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Abstract— It was shown recently that estimating the Shannon
entropy H( p) of a discrete k-symbol distribution p requires
�(k/ log k) samples, a number that grows near-linearly in the
support size. In many applications, H( p) can be replaced
by the more general Rényi entropy of order α and Hα( p).
We determine the number of samples needed to estimate Hα( p)

for all α, showing that α < 1 requires a super-linear, roughly
k1/α samples, noninteger α > 1 requires a near-linear k samples,
but, perhaps surprisingly, integer α > 1 requires only �(k1−1/α)
samples. Furthermore, developing on a recently established
connection between polynomial approximation and estimation
of additive functions of the form

∑
x f ( px), we reduce the

sample complexity for noninteger values of α by a factor of log k
compared with the empirical estimator. The estimators achieving
these bounds are simple and run in time linear in the number
of samples. Our lower bounds provide explicit constructions of
distributions with different Rényi entropies that are hard to
distinguish.

Index Terms— Entropy estimation, minimax lower bounds,
sample complexity, sublinear algorithms.

I. INTRODUCTION

A. Shannon and Rényi Entropies

One of the most commonly used measure of randomness of
a distribution p over a discrete set X is its Shannon entropy

H (p)
def=

∑

x∈X
px log

1

px
.

The estimation of Shannon entropy has several applications,
including measuring genetic diversity [37], quantifying neural
activity [29], [32], network anomaly detection [20], and others.
It was recently shown that estimating the Shannon entropy
of a discrete distribution p over k elements to a given addi-
tive accuracy requires �(k/ log k) independent samples from
p [33], [41]; see [16], [43] for subsequent extensions. This
number of samples grows near-linearly with the alphabet size
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and is only a logarithmic factor smaller than the �(k) samples
needed to learn p itself to within a small total variation
distance.

A popular generalization of Shannon entropy is the Rényi
entropy of order α ≥ 0, defined for α �= 1 by

Hα(p)
def= 1

1 − α
log

∑

x∈X
pα

x

and for α = 1 by

H1(p)
def= lim

α→1
Hα(p).

It was shown in the seminal paper [36] that Rényi entropy of
order 1 is Shannon entropy, namely H1(p) = H (p), and for
all other orders it is the unique extension of Shannon entropy
when of the four requirements in Shannon entropy’s axiomatic
definition, continuity, symmetry, and normalization are kept
but grouping is restricted to only additivity over independent
random variables (c f. [13]).

Rényi entropy too has many applications. It is often used
as a bound on Shannon entropy [12], [26], [29], and in many
applications it replaces Shannon entropy as a measure of
randomness [3], [7], [24]. It is also of interest in its own right,
with diverse applications to unsupervised learning [15], [44],
source adaptation [22], image registration [21], [28], and
password guess-ability [3], [10], [35] among others. In par-
ticular, the Rényi entropy of order 2, H2(p), measures the
quality of random number generators [19], [30], determines the
number of unbiased bits that can be extracted from a physical
source of randomness [6], [14], helps test graph expansion [8]
and closeness of distributions [5], [34], and characterizes the
number of reads needed to reconstruct a DNA sequence [27].

Motivated by these and other applications, unbiased and
heuristic estimators of Rényi entropy have been studied in
the physics literature following [9], and asymptotically con-
sistent and normal estimates were proposed in [18] and [45].
However, no systematic study of the complexity of estimating
Rényi entropy is available. For example, it was hitherto
unknown if the number of samples needed to estimate the
Rényi entropy of a given order α differs from that required
for Shannon entropy, or whether it varies with the order α, or
how it depends on the alphabet size k.

B. Definitions and Results

We answer these questions by showing that the number
of samples needed to estimate Hα(p) falls into three differ-
ent ranges. For α < 1 it grows super-linearly with k, for
1 < α �∈ N it grows almost linearly with k, and most
interestingly, for the popular orders 1 < α ∈ N it grows

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2022 at 06:39:00 UTC from IEEE Xplore.  Restrictions apply. 



ACHARYA et al.: ESTIMATING RENYI ENTROPY OF DISCRETE DISTRIBUTIONS 39

as �(k1−1/α), which is much less than the sample complexity
of estimating Shannon entropy.

To state the results more precisely we need a few definitions.
A Rényi-entropy estimator for distributions over support set X
is a function f : X ∗ → R mapping a sequence of samples
drawn from a distribution to an estimate of its entropy. The
sample complexity of an estimator f for distributions over k
elements is defined as

S f
α (k, δ, ε)

def= min
n

{
n : p

{|Hα(p) − f
(
Xn) | > δ

}
< ε,

∀p with ‖p‖0 ≤ k} ,

i.e., the minimum number of samples required by f to
estimate Hα(p) of any k-symbol distribution p to a given
additive accuracy δ with probability greater than 1 − ε. The
sample complexity of estimating Hα(p) is then

Sα(k, δ, ε)
def= min

f
S f
α (k, δ, ε),

the least number of samples any estimator needs to esti-
mate Hα(p) for all k-symbol distributions p, to an additive
accuracy δ and with probability greater than 1 − ε. This is
a min-max definition where the goal is to obtain the best
estimator for the worst distribution.

The desired accuracy δ and confidence 1 − ε are typically
fixed. We are therefore most interested1 in the dependence of
Sα(k, δ, ε) on the alphabet size k and omit the dependence
of Sα(k, δ, ε) on δ and ε to write Sα(k). In particular, we
are interested in the large alphabet regime and focus on the
essential growth rate of Sα(k) as a function of k for large k
with fixed δ and ε. Using the standard asymptotic notations, let
Sα(k) = O(kβ) indicate that for some constant c which may
depend on α, δ, and ε, for all sufficiently large k, Sα(k, δ, ε) ≤
c·kβ . Similarly, Sα(k) = �(kβ) adds the corresponding �(kβ)
lower bound for Sα(k, δ, ε), for all sufficiently small δ and ε.

Finally, extending the �̃ notation,2 we let Sα(k) = ∼∼
� (kβ)

indicate that for every sufficiently small ε and arbitrary η > 0,
there exist c and δ depending on η such that for all k
sufficiently large Sα(k, δ, ε) > ckβ−η, namely Sα(k) grows
polynomially in k with exponent not less than β−η for δ ≤ δη.

We show that Sα(k) behaves differently in three ranges of α.
For 0 ≤ α < 1,

∼∼
�
(

k1/α
)

≤ Sα(k) ≤ O

(
k1/α

log k

)
,

namely the sample complexity grows super-linearly in k and
estimating the Rényi entropy of these orders is even more
difficult than estimating the Shannon entropy. In fact, the upper
bound follows from a corresponding result on estimation of
power sums considered in [16] and [43] which uses the best
polynomial approximation based estimator (see Section III-C
for further discussion) and is proved in Theorem 13; the lower
bound is proved in Theorem 22.

1Whenever a more refined result indicating the dependence of sample
complexity on both k and δ is available, we shall use the more elaborate
Sα(k, δ, ε) notation.

2The notations Õ , �̃, and �̃ hide poly-logarithmic factors.

Fig. 1. Exponent of k in Sα(k) as a function of α.

For 1 < α /∈ N,

∼∼
� (k) ≤ Sα(k) ≤ O

(
k

log k

)
,

namely as with Shannon entropy, the sample complexity grows
roughly linearly in the alphabet size. Once again, the upper
bound uses the aforementioned polynomial approximation
estimator of [16] and [43] and is proved in Theorem 12; the
lower bound is proved in Theorem 21.

For 1 < α ∈ N,

Sα(k, δ, ε) = �
(

k1−1/α
)
,

and in particular, the sample complexity is strictly sublinear
in the alphabet size. The upper and lower bounds are shown
in Theorems 11 and 15, respectively. Unlike the previous
two cases, the upper bound for integer α > 1 is attained
by a simple bias-corrected version of the empirical estimator.
Figure 1 illustrates our results for different ranges of α.

Of the three ranges, the most frequently used, and coinci-
dentally the one for which the results are most surprising, is
the last with α = 2, 3, . . .. Some elaboration is in order.

First, for all integral α > 1, Hα(p) can be estimated with
a sublinear number of samples. The most commonly used
Rényi entropy, H2(p), can be estimated within δ using just
�
(√

k
)

samples, and hence Rényi entropy can be estimated
much more efficiently than Shannon Entropy, a useful property
for large-alphabet applications such as language processing
genetic analysis.

Also, note that Rényi entropy is continuous in the order α.
Yet the sample complexity is discontinuous at integer orders.
While this makes the estimation of the popular integer-order
entropies easier, it may seem contradictory. For instance, to
approximate H2.001(p) one could approximate H2(p) using
significantly fewer samples. The reason for this is that the
Rényi entropy, while continuous in α, is not uniformly contin-
uous. In fact, as shown in Example 2, the difference between
say H2(p) and H2.001(p) may increase to infinity when the
alphabet-size increases.

While the bounds for sample complexity described above
capture the essence of our results, our complete results are
more elaborate. For the case of integer α > 1, we provide a
complete characterization of Sα(k, δ, ε) including the precise
dependence on k as well as δ for every k greater than a
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constant and δ smaller than a constant. For noninteger α, our
upper bound reflects the dependence of Sα(k, δ, ε) on both k
and δ, but holds only in the large alphabet regime when k is
sufficiently large for a fixed δ and ε. The exact characterization
of sample complexity for every k and δ for noninteger α
remains open.

In the conference version [1] of this paper, weaker upper
bounds for the case of noninteger α were obtained using
the empirical estimator which simply plugs-in the normalized
empirical-frequency in the formula for entropy. In this ver-
sion, we provide a complete characterization of the sample
complexity of the empirical estimator for every k greater than
a constant and δ smaller than a constant. In particular, we show
that the empirical estimator requires strictly more samples than
the polynomial approximation estimator, in general.

It should also be noted that the estimators achieving the
upper bounds in this paper are simple and run in time linear
in the number of samples. Furthermore, the estimators are
universal in that they do not require the knowledge of k.
On the other hand, the lower bounds on Sα(k) hold even if
the estimator knows k.

C. The Estimators

The power sum of order α of a distribution p over X is

Pα(p)
def=

∑

x∈X
pα

x ,

and is related to the Rényi entropy for α �= 1 via

Hα(p) = 1

1 − α
log Pα(p).

Hence estimating Hα(p) to an additive accuracy of ±δ is
equivalent to estimating Pα(p) to a multiplicative accuracy
of 2±δ·(1−α). Furthermore, if δ(α − 1) ≤ 1/2 then estimating
Pα(p) to multiplicative accuracy of 1 ± δ(1 − α)/2 ensures a
±δ additive accurate estimate of Hα(p).

