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Abstract: Metal-nanocomposites are drawing attention of the composites community due to improvements in stiffness, strength, crack-
bridging ability, and resistance to creep and fracture. The analysis of nanocomposites involves studies at multiple length scales due to the
small length of the reinforcement. This paper conducts a detailed study on the mechanical behavior of a metal nanocomposite (Al-BNNT)—
made of an aluminum (Al) matrix reinforced with boron nitride nanotubes (BNNTs)—under compressive and shear loadings. First a
representative volume element (RVE) is modeled and analyzed using molecular dynamics (MD) simulation. Then the elastic properties
are derived for a specially orthotropic lamina using a hierarchical multiscale scheme in conjunction. This result is further extended to derive
elastic and shear moduli of bulk nanocomposites with aligned and randomly oriented reinforcement. The result shows excellent agreement
with previous experimental observations. The bounds of elastic moduli using Voigt and Reuss formulations diverge with an increase in volume
fraction of reinforcement—unlike typical composites, in which these two bounds first diverge and then eventually converge. This anomaly is
attributed to the weakness of nanotubes in the radial direction. However, most elastic properties are found to be improved by the reinforce-
ment, especially by double-walled nanotubes. Depending on the type of loading, nanocomposite exhibits failure at the matrix, interface, or
nanotubes. This reveals the importance of considering all three loading cases when modeling a nanocomposite. DOI: 10.1061/(ASCE)
NM.2153-5477.0000129. © 2017 American Society of Civil Engineers.
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Introduction

Because of their exceptional strength and unique mechanical
properties, nanotubes are considered as prospective reinforcements
to design lighter, stronger, and stiffer composites that exhibit pro-
nounced resistance to temperature variations, fracture (Zhan et al.
2003; Gojny et al. 2004), and creep (Ajayan et al. 2006; Yang et al.
2007) In the regime of traditional (macro) composites, continuous
fibers are favored over discontinuous fibers as reinforcement in
critical applications due to better stiffness and strength. On the
other hand, discontinuous fibers impart a nearly isotropic behavior
and higher workability. Stiffness, strength, and workability can be
achieved together in nanocomposites (Pogrebnjak and Beresnev
2012; Ivashchenko et al. 2014) due to the superior properties
and smaller size of nanotubes. Primarily there are three matrix ma-
terials in nanocomposites: polymer, ceramic, and metal. Polymer-
nanocomposites have been under active development for the last
few years, including successful commercial applications (Coleman
et al. 2006), due to the relative ease of manufacturing and pro-
nounced improvement in bulk properties such as stiffness. Similarly,
ceramic-nanocomposites also have been used in various practical
applications such as biomedical engineering and wear-resistant
materials (Porwal et al. 2013) due to improved fracture toughness

and the nanotubes’ crack-bridging ability. Recent developments in
manufacturing technology have led to a surge of interest in devel-
oping metal-nanocomposites (Bakshi et al. 2010; Camargo et al.
2009; He et al. 2009; George et al. 2005; Pogrebnjak et al. 2014),
with the primary goal of improving strength and stiffness. Moreover,
reinforcing metal with nanotubes can improve the resistance to
creep (Han et al. 2012), thermal elongation (Camargo et al. 2009),
and fracture (Kim et al. 2007). Although a number of experimental
studies have reported on metal-nanocomposites, there are very few
reported analytical and computational studies. This paper conducts
a detailed study of the mechanics of metal-nanocomposite in a mul-
tiscale framework ranging from atomistic simulation to continuum
mechanics. The intention is to highlight the primary differences be-
tween the mechanics of traditional composite and nanocomposite.

Aluminum, due to its light weight, has emerged as a popular
choice for the matrix (Silvestre 2013). Both carbon and boron ni-
tride nanotubes (CNTs and BNNTs, respectively) have been used
as the reinforcement. Whereas CNTs have a tendency to agglom-
erate and form bundles in a composite (Herasati and Zhang 2014),
BNNTs give a relatively straight shape due to their partial ionic
character and preferential B–N–B–N stacking (Yamaguchi et al.
2013). Therefore special techniques for obtaining a homogeneous
distribution of CNTs in the composites—such as nanoscale dis-
persion (Noguchi et al. 2004), in situ chemical vapor decomposi-
tion (He et al. 2007, 2009), and mechanical alloying (Esawi and
Morsi 2007)—are not required for BNNT reinforcement. Boron
nitride nanotubes are chemically and thermally more stable than
CNTs (Moon and Hwang 2004; Sekkal et al. 1998), and therefore
can be used at elevated temperatures without damaging the struc-
ture of the reinforcement and the composite. Therefore stable nano-
composites with relatively uniform dispersion of reinforcement can
be achieved using BNNTs as reinforcements.

