
European Journal of Combinatorics 103 (2022) 103511

a

b

1

s
l
s

h
0

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Combinatorics of a disordered two-species ASEP
on a torus
Arvind Ayyer a, Philippe Nadeau b

Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, Institut Camille Jordan, 43 Blvd. du
1 Novembre 1918, F-69622 Villeurbanne Cedex, France

a r t i c l e i n f o

Article history:
Received 14 April 2021
Accepted 30 December 2021
Available online 5 February 2022

a b s t r a c t

We define a new disordered asymmetric simple exclusion pro-
cess (ASEP) with two species of particles, first-class particles
labelled • and second-class particles labelled □, on a two-
dimensional toroidal lattice. The dynamics is controlled by par-
ticles labelled •, which only move horizontally, with forward
and backward hopping rates pi and qi respectively if the • is
on row i. The motion of particles labelled □ depends on the
relative position of these with respect to •’s, and can be both
horizontal and vertical. We show that the stationary weight of
any configuration is proportional to a monomial in the pi’s and
qi’s. Our process projects to the disordered ASEP on a ring, and so
explains combinatorially the stationary distribution of the latter
first derived by Evans (Europhysics Letters, 1996). We compute
the partition function, as well as densities and currents of •’s and
□’s in the stationary state. We observe a novel mechanism we call
the Scott Russell phenomenon: the current of □’s in the vertical
direction is the same as that of •’s in the horizontal direction.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The asymmetric simple exclusion process (ASEP) is an important model in nonequilibrium
tatistical physics. Over the last few decades, the one-dimensional ASEP on a finite one-dimensional
attice with open boundaries [6] has been intensively studied by mathematicians due to the
imple yet nontrivial combinatorial structure of its stationary distribution; see for example [5,8].
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Fig. 1. A cartoon of the Scott Russell linkage. Here, PQ and AB are rigid bars. P is fixed and Q is a hinge. A and B are
forced to move along the lines shown. When A is moved horizontally, B moves vertically at the same speed.

The stationary distribution of the one-dimensional ASEP with periodic boundary conditions is
uniform, but the story gets interesting if there are two species of particles, one faster and one
slower. These are called first and second class particles respectively, and were first considered
in the study of shock measures in the single species ASEP on Z in [1]; see [12, Part III, Chapter
] for more details. In this case too, the stationary distribution has an elegant combinatorial
tructure [7]. The combinatorics of the closed two-species has also been understood from different
oints of view [2,4,10,14,15]. Another combinatorial generalization of the one-dimensional single-
pecies ASEP is where the particles have disordered rates, i.e., the k’th particle hops forward (resp.
ackward) with rate pk (resp. qk). This was first studied by Spitzer [17, Section 5a] in the symmetric

case (pk = qk) and later generalized by Evans [9]. It is the combinatorial structure of this disordered
ASEP that we will unravel here.

We present an exact solution of a two-dimensional exclusion process with closed boundaries
i.e. on a discrete L×n torus) with two kinds of particles. To the best of our knowledge, when there
are multiple species of particles and the rates are disordered, no formulas for finite systems exist
in the literature. This is the first two-dimensional disordered exclusion process whose stationary
distribution is understood exactly.

The first-class particles are denoted •, and the second-class particles are denoted □. There is one
irst-class particle per row and these only move horizontally, the particle on the k’th row moving
orward with rate pk and backward with rate qk. However, these particles dictate the motion of the
econd-class particles which move both horizontally and vertically; see Section 2 for the precise
efinition. The process can also be viewed isomorphically as a one-dimensional multispecies ASEP
Section 2.3) by projection.

More interestingly, it can also be formulated as a process on set partitions (Section 2.4) with n
locks on L elements, with some specific marking.
For this two-dimensional ASEP, we give an explicit formula for the stationary distribution

Theorem 4.5) and the nonequilibrium partition function (Theorem 4.9). In particular, we show
hat the stationary probability of any configuration is proportional to a monomial in the pk’s and
k’s. This two-dimensional ASEP projects to the disordered one-dimensional ASEP studied by Evans
Proposition 3.2), and this allows us to give a combinatorial formula for the stationary distribution
f the latter (Corollary 4.7).
It turns out that the two-dimensional ASEP is interesting in its own right for several reasons.
For two special cases, (i) pi = qi for all i and (ii) qi = 0 for all i, we find that the partition function

is a symmetric polynomial in the pi’s; see Propositions 4.11 and 5.8. We give explicit formulas for
the densities (i.e. the occupation probabilities in the stationary distribution) of both •’s and □’s. We
then calculate the currents for both •’s and □’s across a given horizontal edge. Since the □’s move
nonlocally, we consider their horizontal current between any two adjacent columns as well as their
vertical current between any two adjacent rows.

We find a remarkable coincidence, that the total current of •’s in the horizontal direction in

the j’th row is identical to that of the □’s in the vertical direction between the (j − 1)’th and j’th

2
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Fig. 2. An illustration of a configuration in AL,n .

row (Corollaries 6.10 and 6.14). The fact that these two are the same does not follow from the
dynamics. We dub this the Scott Russell phenomenon, named after the Scottish engineer (John)
Scott Russell, the eponym for the linkage which translates linear motion in one direction to that
in a perpendicular direction. See Fig. 1 for an illustration of the linkage. This is a manifestly two-
dimensional occurrence and the reason why it is crucial to view this as a process on the torus rather
than as a multispecies one-dimensional process or a process on set partitions.

Our two-dimensional process also sheds some light on the combinatorial structure underlying
previous work by the first author [3] in which only one particle, known as a tracer, moves
asymmetrically with forward and backward rates p and q respectively. The other particles move
symmetrically with rate 1. This also explains certain simplifications that occur in the recent work by
Lobaskin and Evans [13] where they study a model with many totally asymmetric tracers (i.e. qi = 0
for all i).

The plan of the rest of the article is as follows. In Section 2, we define the two-dimensional model
on the torus and explain how it can be interpreted as a one-dimensional multispecies exclusion
process. We explain the projection to the inhomogeneous ASEP on the ring in Section 3. We compute
the stationary distribution and the partition function in Section 4. The special case where some
particles move totally asymmetrically is dealt with in Section 5. Finally, the densities and currents
are derived and the Scott Russell phenomenon is explained in Section 6.

2. The two-dimensional model on the torus

We now define the exclusion process on a discrete L × n torus Z/LZ × Z/nZ with particles of
wo types and vacancies. As mentioned earlier, we will denote first class particles by •, second class
articles by □, and vacancies by ·.