We construct estimators for the power-sums of distributions
with a multiplicative-accuracy of (1 ± δ) and hence obtain
an additive-accuracy of �(δ) for Rényi entropy estimation.
We consider the following three different estimators for dif-
ferent ranges of α and with different performance guarantees.

a) Empirical estimator: The empirical, or plug-in, esti-
mator of Pα(p) is given by

P̂e
α

def=
∑

x

(
Nx

n

)α

. (1)

For α �= 1, P̂e
α is a not an unbiased estimator of Pα(p).

We show in Corollary 27 that for α < 1 the sample complexity

of the empirical estimator is �

(
max

{( k
δ

) 1
α , k

1−α
α

δ2

})
and in

Corollary 25 that for α > 1 it is �

(
max

{
k
δ , k

α−1
α

δ2

})
.

b) Bias-corrected estimator: For integral α > 1, the
bias-corrected estimator for Pα(p) is

P̂u
α

def=
∑

x

Nα
x

nα
, (2)

where for integers N and r > 0, Nr def= N(N − 1) . . . (N −
r + 1). A variation of this estimator was proposed first in [4]
for estimating moments of frequencies in a sequence using
random samples drawn from it. Corollary 16 shows that for
1 < α ∈ N, P̂u

α estimates Pα(p) within a factor of 1± δ using

�

(
k

α−1
α

δ2

)
samples.

c) Polynomial approximation estimator: To obtain a log-
arithmic improvement in Sα(k), we consider the polynomial
approximation estimator proposed in [16] and [43] for different
problems, concurrently to a conference version [1] of this
paper. The polynomial approximation estimator first considers
the best polynomial approximation of degree d to yα for the
interval y ∈ [0, 1] [39]. Suppose this polynomial is given by
a0+a1 y+a2y2+. . .+ad yd . We roughly divide the samples into
two parts. Let N ′

x and Nx be the multiplicities of x in the first
and second parts respectively. The polynomial approximation
estimator uses the empirical estimate of pα

x for large N ′
x , but

estimates a polynomial approximation of pα
x for a small N ′

x ;
the integer powers of px in the latter in turn is estimated using
the bias-corrected estimator.

The estimator is roughly of the form

P̂d,τ
α

def=
∑

x :N ′
x ≤τ

(
d∑

m=0

am(2τ )α−m N
m
x

nα

)
+

∑

x :N ′
x >τ

Nα
x

nα
, (3)

where d and τ are both O(log n) and chosen appropriately.
Theorem 12 and Theorem 13 show that for α > 1 and α < 1,
respectively, the sample complexity of P̂d,τ

α is O(k/δ1/α log k)

and O(k
1
α /δ1/α log k), when k is sufficiently large (depending

on δ), resulting in a reduction in sample complexity of
O(log k) over the empirical estimator.

Note that while the results described above characterize
Sα(k, δ, ε) for every k and δ only for the case of integer α > 1,
and the general problem of characterizing Sα(k, δ, ε) remains
open, we identify the exponent of k in Sα(k) for every α, i.e.,
we can characterize the limit

Eα = lim
k→∞

log Sα(k, δ, ε)

log k

for every fixed δ and ε and show that

Eα =

⎧
⎪⎨

⎪⎩

1
α , 0 < α < 1,

1, 1 < α /∈ �,

1 − 1
α , 1 < α ∈ �.

Furthermore, the empirical estimator attains the optimal expo-
nent for α /∈ �, but has a suboptimal exponent for 1 < α ∈ �.
In this latter regime, the bias-corrected estimator attains the
optimal exponent. While the exponent captures a very coarse-
level behavior of the sample complexity Sα(k, δ, ε), it is
an important indicator of the behavior in the large alphabet
regime. In fact, we provide a complete characterization of
the dependence of sample complexity of the empirical esti-
mator on k and δ for every α �= 1 and that of the bias-
corrected estimator for integer α > 1. results. Our results

are summarized in Table I. Note that the
∼∼
� form of our

general lower bounds is interesting for the large alphabet case,
when k is sufficiently large for a fixed δ. In Theorem 15,
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TABLE I

PERFORMANCE OF ESTIMATORS AND GENERAL LOWER BOUNDS FOR ESTIMATING RÉNYI ENTROPY

a simple alternative lower bound is established for α > 1

showing that Sα(k, δ, ε) ≥ �

(
k

α−1
α

δ2

)
. A similar lower bound

for α < 1 showing Sα(k, δ, ε) ≥ �

(
k

1−α
α

δ2

)
is established in

Theorem 26. When α > 1 and k ≤ δ−α or when 1/2 ≤ α < 1
and k ≤ δ

1−2α
α these bounds are tight, and show that the

empirical estimator attains the optimal sample complexity up
to constant factors. However, the polynomial approximation
estimator strictly outperforms the empirical estimator in the
large alphabet regime; the latter does not even attain the
optimal exponent in the dependence of sample complexity on k
for integer α > 1. We have only obtained the results for the
polynomial approximation in this large alphabet regime, and
the problem of characterizing the exact sample complexity
of polynomial approximation estimator remains open, along
with that of characterizing the exact sample complexity of
estimating Hα(p) for noninteger α > 0.

D. Organization

The rest of the paper is organized as follows. Section II
presents basic properties of power sums of distributions and
moments of Poisson random variables, which may be of
independent interest. Upper bounds for sample complexity
of our proposed estimators are given in Section III, and
examples and simulation of the proposed estimators are given
in Section IV. Section V contains general lower bounds for
the sample complexity of estimating Rényi entropy and lower
bounds for the sample complexity of the empirical estimator.
Furthermore, in the Appendix we analyze the performance
of the empirical estimator for power-sum estimation with an
additive-accuracy.

II. TECHNICAL PRELIMINARIES

A. Bounds on Power Sums

Consider a distribution p over [k] = {1, . . . , k}. Since Rényi
entropy is a measure of randomness (see [36] for a detailed
discussion), it is maximized by the uniform distribution and
the following inequalities hold:

0 ≤ Hα(p) ≤ log k, α �= 1,

or equivalently

1 ≤ Pα(p) ≤ k1−α, α < 1, (4)

and

k1−α ≤ Pα(p) ≤ 1, α > 1. (5)

Furthermore, for α > 1, Pα+β(p) and Pα−β(p) can be bounded
in terms of Pα(p), using the monotonicity of norms and of
Hölder means (see, for instance, [11]).

Lemma 1:

(i) For every α ≥ 0 and β ≥ 0,

Pα+β(p) ≤ Pα(p)
α+β

α .

(ii) For every α ≥ 0,

P2α(p) ≤ Pα(p)2.

(iii) For α > 0 and 0 ≤ β ≤ α,

Pα−β(p) ≤ k
β
α Pα(p)

α−β
α .

(iv) For α ≥ 1 and 0 ≤ β ≤ α,

Pα+β(p) ≤ k(α−1)(α−β)/α Pα(p)2,

and

Pα−β(p) ≤ kβ Pα(p).

Proof: (i) holds by the monotonicity of norms; (ii) follows
upon choosing α = β. For (iii) note that by the monotonicity
of Hölder means

(
1

k

∑

x

pα−β
x

) 1
α−β

≤
(

1

k

∑

x

pα
x

)1
α

,

which yields (iii) by rearranging the terms. Property (iv) is
obtained by (i) and (iii) together with (5).

B. Bounds on Moments of a Poisson Random Variable

Let Poi(λ) be the Poisson distribution with parameter λ.
We consider Poisson sampling where N ∼ Poi(n) samples
are drawn from the distribution p and the multiplicities used
in the estimation are based on the sequence X N = X1, . . . , X N

instead of Xn . Under Poisson sampling, the multiplicities Nx

are distributed as Poi(npx) and are all independent, leading
to simpler analysis. To facilitate our analysis under Poisson
sampling, we note a few properties of the moments of a
Poisson random variable.

We start with the expected value and the variance of falling
powers of a Poisson random variable.
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Lemma 2: Let X ∼ Poi(λ). Then, for all r ∈ N

E
[
Xr ] = λr

and

Var
[
Xr ] ≤ λr ((λ + r)r − λr ) .

Proof: The expectation is

E
[
Xr ] =

∞∑

i=0

Poi(λ, i) · i r

=
∞∑

i=r

e−λ · λi

i ! · i !
(i − r)!

= λr
∞∑

i=0

e−λ · λi

i !
= λr .

The variance satisfies

E

[
(Xr )2

]
=

∞∑

i=0

Poi(λ, i) · (i r )2

=
∞∑

i=r

e−λ · λi

i !
i !2

(i − r)!2

= λr
∞∑

i=0

e−λ · λi

i ! · (i + r)r

= λr · E
[
(X + r)r ]

≤ λr · E

⎡

⎣
r∑

j=0

(
r

j

)
X j · rr− j

⎤

⎦

= λr ·
r∑

j=0

(
r

j

)
· λ j · rr− j

= λr (λ + r)r ,

where the inequality follows from

(X + r)r =
r∏

j=1

[(X + 1 − j) + r ] ≤
r∑

j=0

(
r

j

)
· X j · rr− j .

Therefore,

Var
[
Xr ] = E

[
(Xr )2

]
− [ E Xr ]2

≤ λr · ((λ + r)r − λr ) .

The next result establishes a bound on the moments of a
Poisson random variable.

Lemma 3: For β > 0 and X ∼ Poi(λ), there exists a
constant Cβ depending only on β such that

E
[
Xβ

] ≤ Cβ max{λ, λβ }.
Proof: For λ ≤ 1,

E
[
Xβ

] =
∞∑

i=1

e−λ λi

i ! · iβ = λ ·
∞∑

i=1

e−λ λi−1

i ! iβ

≤ λ

∞∑

i=1

iβ

i ! ,

which proves the claim since the summation on the right-side
is bounded.

For λ > 1, let Z = max{λ1/β, λ}. Then,

E

[
Xβ

Zβ

]
≤ E

[(
X

Z

)�β�
+
(

X

Z

)�β� ]

= 1

Z �β�
�β�∑

i=1

λi
{�β�

i

}
+ 1

Z �β�
�β�∑

i=1

λi
{�β�

i

}

≤
�β�∑

i=0

{�β�
i

}
+

�β�∑

i=0

{�β�
i

}
,

where
{m

i

}
denotes the Stirling number of the second kind.

The first inequality follows upon considering the two cases
X ≤ Z and X > Z , the equality uses a well-known formula
for integer moments of a Poisson random variable, and the
second inequality holds since λ > 1 and λ/Z ≤ 1. Multiplying
both sides by Zβ yields the bound.3

We close this section with a bound for |E[Xα ]−λα|, which
will be used in the next section and is also of independent
interest.

