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Nontarget mass spectrometry and in silico
molecular characterization of air pollution from
the Indian subcontinent
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Fine particulate-matter is an important component of air pollution that impacts health and

climate, and which delivers anthropogenic contaminants to remote global regions. The

complex composition of organic molecules in atmospheric particulates is poorly constrained,

but has important implications for understanding pollutant sources, climate-aerosol inter-

actions, and health risks of air pollution exposure. Here, comprehensive nontarget high-

resolution mass spectrometry was combined with in silico structural prediction to achieve

greater molecular-level insight for fine particulate samples (n= 40) collected at a remote

receptor site in the Maldives during January to April 2018. Spectral database matching

identified 0.5% of 60,030 molecular features observed, while a conservative computational

workflow enabled structural annotation of 17% of organic structures among the remaining

molecular dark matter. Compared to clean air from the southern Indian Ocean, molecular

structures from highly-polluted regions were dominated by organic nitrogen compounds,

many with computed physicochemical properties of high toxicological and climate relevance.

We conclude that combining nontarget analysis with computational mass spectrometry can

advance molecular-level understanding of the sources and impacts of polluted air.

https://doi.org/10.1038/s43247-022-00365-1 OPEN

1 Department of Environmental Science (ACES, Exposure & Effects), Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden. 2Maldives
Climate Observatory at Hanimaadhoo (MCOH), Hanimaadhoo 02020, Maldives. 3 Divecha Centre for Climate Change, Indian Institute of Science (IISc),
Bangalore 560012, India. 4 Department of Environmental Science (ACES, Biogeochemistry), Bolin Centre for Climate Research, Stockholm University,
Stockholm 106 91, Sweden. 5Present address: Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden.
6Present address: Institute of Environmental Geosciences, University Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France.
✉email: jon.martin@aces.su.se

COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:35 | https://doi.org/10.1038/s43247-022-00365-1 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00365-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00365-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00365-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-022-00365-1&domain=pdf
http://orcid.org/0000-0003-2538-8702
http://orcid.org/0000-0003-2538-8702
http://orcid.org/0000-0003-2538-8702
http://orcid.org/0000-0003-2538-8702
http://orcid.org/0000-0003-2538-8702
http://orcid.org/0000-0002-1598-7093
http://orcid.org/0000-0002-1598-7093
http://orcid.org/0000-0002-1598-7093
http://orcid.org/0000-0002-1598-7093
http://orcid.org/0000-0002-1598-7093
http://orcid.org/0000-0003-4844-2919
http://orcid.org/0000-0003-4844-2919
http://orcid.org/0000-0003-4844-2919
http://orcid.org/0000-0003-4844-2919
http://orcid.org/0000-0003-4844-2919
http://orcid.org/0000-0001-5141-7111
http://orcid.org/0000-0001-5141-7111
http://orcid.org/0000-0001-5141-7111
http://orcid.org/0000-0001-5141-7111
http://orcid.org/0000-0001-5141-7111
http://orcid.org/0000-0001-9463-655X
http://orcid.org/0000-0001-9463-655X
http://orcid.org/0000-0001-9463-655X
http://orcid.org/0000-0001-9463-655X
http://orcid.org/0000-0001-9463-655X
http://orcid.org/0000-0001-7069-3330
http://orcid.org/0000-0001-7069-3330
http://orcid.org/0000-0001-7069-3330
http://orcid.org/0000-0001-7069-3330
http://orcid.org/0000-0001-7069-3330
http://orcid.org/0000-0002-4659-7055
http://orcid.org/0000-0002-4659-7055
http://orcid.org/0000-0002-4659-7055
http://orcid.org/0000-0002-4659-7055
http://orcid.org/0000-0002-4659-7055
http://orcid.org/0000-0001-6265-4294
http://orcid.org/0000-0001-6265-4294
http://orcid.org/0000-0001-6265-4294
http://orcid.org/0000-0001-6265-4294
http://orcid.org/0000-0001-6265-4294
mailto:jon.martin@aces.su.se
www.nature.com/commsenv
www.nature.com/commsenv


Particulate matter (PM) is a major component of air pollu-
tion that impacts health and global climate. The fine fraction
(<2.5 μm, PM2.5) is responsible for millions of premature

deaths annually1,2 and is a risk factor for chronic illness and
cancer3,4. Ambient levels in low- and middle-income countries of
Asia have been declared public health emergencies1,5,6. PM2.5 has
intercontinental spatial impacts and transports persistent organic
contaminants from populated regions to remote global regions7–9.
PM furthermore affects aerosol-sunlight and aerosol-cloud
interactions10 and is generally believed to contribute to climate
cooling through light-scattering and cloud condensation, although
black carbon and brown carbon (BrC; light-absorbing organic
matter) components may also lead to warming through absorp-
tion of solar radiation11,12. These opposing factors remain poorly
constrained in climate models11–13. Organic molecules can be a
major mass fraction of total PM14, thus a comprehensive mole-
cular characterization of PM2.5 could contribute to improved
understanding of global air pollution sources, climate impacts, and
health effects.

High-resolution mass spectrometry (HRMS) is an established
instrumental technique that can reveal the molecular complexity
of PM2.5 organic compounds, however, most substances remain
uncharacterized beyond assignment of molecular formula or the
presence of certain functional groups15–22. Characterization of
PM2.5 samples by HRMS also creates high demands on data
processing which has limited previous detailed studies to only a
few atmospheric samples. In metabolomics and proteomics, high-
throughput workflows for batch-processing of full-scan HRMS
chromatographic data (i.e. MS1) and the associated fragmentation
spectra (MS2) are now applied to explore the chemical structures
of ‘molecular dark matter’ in biological systems23–26. Such
methods have yet to be applied in atmospheric research, but
could open new molecular-level windows for studies of air pol-
lution. We hypothesized that new insights into the molecular
composition and effects of PM2.5 organic compounds could be
achieved by combining comprehensive nontarget HRMS analysis
with computational workflows23–26.

Here, PM2.5 was continuously collected throughout January-
April by high-volume sampling (n= 40 samples) at the Maldives
Climate Observatory at Hanimaadhoo (MCOH) as part of the
South Asian Pollution Experiment, 2018 (SAPOEX-18)11. During
these months, the MCOH enables sampling of highly polluted
plumes originating from the Indian subcontinent1,11, and occa-
sional pristine air from the Southern Indian Ocean27,28. Polluted
air in this geographical hotspot leads to millions of premature
deaths1,2,4 and the associated ‘Atmospheric Brown Cloud’
extends south of the equator, influencing atmospheric energy
balances over a vast region29. Previous studies of PM in this
region have highlighted the major fraction of sunlight-absorbing
BrC30.

To achieve a broad molecular characterization of organic
compounds, each PM2.5 sample was extracted with a range of
solvents and analyzed by gas-chromatography (GC)-HRMS elec-
tron ionization (EI) and negative chemical ionization (NCI), or by
high-performance liquid chromatography (LC)-HRMS electro-
spray ionization (ESI) in positive and negative mode. This
approach resulted in six unique molecular profiles per sample
(Fig. 1a), and revealed high molecular complexity (Fig. 1b–d).
Known anthropogenic contaminants were confirmed (Level 1),
including legacy persistent organic pollutants, polycyclic aromatic
hydrocarbons (PAHs), plasticizers, pesticides, and associated
transformation intermediates. However, these identifications
represented only a minor portion of all detected molecules. Hence,
by integration of open-source cheminformatics and computational
workflows, including molecular networking25, MS2-guided in
silico structural predictions31, and physicochemical property

estimation of optical and toxicological relevance32–34, we pro-
ceeded to characterize thousands of structures among the
remaining unknown molecules. The molecular properties of these
structures were evaluated with consideration of potential health
and climate impacts.

Results and discussion
Comprehensive nontarget analysis of PM2.5. After quality
control and field-blank correction, the combined analyses of 40
PM2.5 samples (120 extracts) revealed 60,030 molecular features
(Supplementary Data 2—Dataset). Each feature is defined by a
retention time (Rt) in the chromatographic dimension for GC
and LC, and for GC analyses a mass spectrum dimension cor-
responding to mass-to-charge ratio (m/z) with a base-peak ion
and deconvoluted MS1 spectrum (EI and NCI), and for LC
analyses by a precursor MS1 (full-scan) and corresponding
deconvoluted data-independent (DIA) MS2 spectrum.

The number of features detected in water-soluble, polar, and
nonpolar organic compound extracts (WSOC, POC, and NPOC,
respectively) across the four modes of instrumental analysis
(Fig. 1b, c, d GC-EI, GC-NCI, LC-ESI+ , LC-ESI-) indicated that
a great proportion of molecules were unique to each dataset
(Fig. 1e, f), and thus that a battery of approaches was important
for achieving comprehensive analysis of PM2.5 (see criteria
in Supplementary methods—Estimation of unique features).

