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Abstract

AUC (Area under the ROC curve) is an important perfor-

mance measure for applications where the data is highly

imbalanced. Efficient AUC optimization is a challeng-

ing research problem as the objective function is non-

decomposable and non-continuous. Using a max-margin

based surrogate loss function, AUC optimization problem

can be approximated as a pairwise RankSVM learning prob-

lem. Batch learning algorithms for solving the kernelized

version of this problem suffer from scalability issues. There-

fore, recent years have witnessed an increased interest in

the development of online or single-pass algorithms that de-

sign a nonlinear classifier by maximizing the AUC perfor-

mance. However, on many real-world datasets, the AUC

performance of these classifiers was observed to be inferior

to that of the classifiers designed using batch learning algo-

rithms. Further, many practical imbalanced data classifica-

tion problems demand fast inference, which underlines the

need for designing sparse nonlinear classifiers. Motivated

by these observations, we design a scalable algorithm for

maximizing the AUC performance by greedily adding the

required number of basis functions into the classifier model.

The resulting sparse classifier performs faster inference and

its AUC performance is comparable with that of the classifier

designed using batch mode. Our experimental results show

that the level of sparsity achievable can be an order of mag-

nitude larger than that achieved by the Kernel RankSVM

model without significantly affecting the AUC performance.

1 Introduction.

In binary classification, a classifier is often trained by
optimizing a performance measure such as accuracy. If
the data is highly imbalanced, accuracy may not be
a good measure to optimize. The all-positive or all-
negative classifier may achieve good classification accu-
racy. But, this will result in misclassification of some
important or rare events which typically belong to a
minority class. Situations for which datasets are im-
balanced are not uncommon in real-world applications
and in such cases, classifiers are designed by optimizing
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measures other than accuracy [5].
Support Vector Machines (SVMs) have been very

effective on several real-world problems. Standard
SVM formulations for binary classification problem as-
sume that misclassification costs are equal for both the
classes. Therefore, SVMs are not suitable if the data
is strongly imbalanced. Lin et al. [16] proposed a sim-
ple extension of SVMs by using different penalization of
positive and negative examples. This approach is useful
if misclassification costs are known, which is typically
not the case in practice. It is thus necessary to use a
different measure for learning from imbalanced data.

AUC (Area Under ROC Curve) [17] is an important
performance measure and its optimization has been
very effective, especially when class distributions are
heavily skewed. However, computing the AUC is a
costly operation as it is written as a sum of pairwise
losses between examples from different classes, which
is quadratic in the number of training set examples.
Further, the AUC is not a continuous function on the
training set. This makes the optimization of the AUC
a challenging task.

More relevant to the work in this paper is the
large-scale Kernel RankSVM algorithm proposed by
Kuo et al. [14]. This batch learing algorithm, though
designed for solving a ranking problem, can be extended
to solve the AUC optimization problem. However,
kernel evaluations are a bottleneck in training Kernel
RankSVM. To alleviate this problem, it was proposed
to store the full kernel matrix. Although this reduces
repeated kernel evaluations, storage of the full kernel
matrix is an issue if the dataset sizes are very large.
Further, Kernel RankSVM algorithm may result in a
classifier which uses a large number of support vectors,
thereby incurring high inference cost. This makes kernel
RankSVM unsuitable for practical imbalanced data
classification problems which demand fast inference.

Many algorithms have been designed to optimize
the AUC using surrogate loss functions (see, for exam-
ple, Herschtal and Raskutti [9], Joachims [10], Rudin
and Schapire [18], Kotlowski et al. [13], Zhao et al. [21]).
Due to the high computational demands of the AUC or
its variants, most of these algorithms are either one-
pass algorithms or online algorithms which rely on sam-
pling. Zhao et al. [21] proposed an online AUC algo-
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rithm (OAM) which is based on the idea of reservoir
sampling. This idea helps to represent all the received
examples by the examples stored in buffers of fixed size.
Gao et al. [6] proposed a regression based algorithm for
one-pass AUC (OPAUC) optimization. This algorithm
maintains only the first and second order statistics of
training data in memory, thereby resulting in a stor-
age requirement which is independent of the training
dataset size. Both these algorithms learn linear clas-
sifiers and are not directly suitable to design complex
nonlinear decision boundaries, typically possible by us-
ing kernel classifiers.