Lemma 4: For X ∼ Poi(λ), there exists a constant Cα

depending only on α such that

∣∣E
[
Xα

]− λα
∣∣ ≤

{
Cα max{λ, λα}, λ < 1,

Cαλα−1, λ ≥ 1.

In particular,

∣∣E
[
Xα

]− λα
∣∣ ≤

{
Cα α < 1,

Cα

(
1 + λα−1

)
, α > 1.

Proof: For λ < 1, the claimed bound simply follows by
Lemma 3 upon noting that

∣∣E
[
Xα

]− λα
∣∣ ≤ E

[
Xα

]+ λα.

Also, for α ≤ 1, (1 + y)α ≥ 1 + αy − y2 for all y ∈ [−1,∞].
Hence,

Xα = λα

(
1 +

( X

λ
− 1

))α

≥ λα

(
1 + α

( X

λ
− 1

)
−
( X

λ
− 1

)2
)

.

Taking expectations on both sides,

E
[
Xα

] ≥ λα

(
1 + αE

[
X

λ
− 1

]
− E

[( X

λ
− 1

)2
])

= λα

(
1 − 1

λ

)
.

Since xα is a concave function and X is nonnegative, the
previous bound yields

∣∣E
[
Xα

]− λα
∣∣ = λα − E

[
Xα

] ≤ min
{
λα, λα−1

}
,

which implies our claimed bound for α ≤ 1.

3All the constants in this proof can be shown to be less than e + O(ββ).
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It remains to establish the bound for the case α > 1 and
λ ≥ 1. For this case, observe that

(
X

λ

)α

=
(

1 + X − λ

λ

)α

≤ e
α(X−λ)

λ .

Taking expectation on both sides,

E[Xα] ≤ λαe−α
E[eαX/λ] = λαe−αeλ(eα/λ−1).

Furthermore by convexity, E[Xα] ≥ λα . Hence,

|E[Xα] − λα| = E[Xα] − λα

≤ λα
[
e−αeλ(eα/λ−1) − 1

]

≤ eeα
λα−1,

where the last inequality holds since for λ ≥ 1

λ(eα/λ − 1) ≤ α + (eα/λ),

and hence

λ
(

e−αeλ(eα/λ−1) − 1
)

≤ λ
(

e
eα
λ − 1

)

≤ eα + 1

λ

(
eeα − 1 − eα

)

≤ eeα
.

The weaker alternative form follows since for α < 1 and
λ > 1, λα−1 ≤ 1.

C. Polynomial Approximation of xα

In this section, we review a bound on the error in approxi-
mating xα by a d-degree polynomial over a bounded interval.
Let Pd denote the set of all polynomials of degree less than or
equal to d over R. For a continuous function f (x) and λ > 0,
let

Ed( f, [0, λ]) def= inf
q∈Pd

max
x∈[0,λ] |q(x) − f (x)|.

Lemma 5 [39]: There is a constant c′
α such that for any

d > 0,

Ed (xα, [0, 1]) ≤ c′
α

d2α
.

To obtain an estimator which does not require a knowledge
of the support size k, we seek a polynomial approximation
qα(x) of xα with qα(0) = 0. Such a polynomial qα(x)
can be obtained by a minor modification of the polynomial
q ′
α(x) = ∑d

j=0 q j x j satisfying the error bound in Lemma 5.
Specifically, we use the polynomial qα(x) = q ′

α(x) − q0 for
which the approximation error is bounded as

max
x∈[0,1] |qα(x) − xα| ≤ |q0| + max

x∈[0,1] |q
′
α(x) − xα|

= |q ′
α(0) − 0α| + max

x∈[0,1] |q
′
α(x) − xα|

≤ 2 max
x∈[0,1] |q

′
α(x) − xα|

= 2c′
α

d2α

def= cα

d2α
. (6)

To bound the variance of the proposed polynomial approx-
imation estimator, we require a bound on the absolute values
of the coefficients of qα(x). The following inequality due to
Markov serves this purpose.

Lemma 6 [23]: Let p(x) = ∑d
j=0 c j x j be a degree-d

polynomial so that |p(x)| ≤ 1 for all x ∈ [−1, 1]. Then for
all j = 0, . . . , m

max
j

|c j | ≤ (
√

2 + 1)d .

Since |xα| ≤ 1 for x ∈ [0, 1], the approximation bound (6)
implies |qα(x)| < 1 + cα

d2α for all x ∈ [0, 1]. It follows from
Lemma 6 that

max
m

|am| <
(

1 + cα

d2α

)
(
√

2 + 1)d . (7)

III. UPPER BOUNDS ON SAMPLE COMPLEXITY

In this section, we analyze the performances of the esti-
mators we proposed in Section I-C. Our proofs are based on
bounding the bias and the variance of the estimators under
Poisson sampling. We first describe our general recipe and
then analyze the performance of each estimator separately.

Let X1, . . . , Xn be n independent samples drawn from a
distribution p over k symbols. Consider an estimate fα (Xn) =

1
1−α log P̂α(n, Xn) of Hα(p) which depends on Xn only
through the multiplicities and the sample size. Here P̂α(n, Xn)
is the corresponding estimate of Pα(p) – as discussed in
Section I, small additive error in the estimate fα (Xn) of
Hα(p) is equivalent to small multiplicative error in the estimate
P̂α(n, Xn) of Pα(p). For simplicity, we analyze a randomized
estimator f̃α described as follows: For N ∼ Poi(n/2), let

f̃α
(
Xn) =

{
constant, N > n,

1
1−α log P̂α(n/2, X N ), N ≤ n.

The following reduction to Poisson sampling is easy to show.
Lemma 7 (Poisson Approximation 1): For n ≥ 6 log(2/ε)

and N ∼ Poi(n/2),

P

(
|Hα(p) − f̃α

(
Xn) | > δ

)

≤ P

(
|Hα(p) − 1

1 − α
log P̂α(

n

2
, X N )| > δ

)
+ ε

2
.

It remains to bound the probability on the right-side above,
which can be done provided the bias and the variance of the
estimator are bounded.

Lemma 8: For N ∼ Poi(n), let the power sum estimator
P̂α = P̂α(n, X N ) have bias and variance satisfying

∣∣E
[̂
Pα

]− Pα(p)
∣∣ ≤ δ

2
Pα(p),

Var
[̂
Pα

] ≤ δ2

12
Pα(p)2.

Then, there exists an estimator P̂′
α that uses 36Poi(n log(2/ε))

samples and ensures

P
(∣∣̂P′

α − Pα(p)
∣∣ > δ Pα(p)

) ≤ ε.
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Proof: By Chebyshev’s Inequality

P
(∣∣̂Pα − Pα(p)

∣∣ > δ Pα(p)
)

≤ P

(∣∣̂Pα − E
[̂
Pα

]∣∣ >
δ

2
Pα(p)

)
≤ 1

3
.

To reduce the probability of error to ε, we use the estimate
P̂α repeatedly for O(log(1/ε)) independent samples X N and
take the estimate P̂′

α to be the sample median of the resulting
estimates.4 Specifically, let P̂1, . . . , P̂t denote t-estimates of
Pα(p) obtained by applying P̂α to independent sequences X N ,
and let 1Ei be the indicator function of the event Ei = {|̂Pi −
Pα(p)| > δ Pα(p)}. By the analysis above we have E

[
1Ei

] ≤
1/3 and hence by Hoeffding’s inequality

P

(
t∑

i=1

1Ei >
t

2

)
≤ exp(−t/18).

On choosing t = 18 log(1/ε) and noting that if more than
half of P̂1, . . . , P̂t satisfy |̂Pi − Pα(p)| ≤ δ Pα(p), then their
median must also satisfy the same condition, we get that
the median estimate satisfies the required error bound by
using Poi(18n log 1/ε) samples. The claimed bound follows
by Lemma 7.

In the remainder of the section, we bound the bias and the
variance for our estimators when the number of samples n
are of the appropriate order. Denote by f e

α , f u
α , and f d,τ

α ,
respectively, the empirical estimator 1

1−α log P̂e
α , the bias-

corrected estimator 1
1−α log P̂u

α , and the polynomial approx-
imation estimator 1

1−α log P̂d,τ
α . We begin by analyzing the

performances of f e
α and f u

α and build-up on these steps to
analyze f d,τ

α .

A. Performance of Empirical Estimator

The empirical estimator was presented in (1). Using the
Poisson sampling recipe given above, we derive upper bound
for the sample complexity of the empirical estimator by
bounding its bias and variance. The resulting bound for α > 1
is given in Theorem 9 and for α < 1 in Theorem 10.

Theorem 9: For α > 1, there exists a constant cα depending
only on α such that for every 0 < δ < 1, k ∈ �, and 0 < ε <
1, the estimator f e

α satisfies

S
f e
α

α (k, δ, ε) ≤ cα max

{
k

δ
,

k
α−1
α

δ2

}
.

Proof: Denote λx
def= npx . For α > 1, using Lemma 4 we

get
∣∣∣∣E
[∑

x Nα
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 1

nα

∑

x

∣∣E
[
Nα

x

]− λα
x

∣∣

≤ Cα

nα

∑

x

(
1 + λα−1

x

)

= Cα

(
k

nα
+ Pα−1(p)

n

)

≤ Cα

[(
k

n

)α

+ k

n

]
Pα(p), (8)

4This technique is often referred to as the median trick.

where the previous inequality noting that k1−α ≤ Pα(p) by (5)
and Pα−1(p) ≤ k Pα(p) by Lemma 1(iv).

Similarly, using the independence of multiplicities under
Poisson sampling, we have

Var

[
∑

x

Nα
x

nα

]
= 1

n2α

∑

x

Var
[
Nα

x

]

= 1

n2α

∑

x

E

[
N2α

x

]
− [

ENα
x

]2

≤ 1

n2α

∑

x

E

[
N2α

x

]
− λ2α

x , (9)

where the previous inequality is from Jensen’s inequality since
zα is convex and E[Nx ] = λx . Therefore, by Lemma 4,

Var

[
∑

x

Nα
x

nα

]
≤ Cα

n2α

∑

x

(
1 + λ2α−1

x

)

= Cα

[
k

n2α
+ P2α−1(p)

n

]

≤ Cα

[(
k

n

)2α

+ k
α−1
α

n

]
Pα(p)2, (10)

where the last inequality follows upon noting that k1−2α ≤
P2α(p) ≤ Pα(p)2 by (5) and P2α−1(p) ≤ k

α−1
α Pα(p)2

Lemma 1(iv). The claim follows from Lemma 8 upon choosing
n to be sufficiently large.