The greatest molecular complexity was found in the WSOC
and POC extracts (98% of all features). This was not unexpected
because hydrophilic compounds represent the largest fraction (up
to 50–100%) of aerosol organic compounds11. Moreover, the
remote MCOH sampling location allows substantial atmospheric
oxidation of transported pollution to occur prior to collection11.
Altogether, the large number of samples, and the battery of
extracts and analytical modes employed here resulted in a greater
view of molecular complexity than reported in previous analyses
of atmospheric PM18,22,35.

Back-trajectories and geographical sources of air pollution.
Throughout the campaign, back-trajectories showed that sampled
air originated from four geographical regions (Fig. 2a, b, Fig. S8
and Supplementary Data 3—Back-trajectories), including three
regions to the north that cover reaches of the Indian subcontinent
(i.e. Arabian Sea, Indo-Gangetic Plain, and Peninsular India), and
a fourth region originating in the Southern Indian Ocean (Fig. 2a,
b). The frequency contributions of air from these four back-
trajectories (Fig. 2a) were used to model the chemical variation
observed in each 48 hr sample; considering all combined features
from all fractions (NPOC, POC, WSOC). The resulting multi-
variate model (Fig. 2c) explained variation among molecular
profiles by geographical source, in particular, the first latent
variable significantly separated the Southern Indian Ocean cluster
from the three subcontinental clusters. Based on satellite data, the
back-trajectories of air coming from the three subcontinental
regions coincided with much higher tropospheric nitrogen
dioxide (NO2) concentrations (Fig. 2d), a generic indicator of air
pollution1,36. Consistent with this, samples dominated by air
from any of the three subcontinental regions had significantly
higher levels of combustion-derived polycyclic aromatic com-
pounds (PACs) (Fig. 2e and Supplementary Data 4—Identifica-
tions GC—NPOC), in particular for air originating in the Indo-
Gangetic Plain, a global hotspot for air pollution during the dry
winter monsoon4,13.

Molecular annotation and identification. Based on spectral
library searches, a total of 318 features (across both GC- and LC-
HRMS analyses) were highlighted as putative anthropogenic or
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biogenic compounds, up to Level 2a identification37 (see criteria
in Methods). Annotations of putative anthropogenic substances
were selected for confirmation by comparing orthogonal evidence
under identical analytical conditions (Rt, MS1 and MS2) to
reference standards (Supplementary methods). Across GC and
LC datasets, 89 compounds were ultimately confirmed with
highest confidence (Level 1; 53 compounds with Rt shift <
0.2 min or RI < 30) or as closely related isomers (36 compounds
with Rt shift < 0.4 min or RI < 250) (Supplementary
data 4—‘Identifications’, and Supplementary data 6—‘Spectral
matches’). For the NPOC extracts, these consisted mostly of
n-alkanes and PACs detected by GC-EI-HRMS (Fig. 3), including
four oxy-PACs (e.g. 4H-cyclopenta[def]phenanthren-4-one
(C15H8O), 9-anthracenecarboxaldehyde (C15H10O), and 7H-
benz[de]anthracene-7-one (C17H10O)), six sulfur-containing
PACs (i.e. C16H10S, C18H12S, and C20H12S isomers), and a ben-
zocarbazole isomer (C16H11N). Several persistent organic pollu-
tants were detected in the same extracts using GC-NCI-HRMS,
including 11 chlorinated compounds e.g., polychlorinated diox-
ins, and polychlorinated biphenyls (PCBs), and seven brominated

flame retardants (BDEs) (Fig. 3). Compounds confirmed by LC-
HRMS encompassed a wider variety of chemical classes, including
parent commercial substances such as tris-2-butoxyethyl-
phosphate (C18H39O7P) (Fig. 3), degradation products of com-
mercial substances, or products of combustion and/or atmo-
spheric oxidation, such as monoethyl phthalate (C10H10O4),
phthalic acid (C8H6O4), 4-nitrophenol (C6H5NO3), 2,4-dini-
trophenol (C6H4N2O5), benzimidazole (C7H6N2), and
2-hydroxybenzimidazole (C7H6N2O) (Fig. 3). Various herbicides
and insecticides were also confirmed (Fig. 3), e.g., DEET
(C12H17NO), prometon (C10H19N5O), malaoxon (C10H19O7PS),
methamidophos (C2H8NO2PS), as well as their environmental
transformation products, e.g. simazine-2-hydroxy (C7H13N5O)
and atrazine-2-hydroxy (C8H15N5O)37.

Many of the legacy persistent organic pollutants are semi-
volatile and partition to the gas-phase, particularly at high
ambient temperatures as recorded in the current campaign
(mean= 32.9 °C), but several PCBs and BDEs were never-
theless detected sporadically from polluted back-trajectories,
suggesting continued emissions in South Asia, with highest

Fig. 1 Sampling and comprehensive nontarget HRMS analysis of PM2.5. a High-volume sampling (500 Lmin-1) of PM2.5 at MCOH onto quartz-fiber filters
that were sectioned and extracted by three distinct protocols. b The nonpolar organic compound (NPOC) extract was analyzed with GC-HRMS by electron
ionization (EI) and negative chemical ionization (NCI), shown here plotted by base peak m/z and Kovats retention index (RI). c Water-soluble organic
compound (WSOC) extract and d polar organic compound (POC) extract were analyzed with LC-HRMS in data-independent MS2 acquisition (DIA) with
electrospray positive (ESI+) and negative (ESI−) mode, shown here as Kendrick plots with color shading by retention time. e, f Venn diagrams showing the
percent of molecular features that were unique to each extract and mode of analysis, demonstrating that a battery of approaches was important to achieve
comprehensive molecular analysis of PM2.5.
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detection frequency for 2,2′,4,4′-tetrabromodiphenyl ether
(BDE-47; C12H6Br4O) (Fig. 3 and Fig. S11). Samples with
subcontinental back-trajectories, particularly those associated
with the Arabian Sea and Indo-Gangetic Plain, consistently had
higher levels of PACs, plasticizers, biocides, and herbicides; at
least 2- to 10-fold higher than in air masses from the Southern
Indian Ocean (Fig. 2e, and Fig. S11). Simazine-2-hydroxy
(C7H13N5O) (Fig. 3) was detected at highest levels in two
samples from the Indian Ocean, suggesting local use of
simazine in the Maldives. Conversely, atrazine-2-hydroxy
(C8H15N5O) was detected at higher levels (up to 10-fold) in
samples from subcontinental regions (Fig. 3, Fig. S11 and
S16–S17), and we are not aware of any previous reports of this
substance in ambient air.

Characterization of PM2.5 molecular dark matter. Only a minor
proportion (0.5%) of all molecular features in polluted PM2.5

were identified or putatively annotated by MS2 spectral database
matching (see criteria in Methods). Higher but still low anno-
tation rates (up to 1–2%) have been reported for environmental
water analysis38,39 and metabolomics24 despite larger and spe-
cialized databases. The vast majority of molecules in polluted air
could not be matched to known compounds, not only because
spectral databases mostly cover biogenic compounds (e.g.,
anthropogenic substances account for approximately 15% of
records in both NIST20 and MassBankEU), but also because the

major sources of air pollution include the incomplete combus-
tion of complex fuels and heterogeneous biomass that are prone
to rapid transformations in the atmosphere (oxidation, photo-
lysis, hydrolysis) to yield molecular byproducts and secondary
organic aerosols40. Hence, we combined cheminformatics and
computational strategies that leverage data-rich MS1 and MS2

information of unknown features, and structural information of
annotated molecules, to characterize the remaining unknown
features in PM2.5 through in silico predictions of structure and
physicochemical properties38,39. For all LC-HRMS features, we
first calculated molecular formulae by combining two indepen-
dent approaches, MFAssignR41 and SIRIUS42. Consensus
between the two methods resulted in >19,000 features being
assigned a molecular formula (i.e., 33% of the LC-HRMS data-
sets, Level 4 identification)37 (Fig. 4a). Next, features were
clustered by molecular networks constructed in GNPS (Global
Natural Products Social Molecular Networking)25,26, whereby
neighboring molecular features (nodes) are linked by pairwise
MS2 spectral similarity (edges) representing an inferred struc-
tural analogy (Fig. 4b, c). We then performed a high-throughput
structural elucidation of all molecules in the networks with the
MS2-guided in silico Network Annotation Propagation (NAP)
GNPS workflow31. This workflow leverages the molecular net-
work topology to re-rank the in silico predicted candidates based
on joint similarity within a molecular family cluster (e.g., ten
first-neighbors), and by combining in silico predictions via the
core algorithm MetFrag43 to structural information from MS2