Calders and Jaroszewicz [3] proposed the use of a
polynomial approximation for the AUC, which can be
computed in only one scan over the dataset. This ap-
proximation was used to design a linear classifier. Yang
et al. [20] proposed an online learning algorithm to op-
timize the AUC by learning a nonlinear classifier via
the kernel trick. This method, called online imbal-
anced learning with kernels (OILK), maintains a buffer
to store the informative support vectors. Two buffer
update policies, first-in-first-out and reservoir sampling
were investigated. As the cost of determining the AUC
is very large, most of these algorithms avoid the exact
computation of the AUC and resort to online or one-pass
approaches by making use of buffers to store the relevant
information. Although the storage requirements are
reduced for such methods, generalization AUC perfor-
mance of the resulting classifiers is not comparable with
that of the nonlinear classifiers designed using batch
learning algorithms on many real world datasets.

Motivated by the above observations, we propose
an algorithm to design a sparse nonlinear classifier by
maximizing the AUC using a max-margin based surro-
gate loss function and greedily adding the required num-
ber of basis functions into the classifier model [7], [8].
The AUC performance of the resulting sparse classi-
fier is comparable with that obtained by using a batch
learning algorithm. Further, we observed that the level
of sparsity achievable by this classifier can be an or-
der of magnitude larger than that achieved by Kernel
RankSVM without significant degradation in the AUC
performance. This helps to achieve significant speed-up
during inference. Due to the nature of our algorithm,
parallelization is possible and we demonstrate that sig-
nificant training speed-up is achievable by using a multi-
core version of the algorithm. A supplementary mate-
rial providing the details of efficient computations of
different quantities used in our algorithm is available at
http://drona.csa.iisc.ernet.in/~shirish/SDM2017/supplement.pdf.

A word about our notations. All vectors will be
column vectors and the row vectors will be denoted by a
superscript, T . The 2-norm of the vector x is denoted by

‖x‖. |J | denotes the cardinality of the set J. K denotes
the kernel matrix. KI,J refers to the submatrix of K
made of the rows indexed by I and the columns indexed
by J . Ki,· refers to the i-th row of K and K·,j denotes
the j-th column of K.

2 Problem Definition

Let the training data be denoted by D = P ∪N , where
P = {x+

i ,+1}pi=1, N = {x−j ,−1}nj=1 and x+
i ,x

−
j ∈ Rd.

Without loss of generality, we assume that p� n. We
will denote the qth training set example as xq. Let T
denote the ordered index set of pairs of positive and
negative examples in D. Clearly, |T | = pn. Let l =
p + n. We assume that the nonlinear decision function
f(·) is an element of a Reproducing Kernel Hilbert Space
(RKHS). That is, f is a linear combination of kernel
functions,
(2.1)

f(x) = wTφ(x) =

l∑
q=1

βqφ(xq)
Tφ(x) =

l∑
q=1

βqk(x,xq),

where φ(·) maps the data into a high dimensional space
and k(·, ·) denotes a kernel function. The AUC score
(or performance) of the function f on the dataset D is
defined as

AUC(f) =

∑p
i=1

∑n
j=1 I(f(x+

i ) > f(x−j ))

pn

= 1−
∑p
i=1

∑n
j=1 I(f(x+

i ) ≤ f(x−j ))

pn
(2.2)

where I(·) is the indicator function which out-
puts 1 if the argument is true and 0 otherwise.
Thus maximizing AUC(f) is equivalent to minimiz-
ing