There are only a few experimental studies on metal composites
reinforced with BNNT. Yamaguchi et al. (2012) synthesized and
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analyzed the structural and mechanical properties of an aluminum
matrix reinforced with BNNTs. They revealed that the Al-BNNT
nanohybrid can withstand approximately nine times greater stresses
than can pure Al. This observation promised a new direction in the
research of metal-nanotube nanocomposites. They later extended
their study to fabricate lightweight aluminum ribbons reinforced
with multiwalled (MW) BNNTs and found that at room tempera-
ture the ultimate tensile strength of Al ribbons with BNNTs was
twice that of a pristine Al ribbon. Lahiri et al. (2012) studied the
feasibility of using BNNT as a reinforcement instead of CNT for
the aluminum matrix and the role of the reaction products formed at
the interface in ensuring a strong bonding. In a follow-up work,
Lahiri et al. (2013) further fabricated the BNNT-Al nanocomposite
by plasma sintering. They studied mechanical properties, the mi-
crostructure, and the deformation behavior of the nanocomposite
for different concentrations of BNNTs. They observed an almost
50% improvement in the compressive strength, and high deform-
ability without a failure of the matrix. The BNNTs were observed
to survive high temperature and pressure conditions during the sin-
tering process, and large deformation during cold rolling.

The length scale of the building block in nanocomposite de-
mands the use of computational methods such as first-principle cal-
culation and molecular dynamics (MD) simulation. Results from
these calculations then need to be scaled to the continuum range
to find bulk properties. First-principle calculations such as density
functional theory (DFT) and ab initio MD involve electronic struc-
ture calculations. Thus they are computationally expensive, even
for a small number of atoms. Therefore the use of ab initio methods
is limited to calibrating the interatomic potential and characterizing
the interface. Song and Zha (2010) investigated the mechanical
behavior of Ni-coated single-walled (SW) CNTs embedded in an
aluminum matrix using MD simulations. They also investigated the
effect of Ni-coating on the interfacial bonding and load transfer in
a nanocomposite. Silvestre et al. (2014) studied the compressive
behavior of CNT-reinforced aluminum composites using MD sim-
ulations and revealed that although the CNTs make the composite
stronger, they buckle even in the embedded matrix under compres-
sive loading. Kim et al. (2011) proposed a multiscale method to
analyze the mechanical behavior of aluminum based metal-matrix
nanocomposites. Bernhardt (2014) studied the wetting of BNNT by
aluminum using DFT simulations and determined that strong bind-
ing can be obtained between aluminum and BNNT, suggesting the
potential of BNNT-Al nanocomposite.

Based on the literature review, two areas are identified that re-
quire attention: (1) determining the differences between nanocom-
posite reinforcement and traditional fiber-reinforced composites,
and accordingly extending the theory of composite materials to in-
clude nanocomposites; and (2) studying the interfacial strength of
Al-BNNT and failure mechanisms occurring in nanocomposites.

This paper addresses these two issues in a multiscale framework
coupling quantum, molecular, and continuum scales. Multiscale
methods can be classified as hierarchical or information passing
or as concurrent (Fish 2009). In a hierarchical multiscale method,
the information at a finer length scale is used to generate the model
at a coarser length scale (Liu et al. 2006). The information passing
generally is carried out through a homogenization scheme. In con-
trast, in a concurrent multiscale method, the simulations at differ-
ent length scales are performed simultaneously. Miller and Tadmor
(2009) compared fourteen multiscale method. The current paper
uses a hierarchical multiscale scheme with a systematic information
passing from quantum to molecular to continuum scales to ana-
lyze BNNT-reinforced Al nanocomposite. Accordingly, mechani-
cal properties of a representative volume element (RVE) are studied
using MD simulation. Matrix–nanotube interface properties are

characterized using first-principle calculations. Bulk properties of
the nanocomposite such as constitutive relations then are derived
from these results using continuum mechanics. One key finding
of this work is that the radial weakness of the reinforcements—
due to the hollow tubular structure—leads to a significant departure
from the underlying mechanics of traditional nanocomposites. This
departure manifests in the elastic properties and failure strength.
Estimates from Voigt and Reuss mixture rules are found to diverge
as the volume fraction of the reinforcement increases. The number
of walls and direction of loading in BNNTs also are found to play
an important role in the failure mechanism of nanocomposite.