Theorem 10: For 0 < α < 1, there exists a constant cα

depending only on α such that for every 0 < δ < 1, k ∈ �,
and 0 < ε < 1, the estimator f e

α satisfies

S
f e
α

α (k, δ, ε) ≤ cα max

{(
k

δ

) 1
α

,
k

α−1
α

δ2

}
.

Proof: Proceeding as in the proof of Theorem 9, by
Lemma 4 we have

∣∣∣∣E
[∑

x Nα
x

nα

]
− Pα(p)

∣∣∣∣ ≤ 1

nα

∑

x

∣∣E
[
Nα

x

]− λα
x

∣∣

≤ 2Cαk

nα

≤ 2Cα Pα(p)

(
k1/α

n

)α

(11)

where the previous inequality uses 1 ≤ Pα(p) from (4). For
bounding the variance, note that

Var

[
∑

x

Nα
x

nα

]

= 1

n2α

∑

x

Var
[
Nα

x

]

= 1

n2α

∑

x

E

[
N2α

x

]
− [

ENα
x

]2

= 1

n2α

∑

x

E

[
N2α

x

]
− λ2α

x + 1

n2α

∑

x

λ2α
x − [

ENα
x

]2
. (12)

Consider the first term on the right-side. For α ≤ 1/2, it
is bounded above by 0 since z2α is concave in z, and for
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α > 1/2 (10) yields

1

n2α

∑

x

E

[
N2α

x

]
− λ2α

x ≤ Cα

[
k

n2α
+ P2α−1(p)

n

]

≤ Cα

[
k

n2α
+ k

1−α
α

n

]
Pα(p)2,

where we have used P2α−1(p) ≤ k
1−α
α Pα(p)2, which holds by

Lemma 1(iii) and (5).
For the second term, we have

∑

x

λ2α
x − [

ENα
x

]2

=
∑

x

(
λα

x − E
[
Nα

x

]) (
λα

x + E
[
Nα

x

])

≤ 2Cαnα Pα(p)

(
k1/α

n

)α ∑

x

(
λα

x + E
[
Nα

x

])

≤ 4Cαn2α Pα(p)2
(

k1/α

n

)α

,

where the first inequality is by (11) and the final inequality
holds since E

[
Nα

x

] ≤ λα
x by the concavity of zα in z. The

claim follows from Lemma 8.

B. Performance of Bias-Corrected Estimator for Integral α

To reduce the sample complexity for integer orders α > 1
to below k, we follow the development of Shannon entropy
estimators. Shannon entropy was first estimated via an
empirical estimator, analyzed in, for instance, [2]. How-
ever, with o(k) samples, the bias of the empirical estimator
remains high [33]. This bias is reduced by the Miller-Madow
correction [25], [33], but even then, O(k) samples are needed
for a reliable Shannon-entropy estimation [33].

Similarly, we reduce the bias for Rényi entropy estimators
using unbiased estimators for pα

x for integral α. We first
describe our estimator, and in Theorem 11 we show that for
1 < α ∈ N, P̂u

α estimates Pα(p) using O(k1−1/α/δ2) samples.
Theorem 15 in Section V shows that this number is optimal
up to constant factors.

Consider the estimator for Pα(p) given by

P̂u
α

def=
∑

x

N
α
x

nα
,

which is unbiased since by Lemma 2,

E
[
P̂u

α

] =
∑

x

E

[
N

α
x

nα

]
=
∑

x

pα
x = Pα(p).

Our bias-corrected estimator for Hα(p) is

Ĥα = 1

1 − α
log P̂u

α .

The next result provides a bound for the number of samples
needed for the bias-corrected estimator.

Theorem 11: For an integer α > 1, there exists a constant
cα depending only on α such that for every 0 < δ < 1, k ∈ �,

and 0 < ε < 1, the estimator f u
α satisfies

S
f u
α

α (k, δ, ε) ≤ cα

(
k(α−1)/α

δ2 log
1

ε

)
.

Proof: Since the bias is 0, we only need to bound the
variance to use Lemma 8. To that end, we have

Var

[∑
x N

α
x

nα

]
= 1

n2α

∑

x

Var
[
N

α
x
]

≤ 1

n2α

∑

x

(
λα

x (λx + α)α − λ2α
x

)

= 1

n2α

α−1∑

r=0

∑

x

(
α

r

)
αα−rλx

α+r

= 1

n2α

α−1∑

r=0

nα+r
(

α

r

)
αα−r Pα+r (p), (13)

where the inequality uses Lemma 2. It follows from
Lemma 1(iv) that

1

n2α

Var
[∑

x Nα
x
]

Pα(p)2 ≤ 1

n2α

α−1∑

r=0

nα+r
(

α

r

)
αα−r Pα+r (p)

Pα(p)2

≤
α−1∑

r=0

nr−α

(
α

r

)
αα−r k(α−1)(α−r)/α

≤
α−1∑

r=0

(
α2k(α−1)/α

n

)α−r

,

which is less than δ2/12 if (α2k1−1/α/n) ≤ 11δ2/144. The
claim follows by Lemma 8.

C. The Polynomial Approximation Estimator

Concurrently with a conference version of this paper [1],
a polynomial approximation based approach was proposed
in [16] and [43] for estimating additive functions of the
form

∑
x f (px). As seen in Theorem 11, polynomials of

probabilities have succinct unbiased estimators. Motivated by
this observation, instead of estimating f , these papers consider
estimating a polynomial that is a good approximation to f .
The underlying heuristic for this approach is that the difficulty
in estimation arises from small probability symbols since
empirical estimation is nearly optimal for symbols with large
probabilities. On the other hand, there is no loss in estimating
a polynomial approximation of the function of interest for
symbols with small probabilities.

In particular, [16] considered the problem of estimating
power sums Pα(p) up to additive accuracy and showed that
O
(
k1/α/ log k

)
samples suffice for α < 1. Since Pα(p) ≥ 1

for α < 1, this in turn implies a similar sample complexity for
estimating Hα(p) for α < 1. On the other hand, α > 1, the
power sum Pα(p) ≤ 1 and can be small (e.g., it is k1−α for the
uniform distribution). In fact, we show in the Appendix that
additive-accuracy estimation of power sum is easy for α > 1
and has a constant sample complexity. Therefore, additive
guarantees for estimating the power sums are insufficient to
estimate the Rényi entropy . Nevertheless, our analysis of the
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polynomial estimator below shows that it attains the O(log k)
improvement in sample complexity over the empirical estima-
tor even for the case α > 1.

We first give a brief description of the polynomial estimator
of [43] and then in Theorem 12 prove that for α > 1 the
sample complexity of P̂d,τ

α is O(k/ log k). For completeness,
we also include a proof for the case α < 1, which is slightly
different from the one in [16].

Let N1, N2 be independent Poi(n) random variables.
We consider Poisson sampling with two set of samples drawn
from p, first of size N1 and the second N2. Note that the total
number of samples N = N1 + N2 ∼ Poi(2n). The polynomial
approximation estimator uses different estimators for different
estimated values of symbol probability px . We use the first N1
samples for comparing the symbol probabilities px with τ/n
and the second is used for estimating pα

x . Specifically, denote
by Nx and N ′

x the number of appearances of x in the N1 and
N2 samples, respectively. Note that both Nx and N ′

x have the
same distribution Poi(npx). Let τ be a threshold, and d be
the degree chosen later. Given a threshold τ , the polynomial
approximation estimator is defined as follows:

N ′
x > τ : For all such symbols, estimate pα

x using the
empirical estimate (Nx /n)α.
N ′

x ≤ τ : Suppose q(x) = ∑d
m=0 am xm is the polynomial

satisfying Lemma 5. Since we expect px to be less than
2τ/n in this case, we estimate pα

x using an unbiased
estimate of5 (2τ/n)αq(npx/2τ ), namely

(
d∑

m=0

am(2τ )α−m N
m
x

nα

)
.

Therefore, for a given τ and d the combined estimator P̂d,τ
α

is

P̂d,τ
α

def=
∑

x :N ′
x ≤τ

(
d∑

m=0

am(2τ )α−m N
m
x

nα

)
+

∑

x :N ′
x >τ

(
Nx

n

)α

.

Denoting by p̂x the estimated probability of the symbol x ,
note that the polynomial approximation estimator relies on
the empirical estimator when p̂x > τ/n and uses the the bias-
corrected estimator for estimating each term in the polynomial
approximation of pα

x when p̂x ≤ τ/n.
We derive upper bounds for the sample complexity of the

polynomial approximation estimator. The bounds are valid in
the large alphabet regime where k is sufficiently large for a
fixed δ.

Theorem 12: For α > 1, δ > 0, 0 < ε < 1, there
exist constants c1 and c2 such that the estimator P̂d,τ

α with
τ = c1 log n and d = c2 log n satisfies

S P̂d,τ
α

α (k, δ, ε) ≤ O

(
k

log k

log(1/ε)

δ1/α

)
.

Proof: We follow the approach in [43] closely. Choose
τ = c∗log n such that with probability at least 1−ε the events
N ′

x > τ and N ′
x ≤ τ do not occur for all symbols x satisfying

px ≤ τ/(2n) and px > 2τ/n, respectively. Or equivalently,

5Note that if |q(x)−xα | < ε for all x ∈ [0, 1], then |ηαq(x/η)−xα | < ηαε
for all x ∈ [0, η].

with probability at least 1 − ε all symbols x such that N ′
x > τ

satisfy px > τ/(2n) and all symbols such that N ′
x ≤ τ satisfy

px ≤ 2τ/n. We condition on this event throughout the proof.
For concreteness, we choose c∗ = 4, which is a valid choice
for n > 20 log(1/ε) by the Poisson tail bound and the union
bound.