∑p
i=1

∑n
j=1 I(f(x+

i ) ≤ f(x−j )). Writing f(xi) =

(Kβ)i and using a max-margin based surrogate loss
function (a hinge or a squared hinge loss), we get the
following two regularized formulations corresponding to
the two loss functions:

(2.3) min
β∈Rl

1

2
βTKβ+C

∑
(i,j)∈T

max(0, 1−(Kβ)i+(Kβ)j)

and
(2.4)

min
β∈Rl

1

2
βTKβ +

C

2

∑
(i,j)∈T

max(0, 1− (Kβ)i + (Kβ)j)
2

where C is a hyperparameter that controls the loss.
In this work, we focus on problem (2.4) as it uses a

continuously differentiable function and devise an effi-
cient algorithm to solve it. Unlike typical classification
problems where a loss function can be calculated for
every single training set example, the second term in
(2.4) involves losses defined over pairs of examples from
different classes. This makes solving the problem (2.4)
more challenging.
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3 Related Work

We now briefly review some of the related works for the
AUC optimization.

Many online algorithms have been proposed to
learn a linear classifier by maximizing the AUC score.
These algorithms include Online AUC Maximization
(OAM) [21] and Adaptive Online AUC Maximization
(AdaOAM) [4]. AUC optimization in online learning is
a challenging task as the computation of the AUC score
involves the sum of pairwise losses between instances
from opposite classes. To tackle this challenge, online
learning algorithms use the idea of buffer sampling
[21] [11]. A fixed size buffer is used to represent all
the observed data by storing some randomly sampled
examples in it. Kar et al. [11] introduced the idea
of stream subsampling with replacement as the buffer
update strategy. Although these online algorithms
have demonstrated good AUC performance by using
simple online gradient descent approaches, they do not
use the geometrical knowledge of the observed data.
AdaOAM overcomes this limitation by employing an
adaptive gradient method that exploits the knowledge
of historical gradients. Its variant, SAdaOAM was
proposed to design a sparse model in an online AUC
maximization task. Gao et al. [6] proposed a one-pass
optimization algorithm by considering squared error loss
for the AUC optimization. Due to the use of squared
error loss, the algorithm only needs to store the first and
second order statistics for the observed data.

A main drawback of the online methods discussed
above is that they learn a linear classifier and do not ex-
ploit the learning power of kernel methods. To address
this issue, Yang et al. [20] investigated Online Imbal-
anced Learning with Kernels (OILK) where informative
support vectors are stored in the buffer. Two buffer up-
date strategies, First-In-First-Out (FIFO) and Reser-
voir Sampling (RS) were investigated. By conducting
experiments on real-world datasets, it was demonstrated
that the kernel methods for AUC maximization per-
formed better than their linear classifier counterparts.
The proposed method [20] is however an online algo-
rithm and we observed that the generalization perfor-
mance of the resulting classifier was not comparable
with that of a batch learned nonlinear classifier on many
real-world datasets.

Joachims [10] presented a structural SVM frame-
work for optimizing the AUC in a batch mode. By
formulating (2.3) as a 1-slack structural SVM prob-
lem, the dual problem was solved by a cutting plane
method. The method, though initially designed for
linear classifiers, can be easily extended to learn non-
linear classifiers. Numerical experiments showed that,
for ranking learning problems, this method is slower

than other state-of-the-art methods that solve (2.3) di-
rectly [14] [15].

Learning to rank is an important supervised learn-
ing problem and has applications in a variety of do-
mains such as information retrieval and online adver-
tising. By assigning the same query number to all
the examples, the Kernel RankSVM problem, discussed
in [14], is same as (2.4). Kuo et al. [14] used trust re-
gion Newton method to solve this problem. This batch
learning method requires to store the full kernel matrix
as repeated kernel evaluations are bottleneck in Kernel
RankSVM. This method has two drawbacks: 1) It is
not scalable as the memory requirement is prohibitively
high for large datasets, and 2) The learned non-sparse
model results in computationally expensive predictions.