This paper first explains the molecular simulation and den-
sity functional theory used to model the nanocomposite, followed
by the theoretical framework used to analyze the nanocomposite.
Results obtained from MD simulations and related discussions are
presented next. Finally, concluding remarks of the present work and
its practical relevance are mentioned in the last section.

MD Simulation

The nanocomposite was modeled using a RVE approach. The rein-
forcements were considered to be aligned in one direction. Hence,
two of the three orthogonal directions (Directions 1 and 2 in Fig. 1)
in the RVE were equivalent. This means that the application of a
stress in one or two directions, independently, should yield the
same overall response. The RVE, when extended periodically in
two directions, yielded a nanocomposite lamina. With randomly
oriented nanotubes as reinforcements, a nanocomposite with nearly
isotropic behavior can be obtained.

Simulation Details and Stress Calculation

The RVEs for pure aluminum and the nanocomposite were
modeled separately using LAMMPS (Plimpton 1995) and VMD
(Humphrey et al. 1996). The simulation box had the dimensions
40.5½100� × 40.5½010� × 81½001�Å3 with a periodic boundary con-
dition enforced in all three directions. The aluminum crystal was
modeled as an FCC lattice with the lattice parameter 4.05 Å. The
reinforcements used were (10,10) BNNT for SWBNNT and (7,7)@
(10,10) for double-walled (DW) BNNT. The reinforcement
weight percentage corresponded to 7.59 and 10.92% in the case
of SWBNNT and DWBNNT, respectively. Similarly, the percentage
volume of the reinforcement was 7.11%. Note that the volume
percentage of both SWBNNTs and DWBNNTs was the same be-
cause the hollow volume is included in the reinforcement volume.

Fig. 1. RVE with a DWBNNT as reinforcement
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Varying percentage and embedded length of reinforcement could
have a significant effect on the stress transfer and overall properties
of the nanocomposite. This paper limited the length and volume
percentage to 7.11% in order to identify the effect of the number
of walls of the reinforcement in the nanocomposite and the corre-
sponding failure mechanisms in each case.

Once the initial coordinates were given as the input, the system
was allowed to equilibrate by running the simulation for 10 ps. The
time-step used for integrating the equation of motion was 1 fs. The
time integration was performed on an isothermal-isobaric (NPT)
ensemble, at 300 K and 0 Pa, using a Nosé–Hoover thermostat.
After equilibration, the new box dimension was saved. The new
box dimensions were very close to those of the initial structure. For
improved accuracy, the new dimensions were used to obtain the
Poisson’s ratio. A constant strain then was applied by deforming
the simulation box in the desired direction. Fig. 1 shows the RVE
of the aluminum matrix with a DWBNNT reinforcement. In the
case of uniaxial compression, the strain was applied by moving the
opposite walls of the simulation box toward each other. This sim-
ulation was carried out in the x and z directions separately. For
shear strain, the opposite walls in the same plane were moved par-
allel to each other. It was ensured that the walls moved in opposite
directions in order to avoid rigid-body motion. This shear strain
was applied in the x-z and x-y directions separately. The directions
corresponding to each strain can be inferred from Fig. 1. A dis-
placement rate of 0.1 Å=ps was used in all cases. The stresses
corresponding to each direction are marked clearly in this figure.
Note that the stresses represented in this figure show all possible
stresses and not those corresponding to any particular simulation.
Poisson’s ratio can be calculated using the applied strain and rel-
ative change in the size of the simulation box. The stress in the
desired direction at each step was evaluated using the virial defi-
nition (Subramaniyan and Sun 2008) of stress. The virial stress,
when averaged over space and time, converges to the Cauchy stress
tensor. The virial stress is of the form

σij ¼
1

V

"XN
A¼1

−mAvA;ivA;jþ
1

2

XN
A¼1

XN
B¼1;B≠A

∂ϕðrÞ
∂r

rirj
r

����
r¼rAB

#
ð1Þ

where V = total volume; mA and vA = mass and velocity, respec-
tively, of atom A; N = number of atoms in volume V; ϕ =
interatomic potential; ri and rj = position vectors; and rAB =
relative position of atom B with respect to atom A.

