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Much of the current understanding of topological insulators, which informs the experimental search for
topological materials and systems, is based on crystalline band theory, where local electronic degrees of
freedom at different crystal sites hybridize with each other in ways that produce nontrivial topology. Here
we provide a novel theoretical demonstration of realizing topological phases in amorphous systems, as
exemplified by a set of sites randomly located in space. We show this by constructing hopping models on
such random lattices whose gapped ground states are shown to possess nontrivial topological nature
(characterized by Bott indices) that manifests as quantized conductances in systems with a boundary. Our
study adds a new dimension, beyond crystalline solids, to the search for topological systems by pointing to
the promising possibilities in amorphous solids and other engineered random systems.
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Introduction.—The band insulating state of many fer-
mions has received renewed attention in recent times [1–3].
Clues that such gapped phases may support additional
nontrivial physics—attributed to topology—was provided
by the discovery of the integer quantum Hall effect [4] and
the theoretical work that followed [5–7]. These ideas saw a
resurgence with the discovery of the two dimensional spin
Hall insulator [8–13], soon followed [14–17] by the three
dimensional topological insulator (see Refs. [1–3]). The
topological character of such insulators is robust to a small
amount of impurities and disorder that preserve certain
symmetries, and their surfaces typically host gapless modes
which open possible new directions for technological
applications [1–3].
Soon, a complete classification of gapped phases of

noninteracting fermions appeared [18–21] (see recent
reviews [22,23]). This classification hinges on the ten
symmetry classes of Altland and Zirnbauer [24,25]. In
any given spatial dimension d only five symmetry classes
of the ten host topologically nontrivial phases (see, e.g.,
Kitaev [21]). Two gapped systems are considered to be
topologically equivalent if the ground state of one can be
reached starting from the ground state of the other by a
symmetry preserving adiabatic deformation of the
Hamiltonian which does not close the gap during the
deformation process. The ground state comprised of filled
bands can be viewed as a map from the Brillouin zone of the
crystal to a “symmetric space” whose character is deter-
mined by the symmetries of the system.Whether such amap
allows for nontrivial “winding” decides if a symmetry class
supports topological phases in that dimension. Well-known
lattice models of Haldane [7], Kitaev [26], Kane-Mele [9],
Bernevig-Hughes-Zhang (BHZ) [12] etc., fall into this
paradigm, which has since been expanded to include
crystalline symmetries [27]. These theoretical advances
have strongly influenced, perhaps even constrained as we

shall see in this Letter, the search for topological systems to
be focused on crystalline materials, both solid state [28–31]
and synthetic [32]. For example, significant effort has been
invested in the automated search of crystalline topological
materials [33,34].
While robustness to disorder is the defining property of any

topological state, usually it is stated with the caveat “disorder
should not be large enough to close the gap.”Most studies that
have attempted to address the question of disorder in
topological systems have, therefore, an implicit crystalline
lattice and a “small” disorder. The effect of on site Anderson
disorder on a d ¼ 3 topological insulator was studied in
Ref. [35], where it was shown that with increasing disorder a
topological state transits to ametal. On the other hand, studies
on surface disorder have shown that the protected Dirac cone
can emerge beneath the surface [36]. The effect of disorder
in Kitaev chains has also been studied [37]. Other pertinent
studies include, how an on site disorder can induce [38] a
topological phase in a trivial system which has the necessary
ingredients to produce topological phases, and an interesting
concept of “statistical topological insulators” which requires
another statistical symmetry apart from the symmetry pro-
tecting the topological phase [39]. Studies of weak topologi-
cal insulators have shown that they are surprisingly robust to
disorder [40]. Physics of topological phases in noncrystalline
lattices have received relatively less attention. Most studies
have focused on quasicrystalline systems [41–43], for exam-
ple, realizing a weak topological insulator phase in such a
system [42]. An interesting unexplored question, both from
theoretical and practical perspectives, iswhether a completely
random set of points, i.e., a random lattice, such as that
realized by impurities in a material, can host topological
phases. This is the question that we address in this Letter.
Random lattices have previously been explored in the context
of lattice field theory [44], however, the possibility of
topological phases in them has not been so far addressed.
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In this Letter, we theoretically establish that amorphous
systems can host topologically insulating phases.We provide
a demonstration of this by constructingmodels, using familiar
ingredients, on random lattices where fermions hop between
sites within a finite range. By tuning parameters such as the
density of sites,we show that the systemundergoes a quantum
phase transition from a trivial to a topological phase. We
characterize the topological nature by obtaining the topo-
logical invariant (cf. Bott index [45]), and associated quan-
tized transport signatures.We also address interesting features
of such quantum phase transitions. This is achieved through a
detailed study of all nontrivial symmetry classes (A, AII, D,
DIII, and C) in two dimensions. We also provide a demon-
stration of aZ2 topological insulator in three dimensions.This
work opens a new direction in the experimental search for
topological quantum matter by demonstrating their possibil-
ity in as yet unexplored, amorphous systems. We discuss
several examples including glassy systems and other engi-
neered random systems.
Model.—We consider a region (box) of d-dimensional