4 Our Approach: Sparse Kernel AUC

Our aim is to design a sparse nonlinear classifier model
for a binary classification problem with imbalanced data
distributions for the two classes. We now discuss our
approach to solve (2.4). A similar problem formula-
tion was used in [14] to solve the problem of learning to
rank and the algorithm designed there is also applicable
to our setting. Kuo et al. [14] alleviated the difficulty
of computing the loss term, which involves summation
over preference pairs, by using order-statistic trees. Al-
though the cost of computing the required quantities
was reduced to O(l log l) from O(l2), the kernel evalu-
ations amount to O(ld) time, which can be reduced to
O(l) if the kernel matrix K is maintained throughout
the optimization algorithm. In their implementation,
Kuo et al. [14] store the full kernel matrix K which is
a dense matrix of size l× l. However, for large datasets
it is impractical to store the full kernel matrix K in the
main memory. Further, for such huge datasets, the re-
sulting classifier may not be sparse, thereby making the
inference slow. It is therefore desired to devise a differ-
ent approach to solve (2.4) and design a sparse classifier.

Motivated by the success of the matching pursuit
approach, presented by Keerthi et al. [12] to design
sparse SVM classifiers, we propose a new and efficient
algorithm to solve (2.4) using matching pursuit ideas.
Starting with an empty model, the matching pursuit
algorithm uses a greedy approach to add a desired
(dmax) number of basis functions to the model, by
making use of the objective function decrease for basis
function selection. The algorithm requires to compute
and maintain the kernel matrix of size l× dmax (where
dmax is the user specified positive parameter whose
value can be about 5− 10% of the dataset size l) which
helps to reduce the memory requirement considerably.
For the dataset with l = 49, 990, we observed that
dmax ≈ 200 was sufficient to achieve very good AUC
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performance on the test set.
We also demonstrate that efficient computations of

the objective function in (2.4), gradient and Hessian-
vector product computations are done by using simple
techniques like sorting, binary search and hashing and
do not require the use of sophisticated data structures
such as order-statistic trees. As our experimental results
show, the proposed approach achieves comparable gen-
eralization performance using smaller number of basis
functions.

We now discuss the key components of our proposed
algorithm.

4.1 Reformulation: Borrowing the ideas presented
in [12], we maintain a set of greedily chosen kernel basis
functions to design a sparse nonlinear classifier. The
maximum cardinality of this set is denoted by dmax, a
user specified positive integer. Let J denote the index
set of these basis functions. In our experiments, we
choose J ⊆ {1, 2, . . . , l}. Having defined the set J , the
parameter vector w in (2.1) can be represented as

w =
∑
q∈J

βqφ(xq)

and the problem formulation in (2.4) can be written as
(4.5)

min
βJ∈R|J|

E(βJ ) ≡
βTJKJ,JβJ

2
+
C

2

∑
(i,j)∈T

max(0, 1−Ki,JβJ+Kj,JβJ )
2

Note that the Kernel RankSVM algorithm [14] solves
the following problem:
(4.6)

min
β∈Rl

1

2
βTKβ +

C

2

∑
(i,j)∈S

max(0, 1− (Kβ)i + (Kβ)j)
2

where S = {(i, j)|qi = qj , yi > yj} is the set of
preference pairs for queries q. This problem requires
either to store the full kernel matrixK or requires many
kernel evaluations, which is computationally expensive
for large datasets. On the other hand, the solution to
our problem (4.5) requires to store the matrix of size
l × dmax, which makes our approach scalable.

As our aim is to design a sparse nonlinear classifier,
we solve (4.5) using matching pursuit ideas [19], [12].
In this approach, starting with an empty model (J =
φ), a training example (also called a basis function)
is greedily chosen, using some criterion, from the set
{1, 2, . . . , l} \ J and included in the set J . The opti-
mization problem (4.5) is then solved with respect to
βJ . This procedure is repeated until |J | = dmax holds
true. Algorithm 1 gives the pseudo-code of this proce-
dure. We now give details related to step 3 (basis func-
tion selection) and step 5 (optimization with respect to
βJ) of this algorithm.

