence of different rare species of
wildlife in a particular environment over a period of time. In
this case, we can remotely reprogram the hardware to detect
different wildlife species as many of these species might not
be active in a specific region for a particular season. Similarly,
such systems can also be deployed for remote health care
applications using signals like ECG/EEG or ultrasound for
early disease detection [44]–[46] and for automation of indus-
trial maintenance of machinery using various time-series data
produced by mounted sensors. All these deployments lead to
minimizing human intervention and reducing errors caused by
logistics issues. Since our system can classify rare events with
very low-power consumption, we can deploy this system as an
always-on system.

APPENDIX

CAR-IHC FILTER FORMULATION

A two-pole two-zero filter forms the asymmetric resonator
whose transfer function is as

H(z) = Y

X
= g

⎡

⎣ (z − zzero)
(
z − z∗

zero

)

(
z − zpole

)(
z − z∗

pole

)

⎤

⎦

= g

[
z2 + (−2a0 + kc0)rz + r2

z2 − 2a0rz + r2

]
. (18)

The two pole coupled form has a pair of conjugate poles (zpole
and z∗

pole)

zpole, z∗
pole = 2a0 ±

√
(2a0r)2 − 4r2

2
(19)

= r cos(θR) ± ir sin(θR)

a0 = cos(θR) (20)

where θR is the pole angle in the z plane. The conjugate zeros
(zzero and z∗

zero) are

zzero, z∗
zero = −(−2a0 + kc0)r

2

±
√

((−2a0 + kc0)r)2 − 4r2

2
= r cos(θZ) ± ir sin(θZ)

a0 − kc0

2
= cos(θZ) (21)

where θZ is the zero angle in the z plane. The zero radius
is the same as the pole radius, r. The condition for complex
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zeros becomes relevant for high-frequency channels, where
cos(θR) < 0

a0 − kc0

2
> −1 (22)

k <
2 + 2a0

c0
. (23)

Here, r can be used to move the zeros and the poles simul-
taneously while k is fixed. k determines the distance between
the poles and the zeros. The frequency of zeros is kept slightly
higher than the poles. If we increase the value of k, the poles
and zeros grow further apart, giving a slow roll off at higher
frequencies. On the other hand, if the value of k is decreased
to a low value, the poles and zeros grow closer, giving rise to
sharp roll off making it asymmetric. This sharp roll off is sim-
ilar to the characteristic exhibited by auditory filtering. This
property also enhances the selection of frequencies. In order
to keep the pole frequency half octave below zero frequency,
k is kept the same as c0.

To get unity gain at dc, we can solve for g as follows:

g = 1 − 2a0r + r2

1 − (2a0 − kc0)r + r2
. (24)

The zero-crossing times of the filter’s impulse response does
not change with respect to time, even when we change r

r = 1 − damping × 2π f

fs
(25)

where damping controls the damping factor, f is defined
in (26), and fs is the sampling frequency. r keeps the damp-
ing away from zero and also makes the damping bounded.
Changing r means varying the poles and the zeros of the fil-
ter. This satisfies the biologically observed condition where
variation in stimulus level does not vary the impulse response
zero crossings [25]. For each cascade stage, the initial values
for zeros and poles are set. The Greenwood map function [47]
is used to choose equidistant poles of the two-pole two-zero
resonator. These are placed along the normalized length of the
cochlea

f = 165.4
(

102.1x − 1
)

(26)

where f is the frequency of the pole and x is the normalized
position along the cochlea, varying from 0 at the apex of the
BM, to 1 at the basal end.
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