.1. State space

efinition 2.1. Let AL,n consist of configurations A ≡ (Ai,j) 1≤i≤L
1≤j≤n

where Ai,j ∈ {0, •, □} such that:

• Each row contains exactly one •.
• Each column contains exactly one particle (either • or □).
• The column indices of •’s read from left to right form a cyclically increasing sequence, i.e. a

sequence of integers for which a cyclic permutation exists transforming it to an increasing
sequence.
3



A. Ayyer and P. Nadeau European Journal of Combinatorics 103 (2022) 103511

c
k
a

t

Fig. 3. Torus for L = 2 and N = 4, with all 12 of its restricted configurations.

Such a configuration is illustrated in Fig. 2; note that certain particles are hidden from view. For
onvenience, we will represent configurations A ∈ AL,n can be written as arrays A ≡ (Ai,j)1≤i≤L,1≤j≤n,
eeping in mind that this is actually a torus so that rows and columns ‘‘wrap around’’ horizontally
nd vertically; see Fig. 3, top.
It will turn out, because of the horizontal translation invariance of the dynamics, that it suffices

o focus attention to configurations in A ∈ AL,n such that A1,1 = •. We will denote the set of
such configurations by A′

L,n. With that normalization, note that the third condition in Definition 2.1
becomes that the column indices of •’s in A form a strictly increasing sequence. We call such
configurations restricted configurations. For example, the set of such restricted configurations A′

4,2
is depicted in Fig. 3.

2.2. Dynamics

The dynamics is a continuous-time Markov chain with the following transitions and rates.
Transitions are always initiated by particles of type •. In fact, the vertical projection of the particles
of type • follow an exclusion process on a one dimensional torus, cf. Section 3. We focus on the •

in the kth row so Ak,j = • for a unique index j. There are four types of transitions.
The first two are forward transitions. Now by definition Ak′,j+1 ̸= 0 for a unique value of k′. For

a forward transition to occur, we require Ak′,j+1 = □, which we now assume. We distinguish two
cases:

(1) If k′
̸= k, then we have the transition with rate pk

That is, the new configuration B satisfies Bk,j+1 = •, Bk′,j = □, while the other columns are
the same as in A.

(2) If k′
= k, then we have the transition with rate p
k

4
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That is, the new configuration B satisfies Bi,l = Ai,l+1 for l ∈ {j′ + 1, . . . , j + 1} and any i,
Bk−1,j′ = □, while the other columns are the same as in A. Here j′ is given by Ak−1,j′−1 = •.
We now consider backward transitions, which are defined in complete analogy, and so we
illustrate them succinctly. By definition Ak′′,j−1 ̸= 0 for a unique value of k′′. For a backward
transition to occur, we need to have Ak′′,j−1 = □, which we again assume. As before, we have
two cases:

(3) If k′′
̸= k, then we have the transition with rate qk

(4) If k′′
= k, then we have the transition with rate qk

Note that Lists (3) and (4) are reversed versions of Lists (1) and (2) respectively. However, even
hen pk = qk for all k, the dynamics is not reversible since transitions of types Lists (2) and (4) are
ot inverses of each other.
From the general theory of Markov processes [16], a continuous-time Markov chain is completely

etermined by its (column-stochastic) generator. Recall that a generator is a matrix indexed by the
onfiguration space whose (i, j)’th entry is equal to the transition rate from state i to state j if i ̸= j
nd whose diagonal entries are chosen such that column sums are zero. The stationary probabilities
re then given by the entries of the right null-eigenvector of the generator.
We make a few remarks about the symmetries of this dynamics:

emark 2.2.

(1) The dynamics is invariant with respect to horizontal translation. Indeed, the value of j does
not modify the dynamics.
5
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(2) Vertical translation modifies the rates by shifting pk ↦→ pk+1 and qk ↦→ qk+1.
(3) Forward and backward rules are directly related as follows: one can go from the first ones to

the second ones, and vice versa, by simultaneous reflections along both coordinate axes (or
equivalently, a rotation by π ) together with an exchange of pk with qk for all k.

2.3. Reformulation 1: Coloured one-dimensional exclusion process

We consider now a second (2n)-species exclusion process (without vacancies) on the one-
dimensional ring Z/LZ, with L ≥ n. As will be quite evident from its definition, it is simply a more
compact encoding of the previous process.

The 2n particles are labelled •1, . . . , •n, □1, . . . , □n, and their indices will always be considered
modulo n. The configurations can be naturally considered as words w1 . . . wL where each wi is one
f the 2n particles.

Definition 2.3 (ΩL,n). The state space ΩL,n consists of configurations with exactly one particle of
each type •1, . . . , •n occurring cyclically in that order. The remaining L − n positions are occupied
y the particles □1, . . . , □n and each of these can occur arbitrarily many times.

Let Ω ′

L,n ⊂ ΩL,n be the subset of restricted configurations w defined by w1 = •1. For example,
he restricted configurations in Ω ′

4,2 are

{ •1 •2□1□1, •1 •2 □1□2, •1 •2 □2□1, •1 •2 □2□2, •1□1 •2 □1, •1□1 •2 □2,

•1□2 •2 □1, •1□2 •2 □2, •1□1□1•2, •1□1□2•2, •1□2□1•2, •1□2□2 •2 }. (2.1)

There are clearly
(L−1
n−1

)
to choose the locations of the particles •2, •3, . . . , •n. This leaves the

remaining L−n positions for the particles of the form □i, where i can be chosen arbitrarily. It follows

|Ω ′

L,n|=
1
L
|ΩL,n|=

(
L − 1
n − 1

)
nL−n. (2.2)

The transitions in ΩL,n are given by the following rules for 1 ≤ k ≤ n:

· · · •k |□i · · ·
pk

−→ · · · □i|•k · · · if i ̸= k, (2.3)

· · · •k−1 C •k |□k · · ·
pk

−→ · · · •k−1 □k−1C |•k · · · , (2.4)

· · · □i|•k · · ·
qk

−→ · · · •k |□i · · · if i ̸= k, (2.5)

· · · □k|•kC •k+1 · · ·
qk

−→ · · · •k |C□k+1 •k+1 · · · , (2.6)

here we have placed a vertical divider to mark the location of the transition and C is a (possibly
mpty) block which contains particles in the set {□1, . . . , □n} between successive •’s. Note that the
ntegers k + 1 and k − 1 have to be interpreted modulo n as was mentioned above.

xample 2.4. Consider the configuration

τ = •1□3□3□4 •2 □2 •3 □3 •4 □1 ∈ Ω ′

10,4.

he outgoing transitions from τ are

□3•1□3□4 •2 □2 •3 □3 •4 □1 with rate p1,
•1□1□3□3□4•2 •3 □3 •4 □1 with rate p2,
•1□3□3□4 •2 □2□2•3 •4 □1 with rate p3,
•1□3□3□4 •2 □2 •3 □3□1•4 with rate p4,

□3□3□4□2 •2 □2 •3 □3 •4 •1 with rate q1,
•1□3□3•2□4□2 •3 □3 •4 □1 with rate q2,

•1□3□3□4 •2 •3□2□3 •4 □1 with rate q3,

6
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Fig. 4. The configuration in A′

10,4 (top) corresponding to the configuration τ ∈ Ω ′

10,4 in Example 2.4 (bottom), according
o Proposition 2.5.