Algorithm 1: Sparse Classifier Design Algorithm

Input: D = {x+
i ,+1}pi=1 ∪ {x

−
j ,−1}nj=1, C, dmax

Output: J , βJ
1: J = φ
2: while |J | < dmax do
3: Select a new basis function j∗ ∈ {1, 2, . . . , l} \ J
4: J := J ∪ {j∗}
5: Solve (4.5) w.r.t βJ
6: end while

4.2 Basis Selection: We now discuss a systematic
and efficient procedure to select basis functions. Given
the basis function set J and the corresponding model
parameters βJ , a new basis function j∗ ∈ {1, 2, . . . , l}\J
is chosen such that its inclusion in the set J would result
in a maximum improvement in the objective function
in (4.5). A straightforward method is to choose every
q ∈ {1, 2, . . . , l}\J , solve (4.5) completely w.r.t. (βJ , βq)
and calculate the improvement in the objective function,
∆Eq. Step 3 of Algorithm 1 is,

j∗ = argminq∈{1,2,...,l}\J ∆Eq.

But solving (4.5) completely by adding every possible
basis function is computationally expensive as it re-
quires to solve a (|J |+1)-dimensional optimization prob-
lem for every candidate basis function. Instead, it may
be good idea to fix βJ and solve (4.5) using only βq, to
determine an approximate value of ∆Eq. This problem
is easy to solve as it is a one-dimensional problem:

min
βq

1

2

(
βTJ βq

)( KJ,J KJ,q

Kq,J Kq,q

)(
βJ
βq

)
+

C

2

∑
(i,j)∈T

max(0, 1− (Ki,J −Kj,J)βJ − (Ki,q −Kj,q)βq)
2.

(4.7)

For practical purposes, as suggested in [12], one can
do a few iterations of Newton-Raphson method on the
derivative of the objective function to get a near optimal
solution in O(l2) time.

If all j /∈ J are tried, then the complexity of
selecting a new basis function is O(l3) which is very
large. To speed up the basis function selection step,
one can simply choose κ random basis functions as
candidate basis functions. After some experiments, we
found that κ = 100 was a good choice.

4.3 Optimization: The function E(βJ) in (4.5) can
be optimized using any second order optimization
method. Each update step in the classical Newton
Method requires the computation of the Hessian and
its inverse, which are expensive both in terms of storage
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Algorithm 2: Truncated Newton Method

Input: J, current βJ
Output: Optimized βJ
1: β0

J = βJ , k = 0
2: while stopping condition is not satisfied at βkJ do
3: Compute a search direction dk by applying

Conjugate-Gradient method to solve
∇2E(βJ)d = −∇E(βJ)

4: Find αk satisfying Armijo backtracking
conditions

5: Update βk+1
J = βkJ + αkdk

6: k := k + 1
7: end while

and computations. Therefore, we resorted to Truncated
Newton Method. Algorithm 2 gives the details.

This method does not require explicit knowledge
of the Hessian matrix, ∇2E(βJ). Rather, it is enough
if we can provide matrix-vector products of the form
∇2E(βJ)v for any given vector v. Thus, the speed of
this method depends on the efficient computations of
the objective function valueE(βJ), its gradient∇E(βJ)
and Hessian-vector product ∇2E(βJ)v for any vector
v ∈ R|J|. If A denotes a pairwise indexing matrix
and AβJ

denotes the indexing matrix of violating pairs
which contribute to the loss function (details given in
the supplementary material), then by defining

(4.8) uβJ
= AT

βJ
AβJ

K·,JβJ ,

the problem in (4.5) can be re-written as

min
βJ

E(βJ ) ≡
1

2
βTJKJ,JβJ +

C

2
(βTJKT

·,J (uβJ − 2AT
βJ

eβJ ) + pβJ ).