Let q(x) = ∑d
m=0 am xm satisfy the polynomial approxima-

tion error bound guaranteed by Lemma 5, i.e.,

max
x∈(0,1)

|q(x) − xα| < cα/d2α (14)

To bound the bias of P̂d,τ
α , note first that for N ′

x < τ (assuming
px ≤ 2τ/nsmp and estimating (2τ/n)αq(npx/2τ ))

∣∣∣∣∣E
[

d∑

m=0

am(2τ )α−m N
m
x

nα

]
− pα

x

∣∣∣∣∣

=
∣∣∣∣∣

d∑

m=0

am

(
2τ

n

)α−m

pm
x − pα

x

∣∣∣∣∣

= (2τ )α

nα

∣∣∣∣∣

d∑

m=0

am

(npx

2τ

)m −
(npx

2τ

)α
∣∣∣∣∣

= (2τ )α

nα

∣∣∣q
(npx

2τ

)
−
(npx

2τ

)α∣∣∣

<
(2τ )αcα

(nd2)α
, (15)

where (15) uses (14) and npx/(2τ ) ≤ 1.
For N ′

x > τ , the bias of empirical part of the power sum
is bounded as Suppose px > τ/(2n), and τ > 2. Applying
Lemma 4 for λ = npx ,

∣∣∣∣E
[(

Nx

n

)α ]
− pα

x

∣∣∣∣
(a)≤ 1

nα
Cα · (npx )

α−1

= pα
x Cα

1

npx
≤ pα

x
2Cα

τ
,

where the last inequality uses px > τ/(2n), which holds for
N ′

x > τ . Using the triangle inequality and applying the bounds
above to each term, we obtain the following bound on the bias
of P̂d,τ

α :

∣∣E
[̂
Pα

]− Pα(p)
∣∣ ≤ k(2τ )αcα

(nd2)α
+ Pα(p)

2Cα

τ

≤ Pα(p)

[
cα

(
k · 2τ

nd2

)α

+ 2Cα

τ

]
, (16)

where the last inequality uses k < kα Pα(p) from (5).
For variance, independence of multiplicities under Poisson

sampling gives

Var
[̂
Pα

] =
∑

x :N ′
x ≤τ

Var

(
d∑

m=0

am(2τ )α−m N
m
x

nα

)

+
∑

x :Nx >τ

Var

(
Nx

n

)α

. (17)
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Let a = maxm |am |. By Lemma 2, for any x with px ≤ 2τ/n,

Var

(
d∑

m=0

am(2τ )α−m N
m
x

nα

)

≤ a2d2 max
1≤m≤d

{
(2τ )2α−2m

n2α
VarN

m
x

}

(a)≤ a2d2 max
1≤m≤d

{
(2τ )2α−2m

n2α
(npx )

m((npx + m)m − npm
x )

}

(b)≤ a2d2(2τ + d)2α

n2α
, (18)

where (a) is from Lemma 2, and (b) from plugging npx ≤ 2τ .
Furthermore, using similar steps as (9) together with Lemma 4,
for x with px > τ/(2n) we get

Var

[(
Nx

n

)α ]
≤ 1

n2α

(
E

[
N2α

x

]
− λ2α

x

)
,

≤ 1

n2α
· C2α(npx)

2α−1

= C2α
p2α

x

npx

≤ 2C2α
p2α

x

τ
(19)

The two bounds above along with Lemma 1 and (5) yield

Var
[̂
Pα

] ≤ Pα(p)2

[
a2d2(2τ + d)2α

n

(
k

n

)2α−1

+ 2C2α

τ

]
.

(20)

For d = τ/8 = 1
2 log n, the second terms in (16) are o(1)

in n which gives6

∣∣E
[̂
Pα

]− Pα(p)
∣∣ = Pα(p)

(
cα

(
32k

(n log n)

)α

+ o(1)

)
.

Recall from (7) that a < (1+cα/d2α)(
√

2+1)d , and therefore,
a2 = O((

√
2 + 1)log n) = nc0 for some c0 < 1. Using (20) we

get

Var
[̂
Pα

] = O

(
Pα(p)2 nc0 log2α+2 n

n

(
k

n

)2α−1
)

.

Therefore, the result follows from Lemma 8 for k sufficiently
large.

We now prove an analogous result for α < 1.
Theorem 13: For α < 1, δ > 0, 0 < ε < 1, there

exist constants c1 and c2 such that the estimator P̂d,τ
α with

τ = c1 log n and d = c2 log n satisfies

S P̂d,τ
α

α (k, δ, ε) ≤ O

(
k1/α

log k

log(1/ε)

α2δ1/α

)
.

Proof: We proceed as in the previous proof and set τ to
be 4 log n. The contribution to the bias of the estimator for
a symbol x with N ′

x < τ remains bounded as in (15). For a

6This approximation is valid in the large alphabet regime, where k is
sufficiently large for a fixed δ.

symbol x with N ′
x > τ , the bias contribution of the empirical

estimator is bounded as∣∣∣∣E
[(

Nx

n

)α ]
− pα

x

∣∣∣∣ ≤ Cαpα−1
x

n
≤ 2Cαpα

x

τ
,

where the first inequality is by Lemma 4 and the second uses
px > τ/(2n), which holds if N ′

x > τ . Thus, we obtain the
following bound on the bias of P̂d,τ

α :
∣∣E
[̂
Pα

]− Pα(p)
∣∣ ≤ k(2τ )αcα

(nd2)α
+ 2

τ
Pα(p)

≤ Pα(p)

[
cα

(
k1/α · 2τ

nd2

)α

+ 2

τ

]
,

where the last inequality is by (4).
To bound the variance, first note that bound (18) still holds

of px ≤ 2τ/n. To bound the contribution to the variance from
the terms with npx > τ/2, we follow the steps in the proof of
Theorem 10. In particular, (12) gives

Var

⎡

⎣
∑

x :N ′
x >τ

Nα
x

nα

⎤

⎦ ≤ 1

n2α

⎛

⎝
∑

x :N ′
x >τ

E

[
N2α

x

]
− λ2α

x

⎞

⎠

+ 1

n2α

∑

x :N ′
x >τ

(
λ2α

x − [
ENα

x

]2)
. (21)

We consider each term separately. The first term is at most
zero for α ≤ 1/2. For α > 1/2, using Lemma 4,

1

n2α

⎛

⎝
∑

x :N ′
x >τ

E

[
N2α

x

]
− λ2α

x

⎞

⎠ ≤
∑

x :N ′
x >τ

C2α
(px)

2α

npx

≤ 2C2α
P2α(p)

τ

≤ 2C2α
Pα(p)2

τ
.

For the second term, we have
1

n2α

∑

x :N ′
x >τ

λ2α
x − [

ENα
x

]2

= 1

n2α

∑

x :N ′
x >τ

(
λα

x − E
[
Nα

x

]) (
λα

x + E
[
Nα

x

])

≤ 1

n2α

∑

x :N ′
x >τ

(
λα−1

x

) (
2λα

x

)

= 2
∑

x :N ′
x >τ

p2α
x

npx

≤ 4

τ
Pα(p)2, (22)

where the first inequality follows from Lemma 4 and concavity
of zα in z and the second from npx > τ/2 and Lemma 1.

Thus, the contribution of the terms corresponding to N ′
x > τ

in the bias and the variance are Pα(p) ·o(1) and Pα(p)2 ·o(1),
respectively, and can be ignored. Choosing d = α

2 log n and
combining the observations above, we get the following bound
for the bias:

∣∣E
[̂
Pα

]− Pα(p)
∣∣= Pα(p)

(
cα

(
32k1/α

n log nα2

)α

+ o(1)

)
,

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on June 10,2022 at 06:39:00 UTC from IEEE Xplore.  Restrictions apply. 



48 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 1, JANUARY 2017

TABLE II

THE LEADING TERMS g(k) IN THE APPROXIMATIONS Hα(Zβ,k) ∼ g(k)
FOR DIFFERENT VALUES OF αβ AND β . THE CASE αβ = 1 AND β = 1

CORRESPONDS TO THE SHANNON ENTROPY OF Z1,k

and, using (18), the following bound for the variance:

Var
[̂
Pα

]

≤ k
a2d2(2τ + d)2α

n2α
+ Pα(p)2 · o(1)

≤ Pα(p)2

[(
a2

nα

)
(9 log n)2α+2

(
k

1
α

n

)α

+ o(1)

]
. (23)

Here a2 is the largest squared coefficient of the approximating
polynomial and, by (7), is O(22c0d) = O(nc0α) for some
c0 < 1. Thus, a2 = o(nα) and the proof follows
by Lemma 8.

IV. EXAMPLES AND EXPERIMENTS

We begin by computing Rényi entropy for uniform and Zipf
distributions; the latter example illustrates the lack of uniform
continuity of Hα(p) in α.

Example 1: The uniform distribution Uk over [k] =
{1, . . . , k} is given by

pi = 1

k
for i ∈ [k].

Its Rényi entropy for every order 1 �= α ≥ 0, and hence for
all α ≥ 0, is

Hα(Uk) = 1

1 − α
log

k∑

i=1

1

kα
= 1

1 − α
log k1−α = log k.

Example 2: The Zipf distribution Zβ,k for β > 0 and
k ∈ [k] is given by

pi = i−β

∑k
j=1 j−β

for i ∈ [k].

Its Rényi entropy of order α �= 1 is

Hα(Zβ,k) = 1

1 − α
log

k∑

i=1

i−αβ − α

1 − α
log

k∑

i=1

i−β.

Table II summarizes the leading term g(k) in the approxima-
tion7 Hα(Zβ,k) ∼ g(k).

In particular, for α > 1

Hα(Z1,k) = α

1 − α
log log k + �

(
1

kα−1

)
+ c(α),

and the difference |H2(p)− H2+ε(p)| is O (ε log log k). There-
fore, even for very small ε this difference is unbounded and
approaches infinity in the limit as k goes to infinity.

7We say f (n) ∼ g(n) to denote limn→∞ f (n)/g(n) = 1.

We now illustrate the performance of the proposed esti-
mators for various distributions for α = 2 in Figures 2 and
α = 1.5 in Figures 3. For α = 2, we compare the performance
of bias-corrected and empirical estimators. For α = 1.5, we
compare the performance of the polynomial-approximation
and the empirical estimator. For the polynomial-approximation
estimator, the threshold τ is chosen as τ = ln(n) and the
approximating polynomial degree is chosen as d = �1.5τ�.

We test the performance of these estimators over six differ-
ent distributions: the uniform distribution, a step distribution
with half of the symbols having probability 1/(2k) and the
other half have probability 3/(2k), Zipf distribution with
parameter 3/4 (pi ∝ i−3/4), Zipf distribution with parameter
1/2 (pi ∝ i−1/2), a randomly generated distribution using
the uniform prior on the probability simplex, and another one
generated using the Dirichlet-1/2 prior.

In both the figures the true value is shown in black and the
estimated values are color-coded, with the solid line represent-
ing their mean estimate and the shaded area corresponding to
one standard deviation. As expected, bias-corrected estimators
outperform empirical estimators for α = 2 and polynomial-
approximation estimators perform better than empirical esti-
mators for α = 1.5.