•1□3□3□4 •2 □2 •3 •4□3□1 with rate q4.

Isomorphism between AL,n and ΩL,n: There is a simple bijection between the two sets AL,n and
ΩL,n: If A ∈ AL,n, then for any i = 1, . . . , L, there is a unique ki such that Aki,i ̸= 0, since each column
contains exactly one particle. If Aki,i = •, define wi = •ki , and if Aki,i = □ then define wi = □ki . The
resulting word w1w2 · · ·wL is the desired configuration in ΩL,n.

This can be simply understood as projecting while recording the labels of the rows as indices.
See Fig. 4 for an illustration. Also, note that configurations in Fig. 3 project to those in (2.1), in their
given ordering.

Proposition 2.5. For arbitrary rates pk and qk, the correspondence above is an isomorphism between
the exclusion processes on AL,n and ΩL,n.

Proof. The correspondence is clearly bijective. The isomorphism between the two exclusion
processes is established by verifying that the transitions Lists (1)–(4) in AL,n match exactly with
those in Eqs. (2.3)–(2.6) in Ω ′

L,n. This is a simple inspection: for example, List (1) corresponds to
•k□k′ → □k′ • k where k′

̸= k. The others follow similarly. □

2.4. Reformulation 2: Marked set partitions

While the bijection in the last section is essentially straightforward, we now present another
one which reveals some of the combinatorics of the model. Indeed the configurations in AL,n can
be represented as certain (marked) set partitions, as follows:

Let A ∈ AL,n. For i ∈ {1, . . . , L}, let Bi be the set of j ∈ {1, . . . , n} such that Ai,j ̸= 0. That is, Bi is
the set of column indices of particles on row i in A. We let bi ∈ Bi be the unique position such that
Ai,bi = 1. Equivalently, in the model ΩL,n, Bi is the set of positions of all particles □i together with
the position bi of the particle •i.

For example, the configuration in Fig. 4 corresponds to the following subsets with the elements
bi underlined:

(B1, . . . , B4) = ({1, 10}, {5, 6}, {2, 3, 7, 8}, {4, 9}).

By the first two conditions in Definition 2.1, Bi, i = 1, . . . , L, form an ordered set partition of
1, . . . , n}: that is that the Bi are nonempty, disjoint, and their union is {1, . . . , n}. Moreover, the
third condition says that the bi form a cyclically increasing sequence.

Definition 2.6. Given L, n, define PL,n as the set of ordered set partitions with single marked
elements in each block that form a cyclically increasing sequence.
7
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Fig. 5. The configuration τ = •1□□□ •2 □ •3 □□•4 for the system with L = 10 and n = 4, where the labelling starts from
he top and proceeds clockwise.

We have illustrated the following:

roposition 2.7. The map associating to a configuration A the data ((Bi, bi))i=1,...,L is a bijection from
L,n to PL,n.

Indeed, the inverse map consists in letting the particles in row i to occur at positions Bi, the
article • occurring at position bi. If we define P ′

L,n to be the subset of PL,n where the first marked
lement is 1, it is naturally in bijection with A′

L,n by restriction of the above correspondence.

emark 2.8. The dynamics can be of course transported to this model via this bijection, but the
esult does not look particularly pleasant or illuminating. Since we do not use it in the following,
e leave the explicit description to the interested reader.

. The one-dimensional ASEP

We now recall the one-dimensional asymmetric simple exclusion process (ASEP) on a ring where
ach particle has different forward and backward jumping rates studied first by Evans [9].
Consider n particles •1, •2, . . . , •n from left to right (cyclically) on a ring of size L with vacancies

enoted by □. Let ΨL,n be the set of all such configurations. The dynamics is as follows. Particle •k
as forward and backward jumping rates pk, qk respectively, i.e.

•k □

pk
⇀↽
qk

□•k,

nd no other transitions. We note that it is not necessary for the particles • to be distinguishable.
owever, it will be convenient from our point of view to suppose that they are. See Fig. 5 for a
onfiguration and its allowed transitions.
This ASEP is clearly irreducible if and only if either

∏
k pk ̸= 0 or

∏
k qk ̸= 0. It has thus a unique

tationary distribution, which is explicitly described by Evans [9]. We will now see how to recover
his stationary distribution via ΩL,n.

Recall that a projection or lumping of a Markov chain is a projection such that the resulting
tochastic process is also a Markov chain [11, Section 2.3.1].

efinition 3.1. We define the map Π : ΩL,n → ΨL,n as follows. Given ω ∈ ΩL,n, replace all □i’s in
by □ to obtain Π (ω) ∈ ΨL,n.

It is easily checked that the transitions Lists (1) and (2) (resp. Lists (3) and (4)) in AL,n correspond
o forward (resp. backward) transitions in ΩL,n. We thus obtain the following result.
roposition 3.2. The exclusion process on ΩL,n lumps to the ASEP on ΨL,n via the map Π .

8
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Let π denote the stationary distribution of the ASEP on ΨL,n and π̂ , that for the exclusion
process on ΩL,n: we will show in Proposition 4.1 that π̂ is uniquely defined. It follows then from
Proposition 3.2 that we have the following.

Corollary 3.3. For every ψ ∈ ΨL,n,

π (ψ) =

∑
ω∈Π−1(w)

π̂ (ω).

4. Stationary distribution

We now describe the stationary distribution of the two-dimensional exclusion process on AL,n.
It will be convenient for some of the proofs to work with the isomorphic multispecies exclusion
process on ΩL,n; see Proposition 2.5. Let us recall the dynamics of the latter for easy reference:

· · · •k |□i · · ·
pk

−→ · · · □i|•k · · · if i ̸= k, (4.1)

· · · •k−1 C •k |□k · · ·
pk

−→ · · · •k−1 □k−1C |•k · · · , (4.2)

· · · □i|•k · · ·
qk

−→ · · · •k |□i · · · if i ̸= k, (4.3)

· · · □k|•kC •k+1 · · ·
qk

−→ · · · •k |C□k+1 •k+1 · · · , (4.4)

Note: In this section we consider the case where pk, qk > 0 for all k. This is slightly less general
than the conditions in the previous section. We will extend the results to the more general case
in Section 5.