(4.9)

where pβJ
is the number of violating pairs. This rewrit-

ing helps in computing E(βJ), ∇E(βJ) and ∇2E(βJ)v
efficiently as all of these quantities require the compu-
tation of uβJ

. By defining

(4.10) SV (βJ) = {(i, j) ∈ T | 1−Ki,JβJ + Kj,JβJ > 0}

and

SV +
i (βJ) ≡ {j | (j, i) ∈ SV (βJ)}, l+i (βJ) ≡ |SV +

i (βJ)|,
γ+i (βJ ,v) ≡

∑
j∈SV +

i (βJ )
KT
j,Jv,

SV −i (βJ) ≡ {j | (i, j) ∈ SV (βJ)}, l−i (βJ) ≡ |SV −i (βJ)|,
γ−i (βJ ,v) ≡

∑
j∈SV −i (βJ )

KT
j,Jv.

one can compute uβJ
efficiently (details given in the

supplementary material).
Lee et al. [15] and Airola et al. [1] used order-

statistic trees to efficiently compute the l+i (βJ) and
l−i (βJ) for Kernel RankSVM. The problem of maximiz-
ing the AUC does not require order-statistic trees. It is

Algorithm 3: Calculating l+i (βJ), l−i (βJ),
γ+i (βJ ,v), and γ−i (βJ ,v)

Input: K·,J , βJ , v, P, N
Output: l+i (βJ), l−i (βJ), γ+i (βJ ,v) and γ−i (βJ ,v)
1: scoreP = zeros(2, |P |), scoreN = zeros(2, |N |)
2: scoreP[1] = KiJ ∗ βJ , for all i ∈ P
3: scoreP[2] = KiJ ∗ v, for all i ∈ P
4: sort scoreP w.r.t to first row
5: scoreN[1] = KjJ ∗ βJ , for all j ∈ N
6: scoreN[2] = KjJ ∗ v, for all j ∈ N
7: sort scoreN w.r.t to first row
8: scorePsum = scoreP[2], scoreNsum = scoreN[2]
9: for i = 2 to |P | do

10: scorePsum[i] = scorePsum[i] + scorePsum[i-1]
11: end for
12: for i = |N | − 1 to 1 do
13: scoreNsum[i] = scoreNsum[i] + scoreNsum[i+1]
14: end for
15: for i = 1 to |P | do
16: score = (Ki,J ∗ βJ) -1
17: find the index k of scoreN using binary search

s.t. scoreN [k − 1] < score ≤ scoreN [k]
18: l−i (βJ) = length(k : |N |)
19: γ−i (βJ ,v) = scoreNsum[k]
20: end for
21: for j = 1 to |N | do
22: score = (Kj,J ∗ βJ) +1
23: find the index k of scoreP using binary search

s.t. scoreP [k] ≤ score < scoreP [k + 1]
24: l+j (βJ) = k

25: γ+j (βJ ,v) = scorePsum[k]
26: end for

enough to use sorting, searching and hashing methods.
The details are given in Algorithm 3.

For a given βJ , we define the set of ordered pairs
which contributes to the empirical loss of the objective
function in (4.5) as SV (βJ). For every example in
the training set, by finding out the set of violating
examples of the other class (SV + and SV −) and the
quantities γ+ and γ−, we can compute the empirical
loss term in (4.5). These computations can be done
efficiently by using sorting (Steps 1-7), hashing (Steps 9-
14) and searching (Steps 15-26). The complexity of this
algorithm is O(l(dmax + log l))1, which is better than
naive computation of pairwise losses in (4.5). Further,
in our experiments, we implemented steps 15-26 of
Algorithm 3 in multi-core setting. This resulted in a
significant speed up of our algorithm, which is evident

1ldmax is for computing K·,J and l log l is for sorting
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from the empirical evaluation discussed in the next
section.