space whose volume is V. Our random lattice is constructed
by placing N sites, labeled by ðI ¼ 1;…; NÞ, randomly in
the box (see Fig. 1). The positions of the sites are sampled
from an uncorrelated uniform distribution. The collection
of points is characterized by a single parameter, viz. the
density ρ ¼ N=V. The sites are identical, each of which
hosts L single particle states. The states at the site I are
denoted by jIαi and the associated fermion operators are
denoted by c†I;α and cI;α (α ¼ 1;…; L). The “flavor” label α
can stand for the spin or a (spin-)orbital quantum number as
appropriate.
Fermions hop from site to site, possibly changing their

flavor in the process. We mimic a realistic system by

considering a finite range R of hopping (see Fig. 1). A
generic Hamiltonian of such a system is

H ¼
X
Iα

X
Jβ

tαβðrIJÞc†I;αcJ;β: ð1Þ

Here, J runs over all sites that are within a distance of R
of I, i.e., jrIJj ≤ R (with rIJ being the vector from I to J).
The L × L matrix tαβðrÞ depends on the vector r ¼ rr̂ via

tαβðrÞ ¼ tðrÞTαβðr̂Þ: ð2Þ
The distance dependence of the hopping is captured by tðrÞ
and Tαβðr̂Þ contains both the orbital and angular depend-
encies. This form is motivated by hoppings found in spin-
orbit coupled systems that are common in the realization of
topological phases. The unit vector r̂ in two spatial
dimensions is described by an angle θ with respect to a
chosen axis [see Fig. 1(b)], while in three dimensions we
parametrize r̂ by polar and azimuthal angles ðθ;ϕÞ. The
hopping matrix for r ¼ 0,

tαβð0Þ ¼ ϵαβ; ð3Þ
describes the “on site energy” or the “atomic” Hamiltonian
of the system. For, r ≠ 0, we choose

tðrÞ ¼ CΘðR − rÞe−r=a; ð4Þ
where the constant C is chosen such that tðrÞ is a unit energy
when r ¼ a, i.e., C ¼ e. The step function Θ enforces the
cutoff distance R. In the construction that follows, the forms
of ϵαβ and Tαβðr̂Þ will be motivated by systems that are
experimentally relevant [2,12]. Finally, to investigate the
physics of topological edge states we will study the system
with and without periodic boundary conditions on the box.
In the remaining discussion the scale a is set to unity, and all
other lengths are measured in units of a.
Two dimensional systems.—We begin the discussion of

our results with two dimensional systems. As is known,
there are five symmetry classes (A, AII, D, DIII, and C) that
allow topological phases in two dimensions. We construct
Hamiltonians for each of these classes that respect all the
relevant symmetries (See Table SI in the Supplemental
Material [46]). We have performed analysis of systems in
all these five classes, and discuss the results of class A in
detail as a representative (see Ref. [46] for discussion of
other classes).
The symmetry class A possesses no intrinsic symmetries

like time reversal, charge conjugation, or sublattice. The
class A system is realized with two orbitals per site
(L ¼ 2) with ϵαβ ¼ ð 2þM

ð1þiÞλ
ð1−iÞλ
−ð2þMÞ Þ and

Tαβðr̂Þ ¼
 −1þt2

2

−ie−iθþλ½sin2θð1þiÞ−1�
2

−ieiθþλ½sin2θð1−iÞ−1�
2

1þt2
2

!
: ð5Þ

(a)

(b)

(c)

FIG. 1. Random lattice. (a) A typical realization of a random
lattice. Sites are indicated by dark spots. Light lines indicate the
hoppings between the sites that are within the distance ≤ R from
each other. (b),(c) The separation between two sites is described
by a distance r and an angle θ in two dimensions (b) and by ðθ;ϕÞ
in three dimensions (c).
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There are three dimensionless parameters λ, t2, and M.
While λ adds to interorbital mixing, t2 signifies intraorbital
hopping. M (mass term) quantifies the difference in the on
site energies of the two orbitals in the atomic limit. This
structure can be obtained by starting from the BHZ model
[12,57] by introducing t2, which breaks charge conjugation
symmetry. M is the parameter we tune to investigate the
possibility of topological phases for various values of ρ, the
density of sites. We study filling of one fermion per site.
Results of a particular realization of the random lattice