4.1. Irreducibility

Recall that we work under the assumptions pk, qk > 0 for all k.

Proposition 4.1. Let L ≥ 1 and 1 ≤ n < L. The exclusion process on AL,n and on ΩL,n is irreducible.

Proof. We will show that starting from any τ ∈ ΩL,n, we can reach the special configuration

τ0 = (•1, . . . , •n, □n, . . . , □n),

and conversely.
Fix τ ∈ ΩL,n. Say that a configuration τ ′ is basic if for all k, the particles between •k and •k+1

are only □k’s. We claim that starting with τ and applying forward transitions of type (4.1) and (4.2),
one can reach a basic configuration.

To show this, define the excess of a particle □i in a given configuration to be the integer k ∈

{0, 1, . . . , n − 1} such that the nearest particle • to the left of □i is •i+k (recall that indices for
particles are understood modulo n). Define the excess of a configuration to be the sum of all its
particles of type □. For example, for n = 4, •1□3□3□4 •2 □2 •3 □3 •4 □1 from Example 2.4 has excess
equal to

(2 + 2 + 1) + (0) + (0) + (3) = 8.

The excess of a configuration is zero if and only if it is basic. If the excess is e > 0, then there exists
a contiguous subconfiguration of the form

•k □k . . . □k  
t≥0

□i

with i ̸= k. By applying t times (4.2) and then (4.1) once, we obtain a configuration has excess e−1.
he claim is thus proved by induction.
We have thus reached a basic configuration τ ′. By continuing to apply transitions of type (4.2),

n order to have the particles • occurring consecutively, which is clearly possible, we can reach
i

9
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new basic configuration that is a cyclic shift of the configuration τ0. Finally, notice that using (4.2)
pplied successively with k = n, n− 1, . . . , 1 rotates such configuration to the right, and so we can
ventually reach τ0 itself.
We now have to prove that from τ0 one can reach any τ ∈ ΩL,n. Equivalently, we have to prove

hat if one reverses the arrows in the dynamics, one can reach τ0 from τ in the resulting graph. In
his graph, (4.2) and (4.3) become edges

· · · •k □kC |•k+1 · · ·
pk+1
−→ · · · •k C •k+1 |□k+1 · · · , (4.5)

· · · •k |□i · · ·
qk

−→ · · · □i|•k · · · if i ̸= k, (4.6)

ote the formal similarity of the two above transitions with (4.1) and (4.2) respectively. In
articular, the rates have changed but this does not affect the analysis since these are all nonzero.
One can apply the same strategy as in the first part of the proof to show that with the transitions

4.5), (4.6) one can reach τ0 from τ . □

By Proposition 4.1, the Markov chain has a unique stationary distribution. It is necessary invariant
nder horizontal translation, since the transition rates have the same property; see Remark 2.2(1).

.2. Weights

Let A ∈ AL,n be a configuration. For i = 1, . . . , n, let bi be the column containing • in row i of A.
e have therefore b1 < · · · < bn cyclically.

efinition 4.2. Let k ∈ {1, . . . , n}. We define Ck ≡ Ck(A) be the(possibly empty) open integer
nterval (bk, bk+1) = {bk + 1, . . . , bk+1 − 1}.

Let j ∈ Ck. We define the weight of a particle □ at position (i, j), j ∈ Ck to be (i, k are taken to be
n {1, . . . , n} here):

w□(i, k) =

{
p1 · · · pi−1qi+1 · · · qkpk+1 · · · pn 1 ≤ i ≤ k,

q1 · · · qkpk+1 · · · pi−1qi+1 · · · qn k < i ≤ n.
(4.7)

efinition 4.3 (Stationary weight). The weight wt(A) of A ∈ AL,n is

wt(A) =

n∏
k=1

∏
j∈Ck

Ai,j=□

w□(i, k), (4.8)

he product of weights associated to all □’s.

For example, the weight of the configuration in Example 2.4 and Fig. 4 is

wt(•1□3□3□4•2□2•3□3•4□1) = (q1p2q4)2(q1p2p3)  
C1

(p1p3p4)  
C2

(p1p2p4)  
C3

(q2q3q4)  
C4

= p21p
4
2p

2
3p

2
4q

3
1q2q3q

3
4.

emark 4.4. We make a curious observation about the weights in (4.7). The determinant of the
atrix formed by these weights has a very nice formula,

det(w□(i, k))1≤i,k≤n = (p1 · · · pn − q1 · · · qn)n−1 .

t can be computed by simple row operations transforming the matrix into a lower triangular matrix.
he factor on the right hand side will appear frequently in Section 6 when we calculate the currents.
10
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4.3. Stationary distribution

We can now state the exact form of the stationary distribution of the exclusion process AL,n.
Note that we have to assume that all rates pk, qk are nonzero here. The special case where some
rates vanish is treated in the next section.

Theorem 4.5. Let L ≥ 1 and 1 ≤ n < L and suppose pk, qk > 0 for all 1 ≤ k ≤ n. Then the stationary
robability π̂ (A) of the configuration A for the exclusion process on AL,n is proportional to wt(A).

roof. Since the stationary probabilities are unique by Proposition 4.1, it is enough to verify the
alance equation,∑

τ∈AL,n

π̂ (A)rate(A → τ ) =

∑
τ∈AL,n

π̂ (τ )rate(τ → A), (4.9)

for every configuration A. Since all transitions are initiated by particles of type •, it suffices to
ook at the positions of these particles. Moreover, every particle of type • can move to its current
ocation in at most two ways, one from the left and one from the right.

Fix 1 ≤ k ≤ n. We will focus on transitions affecting the positions in Ck, defined above. If Ck is
mpty, there cannot be any transitions, either outgoing or incoming, affecting Ck.
Suppose Ck is nonempty. Then the outgoing weight of transitions from A is given by (pk +

qk+1) wt(A). We focus first on the particle of type • in row k. Let nk be its column. The incoming
transition that brings • to this position depends on the row i of the □ in column nk + 1. Suppose
̸= k. Let A1 be the (unique) configuration in the state space which goes to A with rate qk. Then A1
s obtained from A by switching columns nk and nk + 1. In that case,

π̂ (A1)
π̂ (A)

=

⎧⎨⎩
p1 · · · pi−1qi+1 · · · qk−1pk · · · pn
p1 · · · pi−1qi+1 · · · qkpk+1 · · · pn i < k,
q1 · · · qk−1pk · · · pi−1qi+1 · · · qn
q1 · · · qkpk+1 · · · pi−1qi+1 · · · qn i > k..

hus, qkπ̂ (A1) = pkπ̂ (A). Suppose the particle of type • in row k + 1 is at column nk+1. If i = k,
hen the incoming transition comes from the configuration A2, in which column nk + 1 is moved to
olumn nk+1, the particle of type □ is moved to row k+ 1, and all intermediate columns are shifted
eft. This transition happens with rate pk+1. Then

π̂ (A2)
π̂ (A)

=
p1 · · · pkpk+2 · · · pn

p1 · · · pk−1pk+1 · · · pn
,

nd pk+1π̂ (A2) = pkπ̂ (A). Thus, the incoming weight of the particle of type • in row k affecting Ck
s the same as the outgoing weight.

