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In this paper we study an extension problem for the Laplace-
Beltrami operator on Riemannian symmetric spaces of non-
compact type and use the solution to prove Hardy-type in-
equalities for fractional powers of the Laplace-Beltrami oper-
ator. Next, we study the mapping properties of the extension 
operator. In the last part we prove Poincaré-Sobolev inequal-
ities on these spaces.
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1. Introduction

In recent years there has been intensive research on various kinds of inequalities for 
fractional order operators because of their applications to many areas of analysis (see for 
instance [8,19,40] and the references therein). The classical definitions of the fractional 
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operator in terms of the Fourier analysis involve functional analysis and singular inte-
grals. They are nonlocal objects. This fact does not allow to apply local PDE techniques 
to treat nonlinear problems for the fractional operators. To overcome this difficulty, in 
the Euclidean case, Caffarelli and Silvestre [11] studied the extension problem associated 
with the Laplacian and realized the fractional power as the map taking Dirichlet data 
to the Neumann data. On a certain class of noncompact manifolds, this definition of the 
fractional Laplacian through an extension problem has been studied by Banika et al. [6].

In the first part of this article we will concern with the Hardy-type inequalities for 
the fractional operators. Let ΔRn =

∑n
j=1

∂2

∂x2
j

denote the Euclidean Laplacian on Rn. 
For 0 < s < n/2 and f ∈ C∞

c (Rn), the Hardy’s inequality for fractional powers of the 
Laplacian states the following

∫
Rn

|f(x)|2
|x|2s dx ≤ 4−sΓ

(
n−2s

4
)2

Γ
(
n+2s

4
)2 〈(−ΔRn)sf, f〉. (1.1)

This is a generalization of the original Hardy’s inequality proved for the gradient ∇Rn

of f : for n ≥ 3,

(n− 2)2

4

∫
Rn

|f(x)|2
|x|2 dx ≤

∫
Rn

|∇Rnf(x)|2 dx, for f ∈ Cc(Rn). (1.2)

The constant appearing in the equation (1.1) is sharp [7,28,42]. It is also known that the 
equality is not obtained in the class of functions for which both sides of the inequality 
(1.1) are finite. Using a ground state representation, Frank, Lieb, and Seiringer gave a 
different proof of the inequality (1.1) when 0 < s < min{1, n/2} which improved the pre-
vious results [19]. There is another version of Hardy’s inequality where the homogeneous 
weight function |x|−2s is replaced by non-homogeneous one:

∫
Rn

|f(x)|2
(δ2 + |x|2)2s dx ≤ 4−sΓ

(
n−2s

2
)

Γ
(
n+2s

2
) δ−2s 〈(−ΔRn)sf, f〉, δ > 0. (1.3)

Here also the constant is sharp and equality is achieved for the functions (δ2 +
|x|2)−(n−2s)/2 and their translates [10].

Generalization of the classical Hardy’s inequality (1.2) to Riemannian manifolds was 
intensively pursued after the seminal work of Carron [12], see for instance [9,18,29–
31,43]. In [12], the following weighted Hardy’s inequality was obtained on a complete 
noncompact Riemannian manifold M :

∫
ηα|∇gφ|2 dvg ≥

(
C + α− 1

2

)2 ∫
ηα

φ2

η2 dvg,
M M
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where φ ∈ C∞
c (M − η−1{0}), α ∈ R, C > 1, C + α− 1 > 0 and the weight function η

satisfies |∇Mη| = 1 and |ΔMη| ≥ C/η in the sense of distribution. Here ∇g, dvg denote 
respectively the Riemannian gradient and Riemannian measure on M . In the case of 
Cartan-Hadamard manifold M of dimension N (namely, a manifold which is complete, 
simply-connected, and has everywhere non-positive sectional curvature), the geodesic 
distance function d(x, x0), where x0 ∈ M , satisfies all the assumptions of the weight η
and the above inequality holds with the best constant (N − 2)2/4, see [31]. Analogues 
of Hardy-type inequalities for fractional powers of the sublaplacian are also known, for 
instance, the work by P. Ciatti, M. Cowling and F. Ricci for stratified Lie groups [14]. 
There the authors have not paid attention to the sharpness of the constants. Recently, in 
[38], Roncal and Thangavelu have proved analogues of Hardy-type inequalities with sharp 
constants for fractional powers of the sublaplacian on the Heisenberg group. For recent 
results on the Hardy-type inequalities for the fractional operators we refer [10,21,37,39].

Our first aim in this article is to prove analogues of Hardy’s inequalities (1.1) and 
(1.3) for fractional powers of the Laplace-Beltrami operator Δ on Riemannian symmetric 
space X of noncompact type of arbitrary rank. We have the following analogue of Hardy’s 
inequality in the non-homogeneous case.

Theorem 1.1. Let 0 < σ < 1 and y > 0. Then there exists a constant Cσ > 0 such that 
for F ∈ Hσ(X)

〈(−Δ)σF, F 〉 ≥ Cσ y
2σ

⎛⎜⎝ ∫
{x:|x|2+y2<1}

|F (x)|2
(y2 + |x|2)2σ dx +

∫
{x:|x|2+y2≥1}

|F (x)|2
(y2 + |x|2)σ dx

⎞⎟⎠ .

Remark 1.2. In contrast with the inequality (1.3) for the Euclidean space, we get an 
improvement in the theorem above. This comes as a consequence of the geometry of the 
symmetric space. In the following theorem also we get similar improvement.

For the homogeneous weight function, we prove the following analogue of Hardy’s 
inequality on X.

Theorem 1.3. Let 0 < σ < 1. Then there exists a constant C ′
σ > 0 such that for F ∈

C∞
c (X)

〈(−Δ)σF, F 〉 ≥ C ′
σ

⎛⎜⎝ ∫
{x:|x|<1}

|F (x)|2
|x|2σ dx +

∫
{x:|x|≥1}

|F (x)|2
|x|σ dx

⎞⎟⎠ .

Remark 1.4. When the underlying Lie group is complex we have obtained the sharp 
constant for the inequality in Theorem 1.1 with an explicit weight and the equality 
is achieved for a particular function (see Theorem 4.8). Similarly, we have an explicit 
constant corresponding to Theorem 1.3 (see Theorem 4.9).
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In [10,37] solutions of the extension problem were used to prove a trace Hardy in-
equality, from which Hardy’s inequality follows. The operators treated there are of the 
form L =

∑m
j=1 X

2
j where the vector fields Xj satisfy Hörmander’s condition. But in 

our case the operator Δ is not of the form. Therefore, we could not use these results to 
prove Hardy’s inequality for Δ. Instead, we use solutions of the extension problem in 
combination with ground state representation method to prove our result [19,38].

Given σ ∈ (0, 1), the fractional Laplacian (−ΔRn)σ on Rn is defined as a pseudo-
differential operator by

F ((−ΔRn)σf) (ξ) = |ξ|2σFf(ξ), ξ ∈ Rn,

where Ff is the Fourier transform of f given by

Ff(ξ) = (2π)−n/2
∫
Rn

f(x) e−ix·ξ dx, ξ ∈ Rn.

It can also be written as the singular integral

(−ΔRn)σf(x) = cn,σP.V.

∫
Rn

f(x) − f(y)
|x− y|n+2σ dy,

where cn,σ is a positive constant. Caffarelli and Silvestre have developed in [11] an 
equivalent definition of the fractional Laplacian (−ΔRn)σ, σ ∈ (0, 1), using an extension 
problem to the upper half-space Rn+1

+ . For a function f : Rn → R, consider the solution 
u : Rn × [0, +∞) → R of the following differential equation

ΔRnu + (1 − 2σ)
y

∂u

∂y
+ ∂2u

∂y2 = 0, y > 0; (1.4)

u(x, 0) = f(x), x ∈ Rn.

Then the fractional Laplacian of f can be computed as

(−ΔRn)σf = −22σ−1 Γ(σ)
Γ(1 − σ) lim

y→0+
y1−2σ ∂u

∂y
.

The Poisson kernel for the fractional Laplacian (−ΔRn)σ in Rn is

Kσ(x, y) = cn,σ
y2σ

(|x|2 + y2)σ+n
2
,

and then u(x, y) = f ∗Rn Kσ. Therefore

(−ΔRn)σf = −22σ−1 Γ(σ) lim
+
y1−2σ ∂ (f ∗Rn Kσ)(x).
Γ(1 − σ) y→0 ∂y
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Later, Stinga and Torrea [40] showed that one can define the fractional Laplacian on a 
domain Ω ⊂ Rn through the extension (1.4) using the heat-diffusion semigroup generated 
by the Laplacian ΔΩ provided that the heat kernel associated with ΔΩ exists and it sat-
isfies some decay properties. Since the heat kernel on general noncompact manifolds has 
been extensively studied depending on the underlying geometry, Banica et al. in [6] take 
this approach to define the fractional Laplace-Beltrami operator on some noncompact 
manifolds which in particular, include the Riemannian symmetric spaces of noncompact 
type. Let d be a Riemannian metric on a Riemannian symmetric space X and let Δ be 
the corresponding Laplace-Beltrami operator on X. Also, let g be the product metric 
on X ×R+ given by g = d + dy2. For σ > 0, let Hσ(X) denote the Sobolev space on X
(defined in Section 2). In [6, Theorem 1.1], the following result is proved.

Theorem 1.5 (Banica; Gonźalez; Sáez). Let σ ∈ (0, 1). Then for any given f ∈ Hσ(X), 
there exists a unique solution of the extension problem

Δu + (1 − 2σ)
y

∂u

∂y
+ ∂2u

∂y2 = 0, y > 0; (1.5)

u(x, 0) = f(x), x ∈ X.

Moreover, the fractional Laplace-Beltrami operator on X can be recovered through

(−Δ)σf(x) = −22σ−1 Γ(σ)
Γ(1 − σ) lim

y→0+
y1−2σ ∂u

∂y
(x, y). (1.6)

The following theorem gives an alternative expression of a solution of the extension 
problem (1.5), which will be useful for us. The proof is similar to [6, Theorem 3.1], [40, 
Theorem 1.1].

Theorem 1.6. Let f ∈ Dom(−Δ)σ. A solution of (1.5) is given by

u(x, y) = 1
Γ(σ)

∞∫
0

etΔ(−Δ)σf(x)e−y2/4t dt

t1−σ
, (1.7)

and u is related to (−Δ)σf by the equation (1.6). Moreover, the following Poisson for-
mula for u holds:

u(x, y) =
∫
X

f(ζ)P σ
y (ζ−1x) dζ = (f ∗ P σ

y )(x), (1.8)

where

P σ
y (x) = y2σ

4σΓ(σ)

∞∫
ht(x) e−y2/4t dt

t1+σ
. (1.9)
0
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Fig. 1. (a) Euclidean (b) Symmetric spaces.