V. LOWER BOUNDS ON SAMPLE COMPLEXITY

We now establish lower bounds on Sα(k, δ, ε). The proof is
based on exhibiting two distributions p and q with Hα(p) �=
Hα(q) such that the set of Nx ’s have very similar distribution
from p and q, if fewer samples than the claimed lower bound
are available. This method is often referred to as Le Cam’s
two-point method (see, for instance, [46]). The key idea is
summarized in the following result which is easy to derive.

Lemma 14: If for two distributions p and q on X and n ∈ �
the total variation distance ‖pn − qn‖ < ε, then for every
function f̂ , either

p

(
|Hα(p) − f̂ (Xn)| ≥ |Hα(p) − Hα(q)|

2

)
≥ 1 − ε

2
,

or

q

(
|Hα(q) − f̂ (Xn)| ≥ |Hα(p) − Hα(q)|

2

)
≥ 1 − ε

2
.

A. Lower Bound for Integer α

We first prove a lower bound for integers α > 1 which
matches the upper bound in Theorem 11 up to a constant
factor. In fact, the bound is valid for any α > 1.

Theorem 15: Given an 1 < α and 0 < ε < 1, there exists
a constant c depending on α and ε such that for every δ > 0
sufficiently small (depending only on α) and every k sufficiently
large (depending only on α)

Sα(k, δ, ε) ≥ c

(
k

α−1
α

δ2

)
.

Proof: We rely on Lemma 14 and exhibit two distributions
p and q with appropriate properties. Specifically, consider the
following distributions p and q over [k]: p1 = 1/k1−1/α, and
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Fig. 2. Rényi entropy estimates for order 2 for support 10000, number of samples ranging from 1000 to 10000, averaged over 100 trials. (a) Uniform.
(b) Step. (c) Zipf with parameter 3/4. (d) Zipf with parameter 1/2. (e) Uniform prior (Dirichlet 1). (f) Dirichlet 1/2 prior.

Fig. 3. Rényi entropy estimates for order 1.5 for support 10000, number of samples ranging from 1000 to 10000, averaged over 100 trials. (a) Uniform.
(b) Step. (c) Zipf with parameter 3/4. (d) Zipf with parameter 1/2. (e) Uniform prior (Dirichlet 1). (f) Dirichlet 1/2 prior.

for x = 2, . . . , k, px = (1 − p1)/(k − 1); q1 = (1 + δ)/k1−1/α,
and for x = 2, . . . , k, qx = (1 − q1)/(k − 1). Then, we have

Pα(p) = pα
1 + (1 − p1)

α

(k − 1)α−1 ,

and

Pα(q) = qα
1 + (1 − q1)

α

(k − 1)α−1 .
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By noting that (1 + δ)α ≥ (1 + αδ) for α > 1 and using
Taylor’s approximation

Pα(q) − Pα(p)

= qα
1 − pα

1 + [(1 − q1)
α − (1 − p1)

α]
(k − 1)α−1

≥ δ

kα−1 − 1

(k − 1)α−1 · αδ

k1−1/α
·
(

1 − 1

k1−1/α

)α−1

≥ δ

2kα−1 ,

where the last inequality holds if k is larger than a constant
depending on α. Therefore, for k sufficiently large

|Pα(q) − Pα(p)|
Pα(p)

≥ δ

4
,

and so, |Hα(p)− Hα(q)| ≥ δ/(1−α)8 for δ sufficiently small.
To complete the proof, we show that there exists a constant
Cε such that ‖pn − qn‖ ≤ ε if n ≤ Cεk1−1/α/δ2. To that end,
we bound the squared Hellinger distance between pn and qn

given by

h2(p, q) = 2 − 2
∑

x

√
pxqx =

∑

x

(
√

px − √
qx)

2.

Therefore, for δ < 1 and k sufficiently large so that p1,
q1 ≤ 1/2,

h2(p, q) = (√
p1 − √

q1
)2 +

(√
1 − p1 −√

1 − q1

)2

= (p1 − q1)
2

(√
p1 + √

q1
)2 + (p1 − q1)

2

(√
1 − p1 + √

1 − q1
)2

≤ 2
(p1 − q1)

2

(√
p1 + √

q1
)2

≤ 2
(p1 − q1)

2

p1

= 2δ2

k1−1/α
.

The required bound for ‖pn − qn‖ follows using the standard
steps (c f. [46]) below:

‖pn − qn‖ ≤
√

h2(p, q)

=
√

1 −
(

1 − 1

2
h2(p, q)

)n

≤
√

n

2
h2(p, q).

As a corollary, the result above and the upper bound of
Theorem 11 yields the following characterization of
Sα(k, δ, ε).

Corollary 16: Given an 1 < α ∈ � and 0 < ε < 1, for
every δ > 0 sufficiently small (depending only on α) and every
k sufficiently large (depending only on α)

Sα(k, δ, ε) = �

(
k(α−1)/α

δ2

)
,

where constants implied by � depend only on ε and α.

B. Lower Bound for Noninteger α

Next, we lower bound Sα(k) for noninteger α > 1 and
show that it must be almost linear in k. While we still rely on
Lemma 14 for our lower bound, we take recourse to Poisson
sampling to simplify our calculations.

Lemma 17 (Poisson Approximation 2): Suppose there exist
δ, ε > 0 such that, with N ∼ Poi(2n), for all estimators f̂ we
have

max
p∈P

P

(
|Hα(p) − f̂α(X N )| > δ

)
> ε,

where P is a fixed family of distributions. Then, for all fixed
length estimators f̃

max
p∈P

P

(
|Hα(p) − f̃α(Xn)| > δ

)
>

ε

2
,

when n > 4 log(2/ε).
Also, it will be convenient to replace the observations X N

with its profile � = �(X N ) [31], i.e., � = (�1,�2, . . .)
where �l is the number of elements x that appear l times in
the sequence X N . The following well-known result says that
for estimating Hα(p), it suffices to consider only the functions
of the profile.

Lemma 18 (Sufficiency of Profiles): Consider an estimator
f̂ such that

P

(
|Hα(p) − f̂ (X N )| > δ

)
≤ ε, for all p.

Then, there exists an estimator f̃ (X N ) = f̃ (�) such that

P

(
|Hα(p) − f̃ (�)| > δ

)
≤ ε, for all p.

Thus, lower bounds on the sample complexity will follow
upon showing a contradiction for the second inequality above
when the number of samples n is sufficiently small. We obtain
the required contradiction by using Lemma 14 upon showing
there are distributions p and q of support-size k such that the
following hold:

(i) There exists δ > 0 such that

|Hα(p) − Hα(q)| > δ; (24)

(ii) denoting by p� and q�, respectively, the distributions
on the profiles under Poisson sampling corresponding to
underlying distributions p and q, there exist ε > 0 such
that

‖p� − q�‖ < ε, (25)

if n < k c(α).

Therefore, it suffices to find two distributions p and q with
different Rényi entropies and with small total variation dis-
tance between the distributions of their profiles, when n is
sufficiently small. For the latter requirement, we recall a
result of [42] that allows us to bound the total variation
distance in (25) in terms of the differences of power sums
|Pa(p) − Pa(q)|.

Theorem 19 [42]: Given distributions p and q such that

max
x

max{px ; qx} ≤ ε

40n
,
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for Poisson sampling with N ∼ Poi(n), it holds that

‖p� − q�‖ ≤ ε

2
+ 5

∑

a

na |Pa(p) − Pa(q)|.

It remains to construct the required distributions p and q,
satisfying (24) and (25) above. By Theorem 19, the total
variation distance ‖p� − q�‖ can be made small by ensuring
that the power sums of distributions p and q are matched,
that is, we need distributions p and q with different Rényi
entropies and identical power sums for as large an order as
possible. To that end, for every positive integer d and every
vector x = (x1, . . . , xd) ∈ �d , associate with x a distribution
px of support-size dk such that

px
i j = |xi |

k‖x‖1
, 1 ≤ i ≤ d, 1 ≤ j ≤ k.

Note that

Hα(px) = log k + α

α − 1
log

‖x‖1

‖x‖α
,

and for all a

Pa
(
px) = 1

ka−1

(‖x‖a

‖x‖1

)a

.

We choose the required distributions p and q, respectively, as
px and py, where the vectors x and y are given by the next
result.

Lemma 20: For every d ∈ � and α not integer, there exist
positive vectors x, y ∈ �d such that

‖x‖r = ‖y‖r , 1 ≤ r ≤ d − 1,

‖x‖d �= ‖y‖d ,

‖x‖α �= ‖y‖α.

Proof: Let x = (1, . . . , d)). Consider the polynomial

p(z) = (z − x1)...(z − xd),

and q(z) = p(z) − �, where � is chosen small enough so
that q(z) has d positive roots. Let y1, . . . , yd be the roots of
the polynomial q(z). By Newton-Girard identities, while the
sum of dth power of roots of a polynomial does depend on
the constant term, the sum of first d − 1 powers of roots of
a polynomial do not depend on it. Since p(z) and q(z) differ
only by a constant, it holds that

d∑

i=1

xr
i =

d∑

i=1

yr
i , 1 ≤ r ≤ d − 1,

and that

d∑

i=1

xd
i �=

d∑

i=1

yd
i .

Furthermore, using a first order Taylor approximation, we have

yi − xi = �

p′(xi )
+ o(�),

and for any differentiable function g,

g(yi ) − g(xi ) = g′(xi )(yi − xi) + o(|yi − xi |).

It follows that

d∑

i=1

g(yi) − g(xi) =
d∑

i=1

g′(xi )

p′(xi )
� + o(�),

and so, the left side above is nonzero for all � sufficiently
small provided

d∑

i=1

g′(xi )

p′(xi )
�= 0.

Upon choosing g(x) = xα, we get

d∑

i=1

g′(xi )

p′(xi )
= α

d!
d∑

i=1

((
d

i

))
(−1)d−i iα.

Denoting the right side above by h(α), note that h(i) = 0
for i = 1, . . . , d − 1. Since h(α) is a linear combination of d
exponentials, it cannot have more than d − 1 zeros (see, for
instance, [40]). Therefore, h(α) �= 0 for all α /∈ {1, . . . , d −1};
in particular, ‖x‖α �= ‖y‖α for all � sufficiently small.

We are now in a position to prove our converse results.
Theorem 21: Given a noninteger α > 1, for any fixed

0 < ε < 1/2, we have

Sα(k, δ, ε) =∼∼
� (k).

Proof: For a fixed d , let distributions p and q be as in
the previous proof. Then, as in the proof of Theorem 21,
inequality (24) holds by Lemma 20 and (25) holds by
Theorem 19 if n < C2k(d−1)/d . The theorem follows since
d can be arbitrary large.