Fig. 2 Geographical sources of PM2.5 and modelling of molecular profiles. a Relative contribution of air masses for each 48 hr sample (n= 40 time-
points) originating from the Arabian Sea, Peninsular India, Indo-Gangetic Plain or Indian Ocean, and b the mean path of these four 10-day back-trajectory
clusters around the receptor site MCOH (6.80°N, 73.20°E). The satellite image corresponds to the monitoring campaign day 2nd of February, 2018 (NASA
Worldview; https://worldview.earthdata.nasa.gov/). c Scores of the orthogonal partial least square (OPLS; 2+ 1+ 0) multivariate model correlating the
back-trajectories to the nontarget (LC+GC) HRMS chemical profiles of PM2.5 samples, with Indian Ocean back-trajectory cluster cross-validated [CV]-
ANOVA p value = 0.0013. See also principal component analysis (PCA) in Fig. S10, and details in Supplementary data 3—Models and statistics OPLS
2+ 1). Each sample is colored according to the most dominant back-trajectory within the 48 h window. d Tropospheric nitrogen dioxide (NO2) levels
measured along the back-trajectories by satellite remote sensing (OMI/Aura; NASA). e Polycyclic aromatic compound abundance (±SE) in GC-HRMS for
analytes identified at Level 1 (dibenzo[a,i]pyrene, 4H-cyclopenta[def]phenanthren-4-one, benzo[b]naphto[1,2-d]thiophene). Error bars indicate S.E.
Significant differences relative of levels in Arabian Sea (n= 14), Peninsular India (n= 13), and Indo-Gangetic Plain (n= 7) to the Indian Ocean (n= 6) are
shown by the Welch t-test (two-sided): *p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; and ****p≤ 0.0001 (d.f. = 18, 17, 11).
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spectral library matches. The structures of 30,389 molecules were
predicted in this way to achieve Level 3 identification37 (Sup-
plementary data 4—Identifications NAP). While the NAP
workflow already increases the reliability of the in silico first-
candidates31, we further proceeded to consider only those pre-
dicted structures for which a matching molecular formula had
been consistently assigned by all three computational steps (i.e.,
MFAssignR, SIRIUS, and NAP). By this conservative approach,
10,256 structures (out of 30,389 initial predictions; 34%) were
carried forward as a relatively reliable in silico portfolio of small
molecules in PM2.5 (Fig. 4b, c and Supplementary data 4—
NAP+ formula_consensus).

Molecular hallmarks of polluted and clean air. After formula
assignment and thousands of structural predictions, the con-
trasting molecular profiles across back-trajectory regions (Fig. 2)
presented an opportunity to investigate what types of organic
molecules are most characteristic of clean and polluted air. Thus,
in a second supervised multivariate model, we collapsed the four
back-trajectory matrices into one vector expressing each sample’s
polluted fraction (i.e., air originating from any of the three pol-
luted subcontinental trajectories) versus clean air of the Southern
Indian Ocean (Fig. 5a). The fraction of molecules that most sig-
nificantly correlated with polluted or clean air back-trajectories
were selected for further investigation (Fig. 5b). These top-VIP

Fig. 3 Anthropogenic substances confirmed in PM2.5. Examples of environmental contaminants detected across different extracts and modes of analyses,
all of which were confirmed by comparison with authentic standards (i.e., identification Level-1). Dashed-line intersections indicate example analytes
detected in multiple extracts or modes of analysis. Nonpolar hydrocarbons, including PAHs and oxy-PAHs, were detected in the NPOC extracts by GC-
HRMS with electron ionization (EI) and/or by negative chemical ionization (NCI). Sulfur-containing PACs were detected and confirmed by GC-EI, while
other persistent pollutants (e.g., PCBs, BDEs) by GC-NCI. The WSOC and POC fractions were analyzed by LC-HRMS with each extract injected twice for
separate acquisitions in electrospray positive (ESI+) and negative (ESI−) modes. ESI− is optimal for weak organic acids, while ESI+ reveals nitrogenous
bases and a range of polar neutral molecules such as alcohols, aldehydes, and ketones. These analyses combined allowed the detection of anthropogenic
pollutants representing a wide variety of chemical classes, some potentially originating from atmospheric oxidation of incomplete combustion sources,
others synthesized for commercial or industrial use, e.g., plasticizers, generic biocides, insecticides, herbicides, and their transformation products.
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(variable importance for the projection) features accounted for
10% of the dataset (6088), 35% (2156) of which had been suc-
cessfully assigned a molecular formula, and 17% (1049) of which
had been assigned a structure consistent with the formula (Sup-
plementary data 4—Identifications).

Overall, molecules in PM2.5 that correlated with polluted back-
trajectories (4660 features; 1652 formulae; 775 structures) were

three times more numerous than those correlating with clean air
(1428 features; 504 formulae; 274 structures) (Fig. 5b), and
occupied a broader and more oxidized chemical space (median;
polluted = O/C 0.29 ± 0.28 SD, H/C 1.43 ± 0.41 S.D.; clean = O/C
0.20 ± 0.18 S.D., H/C 1.55 ± 0.30 S.D.) (Fig. 5c). The most
numerous heteroatomic formula classes in polluted air corre-
sponded to molecules containing one or two nitrogen atoms (N2,

Fig. 4 Molecular-level characterization of complex PM2.5 extracts. High-throughput characterization of PM2.5 molecules was performed by combining
information from MS1 and MS2 HRMS data. The integration of multiple cheminformatics approaches is illustrated here for molecular features detected in
the WSOC extracts by LC-HRMS with ESI+ (see also Fig. S6). a Molecular formulae were assigned to a proportion of features (45% in this example, see
Fig. S5) allowing color-coded visualization in van Krevelen diagrams, and in b molecular networks (GNPS). In the network, each feature is shown as a node
linked to other nodes by edges indicating the degree of similarity among deconvoluted MS2 spectra (minimum cosine score = 0.65). In this example,
10,051 molecular features are clustered into 1064 molecular families having inferred structural analogy. c Zoom-in on a molecular family cluster of 15
nitrogen-containing benzenoids. The first-candidate structures from re-ranked in silico predictions (NAP/MetFrag) are shown in blue. The highlighted node
(red outline) shows two putative annotations for the same molecular formula (C9H10N2), i.e., 5,6-dimethylbenzimidazole (red structure) from the GNPS
library match (Fig. S18), and 1-indanonehydrazone (blue structure) as the top in silico first-candidate ranked by the network consensus (Fig. S20). The
structure of 5,6-dimethylbenzimidazole was also predicted in silico, but ranked as the sixth candidate.
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N2Ox classes, Fig. 5d), and were represented by in silico predicted
structures of e.g., nitrophenols, N-heterocycles, imidazoles,
quinazolines, and diazine derivatives (Fig. 6a). These are
compound classes previously highlighted as contributors to the
light-absorption of BrC in atmospheric aerosols15. Polluted air
also included relatively more molecules containing sulfur (S and
OxS classes) or mixed sulfur and nitrogen (NOxS), e.g., the
predicted structure of the herbicide bentazone (C10H12N2O3S)
(Fig. 6a), and highly oxygenated compounds (O4-O8 classes)
(Fig. 5d) such as quinolacetic acid (C8H8O4) and dihydroxyter-
ephthtalic acid (C8H6O6) (Fig. 6). The OxS class in polluted
samples also included organosulfates (Fig. 6a) which are
implicated in cloud condensation processes44.

In contrast, clean air PM2.5 was distinguished by mono-, di-,
and tri-oxygenated molecules (O-O3 classes), of which many were

annotated through the GNPS spectral library (Level 2a) or
predicted in silico (Level 3) as derivatives of alpha-pinene
(C10H16), such as dihydroactinidiolide (C11H16O2) and loliolide
(C11H16O3), or other biogenic volatiles, e.g., mandelic acid-methyl
ester (C9H10O3), and viscosumic acid (C15H20O3), a sesquiterpene
produced by Polygonum sp45, native to South East Asia (Fig. 6b
and Fig. S11). An interesting natural product with higher oxygen
content was identified (Level 1) as acetyl portentol (C19H28O6;
Fig. 6b and Fig. S21), a polyketide produced by marine lichens
of Roccella sp. native to Indian coastal habitats46,47. Biogenic
volatiles, such as (mono)terpenes, that are photochemically
oxidized in the atmosphere (including to O-O3 class substances)
can contribute to particle nucleation in the absence of pollution48,
and are chromophoric components of secondary organic aerosols,
for example, oxidized indole derivatives49.