All these identities in the theorem above are to be understood in the L2 sense. The 
mapping properties of the Poisson operator Pσ on Rn which maps boundary value f to 
the solution u of the extension problem (1.4) were studied by Möllers et al. [35]. In the 
same paper, the authors have also obtained a similar result for Heisenberg groups. On 
the Euclidean spaces, they proved the following

Theorem 1.7 (Möllers; Ørsted; Zhang). Let 0 < σ < n
2 . Then

(1) Pσ : Hσ(Rn) → Hσ+1/2(Rn ×R+) is isometric up to a constant.
(2) Pσ extends to a bounded operator from Lp(Rn) to Lq(Rn ×R+), for 1 < p ≤ ∞ and 

q = n+1
n p (Fig. 1, (a)).

In [13], Chen proved that for particular values p = 2n
n−2σ and q = 2n+2

n−2σ , there exists 
a sharp constant C such that

‖Pσf‖Lq(Rn) ≤ C‖f‖Lp(Rn), for f ∈ Lp(Rn),

and the optimizer of this inequality are translations, dilations and multiples of the func-
tion

f(x) =
(
1 + |x|2

)−n
2 +σ

.

Our second main aim in this article is to study the mapping properties of the “Poisson 
operator” Tσ given by

Tσf(x, y) = f ∗ P σ
y , x ∈ X, y > 0, (1.10)

which maps f to the solution u of the extension problem (1.5) related to the Laplace-
Beltrami operator on Riemannian symmetric spaces of noncompact type. The following 
analogue of Theorem 1.7 is our main result in this direction.

Theorem 1.8. Let dimX = n and 0 < σ < 1. Then

(1) Tσ : Hσ(X) → Hσ+1/2(X ×R+) is isometric up to a constant.
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(2) Tσ extends to a bounded operator from Lp(X) to Lq(X × R+), for 1 < p < ∞ and 
p < q ≤ n+1

n p; and from L1(X) to Lq(X), for 1 < q < n+1
n (Fig. 1, (b)).

Remark 1.9. In contrast with Theorem 1.7 on Euclidean space, the exponents p, q in The-
orem 1.8 on X can vary over a much larger region (see Fig. 1). This striking phenomenon 
comes as a consequence of the Kunze-Stein phenomenon. The Kunze-Stein phenomenon, 
proved by Cowling [16] on connected semi-simple Lie groups G with finite center, says 
that the convolution inequality

L2(G) ∗ Lp(G) ⊂ L2(G),

holds for p ∈ [1, 2). We use the following generalized version [17, Theorem 2.2, (ii)]: let 
k ∈ Lq(X), for 1 < q ≤ 2 and let 1 ≤ p < q. Then the map f 
→ f ∗ k is bounded from 
Lp(X) to Lq(X). We note that the above inequalities on Euclidean space are only valid 
for p = 1.

An explicit expression of the heat kernel is known for certain symmetric spaces. Using 
this we write the precise expression of the kernel Pσ

y in the case of complex and rank 
one symmetric spaces.

The final topic we shall deal with here is analogues of the Poincaré-Sobolev inequalities 
for the fractional Laplace-Beltrami operator on X. In [34], Mancini and Sandeep proved 
the following optimal Poincaré-Sobolev inequalities for the Laplace-Beltrami operator 
ΔHn on the real hyperbolic space Hn of dimension n ≥ 3.

Theorem 1.10 (Mancini; Sandeep). Let n ≥ 3. Then for 2 < p ≤ 2n
n−2 , there exists 

S = Sn,p > 0 such that for all u ∈ C∞
c (Hn),

‖
(
−ΔHn − (n− 1)2/4)

)1/2
u‖2

L2(Hn) ≥ S‖u‖2
Lp(Hn).

In case of real hyperbolic space H3 of dimension three, Benguria, Frank and Loss [8]
proved that the best constant S3 in the theorem above is the same as the best sharp 
Sobolev constant for the first order Sobolev inequality on H3. Recently, using Green 
kernel estimates Li, Lu, Yang [32, Theorem 6.2] proved the following Poincaré-Sobolev 
inequalities for the fractional Laplace-Beltrami operator ΔHn on Hn.

Theorem 1.11 (Li; Lu; Yang). Let n ≥ 3 and 1 ≤ σ < 3. Then there exists a constant 
C = Cn,σ,p > 0 such that

‖
(
−ΔHn − (n− 1)2/4

)σ
4 u‖2

L2(Hn) ≥ C‖u‖2
L

2n
n−σ (Hn)

, for u ∈ H
σ
2 (Hn).

For related results and their sharpness, we refer the reader to [33,41]. Our aim in the 
final section is to prove an analogue of the Poincaré-Sobolev inequality for the fractional 
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Laplace-Beltrami operator Δ on X which generalizes the above mentioned theorems. The 
idea of the proof is to use the estimate of the Bassel-Green-Riesz kernel due to Anker-Ji 
[4]. Since we are working on general Riemannian symmetric spaces of noncompact type, 
it is difficult to get the explicit values of the constants involve and we do not make 
attempt to get the optimal constant. Here is our final result. We refer the reader to the 
next section for the unexplained notation used in the theorem below.

Theorem 1.12. Let dimX = n ≥ 3 and 0 < σ < min{l+2|Σ+
0 |, n}. Then for 2 < p ≤ 2n

n−σ

there exists S = Sn,σ,p > 0 such that for all u ∈ H
σ
2 (X),

‖(−Δ − |ρ|2)σ/4u‖2
L2(X) ≥ S‖u‖2

Lp(X).

2. Preliminaries

In this section, we describe the necessary preliminaries regarding semisimple Lie 
groups and harmonic analysis on Riemannian symmetric spaces. These are standard 
and can be found, for example, in [20,25–27]. To make the article self-contained, we shall 
gather only those results which will be used throughout this paper.

2.1. Notations

Let G be a connected, noncompact, real semisimple Lie group with finite center and 
g its Lie algebra. We fix a Cartan involution θ of g and write g = k ⊕ p where k and p
are +1 and −1 eigenspaces of θ respectively. Then k is a maximal compact subalgebra of 
g and p is a linear subspace of g. The Cartan involution θ induces an automorphism Θ
of the group G and K = {g ∈ G | Θ(g) = g} is a maximal compact subgroup of G. Let 
B denote the Cartan Killing form of g. It is known that B |p×p is positive definite and 
hence induces an inner product and a norm | · | on p. The homogeneous space X = G/K

is a smooth manifold. The tangent space of X at the point o = eK can be naturally 
identified to p and the restriction of B on p then induces a G-invariant Riemannian 
metric d on X. For x ∈ X and r > 0, we denote B(x, r) to be the ball of radius r
centered at x in this metric.

Let a be a maximal subalgebra in p; then a is abelian. We assume that dim a = l, 
called the real rank of G. We can identify a endowed with the inner product induced 
from p with Rl and let a∗ be the real dual of a. The set of restricted roots of the pair 
(g, a) is denoted by Σ. It consists of all α ∈ a∗ such that

gα = {X ∈ g | [Y,X] = α(Y )X, for all Y ∈ a}

is nonzero with mα = dim(gα). We choose a system of positive roots Σ+ and with respect 
to Σ+, the positive Weyl chamber a+ = {X ∈ a | α(X) > 0, for all α ∈ Σ+}. We also 
let Σ+

0 be the set of positive indivisible roots. We denote by
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n = ⊕α∈Σ+ gα.

Then n is a nilpotent subalgebra of g and we obtain the Iwasawa decomposition g =
k ⊕ a ⊕ n. If N = exp n and A = exp a then N is a Nilpotent Lie group and A normalizes 
N . For the group G, we now have the Iwasawa decomposition G = KAN , that is, every 
g ∈ G can be uniquely written as

g = κ(g) expH(g)η(g), κ(g) ∈ K,H(g) ∈ a, η(g) ∈ N,

and the map

(k, a, n) 
→ kan

is a global diffeomorphism of K ×A ×N onto G. Let n be the dimension of X then

n = l +
∑

α∈Σ+

mα.

We always assume that n ≥ 2. Let ρ denote the half sum of all positive roots counted 
with their multiplicities:

ρ = 1
2
∑

α∈Σ+

mα α.

It is known that the L2-spectrum of the Laplace-Beltrami operator Δ on X is the half-
line (−∞, −|ρ|2]. Let M ′ and M be the normalizer and centralizer of a in K respectively. 
Then M is a normal subgroup of M ′ and normalizes N . The quotient group W = M ′/M

is a finite group, called the Weyl group of the pair (g, k). The Weyl group W acts on a
by the adjoint action. It is known that W acts as a group of orthogonal transformations 
(preserving the Cartan-Killing form) on a. Each w ∈ W permutes the Weyl chambers 
and the action of W on the Weyl chambers is simply transitive. Let A+ = exp a+. Since 
exp : a → A is an isomorphism we can identify A with Rl. If A+ denotes the closure of 
A+ in G, then one has the polar decomposition G = KAK, that is, each g ∈ G can be 
written as

g = k1(expY )k2, k1, k2 ∈ K,Y ∈ a.

In the above decomposition, the A component of g is uniquely determined modulo W . 
In particular, it is well defined in A+. The map (k1, a, k2) 
→ k1ak2 of K ×A ×K into G
induces a diffeomorphism of K/M ×A+ ×K onto an open dense subset of G. We extend 
the inner product on a induced by B to a∗ by duality, that is, we set

〈λ, μ〉 = B(Yλ, Yμ), λ, μ ∈ a∗, Yλ, Yμ ∈ a,
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where Yλ is the unique element in a such that

λ(Y ) = B(Yλ, Y ), for all Y ∈ a.

This inner product induces a norm, again denoted by | · |, on a∗,

|λ| = 〈λ, λ〉 1
2 , λ ∈ a∗.

The elements of the Weyl group W act on a∗ by the formula

sYλ = Ysλ, s ∈ W, λ ∈ a∗.