We now look at the particle of type • in row k+ 1. The incoming transition that brings • to this
osition depends on the row j of the □ in column nk+1 − 1. If j ̸= k + 1, the incoming transition

comes from A3, which is obtained from A by switching columns nk+1 and nk+1 − 1, with rate pk+1.
In that case,

π̂ (A3)
π̂ (A)

=

⎧⎨⎩
p1 · · · pj−1qj+1 · · · qk+1pk+2 · · · pn
p1 · · · pj−1qj+1 · · · qkpk+1 · · · pn j ≤ k,

q1 · · · qk+1pk+2 · · · pj−1qj+1 · · · qn
q1 · · · qkpk+1 · · · pj−1qj+1 · · · qn j > k + 1..

hus, pk+1π̂ (A3) = qk+1π̂ (A). If j = k+1, then the incoming transition comes from the configuration
A4, in which column nk+1 − 1 is moved to column nk, the particle of type □ is moved to row k, and
all intermediate columns are shifted right. This transition happens with rate qk. Then

π̂ (A4)
π̂ (A)

=
q1 · · · qk−1qk+1 . . . qn
q1 · · · qkqk+2 . . . qn

,

and qkπ̂ (A4) = qk+1π̂ (A). We have thus matched all the incoming and outgoing transitions affecting
k, and this argument holds for all k. Thus, we have proved that the weight function in (4.8) satisfies
he master equation. □
11



A. Ayyer and P. Nadeau European Journal of Combinatorics 103 (2022) 103511

w

I
O

o
i

4

Z
t∑
c

T

Example 4.6. Here is the set of restricted configurations in A′

4,2 from Fig. 3, together with their
eights:

The balance Eq. (4.9) can be checked at each of them. Consider the case of configuration (a):
ncoming transitions occur from (c) with rate q2 and from a translated version of (d) with rate q1.
utgoing transitions occur with rates q1 and p2, and the total weights match.

For convenience, we define

W□(k) =

n∑
j=1

w□(j, k). (4.10)

We now apply this result to the one-dimensional model ΨL,n of Section 3. For a configuration τ ∈

ΨL,n with τ1 = •1, let ci count the number of vacancies between •i and •i+1. This completely encodes
the configuration up to rotation. The proof of the following result is then a simple consequence of
Theorem 4.5 and Corollary 3.3.

Corollary 4.7 ([9]). The stationary distribution π of the exclusion process on ΨL,n is given as follows: for
any τ ∈ ΨL,n with tuple (c1, . . . , cn) summing to L − n, the stationary probability π (τ ) is proportional

to
n∏

k=1

(W□(k))ck .

The proof in [9] uses a matrix ansatz to come up with this product form.

Example 4.8. For n = 4, W□(1) = p2p3p4 + q1p2p3 + q4q1p2 + q3q4q1 and W□(i) for 2 ≤ i ≤ 4 are
btained by shifting indices. The stationary probability π (τ ) of the configuration τ in Fig. 5, which
s encoded by the tuple (3, 1, 2, 0), is thus proportional to W□(1)3W□(2)W□(3)2.

.4. Partition function

The restricted partition function is defined as

ZL,n =

∑
A∈AL,n
A1,1=•

wt(A). (4.11)

L,n is a polynomial in the variables p1, . . . , pn, q1, . . . , qn, homogeneous of degree L − n. By the
ranslation invariance in Remark 2.2(1), the full partition function is LZL,n. Recall that, for f (x) =

i aix
i a polynomial or formal power series in the variable x, the notation [xi]f (x) stands for the

oefficient of xi in f (x), namely ai.

heorem 4.9 ([9]). The restricted partition function ZL,n is given by:

ZL,n =

∑
c1,...,cn≥0

W□(1)c1 · · ·W□(n)cn = [xL−n
]

(
n∏

k=1

1
1 − W□(k)x

)
.

c1+···+cn=L−n

12



A. Ayyer and P. Nadeau European Journal of Combinatorics 103 (2022) 103511

h

Proof. The first equality follows from the definition of the partition function. The second one is an
immediate consequence of the expansion of the rational function as a series in x. □

For example, for L = 4 and n = 2, Z4,2 is the coefficient of x2 in (1−(p1+q2)x)−1(1−(p2+q1)x)−1,
that is

Z4,2 = (p2 + q1)2 + (p1 + q2)(p2 + q1) + (p1 + q2)2.

It corresponds as expected to the sum of the weights in Example 4.6.
To end this section, we give two special cases that are easy to prove: first we consider the case

where the n particles have identical rates, then we consider the case where particles have symmetric
jumps.

Proposition 4.10. If we set pi = p and qi = q for all i, then

ZL,n =

(
L − 1
n − 1

)
[n]L−n

p,q ,

where [n]p,q = pn−1
+ pn−2q + · · · + pqn−2

+ qn−1.

Recall that the elementary symmetric polynomial ek(x1, . . . , xj), for 1 ≤ k ≤ j is given by

ek(x1, . . . , xj) =

∑
1≤i1<i2<···<ik≤j

xi1xi2 . . . xik . (4.12)

Proposition 4.11. If we set qi = pi for all i, then

ZL,n =

(
L − 1
n − 1

)
en−1(p1, . . . , pn)L−n.

It is somewhat surprising that we obtain a manifestly symmetric function in the pi’s even though
a priori we should only expect the partition function to be symmetric under cyclic permutations.

5. Some totally asymmetric particles

In this section we consider the exclusion process on AL,n, or equivalently ΩL,n, where some
parameters qi are equal to zero. This is not immediately a special case of the results of the previous
section. Indeed, in this case, the chain on ΩL,n is not irreducible1 any more. Hence, we need to
modify some of the results of Section 4.