Fig. 5 Molecular markers of polluted and clean PM2.5. aMultivariate OPLS (1+ 1+ 0) model explaining chemical profiles of polluted (subcontinental) and
clean air (Indian Ocean). Samples are clustered based on similarity of molecular feature profiles, and colored according to the relative contribution of
polluted (brown) or clean (cyan) air back-trajectory frequencies in each sample (CV-ANOVA p value = 9e–06; see details in Supplementary data 3 –

Models and statistics OPLS 1+ 1). b From the OPLS model, the contribution of each molecular feature (n= 60,030) to either polluted or clean air profiles is
highlighted in the volcano plot, showing molecules with the highest model-correlation coefficients (|p[corr]| > 0.50) and variable importance for the
projection scores (VIP > 1.0). Features are colored by their m/z values. The total number of top VIP features (i.e., VIPs > 1.00, |p[corr]| > 0.50) as
significant markers of polluted and clean air are shown (red font) with the proportion of unambiguous molecular formulae assigned (in brackets). c
Distribution of these top -VIP features in van Krevelen space, colored by their model-correlation with either polluted (brown) or clean (cyan) air. d Total
counts of top-VIP features by heteroatomic formula classes (minimum of five features per class) ordered by difference between polluted and clean air. See
also Fig. S12 for the relative contribution of each extract (NPOC, POC, WSOC) and data sources in Supplementary data 3 – Models and statistics, Top VIP
x corr).
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Physicochemical properties of molecules in clean and polluted
air. To gain molecular insights to the impacts of PM2.5 on human
health and climate, we next employed the structures of top-VIP
molecular markers to estimate physiochemical descriptors of
toxicological and environmental relevance, e.g., lipophilicity

(logP), topological polar surface area (TPSA), water solubility
(logS), and molar refractivity (MR). A concordance between
physicochemical properties and clusters of molecular families in
the molecular networks was observed, whereby closely related
structures showed similar values of e.g., logP (Fig. 7a, b).

Fig. 6 Representative molecular structures among the major heteroatomic formula classes in polluted and clean air. Molecular markers in polluted and
clean air (OPLS; Fig. 5) were structurally characterized by MS2 spectral library matching (red structures; Level 2) or by MS2 in silico prediction (blue
structures; Level 3). Representative example structures are shown to illustrate the results (see also Supplementary data 4 – Identifications). a Polluted air
was distinguished by a mixture of nitrogen- and sulfur-containing compounds, and highly oxygenated organic molecules. Several of these structures
corresponded to aromatic N-heterocycles (e.g. nitrophenols, imidazoles, and diazine derivatives), which are structures that have been previously linked to
light-absorbing BrC. The three structures in red from polluted air (N2, N2O, N2O5) were confirmed Level 1 by authentic reference standards. b Molecular
hallmarks of clean air were mono-, di-, and tri-oxygenated organic molecules (O-O3 class), many of which were predicted in silico (Level 3) or annotated on
the GNPS spectral library (Level 2) as biogenic compounds. These included terpenes, such as derivatives of alpha-pinene (CH) and other plant volatiles. An
interesting exception of a compound in clean air with higher oxygen content (O6). was confirmed as acetyl portentol (Level 1; Fig. S21), a polyketide
produced by the marine lichens of Roccella sp. native to Indian coastal habitats. Another biogenic compound was predicted in silico (Level 3) as viscosumic
acid, a sesquiterpene produced by the annual herbs of Polygonum sp. native to Nepal, Bangladesh, and north-eastern India.
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Moreover, for features detected by LC-HRMS (WSOC, POC), the
computed logP of predicted molecular structures were strongly
correlated with empirical measurements of their hydrophobicity:
the reversed-phase HPLC retention times in our analyses

(Pearson’s correlation, ρ= 0.64–0.75, Fig. 7c). These important
results demonstrate the reliability of the molecular networking
approach and of the in silico predicted structures (Supplementary
data 4 – Identifications, Descriptors).

Fig. 7 Analysis of physicochemical properties of clean and polluted air molecules. Structures of molecules in clean and polluted air (i.e. VIPs > 1.00,
p[corr] > ±0.50; Fig. 5) were used to compute physicochemical descriptors of toxicological and environmental relevance. a, b A subset of the
WSOC+molecular network (see Fig. 4) is shown to highlight the tight relationship between structural analogy and physicochemical properties, with
features color-coded according to (a) chemical group, and (b) predicted lipophilicity (logP). In b, example structures from the same network are reported
with corresponding logP values. c Positive Pearson’s correlation between the predicted logP and the liquid chromatography retention time (Rt) on a
C18 stationary phase for POC and WSOC extracts (ESI+ and ESI− data combined). d Two-dimensional density plots visualizing the distribution of logP and
topological polar surface area (TPSA, Å²) in clean and polluted air. e Density distribution and median values of logP in clean and polluted air molecules. f, g
Scatterplots with molecular features color-coded according to detection in the analyzed extracts, showing a negative Pearson’s correlation between the (f)
LogP and O/C, and (g) between MR and solubility (logS). h Density distribution and median values of the index of refraction (nD) in clean and polluted air
molecules. All Pearson’s correlation coefficients (ρ) are shown with p values < 2.2e–16. Significant differences between clean and polluted air profile
distributions are reported for unpaired Student’s t-test p-values (two-sided).
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Compared to clean air, molecules in polluted air occupied a
broader physicochemical space, including for logP and TPSA
(Fig. 7d) which influence bioavailability and tendency to cross
biological membranes. Molecules in polluted air had lower
median logP (polluted= 0.85 logP; clean = 2.02 logP; p value =
6.6e–09) (Fig. 7d), but the distribution was bimodal and polluted
air also had a higher frequency of structures with extreme
lipophilic values (> 5 logP, polluted 10.4%; clean = 5.8%)
(Fig. 7e). The most highly lipophilic substances included n-
alkanes and PACs detected by GC-HRMS in NPOC extracts
(confirmed, Level 1), and related alcohols, aldehydes, fatty acids,
and amides predicted in silico (Level 3) by LC-HRMS. The latter
substances were often detected by LC-ESI+ in POC extracts, e.g.
8-dotriacontenoic acid (C32H62O2), 22-oxononacosanoic acid
(C29H56O3), and docosanamide (C22H45NO), but also in other
fractions and ionization modes, e.g. tricosanoylglycine
(C25H49NO3) and dimethyl octadecanedioate (C20H38O4)
detected by LC-ESI- in POC and WSOC, respectively.

The overall trend of lower logP (i.e. increased polarity) among
molecules from polluted regions of the Indian subcontinent
(Fig. 7d, e) is consistent with photochemical oxidation of water-
soluble BrC during transport from the Indo-Gangetic Plain11. We
reported a higher O/C among molecules in polluted air (Fig. 5c,
d), and here we further observed a strong inverse correlation
between logP and molecular content of oxygen (ρ=−0.62;
Fig. 7f). As an illustrative example of oxidation, fluoranthene
(C16H10; logP = 4.53) was among the PAHs detected by GC-EI-
HRMS (Level 1), while by LC-HRMS (ESI-, WSOC) our in silico
workflow predicted the hydroxy-PAH 9H-fluoren-9-ol (C13H10O;
logP = 2.52, Level 3). The bulk of relatively polar substances
revealed by LC-HRMS at this receptor site may constitute
secondary organic aerosols derived from atmospheric processing
and photooxidation of anthropogenic and biogenic precursors
(Fig. 6). With the current approach, these distributions could be
examined along spatial transects from source to receptor regions
in future.

Significance to human health and global climate. In silico
workflows may be useful for future research into the health
impacts of PM2.5 exposure. While PAHs are lipophilic carcino-
genic molecules50, semi-polar byproducts of their atmospheric
processing span a wider range of physicochemical properties and
can be more acutely toxic. Here, a quantitative structure-activity
relationship analysis based on descriptors used to predict human
absorption, distribution, metabolism, and excretion (e.g. MW,
logP, logS, TPSA; Fig. 7c, d)33 revealed that more than a third of
the top-VIP molecular markers in polluted air (35%, 272/
774 structures) had high predisposition for gastro-intestinal
absorption and permeation through the human blood-brain bar-
rier, thus representing potential gut inflammatory51 and
neurotoxic52 components of PM2.5. Of these, the majority (147
molecules) were also predicted to be inhibitors of cytochrome
P450 enzymes, with representative structures highlighted in Fig. 8.
Several of these were confirmed (Level 1) as sulfur-containing
PACs (e.g. benzo[b]naphtho[1,2-d]thiophene), oxy-PAHs (e.g.
benzanthrone and 4H-cyclopenta[def]phenanthren-4-one) and
imidazoles (e.g. benzimidazole and 2-hydroxybenzimidazole),
while other in silico predicted N-heterocycles included azoles and
azaarenes, such as 11H-Indeno[1,2-b]quinoline (C16H11N), non-
ylpyrazole (C12H22N2), and 4-azapyrene (C15H9N) (Fig. 8) (Sup-
plementary data 4 – Identifications, Descriptors).