Modeling RVE

To model the RVE, a cylindrical void was created in the simulation
box with the centers of the void and the simulation box coinciding.
The radius of this void was chosen to be 3.4 Å more than the radius
of the BNNT to be inserted. This choice ensured that a distance of
3.4 Å was maintained between the nanotube wall and the matrix
to prohibit any premature breaking of the reinforcement. The
BNNT was inserted in the void enclosed by the aluminum matrix
on all sides. An equilibrium distance of 3.4 Å was used as the spac-
ing between the BNNTand the aluminum. The case of a SWBNNT
used a (10,10) armchair BNNT, whereas the case of a DWBNNT
used a {(7,7)@(10,10)} BNNT. The embedded-atom method
(EAM) potential with the parameters proposed by Winey et al.
(2009) was used to model the interactions among the aluminum
atoms. According to the EAM potential, the potential energy Ei
of an atom i is of the form

Ei ¼
XN
j¼1

ϕðrijÞ þ fðρiÞ ð2Þ

where ρi = local electron density; and f = embedding function. The
embedding function describes the dependence of the energy of an
atom on the local electron density. Thus the embedding function is
a multibody term which incorporates the effect of the local envi-
ronment on the energy of the atom. This potential was shown to be
effective in modeling metallic aluminum under different tempera-
ture conditions. The interactions for a BNNTwere described using
the three-body Tersoff potential with the interaction parameters
proposed by Sevik et al. (2011).

However, there were no potentials available to model the inter-
actions between the aluminum matrix and BNNTs. A common
choice would be Lennard-Jones (LJ) 12-6 potential (Silvestre
et al. 2014). However, the interaction parameters such as the equi-
librium distance and energy need to be estimated to model this
potential. Quantum mechanical simulations, otherwise known as
the first-principle simulations, were used to this extent.

Mechanics and Modeling of Interface

To characterize the interface between BNNT and aluminum,
first-principles density functional theory with dispersion-corrected
(DFT-D) calculations were conducted using DMol3 in Materials
Studio (Delley 1990, 2000). The binding energy of aluminum
and BNNT cluster was estimated by geometry optimization. The
number of aluminum atoms was restricted to one to reduce
the computational cost. Gradient corrected functional form with
Perdew–Burke–Ernzerhof (Perdew et al. 1996) (PBE) exchange-
correlation functional were used. Long-range dispersion correction
was carried out via Grimme’s scheme. Spin-unrestricted DFT with
formal spin as an initial condition was used because the spin could
play an important role in the case of isolated atoms and small clus-
ters. All electron core treatment was provided. Double numerical
atomic orbital augmented by d-polarization functions (DNP) basis
sets were used for solving self-consistent field (SCF) equations to
provide better accuracy. Convergence thresholds for the optimiza-
tion were fixed as 10−5 Ha for energy, 0.002 Ha=Å for force, and
0.005 Å for displacement. The binding energy of BNNT-Al cluster
was found to be 0.909 eV. This binding energy is very low com-
pared with cases of ionic or covalent bonds, for instance. Therefore
the weak interaction at the interface can be attributed to the van der
Waals forces, and can be modeled using a 12-6 LJ potential.
It should be noted that the binding energy obtained from a
BNNT-Al cluster with a single Al atom might not correspond to
the exact interfacial energy, because the Al atom behaves differently
in bulk and in isolation. However, the low values of binding energy
obtained from the study are representative of the weak interaction
between the Al atoms and the BNNT. As such, the DFT simulations
justified the use of an LJ-potential to model the interface.