Remark 5.1. The case where some parameters pi are zero is treated similarly by symmetry. Also,
if there exist i1, i2 such that pi1 = qi2 = 0, then even the one-dimensional ASEP of Section 3 is not
irreducible, and so we are not interested in this case.

Definition 5.2. Let I ⊆ {1, . . . , n} be the set of indices k such that qk = 0. We define Ω I
≡ Ω I

L,n to
be the subset of states τ ∈ ΩL,n such that wt(τ ) ̸= 0. Similarly, letΩ ′I by the subset ofΩ I consisting
of the states τ = (τ1, τ2, . . . , τL) such that τ1 = •1.

Of course Ω∅
= Ω . Moreover we have

Ω I
= ∩i∈IΩ

{i}. (5.1)

Indeed, this follows immediately from the fact that wt(ω) is a monomial in the qi’s.
We thus consider the case where I has cardinality 1. We also assume I = {1} without loss of

generality because of translational symmetry in Remark 2.2(1).

1 This can be seen directly, and also from Theorem 4.5: if some qi vanishes then certain weights vanish, which cannot
appen for the stationary distribution of an ergodic Markov chain.
13
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Proposition 5.3. Ω ′{1} is the set of states starting with •1 such that for any i, particles of type □i are
only allowed to occur to the right of particle •i.

Proof. By the definition of the weight wt, given a configuration ω ∈ Ω ′

L,n, q1 occurs in wt(ω) if and
only if there is a particle □i occurring to the left of •i for a certain i. Therefore if q1 = 0 and qi > 0
for i > 1, wt(ω) is nonzero if and only for all i, the particles □i occur to the right of •i. □

Note that the running example in Fig. 4 does not belong to Ω ′{1}. The above proposition together
with (5.1) implies a characterization of anyΩI , from which the following lemma can then be directly
checked:

Lemma 5.4. Ω I is stable under the dynamics of (4.1)–(4.4), where we naturally exclude the transitions
with k ∈ I in (4.3),(4.4).

We then arrive at the following theorem that extends Theorem 4.5 to the case I ̸= ∅:

Theorem 5.5. Ω I forms an irreducible Markov chain whose steady state probabilities π̂ (ω) are
proportional to wt(ω) for ω ∈ Ω I .

Proof. To prove irreducibility, it is enough to pick I = {1} thanks to (5.1) and translational
invariance. Irreducibility follows by inspecting the proof in Proposition 4.1 and checking that it
restricts to this case. The steady state probabilities then follow immediately by verifying the balance
equations as in the proof of Theorem 4.5, which here also can be restricted. □

Now let us consider the correspondence with marked partitions in Section 2.4. By restricting
the correspondence to Ω ′{1} using Proposition 5.3, one arrives at the subset of ordered partitions in
which the marked element in each block is its smallest element, so we can erase the mark without
losing any information. We obtain ordered partitions where the blocks are ordered according to the
relative order of their minimum element. Given a standard set partition, there is obviously a unique
way to order its blocks in this way and we finally obtain the following result:

Proposition 5.6. Ω
′{1}
L,n is in bijection with set partitions via the map from Proposition 2.7.

This explains the occurrence of set partitions in [3, Theorem 3.7], which corresponds to the case
p1 > 0, q1 = 0 and pi = qi = 1 for i > 1.

Remark 5.7. The generating function of the partition function in the case q1 > 0 in [3, Theorem
2.7] can be explained by enumerating marked set partitions. Indeed with these special rates, the
weight wt(·) becomes simple to express and standard methods of enumerative combinatorics give
the desired answer. We do not know how to obtain such an exponential generating function in the
general case considered in this manuscript.

Finally, let us describe the totally asymmetric case I = {1, . . . , n}. Then Ω ′I consists of
configurations ω such that only □k can occur between •k and •k+1. Note that such a configuration
is uniquely determined by the positions of the •j’s, and its weight is the product over all remaining
positions of p1 · · · pk−1pk+1 · · · pn = p1 · · · pn/pk if the position is between •k and •k+1. Let the
homogeneous symmetric polynomial of degree k be defined by

hk(x1, . . . , xj) =

∑
1≤i1≤i2≤···≤ik≤j

xi1xi2 . . . xik .

From the above observation, we obtain the following.

Proposition 5.8. If qi = 0 for i = 1, . . . , n,

ZL,n = (p1 . . . pn)L−n hL−n

(
1
, . . . ,

1
)
.

p1 pn
14
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Remark 5.9. For the expert, we note that Proposition 5.8 can also be rewritten in terms of Schur
polynomials as

ZL,n = s⟨(L−n)n−1⟩(p1, . . . , pn).

he interested reader can figure out the weight-preserving bijection between Ω ′I and rectangular
emistandard Young tableaux that interprets this equality.

. Densities and currents on the torus

Let τ (resp η) denote the occupation variable for • (resp. □). That is to say, τi,j = 1 (resp. ηi,j = 1)
n a configuration if and only if the site (i, j) is occupied by a • (resp. □), and otherwise τi,j = 0 (resp.
i,j = 0). We denote expectations in the stationary distribution π̂ on AL,n by ⟨·⟩L,n. When L and n
re clear from context, we will suppress the subscripts. Throughout this section, we will assume
hat all pi, qi > 0.

.1. Densities

By horizontal translation invariance of the exclusion process on AL,n in Remark 2.2(1), the
ollowing is easy to prove.

roposition 6.1. The density of •’s is given by

⟨τi,j⟩ =
1
L
,

or 1 ≤ i ≤ n, 1 ≤ j ≤ L. The density of □’s satisfy

⟨ηi,j⟩ = ⟨ηi,j′⟩,

for 1 ≤ i ≤ n, 1 ≤ j < j′ ≤ L.

The exclusion process is not vertically translation-invariant, but it is if we replace pi, qi by
pi+1, qi+1,1 and down-shift configurations cyclically (see Remark 2.2). Using this property, we can
show:

Proposition 6.2. The density of □’s satisfy

⟨ηi,1⟩

⏐⏐⏐ pj→pj+1
qj→qj+1

∀j
= ⟨ηi+1,1⟩,

for 1 ≤ i ≤ n.

By Propositions 6.1 and 6.2, it suffices to determine ⟨η1,1⟩ in order to compute the densities ⟨ηi,j⟩
for all i, j. Recall the formula for the weight of a □ in (4.7) and W□ in (4.10).