From a climate perspective, many top-VIP molecular markers
of polluted air confirmed here (Level 1), such as PACs (detected
by GC-HRMS), and imidazoles and nitrophenols (detected by
LC-HRMS) are known light-absorbing chromophores in BrC

aerosols53 (Fig. 8). Given that atmospheric aging rapidly alters the
molecular components of such organic aerosols, leading to high
uncertainty of their optical properties54, high-throughput work-
flows and in silico prediction of molecular structures could be
exploited in future studies to gain further insight to the climate
impact for complex mixtures of organic substances in PM2.5. For
instance, molecules in polar and water-soluble (WSOC, POC)
extracts of PM2.5 at this receptor site had predicted water
solubilities (logS) that negatively correlated with molar refractiv-
ity (MR, ρ=−0.75; Fig. 7g); a measure of polarizability and
tendency for molecules to interact with light (e.g. driving
Rayleigh-scattering)55. A significant difference was evident in
the optical properties of molecular hallmarks in clean and
polluted air (p value = 1.3e–21) (Fig. 7h), highlighted by the
predicted light-scattering capacity (i.e. expressed by the real part
of the complex refractive index (nD)34,54). Molecules with high-
scattering capacity (>1.55 nD) were nearly three times more
abundant in polluted air (polluted= 48.1%; clean = 16.9%).
Lower-scattering molecules (1.44–1.55 nD) were abundant in
clean air profiles, but some were associated with polluted air (e.g.
oxy-PAHs, indoles, and derivatives of nitrobenzene, benzimida-
zole, and quinoline), whereby the lowest nD values were for
small-molecules and byproducts with linear aliphatic structures
(Fig. 8). This latter trend may indicate atmospheric processing
and photooxidation in secondary organic aerosols49, as suggested
by previous laboratory experiments54.

Conclusions
Through a battery of comprehensive extractions and com-
plementary LC- and GC- nontarget analyses of PM2.5 from South
Asia (720 analyses of 120 extracts from 40 air samples), we
resolved and characterized greater molecular complexity of
atmospheric aerosols than previously reported. In the environ-
mental context, the intensive analytical workflow facilitated
molecular discoveries and high-throughput characterization of
thousands of unidentifiable substances across wide spatial
scales of air mass origins throughout the continuous 3-month
SAPOEX-18 campaign. The molecular complexity and relative
profile of 60,030 molecular features varied by source region and
pollution levels, and chemical class hallmarks of polluted and
clean air were revealed at this receptor site in the Indian Ocean.
The dominant nitrogenous organic molecules in polluted air
are likely of relevance to health and climate but must be con-
firmed through further studies using approaches such as those
described here.

As anticipated at this remote receptor site, only a small frac-
tion of molecular structures could be confidently annotated by
matching to spectral databases (Level 2) or identified with
authentic standards (Level 1). We demonstrated that in silico
predictions based on the underlying information-rich MS2

spectra can be exploited for the high-throughput structural
characterization of thousands of substances in atmospheric
samples. High-throughput molecular structure prediction
remains an imperfect tool, however, predictions herein were
aided by the molecular network topology and validated by strong
and statistically significant correlations between the structures’
predicted physicochemical properties (i.e. logP) and our LC
retention times.

Overall, the ranges of molecular formula classes, predicted
structures, and properties (physicochemical and toxicological)
were wider in samples from polluted regions than in pristine air
from the Indian Ocean. The molecular profile of organic che-
micals in PM2.5 originating from polluted regions were more
oxidized (higher O/C and lower H/C), reflecting atmospheric
processing and secondary organic aerosol formation56,57.
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Persistent anthropogenic compounds were also confirmed, and
their ubiquitous observation at a relatively remote site 2500 km
from the outflow of the Indo-Gangetic Plain is evidence of their
long-range atmospheric transport potential58. Higher levels of
many compounds, including various PACs (oxy-, nitro-, and
sulfur-containing) in polluted air from the Indian subcontinent
likely come from massive emissions of incomplete combustion
processes, characteristic of the South Asian Atmospheric Brown
Cloud, such as from biomass burning (household biofuel
and burning of agricultural crop residue) and small-scale fossil
fuel combustion (e.g., traffic, kerosene lamps, and diesel
generators)59–61. Sources of other anthropogenic contaminants
may include fugitive releases from industry or urban areas, such
as plasticizers, resins, textile dyes, and flame retardants. Biocides,
herbicides, and their metabolites (e.g. atrazine-2-hydroxy) may
derive directly from agricultural spraying and soil erosion, or
burning of post-harvest biomass residues in agricultural regions
across the Indian subcontinent62. Atrazine-2-hydroxy is a major
metabolite of atrazine in soils63, but has to our knowledge never
been reported in air. Previous work at MCOH and in South Asia
demonstrate that marine sources of organic carbon are minor
contributors to PM and its water-soluble organics11,64. It is
plausible that marine sources could be of greater relative
importance for molecular signals detected here in PM2.5 from air
masses coming from southern Indian Ocean. The sources and
global relevance of contaminants emitted from these high-
emission regions of South Asia deserves much more attention.

In addition to sources, the present approach opens up multiple
avenues for deeper understanding of the atmospheric chemistry
of aerosols at the molecular level, of central relevance to health
and climate. Simultaneous identification or characterization of
known and unknown emissions and transformation products
could allow the following of coupled reaction pathways, which
may also be linked to mesoscale chemical information, e.g. from

aerosol mass spectrometry14. PM contributes to some of the
largest uncertainties in our current understanding of the climate,
and thus molecular markers of photochemical aging or secondary
formation (e.g., carboxylic acids or dicarbonyls) may be com-
prehensively tracked to better resolve complex photochemistry
which is shown to attenuate light-absorption of climate warming
BrC in the South Asian outflow11. Here, we observed several
hallmark chromophores (e.g., nitro-phenols and PAHs), opening
up possibilities for the broad-scale understanding of the mole-
cular origins of light absorption beyond targeted analysis. Fur-
thermore, the present work suggests links between the molecular
composition and the real refractive index, a key to computing the
scattering properties and overall climate cooling effects of organic
aerosols. We also observed and semiquantified molecules with
known strong impacts on cloud condensation, e.g. organosulfates,
thus there is great potential to explore molecular-level connec-
tions to climate with present approaches.

From a health perspective, the wide variety of molecules dis-
covered or described here for polluted South Asian air may
contribute to mortality and physiological stress and disease65,66,
including adverse birth outcomes67, asthma68, or even increased
susceptibility to respiratory infections such as COVID-1969. The
most toxic and bioavailable substances in polluted air have yet to
be identified in toxicology or health studies, but may be con-
founded by toxicological interactions between primary emissions
(e.g. lipophilic biocides and drug-like molecules) and secondary
organics with diverse potentials to activate adverse outcome
pathways. Comprehensive, detailed and high-throughput mole-
cular analyses will be necessary to uncover these relationships.
Altogether, these results highlight how nontarget analyses and in
silico structure predictions can be implemented as advanced tools
to explore deeper molecular-level insights and hypotheses on the
health and climate impacts of complex organic compound mix-
tures in airborne PM.

Fig. 8 Molecular hallmarks of polluted air with climate and human health relevance. Example of structures and estimated toxicological and optical
properties of organic compounds detected by GC- and LC-HRMS in PM2.5, as molecular markers of polluted air. Structures were confirmed with authentic
standards (in red; Level 1 or Level 2 as close isomers) or predicted in silico (in blue; Level 3). Molecules are ordered in rows by decreasing light-scattering
capacity expressed as the real component of the complex refractive index (nD). Some of the resulting molecular byproducts include sulfur-, oxygen- and
nitrogen-containing molecules (highlighted in yellow) with predicted toxicity to multiple endpoints, i.e. simultaneously CYP450 inhibitors and with high
predisposition to human gastro-intestinal absorption and blood-brain barrier permeability.
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Methods
High-volume PM2.5 sampling. PM2.5 was sampled continuously in 48 h intervals
between January 11th and April 4th, 2018, at MCOH (Hanimaadhoo, Haa Dhalu
atoll, Maldives, 6.77 °N, 73.18 °E) onto pre-cleaned quartz fiber filters (150 mm Ø)
using a high-volume sampler equipped with a PM2.5 selective inlet (DH-77, Digitel
Elektronik AG, Volketswil, Switzerland) operating at 500 L min−1. To minimize
sampling of local air, a wind-censored system interrupted the sampling when the
wind was below 1.2 m s−1 or coming from the southwest (180–270°)11. Field-
blanks (n= 4) consisted of PM2.5 filters placed in the air samplers with the pump
turned off. Samples and field-blanks were stored frozen in pre-cleaned aluminum
envelopes inside sealed bags, and shipped to Stockholm University for analysis.