Furthermore, defects such as Stone–Wales (Li et al. 2008) and
vacancy (Zobelli et al. 2007) were found to affect the strength and
stiffness of the nanotubes (Krishnan and Ghosh 2014). This could
in turn affect the properties of the nanocomposite. A detailed study
of the effect of vacancy defects on the interfacial strength is
proposed as a future work. The binding energies of clusters of
B-vacancy, N-vacancy, and pristine BNNTs with an aluminum
atom were obtained by simulation. The binding energy, BE, is
determined as

BE ¼ EEAl−BNNT − ðEEBNNT þ EEAlÞ ð3Þ
where EE = equilibrium energy. Furthermore, the equilibrium dis-
tances from the Al atom to all the atoms in the BNNT was calcu-
lated. A cutoff of 8 Å was used while calculating the distances.
Assuming an LJ-type form, the weighted average of the potential
energy with the distance was equated to the total binding energy.

© ASCE 04017014-3 J. Nanomech. Micromech.
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Thus the binding energy corresponding to the equilibrium distance
was obtained as −0.045 eV.

The LJ potential used to model the interface between the alu-
minum and the BNNT is given by

V ¼ 4α

��
β
r

�
12 −

�
β
r

�
6
�

ð4Þ

where V = potential energy of two interacting particles; α = well
depth of the potential; β = nontrivial distance at which the inter-
particle potential is zero; and r = distance between the interacting
particles. For heterogeneous mixtures, the appropriate values of the
parameters β and α can be obtained using various mixing rules
such as the Lorentz–Berthelot (LB), Halgren HHG, and Waldman–
Hagler rules. This paper used the LB mixing rules, which are

widely used (Allen et al. 1987; Silvestre et al. 2014) to model
the van der Waals interaction for heterogeneous materials. Accord-
ing to the LB mixing rule

βij ¼
1

2
ðβii þ βjjÞ; αij ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

αiiαjj
p ð5Þ

where i and j refer to different elements.
Table 1 gives the values of β and α obtained using the LB mix-

ing rule. Fig. 2 plots the LJ potential thus obtained. The binding
energy for a pair of atoms obtained from DFT calculation of a
BNNT-Al cluster was −0.045 eV. Thus the mixing rule is in good
agreement with the DFT calculation. Note that the LJ parameter for
CNT-Al nanocomposite was reported as −0.035 eV (Silvestre et al.
2014). Thus the interfacial strength for BNNT-Al nanocomposite
was higher than that of corresponding CNT-Al nanocomposite. The
interaction between the concentric BNNTs in a DWBNNT was
modeled using LJ potential as well, although with different inter-
action parameters, as shown in Table 1.

Mechanics of Nanocomposite Lamina

Using the theory of composite materials, this section describes the
constitutive relation of aligned and randomly oriented fiber com-
posites. Molecular dynamics simulation results serve as the basis
for extending these relations to the nanocomposite.

Fig. 3 shows the nanocomposite lamina obtained by extending
by the MD unit cell periodically in two directions. The unidirec-
tional nature of reinforcements makes the RVE more amenable to
analysis as a transversely isotropic material. The stress-strain rela-
tion for a transversely isotropic material can be written in the Voigt
notation as

σi ¼ Cijεj i; j ¼ 1; 2; · · · 6 ð6Þ
where σi and εj = stress and strain, respectively, corresponding to
the ith and jth indices; and C = stiffness matrix. The stress and
strain vectors given by the Voigt notation corresponds to the com-
ponents of the stress and strain tensors, respectively, as

σ11 ¼ σ1

σ22 ¼ σ2

σ33 ¼ σ3

σ23 ¼ σ32 ¼ σ4

σ13 ¼ σ31 ¼ σ5

σ12 ¼ σ21 ¼ σ6

ε11 ¼ ε1
ε22 ¼ ε2
ε33 ¼ ε3

2ε23 ¼ 2ε32 ¼ γ23 ¼ γ32 ¼ ε4
2ε13 ¼ 2ε31 ¼ γ13 ¼ γ31 ¼ ε5
2ε12 ¼ 2ε21 ¼ γ12 ¼ γ21 ¼ ε6

ð7Þ

Correspondingly, the components of the stiffness matrix are

C ¼

2
66666666666666666664

ð1 − ν13ν31Þ
E1E3Δ

ðν12 þ ν13ν31Þ
E1E3Δ

ðν13 þ ν12ν13Þ
E1E3Δ

0 0 0

ðν12 þ ν13ν31Þ
E1E3Δ

ð1 − ν13ν31Þ
E1E3Δ

ðν13 þ ν21ν13Þ
E1E3Δ

0 0 0

ðν31 þ ν21ν31Þ
E1E1Δ

ðν31 þ ν12ν31Þ
E1E1Δ

ð1 − ν12ν21Þ
E1E1Δ

0 0 0

0 0 0 G23 0 0

0 0 0 0 G23 0

0 0 0 0 0
E1

2ð1þ ν12Þ

3
77777777777777777775

ð8Þ

Table 1. Values of β and α according to the LB Mixing Rule

Element 1 Element 2 α (eV) β (Å)