Let a∗C denote the complexification of a∗, that is, the set of all complex-valued real linear 
functionals on a. The usual extension of B to a∗C, using conjugate linearity is also denoted 
by B. Through the identification of A with Rl, we use the Lebesgue measure on Rl as 
the Haar measure da on A. As usual on the compact group K, we fix the normalized 
Haar measure dk and dn denotes a Haar measure on N . The following integral formulae 
describe the Haar measure of G corresponding to the Iwasawa and polar decomposition 
respectively. For any f ∈ Cc(G),

∫
G

f(g)dg =
∫
K

∫
a

∫
N

f(k expY n) e2ρ(Y ) dn dY dk

=
∫
K

∫
A+

∫
K

f(k1ak2) J(a) dk1 da dk2,

where dY is the Lebesgue measure on Rl and for H ∈ a+

J(expH) = c
∏

α∈Σ+

(sinhα(H))mα �
{ ∏

α∈Σ+

(
α(H)

1 + α(H)

)mα
}
e2ρ(H), (2.1)

where c (in the equality above) is a normalizing constant. If f is a function on X = G/K

then f can be thought of as a function on G which is right invariant under the action of 
K. It follows that on X we have a G invariant measure dx such that∫

X

f(x) dx =
∫

K/M

∫
a+

f(k expY ) J(expY ) dY dkM , (2.2)

where dkM is the K-invariant measure on K/M .
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2.2. Fourier analysis on X

For a sufficiently nice function f on X, its Fourier transform f̃ is a function defined 
on a∗C ×K given by

f̃(λ, k) =
∫
G

f(g)e(iλ−ρ)H(g−1k)dg, λ ∈ a∗C, k ∈ K,

whenever the integral exists [27, P. 199]. As M normalizes N the function k 
→ f̃(λ, k)
is right M -invariant. It is known that if f ∈ L1(X) then f̃(λ, k) is a continuous function 
of λ ∈ a∗, for almost every k ∈ K (in fact, holomorphic in λ on a domain containing a∗). 
If in addition, f̃ ∈ L1(a∗×K, |c(λ)|−2 dλ dk) then the following Fourier inversion holds,

f(gK) = |W |−1
∫

a∗×K

f̃(λ, k) e−(iλ+ρ)H(g−1k) |c(λ)|−2dλ dk,

for almost every gK ∈ X [27, Chapter III, Theorem 1.8, Theorem 1.9]. Here c(λ) denotes 
Harish Chandra’s c-function. Moreover, f 
→ f̃ extends to an isometry of L2(X) onto 
L2(a∗+ ×K, |c(λ)|−2 dλ dk) [27, Chapter III, Theorem 1.5]:∫

X

|f(x)|2 dx = |W |−1
∫

a∗×K

|f̃(λ, k)|2 |c(λ)|−2 dλ dk.

It is known [25, Ch. IV, prop 7.2] that there exists a positive number C and d ∈ N such 
that for all λ ∈ a∗+

|c(λ)|−2 ≤ C(1 + |λ|)n−l, for |λ| ≥ 1; (2.3)

≤ C(1 + |λ|)d, for |λ| < 1.

We now specialize in the case of K-biinvariant function f on G. Using the polar decompo-
sition of G we may view a K-biinvariant integrable function f on G as a function on A+, 
or by using the inverse exponential map we may also view f as a function on a solely 
determined by its values on a+. Henceforth, we shall denote the set of K-biinvariant 
functions in L1(G) by L1(K\G/K). If f ∈ L1(K\G/K) then the Fourier transform f̃
reduces to the spherical Fourier transform f̂(λ) which is given by the integral

f̃(λ, k) = f̂(λ) :=
∫
G

f(g)φ−λ(g) dg, (2.4)

for all k ∈ K where

φλ(g) =
∫

e−(iλ+ρ)
(
H(g−1k)

)
dk, λ ∈ a∗C, (2.5)
K
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is Harish Chandra’s elementary spherical function. We now list down some well-known 
properties of the elementary spherical functions which are important for us ([4, Prop. 
2.2.12], [20, Prop. 3.1.4], [27, Lemma 1.18, P. 221]).

Theorem 2.1.

(1) φλ(g) is K-biinvariant in g ∈ G and W -invariant in λ ∈ a∗C.
(2) φλ(g) is C∞ in g ∈ G and holomorphic in λ ∈ a∗C.
(3) The elementary spherical function φ0 satisfies the following global estimate:

φ0(expH) �

⎧⎨⎩ ∏
α∈Σ+

0

(1 + α(H))

⎫⎬⎭ e−ρ(H), for all H ∈ a+. (2.6)

(4) For all λ ∈ a∗+ we have

|φλ(g)| ≤ φ0(g) ≤ 1. (2.7)

2.3. Function spaces on X

For 1 ≤ p < ∞ we define

Lp(X ×R) =

⎧⎨⎩u | ‖u‖pLp(X×R) :=
∫

X×R

|u(x, y)|p dx dy < ∞

⎫⎬⎭ ,

and Lp(X × R+) to be the subspace of Lp(X × R) consisting of all functions u(x, y)
which are even in the y-variable. We also define L∞(X × R+) analogously. For σ > 0, 
the Sobolev space of order σ on X is defined by

Hσ(X) =
{
f ∈ L2(X) | ‖f‖2

Hσ(X) :=
∫

a∗×K

|f̃(λ, k)|2 (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ dk < ∞
}
.

Similarly, for σ > 0 we define Hσ(X × R) as the space of all functions u ∈ L2(X × R)
such that

‖u‖2
Hσ(X×R) :=

∫
R

∫
a∗×K

|F (ũ(λ, k, ·)(ξ)) |2
(
|λ|2 + |ρ|2 + ξ2)σ |c(λ)|−2 dλ dk dξ < ∞,

where F ũ(λ, k, ·)(ξ) denotes the Euclidean Fourier transform of the function y 
→
ũ(λ, k, y) at the point ξ ∈ R, for almost every (λ, k) ∈ a∗ × K. Let Hσ(X × R+) be 
the subspace of Hσ(X × R) consisting of all elements u(x, y) which are even in the 
y-variable.
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2.4. Heat kernel on X

For the details of the heat kernel ht on X = G/K we refer [3,4]. It is a family 
{ht : t > 0} of smooth functions with the following properties:

(a) ht ∈ Lp(K\G/K), p ∈ [1, ∞], for each t > 0.
(b) For each t > 0, ht is positive with

∫
G

ht(g) dg = 1. (2.8)

(c) ht+s = ht ∗ hs, t, s > 0.
(d) For each f ∈ Lp(G/K), p ∈ [1, ∞) the function u(x, t) = f ∗ ht(x), for x ∈ X solves 

the heat equation

Δxu(x, t) = ∂

∂t
u(x, t)

u(·, t) → f in Lp(X), as t → 0.

(e) The spherical Fourier transform of ht is given by

ĥt(λ) = e−t(|λ|2+|ρ|2), λ ∈ a∗. (2.9)

We need the following both side estimates of the heat kernel [4, Theorem 3.7].

Theorem 2.2. Let κ be an arbitrary positive number. Then there exist positive constants 
C1, C2 (depending on κ) such that

C1 ≤ ht(expH)
t−

n
2 (1 + t)n−l

2 −|Σ+
0 |
{∏

α∈Σ+
0
(1 + α(H)

}
e−|ρ|2t−ρ(H)− |H|2

4t

≤ C2,

for all t > 0, and H ∈ a+, with |H| ≤ κ(1 + t).

For H ∈ a+ with t � H, we will use the following global upper bound [3, Theorem 
3.1]

|ht(expH)| ≤ t−d1(1 + |H|)d2e−|ρ|2t−ρ(H)−|H|2/(4t), (2.10)

where d1 and d2 are positive constants depending on the position of H ∈ a+ with respect 
to the walls and on the relative size of t > 0 and 1 + |H|.
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3. Extension problem and kernel estimates

In this section, we study the required properties of the Poisson kernel Pσ
y (defined in 

(1.9)). In particular, we prove an intertwining property of Pσ
y and P−σ

y and establish 
asymptotic estimates of Pσ

y .
Let us recall that for −1 < σ < 1 and y > 0, the function Pσ

y is given by

P σ
y (x) = y2σ

4σΓ(σ)

∞∫
0

ht(x) e−y2/4t dt

t1+σ
, for x ∈ X.

By the estimate of the heat kernel (Theorem 2.2), it follows that Pσ
y is well defined. 

For 0 < σ < 1, we observe that Γ(−σ) := Γ(1−σ)
−σ < 0 and hence P−σ

y ≤ 0. Since the 
heat kernel ht is K-biinvariant so is the function P−σ

y . By (2.4) the spherical Fourier 
transform is given by

P̂−σ
y (λ) =

∫
X

P−σ
y (x) φ−λ(x) dx = y−2σ

4−σΓ(−σ)

∞∫
0

ĥt(λ) e−y2/4t dt

t1−σ
, for λ ∈ a∗. (3.1)

Interchange of the integration is possible by the Fubini’s theorem. Indeed, by (2.7) and 
(2.9)

∞∫
0

∫
X

ht(x) |φ−λ(x)| dx e−y2/4t dt

t1−σ
≤

∞∫
0

∫
X

ht(x) φ0(x) dx e−y2/4t dt

t1−σ

=
∞∫
0

e−t|ρ|2 e−y2/4t dt

t1−σ
< ∞.

Moreover, P−σ
y is contained in the Sobolev space Hσ(X). Indeed, by using (3.1), (2.9)

and Minkowski’s integral inequality we get that

‖P−σ
y ‖Hσ(X) =

⎛⎝∫
a∗

|P̂−σ
y (λ)|2

(
|λ|2 + |ρ|2

)σ |c(λ)|−2 dλ

⎞⎠ 1
2

≤ y−2σ

4−σ|Γ(−σ)|

∞∫
0

⎛⎝∫
a∗

|ĥt(λ)|2 (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ

⎞⎠ 1
2

e−y2/4t dt

t1−σ

≤ y−2σ

4−σ|Γ(−σ)|

∞∫
0

⎛⎝∫
a∗

e−t(|λ|2+|ρ|2) (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ

⎞⎠ 1
2

e−
|ρ|2
2 t e−y2/4t dt

t1−σ

= I1 + I2,
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where

I1 = y−2σ

4−σ|Γ(−σ)|

1∫
0

⎛⎝∫
a∗

e−t(|λ|2+|ρ|2) (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ

⎞⎠ 1
2

e−
|ρ|2
2 t e−y2/4t dt

t1−σ
,

(3.2)
and I2 is defined as above with the integration in the t-variable over the interval [1, ∞). It 
is enough to show that both I1 and I2 are finite. We consider I1 first. Using the property 
(2.3) of |c(λ)|−2, we estimate the inner integral in the equation above as follows∫

{λ∈a∗:|λ|<1}

e−t|λ|2 (|λ|2 + |ρ|2)σ+d dλ +
∫

{λ∈a∗:|λ|≥1}

e−t|λ|2 (|λ|2 + |ρ|2)σ+n−l dλ

≤ C1 + C2

∞∫
1

e−tr2
r2(σ+n−l) rl−1 dr

≤ C1 + C2 t−(σ+n−l/2).

It now follows from (3.2) that

I1 ≤ C

1∫
0

t−
1
2 (σ+n−l/2) e−

|ρ|2
2 te−y2/4t dt

t1−σ
< ∞.