Sample preparation. PM2.5 samples were cut and extracted by three different pro-
tocols (Fig. 1a and Supplementary methods). An accelerated solvent extraction (ASE-
350, Thermo Scientific Dionex ASE) was used with hexanes and toluene for nonpolar
organic compounds (NPOCs), and with methanol and toluene for polar organic
compounds (POCs), and extracts concentrated under nitrogen gas. Water-soluble
organic compounds (WSOCs) were extracted by sonication in 40mL HPLC grade
water, followed by centrifugation (see Supplementary methods)11. Multiple isotope-
labeled internal standards (Supplementary data 1 – Standards) were spiked to all PM2.5

samples, field blanks, and urban dust reference samples (NIST SRM 1649b) prior to
extraction. Sample preparation was performed in a positive pressure clean laboratory.

GC- and LC-HRMS. After silica cleanup, the NPOC extracts (2 µL injection) were
analyzed with gas-chromatography (DB5 column) and HRMS (Q Exactive GC
Orbitrap, Thermo Scientific) using electron ionization (EI) or negative chemical
ionization (NCI) with full scan (44–700m/z) and 60,000 resolution full-width half-
maxima (FWHM) at 200m/z. For POC and WSOC, extracts were filtered (0.45 and
0.2 µm, respectively) and analyzed with ultra-high-pressure liquid chromatography
(UHPLC, Ultimate 3000) and HRMS (Q Exactive Orbitrap HF-X, Thermo Fisher
Scientific) using electrospray ionization (ESI) in positive and negative mode. POC
extracts (10 µL) were injected directly to the column (Waters Acquity UPLC BEH
C18), while WSOC extracts (1000 µL) were injected to online solid-phase extrac-
tion prior to analytical separation. The mobile phases were 10 mM ammonium
acetate in water (A) and methanol (B) and flow rate 0.4 mL/min (Supplementary
methods). LC-HRMS was operated with alternating full scan (90–1000m/z,
120,000 resolution FWHM at 200m/z) and four MS2 data-independent analysis
(DIA) scans (30,000 FWHM) with variable m/z precursor windows.

Data pre-processing. GC- and LC-HRMS raw data were pre-processed using MS-
DIAL (v4.24)70, allowing chromatographic alignment across all samples, basic data
reduction (e.g. grouping of C13 isotopes), spectral deconvolution, peak integration,
and field-blank filtering (Supplementary data 1 – MS-DIAL parameters). All fea-
tures were blank filtered in MS-DIAL based on a fivefold difference between sample
maximum and the average in field blanks (n= 4). For semi-quantitative analysis,
integrated peak areas from MS-DIAL were normalized using the areas of different
isotope-labeled internal standards (Supplementary data 1 – Standards). All nor-
malized feature areas were blank-subtracted by the average area of the corre-
sponding feature detected in the field blanks (negative values were set to zero).
Finally, the feature areas were normalized to the air volume accounted by the
portion of PM2.5-filter extracted each sample.

Molecular formula assignments. The R Package ‘MFAssignR’41 and the software
SIRIUS (v.4.5)42 were used for molecular formula assignment (mass accuracy < 5
ppm). MFAssignR applies element heuristics on the MS1 -level, then subtracts non-
oxygen heteroatoms to solve for low-mass moieties (CHO), and finally assigns
formula extensions via nested loops of homologous series41. SIRIUS similarly
generates molecular formulae for the MS1 and then leverages MS2 fragmentation
decision trees (i.e. shared neutral losses) to rank the candidates42. Consensus
results were retained, corresponding to every unambiguous formula assigned by
MFAssignR (Fig. S5) that matched the first-candidate assigned by SIRIUS, and later
in the workflow by NAP (Supplementary data 4 – Identifications,
NAP+ formula_consensus).

Spectral library annotations. For LC-HRMS (WSOC/POC; ESI+ /ESI−
modes), spectral library search was performed on the open-access platform
GNPS (http://gnps.ucsd.edu) and third-party libraries (including MoNA,
https://mona.fiehnlab.ucdavis.edu/; and MassBankEU; https://massbank.eu/)
using a minimum of two shared MS2 fragments (cosine ≥ 0.60) and later filtered
for an MS1 threshold of 5 ppm (See Fig. S15). For GC-HRMS (NPOC; EI/NCI
modes), annotations were performed using a combination of high-throughput
spectral library search (MSPepSearch; https://chemdata.nist.gov/) on the
NIST20 and our in-house Orbitrap-HRMS library of environmental con-
taminants, and candidates were considered only for spectral match
factors ≥ 700.

Molecular networks and in silico structural elucidation. Feature-based mole-
cular networks25,26 were built in GNPS (ver. 28.2) and visualized using Cytoscape

v.3.8.2. For LC-HRMS (WSOC and POC) datasets, parameters were: MS1 and MS2

tolerances of 0.02 Da, minimum spectra similarity cosines of ≥ 0.65, and a mini-
mum of four shared spectral peaks. For in silico structural prediction with the
GNPS/NAP workflow31, the following parameters were used: 10 first-neighbors, 5
ppm accuracy, cosine score ≥ 0.65, 10 maximum candidates from structural
databases (GNPS, HMDB, SUPNAT, CHEBI), and Consensus + Fusion ranking
algorithm. The above workflow was only partly applicable to GC-HRMS data. GC-
EI molecular networks were built in GNPS (ver. 30)71 using an ion tolerance of
0.4 Da, spectra similarity cosines ≥ 0.50, and a minimum of five shared spectral
peaks, and were used to assist identifications (Fig. S7), together with formula
assignments (MFAssignR), Kovats RI, Lee index, and GC-NCI data (Supplemen-
tary data 4 - Identifications ‘GC-NPOC’).

Physicochemical properties. Molecular formulae from the in silico predicted
structures were translated using the open-source cheminformatics API
OpenBabel32 (http://openbabel.org). OpenBabel was also used to compute physi-
cochemical descriptors and derive toxicological endpoints within the pharmaco-
kinetics platform SwissADME33 (http://www.swissadme.ch/). The real (i.e. light-
scattering) component of the complex refractive index was computed in Python
using the model developed by Bouteloup & Mathieu34.

Back-trajectories and satellite measurements. Ten-day back-trajectories were
calculated every six hr using the HYSPLIT model (version 4) of the National
Oceanic and Atmospheric Administration (NOAA), at 0:00, 06:00, 12:00, and
18:00 h GMT for 10 d into the past and 100 m height at MCOH (6.80°N, 73.20°E)
(Fig. S8 and Supplementary data 3 - Back-trajectories). A model was selected with
four mean back-trajectories using the clustering algorithm in HYSPLIT. Tropo-
spheric NO2 concentrations were averaged over the period of the campaign and
prior 10 days of the first back-trajectory in 0.25° resolution using the Giovanni web
application (https://giovanni.gsfc.nasa.gov/giovanni/) to access the National
Aeronautics and Space Administration (NASA) OMI/Aura NO2 Cloud-Screened
Total and Tropospheric Column dataset72, for a region including all back-
trajectories (40°E to 108°E, 40°N to 10°S). Aerosol optical density satellite mea-
surements for the same period are reported in Fig. S9.

Statistics. In total, 41 PM2.5 samples were initially collected during the campaign,
but one filter was excluded due to technical problems with the pump at the time of
collection. For the 40 samples included in the analysis, quality assessment of
sample variation by PCA showed no outliers (Fig. S10). Multivariate analyses (i.e.
PCA and OPLS models) were performed in SIMCA v.16 (Umetrics/Satorius);
See Supplementary Information, Chemometrics, and Supplementary data 3 –
Models and statistics. The R Packages “ggpubr” and “ggplot2” were used for other
statistics and data visualization.

Data availability
All supporting data are available in the Supplementary and on the Figshare repository
under the DOI identifier: https://doi.org/10.6084/m9.figshare.18517874. Mass
spectrometry (MS1 and MS2) datasets have been deposited at the GNPS / Mass
Spectrometry Interactive User Environment (MassIVE) database and made public under
the access numbers: LC-HRMS WSOC ESI(+) MSV000087675 and ESI(-)
MSV000087679; LC-HRMS POC ESI(+) MSV000087681 and ESI(-) MSV000087682;
GC-HRMS NPOC EI(+) MSV000087683 and NCI(-) MSV000087684. See details
in Supplementary Information for links to molecular networking and data visualization
in the GNPS Dashboard73. As an illustrative example, the peak of atrazine-2-hydroxy (m/
z 198.1352 [M+H]+ at Rt 11.8 min) - an herbicide metabolite that to our knowledge
has never been reported in air - is shown for a polluted air sample (WSOC LC-ESI+)
associated with the Indo-Gangetic Plain back-trajectory (https://bit.ly/3Lbteb0; XIC
Tolerance 0.005 Da). See also spectral library hit with the GNPS/MassBank record
(https://bit.ly/3spg4ys; see View Mirror Match)

Code availability
Code (R and Python) used in this study for the calculation of Kendrick´s mass defects
(KMD), estimation of feature overlap (GC and LC), and prediction of refractive indexes
from molecular structures, can be found on the Figshare repository under the DOI
identifier: https://doi.org/10.6084/m9.figshare.18517874.