Al N 0.0511 2.993
Al B 0.0414 3.036
B B 0.0041 3.453
N N 0.0063 3.365
B N 0.0051 3.409

2 3 4 5 6 7 8
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Distance, r (Angstrom)

E
ne

rg
y,

 V
 (

eV
)

 

 

Al − N
Al − B

Fig. 2. LJ potential of Al-B and Al-N interaction obtained using the
mixture rules; the binding energy obtained from DFT calculation is
−0.045 eV
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where Ei = elastic modulus associated with direction i and is ob-
tained by applying εi; and Gij = shear modulus associated with ij
plane and is obtained by applying εij; i ≠ j. Furthermore, Δ is
given by

Δ ¼ ð1þ ν1Þð1 − ν1 − 2ν13ν31Þ
E2
1E3

ð9Þ

Writing the constitutive law in terms of the compliance matrix
decouples the equation and makes it less cumbersome. The com-
pliance matrix, S, is given by

S ¼ C−1 ¼

2
666666666666666666666664

1

E1

−ν12
E1

−ν13
E3

0 0 0

−ν12
E1

1

E1

−ν13
E3

0 0 0

−ν31
E1

−ν31
E1

1

E3

0 0 0

0 0 0
1

G23

0 0

0 0 0 0
1

G23

0

0 0 0 0 0
2ð1þ ν12Þ

E1

3
777777777777777777777775
ð10Þ

Here νij ¼ εj=εi = Poisson’s ratio. Although Eqs. (8) and (10)
were derived assuming that the reinforcement direction is 1, in this
paper the direction is 3. All subsequent equations are modified ac-
cordingly. Hence ν31 and ν13 denote the major and minor Poisson’s
ratios, respectively. Due to the symmetry of the C matrix, the Pois-
son’s ratios are related to each other as ν12=E2 ¼ ν21=E1 and
ν13=E3 ¼ ν31=E1. The constitutive relation for the RVE is defined
completely once the unknowns E1;E3;G23; ν12; and ν13 are evalu-
ated. Thus if the unknowns are obtained using MD simulations, the
constitutive relationship for the nanocomposite can be completely
determined in a linear regime.

Analysis of a Specially Orthotropic Lamina

A specially orthotropic nanocomposite lamina can be obtained
when the RVE is replicated in two orthogonal directions, one along
(longitudinal) and the other perpendicular (transverse) to the length

of the reinforcement. The analysis of this lamina can be simplified
using a two-dimensional (2D) state of stress, or the plane stress
assumption. Thus the constitutive relations given by Eq. (6) are
simplified by substituting σ2 ¼ σ23 ¼ σ12 ¼ 0. The modified con-
stitutive relation can be written as

8><
>:

ε1

ε3

ε13

9>=
>; ¼

2
66666664

1

E1

−ν31
E3

0

−ν13
E1

1

E3

0

0 0
1

G13

3
77777775

8><
>:

σ1

σ3

σ13

9>=
>; ð11Þ

Here, Direction 3 is parallel to the reinforcement and Direction 1
is perpendicular to the reinforcement. To study the orientation
dependence of a composite with unidirectionally aligned fibers, let
1 and 2 be the axis perpendicular and 3 be the axis parallel to the
reinforcement. Consider a uniaxial stress applied along the z direc-
tion at an angle θ from Axis 3 and 90° − θ from Axis 1. The elastic
and shear moduli along with the Poisson’s ratio of such a system
can be obtained as (Gibson 2011)