On the other hand

I2 ≤ C

∞∫
1

⎛⎝∫
a∗

e−1(|λ|2+|ρ|2) (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ

⎞⎠ 1
2

e−
|ρ|2
2 t e−y2/4t dt

t1−σ

≤ C‖h1/2‖Hσ(X).

This completes the proof that P−σ
y ∈ Hσ(X).

The following intertwining property of the Poisson kernel P−σ
y and P σ

y will crucially 
be used in the proof of Hardy’s inequality. Using (3.1) and (2.9) the proof of the lemma 
below follows similarly to that of [10, Lemma 2.3].

Lemma 3.1. For 0 < σ < 1 and y > 0 we have, (−Δ)σP−σ
y (x) = 4σΓ(σ)

y2σΓ(−σ) P σ
y (x).

We will now compute the asymptotic behavior of the Poisson kernel Pσ
y on X. We use 

this estimate crucially for the remaining part of this article.

Theorem 3.2. For −1 < σ < 1, σ �= 0 and y > 0 we have

Γ(σ)P σ
y (x) � y2σ√

|x|2 + y2−l/2−1/2−σ−|Σ+
0 |
φ0(x)e−|ρ|

√
|x|2+y2

, for |x|2 + y2 ≥ 1,
4σ
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� y2σ (|x|2 + y2)−n/2−σ
, for |x|2 + y2 < 1.

Proof. We first assume that |x|2 + y2 < 1. In this case, we will use the following local 
expansion of the heat kernel ht(x)

ht(x) = e−|x|2/4tt−n/2v0(x) + e−c|x|2/tO
(
t−n/2+1

)
, (3.3)

where v0(x) = (4π)−n/2 + O(|x|2) and c < 1/4 ([3, (3.9), p. 278]). Using this we have

Γ(σ)P σ
y (x) = y2σ

4σ

1∫
0

(
e−|x|2/4tt−n/2v0(x) + e−c|x|2/tO

(
t−n/2+1

))
e−y2/4t dt

t1+σ

+y2σ

4σ

∞∫
1

ht(x) e−y2/4t dt

t1+σ

= y2σ

4σ v0(x)
1∫

0

e−(|x|2+y2)/4t t−n/2−1−σ dt

+y2σ

4σ

1∫
0

e−(c|x|2+y2/4)/t O(t−n/2+1) t−1−σ dt + y2σ

4σ

∞∫
1

ht(x) e−y2/4t dt

t1+σ
.

We write the right-hand side of the equation above as I1 + I2 + I3, where I1, I2 and 
I3 are the first, second and third term respectively. Then applying change of variable 
s =
(
|x|2 + y2) /(4t), we have

I1 = 4n
2 y2σ (|x|2 + y2)−n/2−σ

v0(x)
∞∫

(|x|2+y2)/4

e−s sn/2+σ−1 ds.

As |x|2 + y2 < 1,

∞∫
1

e−s sn/2+σ−1 ds ≤
∞∫

(|x|2+y2)/4

e−s sn/2+σ−1 ds ≤
∞∫
0

e−s sn/2+σ−1 ds.

This implies that for |x|2 + y2 < 1

I1 � y2σ (|x|2 + y2)−n/2−σ
,

as v0(x) = (4π)−n/2 + O(|x|2). For I2, using c < 1/4 we have that
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I2 ≤ C
y2σ

4σ

1∫
0

e−c(|x|2+y2)/t O(t−n/2+1) t−1−σ dt

≤ C y2σ (|x|2 + y2)−n/2−σ+1
∞∫

c(|x|2+y2)

e−s sn/2+σ−2 ds

≤ C y2σ (|x|2 + y2)−n/2−σ

∞∫
0

e−s sn/2+σ−1 ds

≤ C y2σ (|x|2 + y2)−n/2−σ
.

For the integral I3, using Theorem 2.2 we get that for |x|2 + y2 < 1,

I3 = y2σ

4σ

∞∫
1

ht(x) e−y2/4t dt

t1+σ
≤ Cy2σ ≤ Cy2σ (|x|2 + y2)−n/2−σ

.

This proves that for |x|2 + y2 < 1,

Γ(σ)P σ
y (x) � y2σ (|x|2 + y2)−n/2−σ.

We will now assume that |x|2 + y2 ≥ 1. Let us fix a positive number κ > 4. We proceed 
as in the proof of [4, Theorem 4.3.1].

Γ(σ)P σ
y (x) = y2σ

4σ

∞∫
0

ht(x) e−y2/4t dt

t1+σ

= y2σ

4σ {I4 + I5 + I6},

where the quantities I4, I5 and I6 are defined by the integration of the above inte-
grand ht(x) e−y2/4t t−1−σ over the intervals 

[
0, κ−1b

)
, 
[
κ−1b, κb

)
and 

[
κb, ∞

)
with 

b =
√

|x|2 + y2/(2|ρ|) respectively. For the integral I5, using Theorem 2.2 and the asymp-
totic of φ0 in Theorem 2.1 (3) we get the following:

I5 �

κ
√
|x|2+y2

2|ρ|∫
κ−1

√
|x|2+y2

2|ρ|

t−n/2(1 + t)(n−l)/2−|Σ+
0 |

⎧⎨⎩ ∏
α∈Σ+

0

(1 + α(x))

⎫⎬⎭
× e−|ρ|2t−ρ(log x)−|x|2/4te−y2/4t dt
t1+σ
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�

κ
√

|x|2+y2

2|ρ|∫
κ−1

√
|x|2+y2

2|ρ|

t−l/2−|Σ+
0 |φ0(x)e−|ρ|2te−(|x|2+y2)/4t dt

t1+σ

=
κ∫

κ−1

(s
√

|x|2 + y2/2|ρ|)−l/2−σ−1−|Σ+
0 |φ0(x)e−s|ρ|

√
|x|2+y2/2

× e−|ρ|
√

|x|2+y2/(2s)

(√
|x|2 + y2

2|ρ|

)
ds

�
(√

|x|2 + y2

2|ρ|

)−l/2−σ−|Σ+
0 |

φ0(x)
κ∫

κ−1

e−
√

|x|2+y2|ρ|(s+1/s)/2ds.

The last both sides estimate follows because

κ−(l/2+σ+1+|Σ+
0 |) ≤ s−(l/2+σ+1+|Σ+

0 |) ≤ κ(l/2+σ+1+|Σ+
0 |).

Now, using the fact that

κ∫
κ−1

e−|ρ|
√

|x|2+y2(s+1/s)/2ds � |ρ|−1/2(|x|2 + y2)−1/4e−|ρ|
√

|x|2+y2
,

(this follows by the Laplace method [15, Ch 5]) we get from the above equation that

I5 �
(√

|x|2 + y2
)−l/2−1/2−σ−|Σ+

0 |
φ0(x)e−|ρ|

√
|x|2+y2

.

For the third integral I6, we will use the fact that κ > 4. Using Theorem 2.2, we get

I6 ≤ φ0(x)
∞∫

κ
√

|x|2+y2/(2|ρ|)

t−l/2−|Σ+
0 |−1−σe−|ρ|2te−(|x|2+y2)/4tdt

≤ φ0(x)
(
κ
√

|x|2 + y2/(2|ρ|)
)−l/2−|Σ+

0 |−1
∞∫

κ
√

|x2|+y2/(2|ρ|)

t−σe−|ρ|2te−(|x|2+y2)/(4t)dt

≤ Cφ0(x)
(√

|x|2 + y2
)−l/2−|Σ+

0 |−1
e−|ρ|2k

√
|x|2+y2/(4|ρ|)

×
∞∫

κ
√

|x2|+y2/(2|ρ|)

t−σe−|ρ|2t/2e−(|x|2+y2)/(4t)dt

≤ C
(√

|x|2 + y2
)−l/2−|Σ+

0 |−1/2
φ0(x)e−(|ρ|+η)

√
|x|2+y2

,
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where η = |ρ|κ/4 −|ρ| > 0. For the first integral I4, we use heat kernel Gaussian estimate 
(2.10) and the estimate of φ0 in Theorem 2.1 to obtain the following

I4 ≤
κ−1√|x|2+y2/(2|ρ|)∫

0

t−d1(1 + |x|)d2e−|ρ|2t−ρ(log x)e−(|x|2+y2)/(4t) dt

t1+σ

≤ (1 + |x|)d2−|Σ+
0 |φ0(x)

κ−1√|x|2+y2/(2|ρ|)∫
0

e−(|x|2+y2)/(4t)t−1−σ−d1dt

= (1 + |x|)d2−|Σ+
0 |φ0(x)

κ−1√|x|2+y2/(2|ρ|)∫
0

e−(|x|2+y2)/(8t)e−(|x|2+y2)/(8t)t−1−σ−d1dt

≤ C(1 + |x|)d2−|Σ+
0 |φ0(x) e−|ρ|κ

√
x2+y2

4

κ−1√|x|2+y2/(2|ρ|)∫
0

e−(|x|2+y2)/(8t)t−1−σ−d1dt

≤ C(1 + |x|)d2−|Σ+
0 |φ0(x) e−(|ρ|+ε)

√
|x|2+y2(|x|2 + y2)−σ−d1 ,

for some ε > 0, as κ > 4.
This completes the proof. �
To prove Hardy’s inequalities we use an integral representation for the operator 

(−Δ)σ. The following function

P σ
0 (x) =

∞∫
0

ht(x) dt

t1+σ
, (3.4)

serves as the kernel of the integral representation. We state both sides estimate of Pσ
0 , 

whose proof is exactly the same as of Theorem 3.2.

Theorem 3.3. For any α > −n/2 the following asymptotic estimates holds:

Pα
0 (x) � |x|−l/2−1/2−α−|Σ+

0 |φ0(x)e−|ρ||x|, for |x| ≥ 1,

� |x|−n−2α, for |x| < 1.

Corollary 3.4. Let χ be the characteristic function of the unit ball B(o,1) in X and 
α > 0. Then the function (1 − χ)Pα

0 is in Lp(X) for 1 ≤ p ≤ ∞.

Proof. For 1 < p ≤ ∞, the result follows trivially from the asymptotic formula in 
Theorem 3.3. We prove the case p = 1. We recall from (2.2) that
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∫
{x∈X:|x|>1}

Pα
0 (x) dx ≤ C

∫
{H∈a+:|H|>1}

Pα
0 (expH) e2ρ(H) dH.

Let Γ be a small circular cone in a+ around the ρ-axis. By introducing polar coordinates 
in Γ (as in [3, p. 293]) and using (2.6) we get

∫
{H∈Γ:|H|>1}

Pα
0 (expH) e2ρ(H) dH

≤ C

∫
{H∈Γ:|H|>1}

|H|−l/2−1/2−α eρ(H)−|ρ||H| dH

≤ C

∞∫
1

r−l/2−1/2−αrl−1
ν∫

0

(sin ξ)l−2 e−r(1−cos ξ) dξ dr.