We have not discussed the details of the Conjugate
Gradient iteration (Step 3 of Algorithm 2). The details
can be found in [2]. There are many variations around
it, all of them rely on Hessian vector multiplications. In
our implementation we used the minres function from
MATLAB to get the direction in Step 3 of Algorithm 2.

4.4 Computational Complexity: Assuming that
the kernel matrix K is stored in main memory, the
computation of the loss term in (4.5) will require
O(l(dmax + log l)) computation time. On the other
hand the corresponding term in (4.6), used by Kernel
RankSVM, requires the computation time of O(l2). For
large datasets it may not be feasible to store K in
main memory. Therefore, for such datasets, Kernel
RankSVM resorts to several block-wise computations
of K, which may result in increased training time.
This problem does not arise in our approach, as the
maximum sub-matrix of K that it needs to store is of
size l × dmax.

5 Empirical Evaluation

In this section, we discuss the experimental evaluations
of the proposed algorithm for sparse nonlinear classifier
design.2 In particular, we demonstrate that the pro-
posed Sparse Kernel AUC algorithm results in a sparser
classifier and gives comparable generalization perfor-
mance with the Kernel RankSVM algorithm. Further,
we also observed that batch learning algorithms per-
form better (in terms of AUC performance) than online
learning algorithms on majority of real world datasets.

In our experiments, we used the Gaussian kernel
function, K(xi, xj) = exp(− 1

2σ2 ‖xi − xj‖2) where σ >
0, for all the experiments. The kernel parameter σ
and regularization hyper-parameter C were tuned using
cross-validation. For this, a grid of (C, σ) values, where
C ∈ {10−5, 10−4, ..., 105} and σ ∈ {2−5, 2−4, ..., 25} was
searched. The results reported correspond to the (C, σ)
pair which gave the best validation set performance.
The value of dmax was set to l. The proposed algorithm
was terminated when |J | = dmax was true or there
was not a significant change in the validation set AUC
performance. As our results demonstrate, the number of
basis functions selected by the proposed algorithm was
less than 10 % of the training data set size on most of
the datasets. All the experiments were performed using
MATLAB implementations on a Intel(R) Xeon(R) CPU
E5620@2.40GHz machine with 16 cores and 16 GB main

2The MATLAB code for the proposed algorithm is available at
https://www.dropbox.com/s/6e4fsj2hlq1b71n/Code.rar?dl=0

memory under Linux.
We compare the following methods: 1) Sparse Ker-

nel AUC: our proposed sparse AUC optimization ap-
proach discussed in Section 4, 2) Kernel RankSVM:
an extension of Kernel RankSVM method, discussed
in [14], to the AUC optimization problem, 3) Online
Imbalanced Learning with Kernels (OILK) [20], and 4)
Adaptive Gradient Method for Online AUC Maximiza-
tion (AdaOAM) [4]. The performance of these methods
was compared in terms of the AUC score on the test set
(if a test set is available). If the test set is not explicitly
available, AUC score on validation set, averaged over
4 independent runs of five-fold splits of each dataset,
is reported. Since the aim of this paper is to design a
nonlinear sparse classifier model using AUC optimiza-
tion, we report the number of basis functions present in
the final model for batch learning methods: Sparse Ker-
nel AUC and Kernel RankSVM. The other two meth-
ods use an online learning approach and it may not be
fair to compare the number of basis functions obtained
using them with those obtained using batch learning
methods. CPU time comparison of batch learning meth-
ods, Sparse Kernel AUC and Kernel RankSVM, was not
done as the implementations were done using MATLAB
and C programming language respectively. The compu-
tational complexity of these two methods was discussed
in Section 4.4.

We used 14 benchmark datasets to compare our
proposed method, Sparse Kernel AUC, with the other
three methods. The dataset details are given in Table 1.
The datasets are available at UCI3 or LIBSVM4 dataset
repositories. Some multi-class datasets (glass, vehicle
and poker) were converted to class imbalanced binary
datasets. For some datasets mentioned in Table 1, test
set was not available.