Ez¼
�
1

E3

cos4θþ
�

1

G13

−2ν13
E3

sin2θcos2θ

�
þ 1

E1

sin4θ

�−1

Gzx¼
�

1

G13

�
sin4θþcos4θ

�
þ4

�
1

E1

þ 1

E3

þ2ν13
E3

− 1

G13

�
sin2θcos2θ

�−1

νzx¼Ez

�
ν13
E3

ðsin4θþcos4θÞ−
�

1

E3

þ 1

E1

− 1

G13

�
sin2θcos2θ

�
ð12Þ

Normal strains can be generated from off-axis shear stresses,
and vice-versa. This is known as the shear-coupling effect, and oc-
curs due to the orientation of the reinforcement. For quantification,
a dimensionless shear-coupling coefficient η is defined according
to the state of stress. When σz ≠ 0 and σx ¼ σxz ¼ 0, ηz;zx is given
by (Gibson 2011)

ηz;zx ¼
γxy
εx

¼ Ez

��
2

E3

þ 2ν13
E3

− 1

G13

�
sin θcos3θ

−
�

2

E1

þ 2ν13
E3

− 1

G13

�
sin3θ cos θ

�
ð13Þ

Rules of Mixtures

The effective elastic modulus of a composite—either aligned or
randomly oriented reinforcement—can be given by a rule of mix-
tures. When the load is applied parallel to the fibers, the strains
along the length of the fiber equal the strain in the matrix, εf ¼
εm ¼ ε. This assumption is valid only when there is a perfect bond-
ing between the matrix and the reinforcement, which is not the case
in reality. However, this assumption is useful to obtain upper and
lower bounds for the elastic modulus of the composite, also known
as the Voigt and Reuss limits, respectively. Hence, for loading par-
allel to the fiber axis

Fig. 3. Specially orthotropic lamina with the aligned BNNTs as
reinforcement

© ASCE 04017014-5 J. Nanomech. Micromech.
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σA ¼ σfAf þ σmAm

Ekε ¼ Efaεf
Af

A
þ Emεm

Am

A
Ek ¼ EfaVf þ EmVm ð14Þ

where Vf and Vm = volume fraction of the fiber and reinforcement,
respectively, with Vf þ Vm ¼ 1; Em = elastic modulus of the
metal-matrix; and Efa = elastic modulus of the fiber in the axial
direction. Eq. (14) gives the upper limit of the elastic modulus of
an aligned composite. Similarly, when the loading is orthogonal to
the direction of reinforcement, the elastic modulus is

1

E⊥
¼ Vf

Efr
þ Vm

Em
ð15Þ

where Efr = elastic modulus of the fiber in the radial direction.
Typically the elastic moduli in axial and radial directions are equal
for the fiber, that is, Efa ¼ Efr ¼ Ef . Eq. (15) gives the lower limit
of the elastic modulus of an aligned composite. However, when the
fibers are randomly oriented an almost isotropic behavior follows.
In this case a useful engineering approximation (Tsai 1964; Gibson
2011) of the elastic modulus is

E≈ ð3=8ÞE⊥ þ ð5=8ÞEk ð16Þ

where E⊥ and Ek = the upper (Voigt) and lower (Reuss) limits,
respectively. Variation of all these parameters is studied in detail in
the next section.

Results and Discussions

Results of RVE

Fig. 4 plots variations of stress with the applied strain under differ-
ent loading conditions. As mentioned previously, uniaxial compres-
sive and shear loadings are applied to the RVE separately to obtain
the elastic and shear moduli and the Poisson’s ratios in the respec-
tive directions.

For a compressive loading in the axial direction, Fig. 4(a) plots
the stress as a function of the applied strain. The elastic modulus
of a BNNT-reinforced aluminum matrix shows improvement com-
pared with the pure aluminum. Although there was no significant
change in the elastic modulus, the failure strength increased with
the number of walls of the nanotube. The reinforcement enhanced
the properties of the matrix in the axial direction.

Fig. 4(b) plots the response of nanocomposite to uniaxial com-
pression orthogonal to the reinforcement. The failure strength of
the nanocomposite was lower than that of the pure aluminum under
uniaxial compression in the transverse direction. Nanotubes are
known to be weak in the radial direction due to their hollow cylin-
drical structure (Zheng 2012a; Zheng et al. 2012b). When com-
pressive loading is applied in the transverse direction, nanotubes
compress radially, leading to failure. This weakness of nanotubes
under radial loading makes a nanocomposite weaker in the trans-
verse direction. However, the elastic modulus in the transverse di-
rection was not significantly lower than that of pure aluminum. In
the linear regime, the transverse elastic modulus of pure aluminum

(a) (b)

(c) (d)

– –

–
–

–
–

–
–

–
–

Fig. 4. Stress versus strain plot of the RVE of pure aluminum, SWBNNT-reinforced nanocomposite, and DWBNNT-reinforced nanocomposite under
different loading conditions: (a) normal strain in longitudinal direction; (b) normal strain in transverse direction; (c) shear strain in 13 direction;
(d) shear strain in 12 direction
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and the nanocomposite matched closely. Therefore, even though
there was a reduction in the strength of the nanocomposite in the
transverse direction, the stiffness of the nanocomposite was not
compromised compared with pure aluminum.