Finally, we show that Sα(k) must be super-linear in k for
α < 1.

Theorem 22: Given 0 < α < 1, for every 0 < ε < 1/2, we
have

Sα(k, δ, ε) =∼∼
�
(

k1/α
)

.

Proof: Consider distributions p and q on an alphabet of
size kd + 1, where

pi j = px
i j

kβ
and qi j = px

i j

kβ
, 1 ≤ i ≤ d, 1 ≤ j ≤ k,

where the vectors x and y are given by Lemma 20 and β
satisfies α(1 + β) < 1, and

p0 = q0 = 1 − 1

kβ
.

For this choice of p and q, we have

Pa (p) =
(

1 − 1

kβ

)a

+ 1

ka(1+β)−1

(‖x‖a

‖x‖1

)a

,

Hα(p) = 1 − α(1 + β)

1 − α
log k + α

1 − α
log

‖x‖α

‖x‖1

+ O(ka(1+β)−1),

and similarly for q, which further yields

|Hα(p) − Hα(q)| = α

1 − α

∣∣∣∣log
‖x‖α

‖y‖α

∣∣∣∣+ O(ka(1+β)−1).
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Therefore, for sufficiently large k, (24) holds by Lemma 20
since α(1 +β) < 1, and for n < C2k(1+β−1/d) we get (25) by
Theorem 19 as

‖p� − q�‖ ≤ ε

2
+ 5

∑

a≥d

( n

k1+β−1/a

)a ≤ ε.

The theorem follows since d and β < 1/α − 1 are arbitrary.

C. Sample Complexity of Empirical Estimator

We now derive lower bounds for the sample complexity
of the empirical estimator of Hα(p) and characterize it up to
constant factors.

Theorem 23: Given α > 1, there exists a constant cα such
that for every δ sufficiently small (depending only on α) and
every k sufficiently large

S
f e
α

α (k, δ, 0.9) ≥ cα

(
k

δ

)
.

Proof: We prove the lower bound for the uniform dis-
tribution over k symbols in two steps. We first show that
for any constant c1 > 1 if n < k/c1 then the additive
approximation error is at least δ with probability one, for every
δ < log c1. Then, assuming that n ≥ k/c1, we show that
the additive approximation error is at least δ with probability
greater than 0.9 if n < k/δ.

For the first claim, we assume without loss of generality
that n ≤ k, since otherwise the proof is complete. Note that
for α > 1 the function (pi − y)α + (p j + y)α is decreasing in
y for all y such that (pi − y) > (p j + y). Thus, the minimum

value of
∑

x

(
Nx
n

)α
is attained when each Nx is either 0 or 1.

It follows that

P̂e
α =

∑

x

(
Nx

n

)α

≥ 1

nα−1 ,

which is the same as

Hα(p) − 1

α − 1
log

1

P̂e
α

≥ log
k

n
.

Hence, for any c1 > 1 and n < k/c1 and any 0 ≤ δ ≤
log c1, the additive approximation error is more than δ with
probability one.

Moving to the second claim, suppose now n > k/c1.
We first show that with high probability, the multiplicities of
a linear fraction of k symbols should be at least a factor of
standard deviation higher than the mean. Specifically, let

A =
∑

x

1

(
Nx ≥ n

k
+ c2

√
n

k

(
1 − 1

k

))
.

Then,

E[A ] =
∑

x

E

[
1

(
Nx ≥ n

k
+ c2

√
n

k

(
1 − 1

k

))]

= k · p

(
Nx ≥ n

k
+ c2

√
n

k

(
1 − 1

k

))

≥ k · Q(c2),

where Q denotes the Q-function, i.e., the tail of the standard
normal random variable, and the final inequality uses Slud’s
inequality [38, Th. 2.1].

Note that A is a function of n i.i.d. random variables
X1, X2, . . . , Xn , and changing any one Xi changes A by at
most 2. Hence, by McDiarmid’s inequality,

Pr(A ≥ E[A ] − √
8n) ≥ 1 − e−4 ≥ 0.9.

Therefore, for all k sufficiently large (depending on δ) and
denoting c = Q(c2)/2, at least ck symbols occur more than
n
k + c2

√
n
k times with probability greater than 0.9. Using the

fact that (pi−y)α+(p j +y)α is decreasing if (pi−y) > (p j +y)
once more, we get
∑

x∈X

Nα
x

nα

=
∑

x :Nx ≥t

Nα
x

nα
+

∑

x :Nx <t

Nα
x

nα

≥ ck

(
1

k
+ c2

√
1

nk

)α

+ (1 − c)k

(
1

k
− cc2

1 − c

√
1

nk

)α

= 1

kα−1

[
c

(
1+ c2

√
k

n

)α

+ (1 − c)

(
1 − cc2

1 − c

√
k

n

)α]

≥ 1

kα−1

[
c

(
1+ c2

√
k

n

)α

+ (1 − c)

(
1 − αcc2

1 − c

√
k

n

)]

≥ 1

kα−1

[
c

(
1 + αc2

√
k

n
+ c4

k

n

)

+ (1 − c)

(
1 − αcc2

1 − c

√
k

n

)]

= 1

kα−1

(
1 + cc4

k

n

)

where the second inequality is by Bernoulli’s inequality
and the third inequality holds for every c4 ≤ α(α −
1)(c2

√
c1)

α−2/2. Therefore, with probability ≥ 0.9,

Hα(p) − 1

α − 1
log

1

P̂e
α

≥ 1

α − 1
log

(
1 + cc4

k

n

)
,

which yields the desired bound.
Theorem 24: Given 0 < α < 1, there exists a constant cα

such that for every δ sufficiently small (depending only on α)
and every k

S
f e
α

α (k, δ, 0.9) ≥ cα

(
k1/α

δ1/α

)
.

Proof: We proceed as in the proof of the previous lemma.
However, instead of using the uniform distribution, we use a
distribution which has one “heavy element” and is uniform
conditioned on the occurrence of the remainder. The key
observation is that there will be roughly nα occurrences of
the “light elements”. Thus, when we account for the error
in the estimation of the contribution of light elements to the
power sum, we can replace n with n1/α in our analysis of the
previous lemma, which yields the required bound for sample
complexity.
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Specifically, consider a distribution with one heavy element
0 such that

p0 = 1 − δ

n1−α
, and pi = δ

kn1−α
, 1 ≤ i ≤ k.

Thus,

Pα(p) =
(

1 − δ

n1−α

)α

+ δα

(
k

nα

)1−α

. (26)

We begin by analyzing the estimate of the second term in
power sum, namely

∑

i∈[k]

(
Ni

n

)α

.

Let R = ∑
i∈[k] Ni be the total number of occurrences of light

elements. Since R is a binomial (n, δnα−1) random variable,
for every constant c > 0

P

(
1 − c <

R

δnα
< 1 + c

)
≥ 1 − 1

c2n
.

In the remainder of the proof, we shall assume that this large
probability event holds.

As in the proof of the previous lemma, we first prove a δ
independent lower bound for sample complexity. To that end,
we fix δ = 1 in the definition of p. Assuming (1 + c)nα ≤ k,
which implies R ≤ k, and using the fact that (pi − y)α −(p j +
y)α is increasing in y if (pi − y) > (p j + y), we get

P̂e
α ≤ 1 +

(
R

n

)α ∑

i∈[k]

(
Ni

R

)α

≤ 1 + (1 + c)α

nα(1−α)

∑

i∈[k]

(
Ni

R

)α

≤ 1 + (1 + c)α

nα(1−α)
R1−α

≤ 3,

where the last inequality uses R ≤ (1 + c)nα ≤ 2nα. Thus,
the empirical estimate is at most 3 with probability close to 1
when k (and therefore n) large. It follows from (26) that

Hα(p) − 1

1 − α
log P̂e

α ≥ log
k

3nα
.

Therefore, for all c1 > 1, δ < log 3c1 and k sufficiently
large, at least (k/c1)

1/α samples are needed to get a δ-
additive approximation of Hα(p) with probability of error
less than 1 − 1/(c2n). Note that we only needed to assume
R ≤ (10/9)nα, an event with probability greater than 0.9,
to get the contradiction above. Thus, we may assume that
n ≥ (k/c1)

1/α. Under this assumption, for k sufficiently large,
n is sufficiently large so that (1−c)nα ≤ R ≤ (1+c)nα holds
with probability arbitrarily close to 1.

Next, assuming that n ≥ (k/c1)
1/α, we obtain a δ-dependent

lower bound for sample complexity of the empirical estimator.
We use the p mentioned above with a general δ and assume
that the large probability event

(1 − c) ≤ R

δnα
≤ (1 + c) (27)

holds. Note that conditioned on each value of R, the random
variables (Ni , i ∈ [k]) have a multinomial distribution with
uniform probabilities, i.e., these random variables behave as
if we drew R i.i.d. samples from a uniform distribution on
[k] elements. Thus, we can follow the proof of the previous
lemma mutatis mutandis. We now define A as

A =
∑

x

1

(
Nx ≤ n

k
− c2

√
n

k

(
1 − 1

k

))
.

and satisfies Then,

E[A ] =
∑

x

E

[
1

(
Nx ≤ n

k
− c2

√
n

k

(
1 − 1

k

))]

= k · p

(
Nx ≤ n

k
− c2

√
n

k

(
1 − 1

k

))
.

To lower bound p

(
Nx ≤ n

k − c2

√
n
k

(
1 − 1

k

))
, Slud’s

inequality is no longer available (since it may not hold for
Bin(n, p) with p > 1/2 and that is the regime of interest for
the lower tail probability bounds needed here). Instead we
take recourse to a combination of Bohman’s inequality and
Anderson-Samuel inequality, as suggested in [38, eqs. (i) and
(ii)]. It can be verified that the condition for [38, eqs. (ii)]
holds, and therefore,

p

(
Nx ≤ n

k
− c2

√
n

k

(
1 − 1

k

))
≥ Q(c2).

Continuing as in the proof of the previous lemma, we get that
the following holds with conditional probability greater than
0.9 given each value of R satisfying (27):

∑

i∈[k]

(
Nx

R

)α

≤ k1−α

(
1 − c3

k

R

)

≤ k1−α

(
1 − c4

k

δnα

)
,

where c3 is a sufficiently small constant such that (1 + x)α ≤
1 + αx − c3x2 for all x ≥ 0 and c4 = c3/(1 + c). Thus,

P̂e
α ≤ 1 +

(
R

n

)α ∑

i∈[k]

(
Ni

R

)α

≤ 1 +
(

R

n

)α

k1−α

(
1 − c4

k

δnα

)

≤ 1 + (1 + c)α δα

(
k

nα

)1−α (
1 − c4

k

δnα

)
.