Since sin ξ ∼ ξ and 1 − cos ξ ∼ ξ2, the inner integral behaves like r1/2−l/2. Consequently, 
the integral above is finite. On the other hand, eρ(H)−|ρ||H| decreases exponentially out-
side Γ, and therefore

∫
{H∈a+\Γ:|H|>1}

Pα
0 (expH) e2ρ(H) dH =

∫
{H∈a+\Γ:|H|>1}

H−l/2−1/2−α eρ(H)−|ρ||H| dH < ∞.

This completes the proof. �
4. Fractional Hardy inequalities

This section aims to prove two versions of Hardy’s inequalities for fractional powers 
of the Laplace-Beltrami operator on X, namely Theorem 1.1 and Theorem 1.3 with 
homogeneous and non-homogeneous weight functions respectively. In order to prove these 
inequalities, we will follow similar ideas used in [19,38]. Therefore, we need to obtain a 
ground state representation for the operator (−Δ)σ. We start with the following integral 
representations of (−Δ)σ on X. For the cases of real hyperbolic spaces, analogues integral 
representations were proved in [6, Theorem 2.5].

Lemma 4.1. Let 0 < σ < 1/2. Then for all f ∈ C∞
c (X) we have

(−Δ)σf(x) = 1
|Γ(−σ)|

∫
X

(f(x) − f(z))P σ
0 (z−1x) dz,

where P σ
0 is defined in (3.4).
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Proof. Let f ∈ C∞
c (X). Using the numerical identity

λσ = 1
|Γ(−σ)|

∞∫
0

(
1 − e−tλ

) dt

t1+σ
, λ > 0,

and the spectral theorem we have

(−Δ)σf(x) = 1
|Γ(−σ)|

∞∫
0

(
f(x) − etΔf(x)

) dt

t1+σ
.

By (2.8) it follows that

f(x) − etΔf(x) = f(x) − f ∗ ht(x) =
∫
X

(f(x) − f(xz−1)) ht(z) dz. (4.1)

Thus, we have the following representation

(−Δ)σf(x) = 1
|Γ(−σ)|

∞∫
0

∫
X

(
f(x) − f(xz−1)

)
ht(z) dz

dt

t1+σ
.

We now show that the right-hand side is absolutely integrable and hence, interchange 
of the order of integral is possible. Then the result follows by the change of variable 
z 
→ z−1x. To show absolute integrability let us define

I1 = 1
|Γ(−σ)|

∞∫
0

∫
{z∈X:|z|<1}

∣∣f(x) − f(xz−1)
∣∣ht(z) dz

dt

t1+σ
,

I2 = 1
|Γ(−σ)|

∞∫
0

∫
{z∈X:|z|≥1}

∣∣f(x) − f(xz−1)
∣∣ht(z) dz

dt

t1+σ
.

For the integral I2, we use the fact that Pσ
0 ∈ L1(X) away from the origin (Corollary 3.4). 

Indeed, we have that

∫
{z∈X:|z|≥1}

∞∫
0

|f(x) − f(xz−1)| ht(z)
dt

t1+σ
dz ≤ ‖f‖L∞(X)

∫
{z∈X:|z|≥1}

P σ
0 (z) dz < ∞.

Therefore, by Fubini’s theorem I2 is also finite. For I1 we first observe by the fundamental 
theorem of calculus (see [2, eqn. 34]) that
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|f(x) − f (x(expH)) | ≤ |H|
1∫

0

|∇f (x exp(sH)) | ds ≤ |H| ‖∇f‖L∞(X), (4.2)

for x ∈ X, H ∈ a. Using the above estimate and the fact that Pσ
0 (x) � |x|−n−2σ around 

the origin (Theorem 3.3) it follows that

∫
|z|<1

∞∫
0

|f(x) − f(xz−1)| ht(z)
dt

t1+σ
dz

≤ C‖∇f‖L∞(X)

∫
{H∈a+:|H|<1}

|H| |H|−n−2σ J(expH) dH

≤ C‖∇f‖L∞(X)

1∫
0

r1−n−2σ rn−1 dr,

and the right-hand side is finite if 0 < σ < 1/2. This completes the proof. �
Remark 4.2. If rank(X) = 1, then for 1/2 ≤ σ < 1 the integral formula in Lemma 4.1
exists in principal value sense. To see this, let a = span{H0} with |H0| = 1. Clearly, for 
σ > 0, the integral I2 is absolutely convergent and we can interchange the order of the 
integral. On the other hand the formula (2.2) yields

I1 = 1
|Γ(−σ)|

∞∫
0

1∫
−1

(
f(x) − f (x exp(−sH0))

)
ht (exp(sH0)) J (exp(sH0)) ds

dt

t1+σ
.

We now define F (s) := f (x exp(sH0)), for s ∈ R. Since f ∈ C∞
c (X), it follows that for 

each x ∈ X, the function F ∈ C∞
c (R). By using the Taylor development of F , we get 

that

I1 = 1
|Γ(−σ)|

∞∫
0

1∫
−1

(
sF ′(x) + s2F ′′(x)

2! + O(s3)
)

ht (exp(sH0)) J (exp(sH0)) ds
dt

t1+σ
.

Since the heat kernel ht and the Jacobian J is even, the first order term vanishes. Hence, 
using the fact that Pσ

0 (x) ∼ |x|−n−2σ, around the origin (Theorem 3.3), it follows that

I1 ≤ Cf

∞∫
0

1∫
0

s2 ht (exp(sH0)) sn−1 ds
dt

t1+σ
= Cf

1∫
0

sn+1 s−n−2σ ds,

which is finite if 0 < σ < 1. Hence, the required integral formula exists as a principal value 
sense. For the case of higher rank symmetric spaces, neither the heat kernel ht (exp(·))
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nor the Jacobian J (exp(·)) is, in general, radial function on a. They are only Weyl group 
invariant. This is the main difficulty that we could not prove the integral formula in the 
lemma above for 1/2 ≤ σ < 1 in case of rank(X) > 1.

Lemma 4.3. Let 0 < σ < 1. Then, for all f ∈ Hσ(X)

〈(−Δ)σf, f〉 = 1
2|Γ(−σ)|

∫
X

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx.

Proof. We first prove that for 0 < σ < 1 and f ∈ C∞
c (X) the quantity

1
2|Γ(−σ)|

∫
X

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx < ∞. (4.3)

To show this let us assume supp f ⊂ B(o, m) for some m > 1 and define

I1 = 1
2|Γ(−σ)|

∫
B(o,2m)

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx,

I2 = 1
2|Γ(−σ)|

∫
X\B(o,2m)

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx.

Since supp f ⊂ B(o, m) it follows that

I2 = 1
2|Γ(−σ)|

∫
X\B(o,2m)

∫
B(o,m)

|f(z)|2 P σ
0 (z−1x) dz dx

≤
‖f‖2

L∞(X)

2|Γ(−σ)|

∫
B(o,m)

∫
X\B(o,2m)

P σ
0 (z−1x) dx dz

≤
‖f‖2

L∞(X)

2|Γ(−σ)| |B(o,m)|
∫

X\B(o,m)

P σ
0 (x) dx < ∞.

The last term is finite because of the fact that Pσ
0 is integrable away from the origin 

(Corollary 3.4). To show that I1 is finite we write it as follows

I1 =
∫

B(o,2m)

∫
B(0,3m)

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx

+
∫ ∫

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx.
B(o,2m) X\B(0,3m)
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Using change of variable z 
→ xz−1 in the first integral, the estimate (4.2) and the 
asymptotic estimates of Pσ

0 in Theorem 3.3 it follows that

I1 ≤
∫

B(o,2m)

∫
B(o,5m)

∣∣f(xz−1) − f(x)
∣∣2 P σ

0 (z) dz dx

+
∫

B(o,2m)

∫
X\B(o,3m)

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx

≤ C‖∇f‖2
L∞(X)

∫
B(o,2m)

dx

∫
{H∈a+:|H|<5m}

|H|2 H−n−2σ J(expH) dH

+C

∫
B(o,2m)

‖f‖2
L∞(X)

∫
X\B(o,3m)

P σ
0 (z−1x) dz dx

≤ C‖∇f‖2
L∞(X)

5m∫
0

r2−n−2σ rn−1 dr + C‖f‖2
L∞(X)

∫
X\B(o,m)

P σ
0 (z) dz.

The first term of the above quantity is finite provided σ < 1 and the second one finite 
by Corollary 3.4. This completes the proof of the fact the quantity in (4.3) is finite.

Let 0 < σ < 1/2 and f ∈ C∞
c (X). By the integral representation in Lemma 4.1 it 

follows that

〈(−Δ)σf, f〉 = 1
|Γ(−σ)|

∫
X

∫
X

(f(x) − f(z))P σ
0 (z−1x) f(x) dz dx.

As the kernel P σ
0 is symmetric, that is Pσ

0 (x) = P σ
0 (x−1), the above quantity is also 

equals to

1
|Γ(−σ)|

∫
X

∫
X

(f(z) − f(x))P σ
0 (z−1x) f(z) dx dz.

By adding them up we get that

〈(−Δ)σf, f〉 = 1
2|Γ(−σ)|

∫
X

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx.

The justification of the change of order of integration follows from (4.3). By the analytic 
continuation, we extend the range of σ to 0 < σ < 1 provided f ∈ C∞

c (X). Indeed, the 
functions σ 
→ −Γ(−σ) and σ 
→ 〈(−Δ)σf, f〉 are holomorphic on S = {w ∈ C : 0 <
�w < 1}. Hence their product F (σ) = −Γ(−σ) 〈(−Δ)σf, f〉 is also holomorphic on S. 
On the other hand, since right-hand side of (4.3) is finite for 0 < σ < 1, by the Morera’s 
theorem it follows that the function G defined by
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G(σ) = 1
2

∫
X

∫
X

|f(z) − f(x)|2 P σ
0 (z−1x) dz dx,

is holomorphic on S. Since F (σ) = G(σ) for 0 < σ < 1/2 we get that F (σ) = G(σ) for 
all σ ∈ S, in particular, for 0 < σ < 1.

By approximating any function f ∈ Hσ(X) by a sequence of functions fk ∈ C∞
c (X), 

we complete the proof. This uses the fact that Pσ
0 (x) � |x|−n−2σ around the origin and 

the rest follows as in the proof of Lemma 5.1 in [38]. �
We now establish ground state representation for the operator (−Δ)σ as a consequence 

of the integral representation proved in Lemma 4.3. As in the Euclidean case, we define 
the following error term. For 0 < σ < 1 and y > 0 we let,

Hσ
y [F ] = 〈(−Δ)σF, F 〉 − 4σΓ(σ)

y2σΓ(−σ)

∫
X

|F (x)|2
(

P σ
y (x)

P−σ
y (x)

)
dx.