Theorem 6.3. The density of □’s in position (1, k) is given by

⟨η1,k⟩ =

n∑
i=1

w□(1, i)
L−n∑
j=1

W□(i)j−1 ZL−j,n

LZL,n
.

roof. By translation invariance, we can choose any k between 1 and L. So, we let k = L. Suppose
he nearest • to its left is in position (i, j). Then, by definition, (1, L) ∈ Ci and we get a contribution
f w□(1, i) from this □. Since there are L − n columns containing □’s, j ≥ n and there are L − 1 − j
olumns between the • in position (i, j) and the □ in position (1, L). By construction, there are no •’s
n any of these columns. Therefore, we get a contribution of W□(i) from each of these columns. By
gnoring all the columns after j, we obtain a restricted configuration in Aj,n, where the normalization
s that position (i, j) contains a •. Since the first j − 1 columns of the configuration can be chosen
ndependent of the columns j + 1 to L − 1, we obtain the desired result. □
15
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Fig. 6. An illustration of the types of currents being considered here.

Example 6.4. For L = 4 and n = 2, we compute the weights of states for which there is a □ at (1, 4)
from Example 4.6 to obtain

2p22 + 2p1q2 + 2p2q1 + 2p2q2 + 2q22 + p1p2 + q1q2,

where we have also considered the rotation of restricted configurations therein. From the formula
in Theorem 6.3, the numerator is

(p2 + q2)Z3,2 + (p2(p2 + q1) + q2(p1 + q2)) Z2,2.

lugging in Z3,2 = p1 + p2 + q1 + q2 and Z2,2 = 1, one easily sees that these two expressions are
he same.

.2. Currents

We will compute five kinds of currents. Two of these are analogues of computations in one
imension, namely the currents of •’s and □’s along the horizontal edge (i, j) – (i, j + 1), denoted

•(i, j) and J□(i, j) respectively. The total horizontal current for the • in row i is then the sum over
ll j of J•(i, j) and will be denoted J•(i). The next two currents are interesting for particles of type
’s since they perform nonlocal motion under transitions Lists (2) and (4). For any column j, we
ill calculate the motion of □’s passing from the left of (and including) column j to the right of it
nd vice versa. This will be the cumulative horizontal current across edges (i, j) – (i, j+ 1) summed
ver all i, denoted Jh□(j). Similarly, for any row k, the motion of □’s passing below (and including row
+ 1) to above it and vice versa gives the cumulative vertical current across all vertical edges from
ow i to row i + 1, denoted Jv□(i). See Fig. 6 for an illustration of these currents.

The following property of the weights will come in useful in the computation of currents.

emma 6.5. The weights associated to □’s satisfy

pkw□(i, k) − qkw□(i, k − 1) =

{
p1 · · · pn − q1 · · · qn if i = k,

0 if i ̸= k.

Proof. From (4.7), if i ≤ k − 1, the left hand side is

pk
(
p1 · · · pi−1qi+1 · · · qkpk+1 · · · pn

)
− qk

(
p1 · · · pi−1qi+1 · · · qk−1pk · · · pn

)
,

which is 0. Similarly, if i > k, the left hand side is

p
(
q · · · q p . . . p q . . . q

)
− q

(
q · · · q p . . . p q . . . q

)
,
k 1 k k+1 i−1 i+1 n k 1 k−1 k i−1 i+1 n

16



A. Ayyer and P. Nadeau European Journal of Combinatorics 103 (2022) 103511
which is again 0. If i = k, we get

pk
(
p1 · · · pk−1pk+1 · · · pn

)
− qk

(
q1 · · · qk−1qk+1 · · · qn

)
,

as desired. □

We now consider the currents of •’s. Since these only travel horizontally, we can only talk about
horizontal currents for these. We denote by J•(i, j) the current for the particle of type • between
sites (i, j) and (i, j + 1). More precisely, this is the number of •’s going from (i, j) to (i, j + 1) minus
the number of •’s going from (i, j + 1) to (i, j) per unit time, in the large time limit. By particle
conservation, this is independent of j. In terms of the stationary distribution, it is given by

J•(i, j) = pi

⟨
τi,j

n∑
k=1

ηk,j+1

⟩
− qi

⟨
τi,j+1

n∑
k=1

ηk,j

⟩
.

Theorem 6.6 ([9, Equation (5)]). For 1 ≤ i ≤ n and 1 ≤ j ≤ L, we have

J•(i, j) = (p1 · · · pn − q1 · · · qn)
ZL−1,n

LZL,n
.

Remark 6.7. We note that the formula for the current in [9, Equation (5)] may look superficially
different to that in Theorem 6.6. In particular, it does not have the prefactor p1 · · · pn − q1 · · · qn.
However, it is actually the same formula, the difference stemming from a different normalization
for ZL,n in [9].

We give an alternate proof of Theorem 6.6 directly using the exclusion process on the torus.

Proof. Particle • moves from site (i, j) to (i, j+1) with rate pi if there is no • in the j+1’th column,
or equivalently, if there is a □ in the j+1’th column. Similarly, the • moves from site (i, j+1) to (i, j)
with rate qi if there is a □ in the j’th column. Therefore, the current between sites (i, j) and (i, j+ 1)
in the stationary distribution depends only on the quantity

n∑
j=1

(
piw□(j, i) − qiw□(j, i − 1)

)
.

By Lemma 6.5, this is equal to p1 · · · pn − q1 · · · qn, which is independent of the configuration. The
weight of the rest of the configuration is the same as if these two columns (j and j + 1) were
deleted, and instead a single column with a • at position (i, j) was added. Therefore, summing over
all configurations gives ZL−1,n, completing the proof. □

Remark 6.8. It is instructive to compute this formula in the special case pi = p and qi = q for all
i. From Theorem 6.6 and Proposition 4.10, the horizontal current of •’s is easily calculated to be

J•(1, 1) = (pn − qn)
L − n

[n]p,qL(L − 1)
= (p − q)

L − n
L(L − 1)

.

Since the current in the one-dimensional ASEP defined in Section 3 is the same, we can calculate it
there as well. Note that in this case the uniform distribution on ΨL,n is clearly stationary. Then, by
a direct calculation, we get

(p − q)
(L − 2)!/(L − n − 1)!

L!/(L − n)!
,

which gives the same result as above.

Example 6.9. We compute the current J•(1, 1) for L = 4 and n = 2 using the weights in Example 4.6.
The numerator turns out to be

p
(
(p + q )2 + (p + q )(p + q )

)
− q

(
(p + q )(p + q ) + (p + q )2

)
,
1 2 1 1 2 2 1 1 1 2 2 1 1 2
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C

which simplifies to

(p1p2 − q1q2)(p1 + p2 + q1 + q2),

as expected from Theorem 6.6.

The total horizontal current J•(i) can now be computed directly from Theorem 6.6.