for a 24 × 24 system with ρ ¼ 1, R ¼ 4, and M ¼ −0.5 is
shown in Fig. 2. Figure 2(a) shows the energy eigenvalues
of the system with and without the periodic boundary
conditions. In the presence of periodic boundary conditions
the system clearly shows an energy gap; i.e, it is an
insulator. In the absence of periodic boundary conditions
in both directions we see a set of energy eigenvalues in the
midgap region. A typical midgap state, we find, is an
“edge” state which is localized on the “surfaces” of the box;
see Fig. 2(b) (see also Ref. [46], Fig. S7 for different
geometries). On the other hand, a typical bulk state has a
localized character (see Ref. [46], Sec. S6). We studied the
transport in this system by coupling it to leads and keeping
two opposite surfaces, which host the edge states, open.
Figure 2(c) shows the two terminal conductances that
we calculate using the nonequilibrium Green’s function
formalism [58] (see Ref. [46], Sec. S2 for details).
Remarkably, when the energy of the incoming fermions
is in the “bulk gap” we find that the conductance is
quantized to unity even in a completely random system.
Are the edge states that we see of topological origin? The

presence of an edge state that provides for a quantized

conductance in a completely random lattice, if surprising, is
suggestive of its topological origin. We adapt the Bott index
of Loring and Hastings [45] to random lattices to character-
ize the nontrivial topology of our system via an invariant.
Briefly, a nontrivial Bott index quantifies the obstruction
to the construction of localized Wannier orbitals from
the occupied states [45]. The Bott index is given by
ð1=2πÞImftr½logðWUW†U†Þ�g, where U and W are
obtained as follows. The position coordinates of all the
orbitals jIαi≡ ðxIα; yIαÞ are rescaled into two angles
ðθIα;ϕIαÞ defined between ð0; 2πÞ. Diagonal matrices Θ
and Φ are defined with elements θIα and ϕIα as diagonal
elements. The matrices U and W are obtained as U ¼
P expðiΘÞP andW ¼ P expðiΦÞP, where P is the projector
to the occupied states [45]. In a crystalline system, the Bott
index is the same as the Thouless-Kohmoto-Nightingale-
den Nijs invariant [6] of 2D class A (details are discussed in
the Ref. [46], Sec. S3). Given this correspondence, it is
natural to expect robust edge states when the Bott index is
nontrivial. For the parameters of Fig. 2, we find the Bott
index to be −1, a nontrivial value. Taken together, the
presence of the bulk gap, surface localized midgap states,
quantized transport, and a nontrivial Bott index unequivo-
cally demonstrates the topological character of this amor-
phous system.
Under what condition does a random lattice show

topological phases? We address this question by obtaining
a phase diagram in the M-ρ plane, i.e., by varying the mass
parameter and the density of sites. Figure 3(a) shows the Bott
index for a particular configuration as a function of the mass
parameterM at ρ ¼ 0.6. For −2≲M ≲ 1.2 the system is in
a topological phase with two quantum phase transitions at
M ≈ −2 and at M ≈ 1.2. The phase diagram is obtained by
averaging over several hundred realizations of the random
lattice for all densities. Figure 3(b) shows a contour plot of
the Bott index in the M-ρ plane. We see that there is a large
regime of parameters in the density andM where the system
is topological. An important point is that a critical density ρc
is needed to obtain such a topological phase. The existence
of such a critical density is expected to be “universal,”
although its precise value will be determined by the specific
microscopic parameters. For any ρ > ρc, note that there are
two values of M at which the system has a phase transition.
We investigated these phase transitions by studying the
scaling properties of the gap and the Bott index as a function
of system size. We find that the gap indeed vanishes in the
thermodynamic limit at both the transitions albeit with
different exponents (see Ref. [46], Sec. S4). There is also
a concomitant sharper jump in the Bott index with increasing
system size (see Ref. [46], Sec. S3).
It is interesting to contrast the physics here with tradi-

tional quantum Hall (QH) systems [59–61] which also fall
in class A. The QH state which is robust for small disorder,
is destroyed when the disorder energy scale matches the
QH gap set by the external magnetic field and the system

(b) (a)

(c)