Theorem 4.4. Let 0 < σ < 1 and y > 0. If F ∈ C∞
c (X) and G(x) = F (x)

(
P−σ
y (x)

)−1

then

Hσ
y [F ] = 1

2|Γ(−σ)|

∫
X

∫
X

|G(x) −G(z)|2 P−σ
y (x)P−σ

y (z) P−σ
0 (z−1x) dx dz.

Proof. Let f, g ∈ Hσ(X). From Lemma 4.3 we get that

〈(−Δ)σf, g〉 = 1
2|Γ(−σ)|

∫
X

∫
X

(f(z) − f(x)) (g(z) − g(x)) P σ
0 (z−1x) dz dx. (4.4)

Let us assume g = P−σ
y , and f(x) = |F (x)|2 g(x)−1. Then the right-hand side of (4.4)

reduces to

1
2|Γ(−σ)|

∫
X

∫
X

(
|F (z)|2
g(z) − |F (x)|2

g(x)

)
(g(z) − g(x)) P σ

0 (z−1x) dz dx (4.5)

= 1
2|Γ(−σ)|

∫
X

∫
X

(
|F (x) − F (z)|2 −

∣∣∣∣F (x)
g(x) − F (z)

g(z)

∣∣∣∣2 g(x)g(z)
)

P σ
0 (z−1x) dz dx.

Also, using Lemma 3.1 the left-hand side of (4.4) reduces to

〈(−Δ)σf, g〉 =
〈
(−Δ)σ(|F (x)|2/g(x)), g(x)

〉
=
〈(
|F (x)|2/g(x)

)
, (−Δ)σP−σ

y

〉
= 4σΓ(σ)

2σ

〈
(|F (x)|2/g(x)), Pσ

y

〉

y Γ(−σ)
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= 4σΓ(σ)
y2σΓ(−σ)

∫
X

|F (x)|2
P σ
y (x)

P−σ
y (x)

dx.

Therefore, equating the left-hand and right-hand sides of the equation (4.4) we have

4σΓ(σ)
y2σΓ(−σ)

∫
X

|F (x)|2
P σ
y (x)

P−σ
y (x)

dx = 1
2|Γ(−σ)|

∫
X

∫
X

|F (x) − F (z)|2 P σ
0 (z−1x) dx dz

− 1
2|Γ(−σ)|

∫
X

∫
X

∣∣∣∣F (x)
g(x) − F (z)

g(z)

∣∣∣∣2 g(x)g(z) P σ
0 (z−1x) dz dx.

By Lemma 4.3 the first term in the right-hand side of the above equation is equals to 
〈(−Δ)σF, F 〉. Hence, it follows that

〈(−Δ)σF, F 〉 − 4σΓ(σ)
y2σΓ(−σ)

∫
X

|F (x)|2
P σ
y (x)

P−σ
y (x)

dx

= 1
2|Γ(−σ)|

∫
X

∫
X

|G(x) −G(z)|2 P−σ
y (x)P−σ

y (x) P−σ
0 (z−1x) dx dz,

where G(x) = F (x)P−σ
y (x)−1. This completes the proof. �

We have already observed that for 0 < σ < 1, Γ(−σ) < 0 and hence P−σ
y ≤ 0. 

Therefore, as a corollary of Theorem 4.4 we get the following result.

Corollary 4.5. For a fixed y > 0 and 0 < σ < 1 we have

〈(−Δ)σF, F 〉 ≥ 4σ

y2σ

∫
X

|F (x)|2
(

Γ(σ)
Γ(−σ)

P σ
y (x)

P−σ
y (x)

)
dx, for F ∈ Hσ(X).

Remark 4.6. By Lemma 3.1 it follows that the equality in the expression above is achieved 
for the function F = P−σ

y . Therefore, the constant 4σΓ(σ)/y2σ|Γ(−σ)| appeared in the 
corollary above is sharp.

Now, using the estimate of Pσ
y (Theorem 3.2) in Corollary 4.5 we get Theorem 1.1.

Proof of Theorem 1.1. From Theorem 3.2 we have

Γ(σ)
Γ(−σ)

P σ
y (x)

P−σ
y (x)

�
{

y4σ

(|x|2+y2)σ if |x|2 + y2 ≥ 1
y4σ

(|x|2+y2)2σ if |x|2 + y2 < 1.

Therefore, from Corollary 4.5 we have
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〈(−Δ)σF, F 〉

≥ Cσ y
2σ

⎛⎜⎝ ∫
{x:|x|2+y2<1}

|F (x)|2
(y2 + |x|2)2σ dx +

∫
{x:|x|2+y2≥1}

|F (x)|2
(y2 + |x|2)σ dx

⎞⎟⎠ . �

We now prove Hardy’s inequality corresponding to the homogeneous weight function 
(Theorem 1.3). To prove this theorem we need the following expression of the error term.

Theorem 4.7. Let 0 < σ < 1 and α > (2σ + n)/4. Then for F ∈ C∞
c (X) and G(x) =

F (x)
(
P−α

0 (x)
)−1 we have

〈(−Δ)σF, F 〉 − Γ(α)
Γ(α− σ)

∫
X

|F (x)|2
(
P σ−α

0 (x)
P−α

0 (x)

)
dx

= 1
2|Γ(−σ)|

∫
X

∫
X

|G(x) −G(z)|2 P−α
0 (x)P−α

0 (z) P σ
0 (z−1x) dx dz, (4.6)

where the function P−α
0 is defined by (3.4).

Proof. Since α > n/4, we observe from Theorem 3.3 that P−α
0 ∈ L2(X). As before by 

Fubini theorem the spherical Fourier transform of P−α
0 is given by

P̂−α
0 (λ) =

∞∫
0

e−t(|λ|2+|ρ|2) dt

t1−α
= Γ(α)

(
|λ|2 + |ρ|2

)−α
, λ ∈ a∗.

Since α > (2σ + n)/4, it follows that P−α
0 ∈ Hσ(X). Indeed, using (2.3) we get that

∫
a∗

|P̂−α
0 (λ)|2 (|λ|2 + |ρ|2)σ |c(λ)|−2 dλ

≤ C + C ′
∫

{a∗:|λ|≥1}

(|λ|2 + |ρ|2)−2α+σ (1 + |λ|)n−l dλ,

which is finite. We recall from (4.4) that for f, g ∈ Hσ(X)

〈(−Δ)σf, g〉 = 1
2|Γ(−σ)|

∫
X

∫
X

(f(z) − f(x)) (g(z) − g(x)) P σ
0 (z−1x) dz dx. (4.7)

If we put g(x) = P−α
0 (x) and f(x) = |F (x)|2(P−α

0 (x))−1 in the equation above, then the 
left-hand side reduces to
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〈(−Δ)σf, g〉 =
∫
a∗

(
|λ|2 + |ρ|2

)σ
f̂(λ) ĝ(λ) |c(λ)|−2 dλ

= Γ(α)
∫
a∗

(
|λ|2 + |ρ|2

)σ−α
f̂(λ) |c(λ)|−2 dλ

= Γ(α)
Γ(α− σ)

∫
a∗

̂P σ−α
0 (λ) f̂(λ) |c(λ)|−2 dλ

= Γ(α)
Γ(α− σ)

∫
X

|F (x)|2P
σ−α
0 (x)
P−α

0 (x)
dx.

The right-hand side of the equation (4.7) becomes (see (4.5))

1
2|Γ(−σ)|

∫
X

∫
X

(
|F (x) − F (z)|2 −

∣∣∣∣F (x)
g(x) − F (z)

g(z)

∣∣∣∣2 g(x)g(z)
)

P σ
0 (z−1x) dz dx. (4.8)

Hence, equating both sides of the equation (4.7) we have

Γ(α)
Γ(α− σ)

∫
X

|F (x)|2P
σ−α
0 (x)
P−α

0 (x)
dx = 1

2|Γ(−σ)|

∫
X

∫
X

|F (x) − F (z)|2 P σ
0 (z−1x) dz dx

− 1
2|Γ(−σ)|

∫
X

∫
X

∣∣∣∣F (x)
g(x) − F (z)

g(z)

∣∣∣∣2 g(x)g(z) P σ
0 (z−1x) dz dx.

By Lemma 4.3 the first term in the right-hand side of the above equation is equals to 
〈(−Δ)σF, F 〉 and hence the required identity follows. �
Proof of Theorem 1.3. Since σ < 1 and n ≥ 2, we can choose a positive α such that 
2σ + n/4 < α < n/2. From Theorem 3.3 above it follows that

P σ−α
0 (x)
P−α

0 (x)
� |x|−2σ, for |x| < 1;

� |x|−σ, for |x| ≥ 1.

Therefore, it follows from Theorem 4.7 that

〈(−Δ)σF, F 〉 ≥ Cσ

⎛⎜⎝ ∫
|x|<1

|F (x)|2
|x|2σ dx +

∫
|x|≥1

|F (x)|2
|x|σ dx

⎞⎟⎠ . �

We now find the optimal constants (in Theorem 1.1 and Theorem 1.3) for the case 
when the group G is complex (cf. [21, Theorem 1.2] for Ornstein-Uhlenbeck operator on 
Rn). In this case, we have the following formula for the heat kernel [5]
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ht(expH) = (4πt)−n/2 e−|ρ|2t

( ∏
α∈Σ+

α(H)
sinhα(H)

)
e−H2/4t, t > 0, H ∈ a.

It now follows from the definition (1.9) of P σ
y that

P σ
y (expH) = y2σ

4σΓ(σ) (4π)−n/2

( ∏
α∈Σ+

α(H)
sinhα(H)

) ∞∫
0

t−n/2 e−|ρ|2t e−
(
|H|2+y2)/4t dt

t1+σ

= y2σ

Γ(σ) 21−n/2−σ π−n/2

( ∏
α∈Σ+

α(H)
sinhα(H)

) (√
|H|2 + y2

|ρ|

)−(n+2σ)/2

×K−n/2−σ(
√

|H|2 + y2|ρ|).

Here the last equality follows from the formula [23, 3.471(9), p. 368], and K−n/2−σ is the 
modified Bessel function (defined in [23, 8.407 (1), p. 911]). Therefore, using the above 
expression we have the following result.

Theorem 4.8. Let 0 < σ < 1 and F ∈ Hσ(X). Then for every y > 0 we have

〈(−Δ)σF, F 〉 ≥ |ρ|2σy2σ
∫
X

|F (x)|2
(y2 + |x|2)σ wσ(

√
|x|2 + y2|ρ|) dx,

for an explicit wσ(t) ≥ 1. The inequality is sharp and equality is attained for F (x) =
P−σ
y (x).