Effect of retraining and κ: To make Algorithm 1
efficient, it may be a good idea to perform optimization
in step 5 only from time to time. We experimented with
3 retraining strategies where step 5 is executed after
the addition of 1) every basis function (i.e always), 2)
|J | = b20.25c basis functions and 3) |J | = 2j , j = 0, . . .,
basis functions. The results are presented in Figure 1. It
is clear from this figure that, always retraining increases
the training time. Similar generalization performance
is achieved in other cases of retraining. We found that
b20.25c was a good choice across many datasets and used
it in our experiments.

As mentioned in Section 4.2, instead of choosing a
possible basis function from {1, 2, . . . , l} \ J , we chose a
subset κ of examples from this set as possible candidates

3https://archive.ics.uci.edu/ml/datasets.html
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/
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Datasets l Test set size d n/p

sonar 208 - 60 1.144
glass 214 - 9 2.057

ionosphere 351 - 34 1.785
balance 625 - 4 11.755

australian 690 - 14 1.247
vehicle 846 - 18 3.251

fourclass 862 - 2 1.807
svmguide3 1,243 - 22 3.199

a2a 2,265 - 123 2.959
magic04 19,020 - 10 1.843
segment 210 2,100 19 6.000
satimage 4,435 2,000 36 9.279

ijcnn1 49,990 91,701 22 10.0
poker 25,010 1,000,000 11 20.0

Table 1: Details of datasets

for basis functions. Different values of κ (1, 10, and
100) were tried. The results are shown in Figure 2.
Although these 3 values of κ resulted in similar steady
state generalization performance, it was observed that
for κ = 100, steady state generalization performance
was achieved faster. So, κ = 100 was a good choice.

Discussion: From Tables 2 and 3, we observe
that the generalization performance of the proposed
Sparse Kernel AUC method is comparable with that
of the Kernel RankSVM method. A small degradation
in the performance of Sparse Kernel AUC method is
due to reduced model complexity. Both these batch
learning methods perform significantly better than the
OILK method on ionosphere, fourclass and satimage
datasets. The kernel based methods, Sparse Kernel
AUC, Kernel RankSVM andOILK perform better than
linear classifier based method (AdaOAM) on majority
of the datasets.

The proposed method required smaller number of
basis functions than those required by Kernel RankSVM
to achieve comparable AUC performance. Thus the
proposed method is recommended for designing sparse
classifiers for large datasets. Note that the reduction in
the number of basis functions is two orders of magnitude
in case of some large datasets (magic04, poker and
ijcnn1).

Experiments in Multi-core Setting. To study
the speed-up of our proposed algorithm in multi-core
environment, we parallelized steps 15-26 of Algorithm 3.
The speed-up was studied on three large datasets by
gradually increasing the number of cores from 1 to 16.
Figure 3 depicts the time comparison. It is clear from
this figure that significant speed-up can be obtained by
running our method in multi-core environment. The
speed-up is noticeable on large datasets like ijcnn1.

Detailed investigation is however needed to study the
parallelization of the complete proposed algorithm.

Figure 3: Effect of increasing the numbers of core on
time is shown for 3 benchmark datasets.

6 Conclusion

This paper studied a new and efficient learning algo-
rithm to design a sparse nonlinear classifier using AUC
maximization. The algorithm tackles the challenge of
larger training times of kernel methods by greedily
adding the required number of basis functions in the
model. We demonstrated that the resulting sparse clas-
sifier achieved comparable generalization performance
with that achieved by Kernel RankSVM. On many large
datasets, it was observed that the proposed algorithm
results in using significantly small number of basis func-
tions in the model. We also demonstrated that batch
learning algorithms for AUC optimization perform bet-
ter than online algorithms on many datasets. We are
currently investigating the extension of these ideas to a
distributed setting.
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Figure 1: Three different retraining strategies showing a different trade-off between AUC and time, always
retraining is too time consuming.
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