FIG. 2. Class A random lattice model (d ¼ 2): (Area 24 × 24,
R ¼ 4, M ¼ −0.5, t2 ¼ 0.25, λ ¼ 0.5, ρ ¼ 1). (a) Energy eigen-
values En versus the state number n. The system with periodic
boundary conditions (PBC) shows a gap, while that with open
boundaries (OBC) shows midgap states. (b) The wave function of
the midgap state is localized on the edge. The size and the color
of the blob indicates the probability of finding a fermion at that
site. (c) Two terminal conductance (G) as a function of incident
fermion energy showing a quantized value in the energy gap.
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transits to a thermodynamically gapless insulator with
Fermi energy in the localized states [62,63]. On the other
hand, on decreasing ρ, i.e., effectively increasing disorder,
the topological gapped state found here goes to a trivial
gapped state through a gap closing transition. Transport in
the disorder induced trivial phase of the QH system will be

governed by variable range hopping, while the trivial phase
in Fig. 3(b) will show activated transport akin to a typical
band insulator.
Three dimensional system.—Given the vast interest

enjoyed by the three dimensional topological insulator (a
systemwith aZ2 invariant), we also investigate the possibility
of realizing this in a random lattice. To this end, we consider a
system with four orbitals (L ¼ 4) (see Ref. [64]) with a
Hamiltonian described by ϵαβ ¼ Diagð−3þM;−3þM;
3 −M; 3 −MÞ, where M is the mass parameter, and

Tαβðθ;ϕÞ ¼
1

2

0
BBB@

1 0 −i cos θ −ie−iϕ sin θ
0 1 −ieiϕ sin θ i cos θ

−i cos θ −ie−iϕ sin θ −1 0

−ieiϕ sin θ i cos θ 0 −1

1
CCCA: ð6Þ

This system has the required time reversal symmetry. For
an appropriate set of parameters (M ¼ 0.5 and ρ ¼ 0.6), we
find indeed that there are midgap states in an open system
whose wave functions are localized on the boundary (see
Fig. 4). This strongly indicates the realization of a topo-
logical state.
Perspective.—The possibility of topological phases in a

completely random system opens up several new avenues
for experiments.
Bulk amorphous materials: This work has clearly dem-

onstrated that amorphous solids (“glasses”) with spin-orbit
coupled motifs can host topologically insulating phases.
Search for such materials offers to be an exciting research
direction.
Engineered systems: Engineered random systems are

also possible, of which we discuss two examples. First, two

dimensional systems can be made by choosing an insulat-
ing surface on which suitable “motifs” such as atoms,
molecules, or nanoclusters with appropriate orbitals are
deposited at random. Note that this process will require far
less control than conventional layered crystalline materials.
The electronic states of these motifs will then hybridize to
produce the required topological phase. Second is the
possibility of creating three dimensional systems starting
from a suitable large band gap trivial insulator. The idea
then is to place “impurity atoms,” again with suitable
orbitals and “friendly” chemistry with the host, not unlike
the process of δ doping of phosphorus in silicon [65]. The
hybridization of the impurity orbitals would again produce
a topological insulating state in the impurity bands under
favorable conditions. An important challenge in these cases
will be to engineer the bandwidth of such systems to make

(a) (b)

(c) (d)

FIG. 3. Phase diagram. (a) Bott index for a particular realization
of the random lattice at ρ ¼ 0.6. (Area 24 × 24, R ¼ 4, t2 ¼ 0.25,
λ ¼ 0.5) (b) Contour plot of configuration averaged Bott index in
the M-ρ plane. Red region indicates the topologically nontrivial
phase. (c) Configuration averaged Bott index for various system
sizes. (d) Configuration averaged energy gap Eg for various
system sizes; (c) and (d) are also for ρ ¼ 0.6. Configuration
average is performed over 320 realizations of the random lattice.
Other parameters are kept same as in (a).
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FIG. 4. Z2 system in three dimensions. The midgap state
localized on the surface. The size and the color of the blob
indicate the probability of finding a fermion at the site. (ρ ¼ 0.6,
V ¼ 163, M ¼ 0.5, R ¼ 4).
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them useful for room temperature applications. We expect
that our results will motivate material science experts
to address these issues. Finally, we note that suggestions
of this Letter are distinct from systems made out of
polycrystals of topological insulators (see, for example,
Ref. [66]).
Our work also provides some interesting new directions

for theoretical research. There are two equivalent ways to
view topological phases. The first one is “kinematic”, i.e.,
based on the homotopy of ground state wave functions of
systems in a given symmetry class as discussed in the
introduction. The second approach [20], probably better
suited for the random system, is based on asking if the
(d − 1)-dimensional surface of a gapped d-dimensional
system resists localization. This absence of localization on
the (d − 1) surface can be used to characterize the topology
of the d-dimensional bulk. Localization is prevented by the
presence of a topological term in the action (nonlinear σ
model) which describes the low energy modes of the
(d − 1)-dimensional surface. While one usually writes
down such σ models based on symmetry considerations,
an interesting question in the current context would be to
uncover how such topological terms can arise in the
random lattice setting.
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