Proof. Using the fact that K−ν = Kν , it follows from the above expression of Pσ
y that

P σ
y (x)

P−σ
y (x)

= y4σΓ(−σ)
4σ Γ(σ) |ρ|2σ (|x|2 + y2)−σ Kn/2+σ(

√
|x|2 + y2|ρ|)

Kn/2−σ(
√

|x|2 + y2|ρ|)
.

Let wσ(t) = Kn/2+σ(t)
Kn/2−σ(t) , for t > 0. Now using the fact that for t > 0, Kν(t) is increasing 

function of ν we note that wσ(t) ≥ 1, for all t > 0. Hence the required inequality follows 
from Corollary 4.5. The sharpness of the constant follows from Remark 4.6. �

In the case when G is complex, we also have

P σ
0 (x) =

∞∫
0

ht(x) dt

t1+σ

= (4π)−n/2

( ∏
+

α(log x)
sinhα(log x)

) ∞∫
t−n/2 e−|ρ|2t e−|x|2/4t dt

t1+σ

α∈Σ 0
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= (4π)−n/2

( ∏
α∈Σ+

α(log x)
sinhα(log x)

)
2
(

|x|
2|ρ|

)−(n/2+σ)

K−n/2−σ (|x||ρ|) .

Therefore, using K−ν = Kν it follows that

P σ−α
0 (x)
P−α

0 (x)
= 2σ |ρ|σ |x|−σ Kn/2+σ(|x| |ρ|)

Kn/2−σ(|x| |ρ|) .

Now applying Theorem 4.7 and taking α → (2σ + n)/4 we have

Theorem 4.9. Let 0 < σ < 1. Then for F ∈ C∞
c (X) we have

〈(−Δ)σF, F 〉 ≥ |ρ|σ 2σ Γ ((n + 2σ)/4)
Γ ((n− 2σ)/4)

∫
X

|F (x)|2
|x|σ wσ(|x||ρ|) dx,

for the explicit wσ(t) ≥ 1 given above.

In the case of Rn and of the Heisenberg groups the function Pσ
y is the classical Poisson 

kernel. For symmetric spaces, we only have the integral expression (1.9) and the both-
sides estimates (Theorem 3.2) for P σ

y . We have obtained a precise expression of Pσ
y for 

the case when G is complex. We now write the expression of Pσ
y for rank one symmetric 

spaces using the expression of the heat kernel. Let F = R, C, H, or O be the real numbers, 
the complex numbers, the quaternions or the Cayley octonions respectively. The rank 
one symmetric spaces can be realized as the hyperbolic space Hn(F ). Here the subscript 
n denotes the dimension over the base field F . Using the expression of the heat kernel 
[5,22] we have the following results.

(1) X = Hn(R), and n ≥ 3 odd. Using the formula [23, 3.471(9), p. 368] we get

P σ
y (x) = c

∞∫
0

t−1/2 e−ρ2t e−y2/4t
(
− 1

sinh x

∂

∂x

)(n−1)/2

e−|x|2/4t dt

t1+σ

= c

(
− 1

sinh x

∂

∂x

)(n−1)/2 ∞∫
0

t−3/2−σ e−ρ2t e−(|x|2+y2)/4t dt

= c

(
− 1

sinh x

∂

∂x

)(n−1)/2
(√

|x|2 + y2

ρ

)−σ−1/2

K−σ−1/2(ρ
√

|x|2 + y2).

(2) X = Hn(R), and n ≥ 2 even. In this case

P σ
y (x) = c

∞∫
t−1/2 e−ρ2t e−y2/4t

∞∫ sinh z√
cosh2 z − cosh2 x

(
− 1

sinh z

∂

∂z

)n/2
0 x
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× e−|z|2/4t dz
dt

t1+σ

= c

∞∫
x

sinh z√
cosh2 z − cosh2 x

(
− 1

sinh z

∂

∂z

)n/2

×
∞∫
0

t−3/2−σ e−ρ2t e−
(
|z|2+y2)/4t dt dz

= c

∞∫
x

sinh z√
cosh2 z − cosh2 x

(
− 1

sinh z

∂

∂z

)n/2
(√

|z|2 + y2

ρ

)−σ−1/2

×K−σ−1/2(ρ
√

|z|2 + y2) dz.

(3) X = Hn(F ) where F = C, H or O. Then there exist constants c1, c2, · · · , cn/2 such 
that

P σ
y (x) =

∞∫
0

t−1/2 e−ρ2t

n/2∑
j=1

cj

∞∫
x

sinh z√
cosh2 z − sinh2 x

(cosh z)j+1−d

×
(
− 1

2π sinh z

∂

∂z

)j+mα/2

e−|z|2/4t dz
dt

t1+σ

= cσ

d/2∑
j=1

cj

∞∫
x

sinh z√
cosh2 z − sinh2 x

(cosh z)j+1−d ρ1+2σ

×
(
− 1

2π sinh z

∂

∂z

)j+mα/2

2
(

2√
|z|2 + y2ρ

)σ+1/2

×K−σ−1/2(ρ
√
|z|2 + y2) dz,

where the constant cσ depends only on σ.

5. Mapping properties of Poisson operator

In this section we prove Theorem 1.8. We start with the following lemma.

Lemma 5.1. For 0 < σ < 1 and 1 < q < n+1
n , the function (x, y) 
→ Pσ

y (x) ∈ Lq(X×R+).

Proof. We first observe from (2.1) that for H ∈ a with |H| < 1, the Jacobian J(expH)
corresponding to the polar decomposition is of order |H|n−l. From Theorem 3.2 it follows 
that ∫

2 2

|P σ
y (x)|q dx dy ≤ C

∫
2 2

y2σq(|x|2 + y2)−nq/2−σq dx dy
|x| +y <1 |x| +y <1
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≤ C

1∫
y=0

∫
{H∈a+:|H|<1}

y2σq(|H|2 + y2)−nq/2−σq |H|n−l dH dy

=
1∫

0

1∫
0

y2σq(r2 + y2)−nq/2−σq rn−l rl−1 dr dy

≤
1∫

0

⎛⎝ ∞∫
0

(1 + s2)−nq/2−σqsn−1 ds

⎞⎠ yn−nq dy.

We now use the following fact from [23, 3.251, (2); p. 324]

∞∫
0

xμ−1(1 + x2)ν−1 dx = 1
2B (μ/2, (1 − ν − μ/2)) , if �μ > 0, and �(ν + μ/2) < 1.

(5.1)
In our case, μ = n and ν = −nq/2 −σq+1. Hence, ν+μ/2 < 1 if and only if q > n/(n +2σ). 
Therefore, if q > n/(n + 2σ) the above integral reduces to

1
2B (n/2, (nq/2 + σq − n/2))

1∫
0

yn−nq dy.

This is finite only if q < (1 + n)/n. Hence, for n/(n + 2σ) < q < 1 + 1
n ,∫

|x|2+y2≤1

|P σ
y (x)|q dx dy < ∞.

On the other hand for q > 1, using the estimate of Jacobian in (2.1) and the asymptotic 
behavior of φ0 given in (2.6), it follows from Theorem 3.2 that∫

|x|2+y2≥1

|P σ
y (x)|q dx dy

≤
∫

|x2|+y2≥1

y2σq

(4σΓ(σ))q
(√

|x|2 + y2
)−(l/2+ |Σ+

0 |+σ+ 1/2)q
e−|ρ|q

√
|x|2+y2 |φ0(x)|q dx dy

≤ C

∫
|x|2+y2≥1

y2σq e−
|ρ|(q+1)

2
√

|x|2+y2
e−

|ρ|(q−1)
2

√
|x|2+y2 |φ0(x)|q dx dy

≤ C

∫
{
(H,y)∈a+×(0,∞):|H|2+y2≥1

} y2σq e−
|ρ|(q−1)|y|

2 e−
|ρ|(q+1)|H|

2
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× |H||Σ
+
0 |q e−q ρ(H) e2ρ(H) dH dy

≤

⎛⎝ ∞∫
0

y2σq e−|ρ|(q−1)|y|/2 dy

⎞⎠
⎛⎜⎝∫
a+

|H||Σ
+
0 |q e−

3
2 (q−1)ρ(H) dH

⎞⎟⎠ < ∞.

This completes the proof. �
We are now in a position to prove Theorem 1.8. We follow similar ideas which are 

used to the proof of [35, Theorem B].

Proof of Theorem 1.8. We first prove (1). Let u be the solution of (1.5) with boundary 
value f ∈ Hσ(X), and let

U(λ, k, η) = F (ũ(λ, k)) (η), for λ ∈ a∗, k ∈ K, η ∈ R+

be the composition of the Helgason and the Euclidean Fourier transform on X × R. 
Multiplying y2 on both sides of the equation (1.5) and taking the composition of Helgason 
and Euclidean Fourier transform on X ×R it follows that

∂2

∂η2

(
(|λ|2 + |ρ|2 + η2) U(λ, k, η)

)
− (1 − 2σ) ∂

∂η
(η U(λ, k, η)) = 0

which is equivalent to{
(|λ|2 + |ρ|2 + η2) ∂2

∂2η
+ (3 + 2σ)η ∂

∂η
+ (1 + 2σ)

}
U(λ, k, η) = 0. (5.2)

Let t = η√
|λ|2+|ρ|2 and we define

v(λ, k, t) = U(λ, k, η).

Then equation (5.2) reduces to

Dσ,tv(λ, k, t) :=
{

(1 + t2) d
2

dt2
+ (2σ + 3)t d

dt
+ (2σ + 1)

}
v(λ, k, t) = 0.

Since f(x) = u(x, 0) for x ∈ X, by the Euclidean Fourier inversion formula we have

f̃(λ, k) = u(·, 0)̃(λ, k) = 1√
2π

∫
R

U(λ, k, η) dη =
√

|λ|2 + |ρ|2√
2π

∫
R

v(λ, k, t) dt.

Therefore, the function v satisfies
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Dσ,tv(λ, k, t) = 0, and
∫
R

v(λ, k, t) dt =
√

2π√
|λ|2 + |ρ|2

f̃(λ, k),

for almost every (λ, k) ∈ a∗ ×K. Hence, the function v is given by

v(λ, k, t) =
√

2π√
|λ|2 + |ρ|2

f̃(λ, k) ψ(t), (5.3)

where ψ satisfies

Dσ,tψ = 0, and
∫
R

ψ(t) dt = 1. (5.4)

The equation Dσ,tψ = 0 has a fundamental system of solutions spanned by

ψ1(t) = 2F1

(
1
2 , σ + 1

2; 1
2 ;−t2

)
= (1 + t2)−σ−1/2,

ψ2(t) = t 2F1

(
1, σ + 1; 3

2 ;−t2
)
.