Received: 30 August 2021; Accepted: 27 January 2022;

References
1. Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet.

391, 462–512 (2018).
2. World Health Organization (WHO), 7 million deaths linked to air pollution

annually NIEHS: new WHO collaborating centre for environmental health

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00365-1

12 COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:35 | https://doi.org/10.1038/s43247-022-00365-1 | www.nature.com/commsenv

http://gnps.ucsd.edu
https://mona.fiehnlab.ucdavis.edu/
https://massbank.eu/
https://chemdata.nist.gov/
http://openbabel.org
http://www.swissadme.ch/
https://giovanni.gsfc.nasa.gov/giovanni/
https://doi.org/10.6084/m9.figshare.18517874
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=fa2907a20adf4b5cacb758c96b15a44e
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=8782e220813041d88f78e3e3307f3f37
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=c572f00de685426eb56b722041c9885e
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=ddf1f7efc518489c820b055770a92319
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=d98091ce8b2c4e4dba7199934341ef57
https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=85a08969ba46401da9350ba381d803ef
https://bit.ly/3Lbteb0
https://bit.ly/3spg4ys
https://doi.org/10.6084/m9.figshare.18517874
www.nature.com/commsenv


Network to advance progress in children’s environmental health Launch of
WHO International Scheme to Evaluate Household Water Treatment
Technology (2014).

3. Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M. & Pope, C. A. Ambient PM2.5

Reduces Global and Regional Life Expectancy. Environ. Sci. Tech. Let. 5,
546–551 (2018).

4. Lelieveld, J. et al. Loss of life expectancy from air pollution compared to other
risk factors: a worldwide perspective. Cardiovasc. Res. 116, 1910–1917 (2020).

5. Sharma, D. C. No clear way ahead: smog in northern India. Lancet. 394,
1891–1892 (2019).

6. Balakrishnan, K. et al. The impact of air pollution on deaths, disease burden,
and life expectancy across the states of India: the Global Burden of Disease
Study 2017. Lancet. Planet. Heal. 3, e26–e39 (2019).

7. Chin, M., Diehl, T., Ginoux, P. & Malm, W. Intercontinental transport of
pollution and dust aerosols: Implications for regional air quality. Atmos.
Chem. Phys. 7, 5501–5517 (2007).

8. Sühring, R. et al. Organophosphate esters in Canadian Arctic air: Occurrence,
levels and trends. Environ. Sci. Technol. 50, 7409–7415 (2016).

9. Liu, Y. et al. Heterogeneous OH initiated oxidation: A possible explanation for
the persistence of organophosphate flame retardants in air. Environ. Sci.
Technol. 48, 1041–1048 (2014).

10. Boucher, O. D. et al. Clouds and aerosols. in Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change. Cambridge University Press,
571–657 https://doi.org/10.1017/cbo9781107415324.016 (2013).

11. Dasari, S. et al. Photochemical degradation affects the light absorption of
water-soluble brown carbon in the South Asian outflow. Sci. Adv. 5, 1–11
(2019).

12. Seinfeld, J. H. et al. Improving our fundamental understanding of the role of
aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. 113,
5781–5790 (2016).

13. Shamjad, P. M. et al. Contribution of Brown Carbon to Direct Radiative
Forcing over the Indo-Gangetic Plain. Environ. Sci. Technol. 49, 10474–10481
(2015).

14. Jimenez, J. L. et al. Evolution of Organic Aerosols in the Atmosphere. Science.
326, 1525–1529 (2009).

15. Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric Brown
Carbon. Chem. Rev. 115, 4335–4382 (2015).

16. Ditto, J. C. et al. An omnipresent diversity and variability in the chemical
composition of atmospheric functionalized organic aerosol. Commun. Chem.
1, 75 (2018).

17. Ditto, J. C. et al. Nontargeted Tandem Mass Spectrometry Analysis Reveals
Diversity and Variability in Aerosol Functional Groups across Multiple Sites,
Seasons, and Times of Day. Environ. Sci. Tech. Let. 7, 60–69 (2020).

18. Johnston, M. V. & Kerecman, D. E. Molecular Characterization of
Atmospheric Organic Aerosol by Mass Spectrometry. Annu. Rev. Anal. Chem.
12, 247–274 (2019).

19. Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J. & Laskin, A.
Comprehensive Molecular Characterization of Atmospheric Brown Carbon by
High Resolution Mass Spectrometry with Electrospray and Atmospheric
Pressure Photoionization. Anal. Chem. 90, 12493–12502 (2018).

20. An, Y. et al. Molecular characterization of organic aerosol in the Himalayas:
Insight from ultra-high-resolution mass spectrometry. Atmos Chem Phys 19,
1115–1128 (2019).

21. Laskin, J. et al. High-resolution desorption electrospray ionization mass
spectrometry for chemical characterization of organic aerosols. Anal Chem 90,
12493–12502 (2010).

22. Wang, X. et al. Chemical Characteristics and Brown Carbon Chromophores of
Atmospheric Organic Aerosols Over the Yangtze River Channel: A Cruise
Campaign. J. Geophys. Res. Atmos. 125, 32497 (2020).

23. Skinner, O. S. & Kelleher, N. L. Illuminating the dark matter of shotgun
proteomics. Nat. Biotechnol. 33, 717–718 (2015).

24. Silva, R. R. D., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter
in metabolomics. Proc. Natl. Acad. Sci. 112, 12549–12550 (2015).

25. Aron, A. T. et al. Reproducible molecular networking of untargeted mass
spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

26. Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis
environment. Nat. Methods. 17, 905–908 (2020).

27. Hamilton, D. S. et al. Occurrence of pristine aerosol environments on a
polluted planet. Proc. Natl. Acad. Sci. 111, 18466–18471 (2014).

28. Uetake, J. et al. Airborne bacteria confirm the pristine nature of the Southern
Ocean boundary layer. Proc. Natl. Acad. Sci. 117, 13275–13282 (2020).

29. Cressey, D. Brown clouds boost global warming. Nature. 448, 575–578 (2007).
30. Lawrence, M. G. & Lelieveld, J. Atmospheric pollutant outflow from southern

Asia: a review. Atmos Chem Phys 10, 11017–11096 (2010).
31. Silva, R. R. da et al. Propagating annotations of molecular networks using in

silico fragmentation. PLoS Comput. Biol. 14, 1006089 (2018).

32. O’Boyle, N. M. et al. Open Babel: An open chemical toolbox. J.
Cheminformatics. 3, 33 (2011).

33. Daina, A., Michielin, O. & Zoete, V. SwissADME: A free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small
molecules. Sci. Rep 7, 42717 (2017).

34. Bouteloup, R. & Mathieu, D. Improved model for the refractive index:
Application to potential components of ambient aerosol. Phys. Chem. Chem.
Phys. 34, 22017–22026 (2018).

35. Tang, J. et al. Molecular compositions and optical properties of dissolved
brown carbon in biomass burning, coal combustion, and vehicle emission
aerosols illuminated by excitation-emission matrix spectroscopy and Fourier
transform ion cyclotron resonance mass spectrometry analysis. Atmos. Chem.
Phys. 20, 2513–2532 (2020).

36. Lelieveld, J. et al. Cardiovascular disease burden from ambient air pollution in
Europe reassessed using novel hazard ratio functions. Eur. Heart J. 40,
1590–1596 (2019).

37. Schymanski, E. L. et al. Identifying small molecules via high resolution mass
spectrometry: Communicating confidence. Environ. Sci.Technol. 48,
2097–2098 (2014).

38. Petras, D. et al. Non-targeted tandem mass spectrometry enables the
visualization of organic matter chemotype shifts in coastal seawater.
Chemosphere. 271, 129450 (2021).

39. Peisl, B. Y. L., Schymanski, E. L. & Wilmes, P. Dark matter in host-
microbiome metabolomics: Tackling the unknowns–A review. Anal. Chim.
Acta. 1037, 13–27 (2018).

40. Pospisilova, V. et al. On the fate of oxygenated organic molecules in
atmospheric aerosol particles. Sci. Adv. 6, aax8922 (2020).

41. Schum, S. K., Brown, L. E. & Mazzoleni, L. R. MFAssignR: Molecular
formula assignment software for ultrahigh resolution mass spectrometry
analysis of environmental complex mixtures. Environ. Res. 191, 110114
(2020).

42. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into
metabolite structure information. Nat. Methods 16, 299–302 (2019).

43. Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag
relaunched: Incorporating strategies beyond in silico fragmentation. J.
Cheminformatics. 8, 3 (2016).

44. Vogel, A. L. et al. Aerosol Chemistry Resolved by Mass Spectrometry: Linking
Field Measurements of Cloud Condensation Nuclei Activity to Organic
Aerosol Composition. Environ. Sci. Technol. 50, 10823–10832 (2016).