Corollary 6.10. For 1 ≤ i ≤ n, we have

J•(i) = (p1 · · · pn − q1 · · · qn)
ZL−1,n

ZL,n
.

We then deduce the horizontal current of □’s crossing columns j and j + 1, denoted by Jh□(j).

orollary 6.11. For any j ∈ [L],

Jh□(j) = −n(p1 · · · pn − q1 · · · qn)
ZL−1,n

LZL,n
.

Proof. From the fact that the two-dimensional ASEP projects onto the one-dimensional ASEP in
Proposition 3.2, Jh□(j) is the same as the current of □’s in the one-dimensional ASEP between sites j
and j+1. Clearly, this is the opposite of the total current of •’s. Since our particles are distinguishable
in the two-dimensional ASEP, we must sum over J•(i, j) for all i using Theorem 6.6. This then proves
the result. □

In terms of the stationary distribution, the current of □’s between rows i and i + 1 is given by

Jv□(i) =

L∑
j=1

(
pi⟨ηi,jτi,j−1⟩ − qi⟨ηi,jτi,j+1⟩

)
.

We will define the upward current Jv+□ (i) from row i to i + 1 and the downward current Jv−□ (i) from
row i to i − 1 by keeping track of one-sided motions, namely

Jv+□ (i) =

L∑
j=1

pi⟨ηi,jτi,j−1⟩, Jv−□ (i) =

L∑
j=1

qi⟨ηi,jτi,j+1⟩. (6.1)

Theorem 6.12. We have

Jv+□ (i) = p1 · · · pn
ZL−1,n

ZL,n
and Jv−□ (i) = q1 · · · qn

ZL−1,n

ZL,n
.

In particular, both are independent of i.

Proof. A particle □ at site (i, j) can only move upwards if there is a • at site (i, j − 1), and if so,
this happens with rate pi. In that case, (i, j) ∈ Ci and w□(i, i) = p1 · · · pi−1pi+1 . . . pn by (4.7), which
is independent of the configuration. Arguing as in the proof of Theorem 6.6, the weight of the rest
of the configuration is the same as if columns j − 1 and j are replaced by a single column with a •

at position (k, j − 1). Summing over all such configurations gives ZL−1,n and proves the formula for
Jv+□ . The argument for Jv−□ is entirely analogous. □

Example 6.13. We compute these currents for L = 4 and n = 2 using the weights in Example 4.6:
Starting from (6.1), the contributions to Jv+□ (1) come from configurations (b), (h), (i) and (j) and sum
to

p2
(
p1q2 + p21 + p1p2 + p1q1

)
.

Similarly, the contributions to Jv−□ (1) come from configurations (a), (b), (c) and (d) and give

q
(
q2 + p q + p q + q q

)
.
1 2 1 2 2 2 1 2

18
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We also have to consider all 4 rotations in the current computation and then this matches with
Theorem 6.12.

From Theorem 6.12, we immediately obtain the vertical current of □’s.

orollary 6.14. The vertical current of □’s is the same as the horizontal current of •’s, i.e.

Jv□(i) = J•(i) = (p1 · · · pn − q1 · · · qn)
ZL−1,n

ZL,n
.

The equality of the horizontal current of the •’s in Theorem 6.6 and the vertical current of the
□’s in Corollary 6.14 is a manifestly two-dimensional phenomenon. We call this the Scott Russell
phenomenon, for the linkage named after him shown in Fig. 1 which translates linear motion in one
direction to that in a perpendicular direction. We have proved the equivalence of these currents
combinatorially for the stationary distribution. It would be interesting to understand this out of
equilibrium as well.

For the sake of completeness, we compute the current of □’s across a horizontal edge. For the
fixed horizontal edge between sites (i, j) and (i, j+1), J□(i) is the current of □’s along that edge, just
s we defined the current for particles of type •. In terms of the stationary distribution, this is given
y

Jh□(i) =

⟨
ηi,j

n∑
k=1
k̸=i

qkτk,j+1

⟩
−

⟨
ηi,j+1

n∑
k=1
k̸=i

pkτk,j

⟩
.

heorem 6.15. Across a horizontal edge at row i, the current of □’s across that edge is given by

Jh□(i) = (p1 · · · pn − q1 · · · qn)
⟨ηi,1⟩L−1,n(L − 1)ZL−1,n

LZL,n
,

here the density of □’s on the right hand side is calculated in AL−1,n.

roof. There are two types of ways a □ at position (i, j) can cross a horizontal edge. The first is if
here is a • at (k, j − 1) or (k, j + 1), k ̸= i and a transition of type List (1) or List (3) takes place.
he second is if this □ is between •’s at rows k− 1 and k and a transition of type List (2) or List (4)
akes place. We will first show that the net current from the first type of transitions is zero.

For the first type, the □ at position (i, j) can move to (i, j + 1) is if there is a • in column j + 1
hich is not in row j and which moves backward. If this • belongs to the k’th row, then that □

elongs to Ck−1, and this transition happens with rate qk. Similarly, the backward current happens
ith rate pk if there is a • in the j’th column and row i ̸= k, in which case that □ belongs to Ck.
oth these transitions are clearly unaffected by the configurations in columns other than j and j+1.
herefore, using (4.7), we need to compute

n∑
k=1
k̸=i

(
qkw□(i, k − 1) − pkw□(i, k)

)
.

y Lemma 6.5, this is zero.
For the second type, assume that the □ at position (i, j) is between •’s at positions (k− 1, a) and

k, b). This □ moves horizontally to the right with rate pk if there is also a □ at position (k, b + 1).
imilarly, it moves horizontally to the left with rate qk−1 if there is also a □ at position (k−1, a−1).
e can now make a bijection between configurations contributing to the rightward and leftward
ovement of the □ at (i, j) as shown in Fig. 7. The positions of the □’s in columns a + 1, . . . , b − 1

in the configuration on the left move right by one step as we go to the configuration on the right;
all other positions outside this view are unchanged.

We now compute the difference in the forward and backward contributions in this pair of
configurations. The only weight that changes is that of the □ at (k, b + 1) on the left and (k − 1, a)
19
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o

W
b

Fig. 7. A bijection between contributions to the right and left current of the □ at (i, j).

n the right of Fig. 7. Leaving aside the other weights for the moment, we get

pkw□(k, k) − qk−1w□(k − 1, k − 2) = p1 · · · pn − q1 · · · qn.

e now complete the proof using ideas similar to that of Theorem 6.3. We can delete the column
+1 on the left or a on the right to obtain the same configuration in AL−1,n where a □ is at position

(i, j). Summing over all such configurations gives us ⟨ηi,1⟩L−1,n(L−1)ZL−1,n, proving the formula. □
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