Using (5.3) it is now easy to check that∫
a∗×K×R

|U(λ, k, η)|2(|λ|2 + |ρ|2 + η2)σ+ 1
2 |c(λ)|−2 dλ dk dη

=
∫

a∗×K×R

|v(λ, k, t)|2 (|λ|2 + |ρ|2)σ+1 (1 + t2
)σ+ 1

2 |c(λ)|−2 dλ dk dt

= 2π
∫

a∗×K

|f̂(λ, k)|2 (|λ|2 + |ρ2|)σ |c(λ)|−2 dλ dk

∫
R

|ψ(t)|2 (1 + t2)σ+ 1
2 dt. (5.5)

Since f ∈ Hσ, it follows that u ∈ Hσ+ 1
2 if and only if ψ ∈ L2(R, (1 + t2)σ+ 1

2 dt). It 
is easy to check from the asymptotic properties of hypergeometric function that ψ2 /∈
L2(R, (1 + t2)σ+ 1

2 dt) (see [1, Theorem 2.3.2]). Hence, we choose ψ(t) to be a constant 
multiple of ψ1(t) = (1 + t2)−σ− 1

2 . From (5.1) we get that ‖ψ1‖L1(R) =
√
π Γ(σ)/Γ(σ+ 1

2 ). 
Hence, using (5.4) it follows that

ψ(t) = Γ(σ + 1/2)√
πΓ(σ)

ψ1(t).

We now observe that ∫
|ψ(t)|2 (1 + t2)σ+ 1

2 dz = Γ(σ + 1/2)√
πΓ(σ)

,

R
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and hence from (5.5),

‖u‖2
Hσ+ 1

2 (X×R+)
=

2
√
πΓ(σ + 1

2 )
Γ(σ) ‖f‖Hσ(X).

This completes the proof of part (1). We now prove part (2). We first observe that

‖Tσf‖qLq(X×R+) =
∞∫
0

‖f ∗ P σ
y ‖qLq(X) dy.

Also, from Theorem 3.2 it follows that for each y > 0 the function Pσ
y ∈ Lq(X), for all 

q > 1. Therefore, by Kunze-Stein phenomenon (Remark 1.9), for 1 ≤ p < q ≤ 2

‖f ∗ P σ
y ‖Lq(X) ≤ C‖f‖Lp(X)‖P σ

y ‖Lq(X).

Therefore, by Lemma 5.1 it follows that

Tσ : Lp(X) → Lq(X ×R+), (5.6)

is a bounded map, for 1 ≤ p < q < (n + 1)/n. We also observe that

Tσ : L∞(X) → L∞(X ×R+), (5.7)

is a bounded map, as the integral 
∫
X
P σ
y (x) dx = 1 for all y > 0. By Riesz Thorin 

interpolation theorem it now follows from (5.6) and (5.7) that

Tσ : Lp(X) → Lq(X ×R+), (5.8)

is bounded for 1 ≤ p < ∞ and p < q < (n+1
n )p. We now prove that

‖Tσf‖Lq(X×R+) ≤ C‖f‖Lp(X),

for p > 1 and q = (n+1
n )p. By (5.7) and Marcinkiewicz interpolation theorem it is enough 

to show that

Tσ : L1(X) → L(1+n)/n,∞(X ×R+).

Using Theorem 3.2 and the boundedness of the function φ0 we get that

|Tσf(x, y)| ≤
∫
X

|f(z)|P σ
y (z−1x) |f(z)| dz ≤ Cy−n ‖f‖L1(X)

+Cy2σ
∫

−1 2 2

√
(|z−1x|2 + y2)

(−l/2−1/2−σ−|Σ+
0 |)

e−|ρ|
√

(|z−1x|2+y2)||f(z)| dz

|z x| +y ≥1
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≤ Cy−n ‖f‖L1(X) + Cy−n ‖f‖L1(X) sup y ∈ R+

(
y2σ+ne−|ρ|y

)
≤ Cy−n ‖f‖L1(X).

Hence, |Taf(x, y)| > λ implies that y ≤
(

C‖f‖L1(X)
λ

) 1
n

= b (say). Then Chebyshev’s 
inequality yields

m ({(x, y) ∈ X ×R+ : |Taf(x, y)| > λ})
= m ({(x, y) ∈ X ×R+ : y < b, |Taf(x, y)| > λ})

≤ 1
λ

∫
{(x,y)∈X×R+:y<b}

|Taf(x, y)| dx dy

≤ Ca

λ

∫
X

|f(z)|
∫

{(x,y)∈X×R+:y<b}

P σ
y (z−1x) dx dy dz

≤ Cσ

λ
‖f‖L1(X) b = Cσ

(‖f‖L1(X)

λ

)1+ 1
n

.

The last inequality follows because of the fact that 
∫
X
P σ
y (x) dx = 1 for all y > 0. This 

completes the proof. �
6. Poincaré-Sobolev inequality

In this section we prove Theorem 1.12. For the convenience of the reader we restate 
the theorem here.

Theorem 6.1. Let dimX = n ≥ 3 and 0 < σ < min{l+2|Σ+
0 |, n}. Then for 2 < p ≤ 2n

n−σ

there exists S = Sn,σ,p > 0 such that for all f ∈ H
σ
2 (X)

‖(−Δ − |ρ|2)σ/4f‖2
L2(X) ≥ S‖f‖2

Lp(X). (6.1)

Proof. We first observe that it is enough to prove the result for f ∈ C∞
c (X). It also 

suffices to show that∫
X

f(x) (−Δ − |ρ|2)−σ/2f(x) dx ≤ C‖f‖2
Lp′ (X). (6.2)

Indeed, if (6.2) holds, then by Hölder’s inequality

|〈f, g〉| =
∣∣∣〈(−Δ − |ρ|2

)σ/4
f,
(
−Δ − |ρ|2

)−σ/4
g
〉∣∣∣

≤
∥∥∥(−Δ − |ρ|2

)σ/4
f
∥∥∥

2

∥∥∥(−Δ − |ρ|2
)−σ/4

g
∥∥∥

2
L (X) L (X)
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=
〈(

−Δ − |ρ|2
)σ/2

f, f
〉1/2 〈(

−Δ − |ρ|2
)−σ/2

g, g
〉1/2

≤ C
1
2

〈(
−Δ − |ρ|2

)σ/2
f, f
〉 1

2 ‖g‖Lp′ (X),

and hence

‖f‖Lp(X) ≤ C
1
2
n

〈(
−Δ − |ρ|2

)σ/2
f, f
〉 1

2
.

We now prove (6.2). Let kσ be the Schwartz kernel for the operator (−Δ − |ρ|2)−σ/2. 
We have the following well-known estimates due to Anker and Ji [4, Theorem 4.2.2], for 
0 < σ < l + 2|Σ+

0 |

kσ(x) � |x|σ−l−2|Σ+
0 | φ0(x), |x| ≥ 1, (6.3)

� |x|σ−n, |x| < 1.

To prove (6.2), it is enough to show that

‖f ∗ kσ‖Lp(X) ≤ C‖f‖Lp′ (X).

Let χ be the characteristic function of the unit ball B(o, 1) and k0
σ(x) = χ(x) kσ(x) and 

k∞σ = k − k0. Now, by Young’s inequality we have that

‖f ∗ k0
σ‖Lp(X) ≤ C‖f‖Lp′ (X) ‖k0

σ‖Lp/2(X),

and

‖k0
σ‖

p
2
Lp/2(X) �

1∫
0

|t|(σ−n)p/2 |t||Σ+| tl−1 dt.

The right-hand side is finite if p < 2n
n−σ . Using the fact that for r < 1, the volume of the 

ball B(o, r) in X is of order rn, it is easy to check that k0
σ ∈ L

n
n−σ ,∞(X). By Young’s 

inequality for weak type spaces [24, Theorem 1.4.24. page 63] it follows that

‖f ∗ k0
σ‖L 2n

n−σ (X)
≤ C‖f‖

L
2n

n+σ (X)
.

Therefore, we have for all p ≤ 2n
n−σ ,

‖f ∗ k0
σ‖Lp(X) ≤ C‖f‖Lp′ (X). (6.4)

Next, we shall show that for p > 2,

‖f ∗ k∞σ ‖Lp(X) ≤ Cp‖f‖Lp′ (X).
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To prove this we shall use complex interpolation theorem and the idea of [36, Theorem 
4.1]. For �z ≥ −1

2 , we define an analytic family of linear operators Tz from (X, dx) to 
itself as follows:

Tzf = f ∗ (k∞σ )1+z.

For z = −1
2 + iy, we have

‖Tzf‖L∞(X) = ‖f ∗ (k∞σ ) 1
2+iy‖L∞(X)

≤ C sup
{x∈X:|x|≥1}

ϕ0(x) 1
2 |x|(σ−l)/2−|Σ+

0 | ‖f‖L1(X)

≤ C‖f‖L1(X).

For z = ε + iy, ε > 0, we have

‖Tzf‖2
L2(X) =

∫
R

∫
K

∣∣∣f̃(λ, k)
∣∣∣2 ∣∣∣ ̂(k∞σ )1+ε+iy(λ)

∣∣∣2 |c(λ)|−2 dλ dk

≤ sup
∣∣∣ ̂(k∞σ )1+ε+iy(λ)

∣∣∣2 ‖f‖2
L2(X).

Now, by Theorem 2.1 it follows that for λ ∈ a∗ and ε > 0

| ̂(k∞σ )1+ε+iy(λ)| ≤

∣∣∣∣∣∣∣
∫

{x∈X:|x|≥1}

|x|(σ−l−2|Σ+
0 |)(1+ε+iy) (φ0(x))1+ε+iy φ−λ(x) dx

∣∣∣∣∣∣∣
≤

∫
{x∈X:|x|≥1}

φ0(x)2+ε dx < ∞,

and hence ‖Tzf‖L∞(X) ≤ ‖f‖L2(X). Hence, by analytic interpolation for p > 2,

‖f ∗ k∞σ ‖Lp(X) = ‖T0f‖Lp(X) ≤ C‖f‖Lp′ (X). (6.5)

Therefore, from (6.4) and from (6.5), it follows that for all 2 < p ≤ 2n
n−σ ,

‖f ∗ kσ‖Lp(X) ≤ C‖f‖Lp′ (X).

This completes the proof. �
As a corollary of the theorem above we have the following

Corollary 6.2. Let 2 < p ≤ 2n
n−2 and dimX = n ≥ 3. Then there exists Sn,p > 0 such 

that for all u ∈ H1(X),

‖∇u‖2
L2(X) − |ρ|2‖u‖2

L2(X) ≥ Sn,p‖u‖2
Lp(X).
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