45. Datta, B. K., Datta, S. K., Rashid, M. A., Nash, R. J. & Sarker, S. D. A
sesquiterpene acid and flavonoids from Polygonum viscosum. Phytochemistry
54, 201–205 (2000).

46. Shukla, V. et al. Lichen Diversity in Different Lichenogeographical Regions of
India. In Lichens to Monitor the Environemnt. Publisher: Springer India,
https://doi.org/10.1007/978-81-322-1503-5_4 (2014).

47. Parrot, D. et al. Qualitative and spatial metabolite profiling of Lichens by a
LC-MS approach combined with optimised extraction. Phytochem. Analysis.
26, 23–33 (2015).

48. Kirkby, J. et al. Ion-induced nucleation of pure biogenic particles. Nature. 533,
521–526 (2016).

49. Montoya-Aguilera, J. et al. Secondary organic aerosol from atmospheric
photooxidation of indole. Atmos. Chem. Phys. 17, 11605–11621 (2017).

50. Melendez-Colon, V. J., Luch, A., Seidel, A. & Baird, W. M. Cancer initiation
by polycyclic aromatic hydrocarbons results from formation of stable DNA
adducts rather than apurinic sites. Carcinogenesis. 20, 1885–1891 (1999).

51. Salim, S. Y., Kaplan, G. G. & Madsen, K. L. Air pollution effects on the gut
microbiota. Gut. Microbes. 5, 215–219 (2013).

52. MohanKumar, S. M. J., Campbell, A., Block, M. & Veronesi, B. Particulate
matter, oxidative stress and neurotoxicity. Neurotoxicology. 29, 479–488
(2008).

53. Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D. & Abbatt, J. P. D.
Aging of Atmospheric Brown Carbon Aerosol. Acs. Earth Space Chem. 5,
722–748 (2021).

54. He, Q. et al. Evolution of the Complex Refractive Index of Secondary Organic
Aerosols during Atmospheric Aging. Environ. Sci. Technol. 52, 3456–3465
(2018).

55. Tomasi, C., Vitale, V., Petkov, B., Lupi, A. & Cacciari, A. Improved algorithm
for calculations of Rayleigh-scattering optical depth in standard atmospheres.
Appl. Optics. 44, 3320–3341 (2005).

56. Chen, Q. et al. Elemental composition of organic aerosol: The gap between
ambient and laboratory measurements. Geophys. Res. Lett. 42, 4182–4189
(2015).

57. Tu, P., Hall, W. A. & Johnston, M. V. Characterization of Highly Oxidized
Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol. Anal.
Chem. 88, 4495–4501 (2016).

58. Scheringer, M. Long-range transport of organic chemicals in the environment.
Environ. Toxicol. Chem. 28, 677–690 (2009).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00365-1 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:35 | https://doi.org/10.1038/s43247-022-00365-1 | www.nature.com/commsenv 13

https://doi.org/10.1017/cbo9781107415324.016
https://doi.org/10.1007/978-81-322-1503-5_4
www.nature.com/commsenv
www.nature.com/commsenv


59. Andersson, J. T., Hegazi, A. H. & Roberz, B. Polycyclic aromatic sulfur
heterocycles as information carriers in environmental studies. Anal. Bioanal.
Chem. 386, 891–905 (2006).

60. Tomaz, S. et al. Sources and atmospheric chemistry of oxy- and nitro-PAHs in
the ambient air of Grenoble (France). Atmos. Environ. 161, 144–154 (2017).

61. Daellenbach, K. R. et al. Sources of particulate-matter air pollution and its
oxidative potential in Europe. Nature. 587, 414–419 (2020).

62. Gustafsson, Ö. et al. Brown Clouds over South Asia: Biomass or Fossil Fuel
Combustion? Science. 323, 495–498 (2009).

63. Mandelbaum, R. T., Wackett, L. P. & Allan, D. L. Rapid Hydrolysis of Atrazine
to Hydroxyatrazine by Soil Bacteria. Environ. Sci. Technol. 27, 1943–1946 (1993).

64. Kirillova, E. N. et al. 13C‐ and 14C‐based study of sources and atmospheric
processing of water‐soluble organic carbon (WSOC) in South Asian aerosols.
J. Geophys. Res. Atmos. 118, 614–626 (2013).

65. Liang, D. et al. Use of high-resolution metabolomics for the identification of
metabolic signals associated with traffic-related air pollution. Environ. Int.
120, 145–154 (2018).

66. Vermeulen, R., Schymanski, E. L., Barabási, A. L. & Miller, G. W. The exposome
and health: Where chemistry meets biology. Science. 367, 392–396 (2020).

67. Lamichhane, D. K., Leem, J.-H., Lee, J.-Y. & Kim, H.-C. A meta-analysis of
exposure to particulate matter and adverse birth outcomes. Environ. Heal.
Toxicol. 30, 11 (2015).

68. Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet. 383,
1581–1592 (2014).

69. Martelletti, L. & Martelletti, P. Air Pollution and the Novel Covid-19 Disease:
a Putative Disease Risk Factor. Sn. Compr. Clin. Medicine 2, 383–387 (2020).

70. Tsugawa, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for
comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

71. Aksenov, A. A. et al. Auto-deconvolution and molecular networking of gas
chromatography–mass spectrometry data. Nat. Biotechnol. 39, 169–173
(2021).

72. Krotkov, N. A. et al. and the OMI core team. Cloud-Screened Total and
Tropospheric Column L3 Global Gridded 0.25 degree × 0.25 degree V3,
Goddard Space Flight Center, Goddard Earth Sciences Data and Information
Services Center (GES DISC), https://doi.org/10.5067/aura/omi/data3007 (2019).

73. Petras, D. et al. GNPS Dashboard: collaborative exploration of mass
spectrometry data in the web browser. Nat. Methods 1–3, 88 (2021).

Acknowledgements
This research was supported by grants from the Swedish Research Council for Sustainable
Development, Formas (Grants 2017–00567 and 2020-01917) and the Swedish Research
Council (Grants 2018-03409, 2017− 01601). MCOH is operated by the Maldives
Meteorological Service (MMS) and funding for the operation of the site comes from
Formas (Grant 942-2015-1061) and the Swedish Research Council (Grants 2015-03279
and 2017-01601). We thank the technical staff at MCOH for collecting and shipping air
samples and quality controls. We thank Jan T. Andersson (University of Münster,
Germany) for donation of sulfur-containing PAH standards, and Joël Boustie (Rennes
Institute of Chemical Sciences, France) for donation of acetyl portentol standard. We
thank Hiroshi Tsugawa (Tokyo University of Agriculture and Technology, Japan) for
support with MS-DIAL to facilitate the analysis of environmental contaminants.

Author contributions
S.P. performed raw data pre-processing, chemical confirmations, data analyses and
statistics, evaluated and interpreted the results, created the figures, and drafted the main
paper. L.A.D. and I.S. performed sample extractions and HRMS analyses, raw data pre-
processing, data analyses and evaluated and interpreted the results. J.F. performed raw
data pre-processing and chemical confirmations. B.B., K.S., and H.X. performed HRMS
analyses and chemical confirmations. I.A. performed sample extractions and HRMS
analyses. K.B. and S.D. calculated back-trajectories. K.B., S.D., A.A., Ö.G., and J.W.M
established field sampling. J.W.M. and Ö.G. conceived the project. J.W.M. coordinated
the research and contributed to data interpretation and writing. All authors commented
or edited in the final version of the paper.

Funding
Open access funding provided by Stockholm University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43247-022-00365-1.

Correspondence and requests for materials should be addressed to Jonathan W. Martin.

Peer review information Communications Earth & Environment thanks Daniel Petras
and the other, anonymous, reviewer(s) for their contribution to the peer review of this
work. Primary Handling Editors: Yinon Rudich and Clare Davis. Peer reviewer reports
are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00365-1

14 COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:35 | https://doi.org/10.1038/s43247-022-00365-1 | www.nature.com/commsenv

https://doi.org/10.5067/aura/omi/data3007
https://doi.org/10.1038/s43247-022-00365-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Nontarget mass spectrometry and in silico molecular characterization of air pollution from the�Indian subcontinent
	Results and discussion
	Comprehensive nontarget analysis of PM2.5
	Back-trajectories and geographical sources of air pollution
	Molecular annotation and identification
	Characterization of PM2.5 molecular dark matter
	Molecular hallmarks of polluted and clean air
	Physicochemical properties of molecules in clean and polluted air
	Significance to human health and global climate

	Conclusions
	Methods
	High-volume PM2.5 sampling
	Sample preparation
	GC- and LC-HRMS
	Data pre-processing
	Molecular formula assignments
	Spectral library annotations
	Molecular networks and in silico structural elucidation
	Physicochemical properties
	Back-trajectories and satellite measurements
	Statistics

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