Denoting y = (k/nα) and choosing c1 and c small enough
such that P̂e

α ≤ 2, for all sufficiently large n we get from (26)
that

Pα(p)

P̂e
α

≥ 1 − δ + y1−α

1 + δα(1 + c)α y1−α − (1 + c)αc4δα−1 y2−α

≥ 1 − δ + y1−α

1 + y1−α − δα−1 y2−α

≥ 1 − δ

2
+ δα−1 y2−α

2
,
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where the second inequality uses the fact that δα(1+c)α y1−α−
(1 + c)αc4δ

α−1y2−α is negative, c4 > 1 and δ < 1. Therefore,
Pα(p)

P̂e
α

≥ 1 + δ if y2−α ≥ 3δ2−α, which completes the
proof.

Note that for a fixed δ when k is sufficiently large depending
on δ or equivalently δ is greater than a function of k, the lower
bounds in Theorem 23 and 24 match (up to constants) the
upper bounds of Theorem 9 and 10, respectively. In fact, for
α > 1 the gap between the bounds can be fixed by using
the general lower bound of Theorem 15, which constitutes the
dominant lower bound for small δ. The resulting characteri-
zation of the sample complexity of the sample complexity of
the empirical estimator for α > 1 is summarized in the next
corollary.

Corollary 25: Given α > 1, for every δ > 0 sufficiently
small (depending only on α) and every k,

S
f e
α

α (k, δ, 0.9) = �

(
max

{
k

δ
,

k
α−1
α

δ2

})
.

In particular, the sample complexity of the empirical estimator
is optimal up to constant factors when k ≤ δ−α .
To obtain a similar characterization for α < 1, we provide a
companion result for Theorem 15.

Theorem 26: Given an 0 < α < 1 and 0 < ε < 1, there
exists a constant c depending on α and ε such that for every
δ > 0 sufficiently small (depending only on α) and every k
sufficiently large (depending only on α)

Sα(k, δ, ε) ≥ c

(
k

1−α
α

δ2

)
.

The proof is very similar to that of Theorem 15 and is
based applying Le Cam’s two point method to the following
distributions p and q over [k]: p1 = 1/k

1−α
α , and for x =

2, . . . , k, px = (1 − p1)/(k − 1) and q1 = (1 + δ)p1, and for
x = 2, . . . , k, qx = (1 − q1)/(k − 1); we omit the details. The
following corollary is immediate by combining the previous
result with the lower bound of Theorem 24 and the upper
bound of Theorem 10.

Corollary 27: Given 0 < α < 1, for every δ > 0 sufficiently
small (depending only on α) and every k,

S
f e
α

α (k, δ, 0.9) = �

(
max

{(
k

δ

) 1
α

,
k

1−α
α

δ2

})
.

In particular, the sample complexity of the empirical estimator
is optimal up to constant factors when 1/2 ≤ α < 1 and
k ≤ δ

1−2α
α .

APPENDIX

ESTIMATING POWER SUMS

The broader problem of estimating smooth functionals
of distributions was considered in [41]. Independently and
concurrently with this work, [16] considered estimating more
general functionals and applied their technique to estimating
the power sums of a distribution to a given additive accuracy.
Letting S P+

α (k) denote the number of samples needed to

estimate Pα(p) to a given additive accuracy, [16] showed that
for α < 1,

S P+
α (k) = �

(
k1/α

log k

)
, (28)

and [17] showed that for 1 < α < 2,

S P+
α (k) ≤ O

(
k2/α−1

)
.

In fact, using techniques similar to multiplicative guarantees
on Pα(p) we show that for S P+

α (k) is a constant independent
of k for all k > 1.

Since Pα(p) > 1 for α < 1, power sum estimation to a fixed
additive accuracy implies also a fixed multiplicative accuracy,
and therefore

Sα(k) = �(S P×
α (k)) ≤ O(S P+

α (k)),

namely for estimation to an additive accuracy, Rényi entropy
requires fewer samples than power sums. Similarly, Pα(p) < 1
for α > 1, and therefore

Sα(k) = �(S P×
α (k)) ≥ �(S P+

α (k)),

namely for an additive accuracy in this range, Rényi entropy
requires more samples than power sums.

It follows that the power sum estimation results
in [16] and [17] and the Rényi-entropy estimation results
in this paper complement each other in several ways. For
example, for α < 1,

∼∼
�
(

k1/α
)

≤ Sα(k) = �(S P×
α (k)) ≤ O(S P+

α (k))

≤ O

(
k1/α

log k

)
,

where the first inequality follows from Theorem 22 and the
last follows from the upper-bound (28) derived in [16] using
a polynomial approximation estimator. Hence, for α < 1,
estimating power sums to additive and multiplicative accuracy
require a comparable number of samples.

On the other hand, for α > 1, Theorems 9 and 21 imply

that for non integer α,
∼∼
� (k) ≤ S P×

α (k) ≤ O (k) , while in
the Appendix we show that for 1 < α, S P+

α (k) is a constant.
Hence in this range, power sum estimation to a multiplicative
accuracy requires considerably more samples than estimation
to an additive accuracy.

We now show that the empirical estimator requires a con-
stant number of samples to estimate Pα(p) independent of k,
i.e., S P+

α (k) = O(1). In view of Lemma 8, it suffices to bound
the bias and variance of the empirical estimator. Concurrently
with this work, similar results were obtained in an updated
version of [16].

As before, we consider Poisson sampling with N ∼ Poi(n)
samples. The empirical or plug-in estimator of Pα(p) is

P̂e
α

def=
∑

x

(
Nx

n

)α

.

The next result shows that the bias and the variance of the
empirical estimator are o(1).
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Lemma 28: For an appropriately chosen constant c > 0,
the bias and the variance of the empirical estimator are
bounded above as

∣∣P̂e
α − Pα(p)

∣∣ ≤ 2c max{n−(α−1), n−1/2},
Var[̂Pα] ≤ 2c max{n−(2α−1), n−1/2},

for all n ≥ 1.
Proof: Denoting λx = npx , we get the following bound

on the bias for an appropriately chosen constant c:
∣∣P̂e

α − Pα(p)
∣∣

≤ 1

nα

∑

λx≤1

∣∣E
[
Nα

x

]− λx
∣∣+ 1

nα

∑

λx >1

∣∣E
[
Nα

x

]− λx
∣∣

≤ c

nα

∑

λx≤1

λx + c

nα

∑

λx >1

(
λx + λ

α−1/2
x

)
,

where the last inequality holds by Lemma 4 and Lemma 2
since xα is convex in x . Noting

∑
i λx = n, we get

∣∣P̂e
α − Pα(p)

∣∣ ≤ c

nα−1 + c

nα

∑

λx >1

λ
α−1/2
x .

Similarly, proceeding as in the proof of Theorem 9, the
variance of the empirical estimator is bounded as

Var[̂Pα] = 1

n2α

∑

x∈X
E

[
N2α

x

]
− E[Nα

x ]2

≤ 1

n2α

∑

x∈X

∣∣∣E
[

N2α
x

]
− λ2α

x

∣∣∣

≤ c

n2α−1 + c

n2α

∑

λx >1

λ
2α−1/2
x .

The proof is completed upon showing that
∑

λx>1

λ
α−1/2
x ≤ max{n, nα−1/2}, α > 1.

To that end, note that for α < 3/2
∑

λx >1

λ
α−1/2
x ≤

∑

λx >1

λx ≤ n, α < 3/2.

Further, since xα−1/2 is convex for α ≥ 3/2, the summation
above is maximized when one of the λx ’s is n and the
remaining equal 0 which yields

∑

λx>1

λ
α−1/2
x ≤ nα−1/2, α ≥ 3/2,

and completes the proof.

ACKNOWLEDGMENTS

The authors thank Chinmay Hegde and Piotr Indyk for
helpful discussions and suggestions. Also they are indebted to
an anonymous reviewer for providing many useful suggestions
to extend the scope of this paper. In an earlier submission, we
had focused on the large alphabet regime with a fixed δ and
large k. The reviewer suggested to include results for arbitrary
k and δ whenever possible and provided a proof sketch for
characterizing the sample complexity of empirical estimator.

In particular, the current form of Lemma 4 is a strengthening
of our original result and was suggested by the anonymous
reviewer. This stronger form was essential in obtaining a
characterization of sample complexity of empirical estimator
for arbitrary k and δ.

REFERENCES

[1] J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi, “The complex-
ity of estimating Rényi entropy,” in Proc. 26th Annu. ACM-SIAM
Symp. Discrete Algorithms (SODA), San Diego, CA, USA, Jan. 2015,
pp. 1855–1869.

[2] A. Antos and I. Kontoyiannis, “Convergence properties of functional
estimates for discrete distributions,” Random Struct. Algorithms, vol. 19,
nos. 3–4, pp. 163–193, Oct. 2001.

[3] E. Arikan, “An inequality on guessing and its application to sequen-
tial decoding,” IEEE Trans. Inf. Theory, vol. 42, no. 1, pp. 99–105,
Jan. 1996.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Sampling algorithms:
Lower bounds and applications,” in Proc. 33rd Annu. ACM Symp. Theory
Comput., Heraklion, Greece, Jul. 2001, pp. 266–275.

[5] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, “Testing
closeness of discrete distributions,” J. ACM, vol. 60, no. 1, Feb. 2013,
Art. no. 4.

[6] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer, “Gener-
alized privacy amplification,” IEEE Trans. Inf. Theory, vol. 41, no. 6,
pp. 1915–1923, Nov. 1995.

[7] I. Csiszár, “Generalized cutoff rates and Renyi’s information measures,”
IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 26–34, Jan. 1995.

[8] O. Goldreich and D. Ron, “On testing expansion in bounded-degree
graphs,” in Proc. Electron. Colloq. Comput. Complex. (ECCC), vol. 7.
2000, p. 20.

[9] P. Grassberger, “Finite sample corrections to entropy and dimen-
sion estimates,” Phys. Lett. A, vol. 128, nos. 6–7, pp. 369–373,
Apr. 1988.

[10] M. K. Hanawal and R. Sundaresan, “Guessing revisited: A large devi-
ations approach,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 70–78,
Jan. 2011.

[11] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 1952.

[12] N. J. A. Harvey, J. Nelson, and K. Onak, “Sketching and streaming
entropy via approximation theory,” in Proc. 49th Annu. IEEE Symp.
Found. Comput. Sci. (FOCS), Philadelphia, PA, USA, Oct. 2008,
pp. 489–498.
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