Figs. 4(c and d) plot the response of the nanocomposite under
applied shear strains. The shear strain was applied separately in the
13 and the 12 directions. When the shear load was applied in the 13
or 23 direction, the tube underwent bending. However, when the
shear load was applied in the 12 direction, the tube underwent non-
uniform radial deformation, leading to distorted shapes.

The stiffness of the nanocomposite was lower than the stiffness
of pure aluminum under the application of shear strains ε13 and ε12.
The shear modulus corresponding to a strain in the 13 direction was
comparable to that of pure aluminum. Especially in the case of a
DWBNNT reinforcement, the stress-strain curve intersected with
that of pure aluminum, as shown in Fig. 4. However, the failure
strength was slightly lower than that of pure aluminum for both
SWBNNT and DWBNNT reinforcements.

When the strain was applied in the 12 direction, the tube under-
went a radial deformation. Because the nanotubes are weaker in
the radial direction, the shear modulus G12 for nanocomposite
is lower than for pure aluminum. The effect of the number of
walls on the strength of the composite is visible in this case. The
DWBNNT-nanocomposite exhibited the same strength as pure
aluminum, although with a lower stiffness. However, a SWBNNT-
nanocomposite exhibited a relatively lower failure strength, as plot-
ted in Fig. 4(d).

Furthermore, the failure mechanisms in each of the loading cases
were studied by observing the atomic trajectories obtained from the
MD simulations. The failure in the case of longitudinal normal load-
ing occurred due to the failure of the matrix, which further led to the
buckling of the tube. Because DWBNNT is stronger in compression
against buckling, RVE with DWBNNT exhibited greater strength
than the RVE with SWBNNT. Under transverse loading, the failure
was governed by the nanotubes. Because of their weakness in the
radial direction, the nanotubes failed by buckling when the alumi-
num matrix pushed against the walls of nanotubes under transverse
normal loading. Under shear loading, the failure always occurred at
the interface. The weakness of the interface to transfer the load
effectively resulted in the shearing of the interface, leading to the
failure of the aluminum near the interface. Thus, depending on the
type of loading, all three cases of failure—nanotube, matrix, and
interface—were observed. Hence it is noted that when designing
a nanocomposite, all three loading cases need to be considered.

Overall, reinforcing the aluminummatrix with BNNTs made the
nanocomposite directionally stronger. In fact, using nanotubes with
more walls might make the composite even stronger. Hence a
DWBNNT is preferred over a SWBNNT as reinforcement. Table 2
presents the computed elastic and shear moduli and Poisson’s ra-
tios. The failure strengths corresponding to the respective directions
of applied strains also are presented in this table. These values can
be used to describe the constitutive relation of the RVE of the nano-
composite as given by Eqs. (6) and (8). One other interesting ob-
servation in Fig. 4 is that often there is a postfailure increase in the
stress-strain plot. After the failure of the matrix, the reinforcement
takes the entire applied load. The stiffness of the reinforcement also
contributes to the increase in the stress-strain plot.

Results on Bulk Nanocomposite

The results obtained from MD can be directly used for a laminar
nanocomposite with aligned reinforcement. However, these proper-
ties are for loading either along or orthogonal to the reinforcement
direction. A nanocomposite lamina with aligned reinforcements

might undergo loads in directions at an angle to the reinforcement
as well. To generalize the result, it is essential to know the constit-
utive relationship in the nonprincipal coordinates, also known as
off-axis coordinates. The integration of off-axis properties for the
orientation angle θ can further yield results for randomly oriented
nanocomposite.

Off-Axis Properties
Using the laminar mechanics of a composite, the off-axis properties
can be obtained using Eqs. (12) and (13). The values of E1, E3,G13,
and ν13 were obtained fromMD simulations given in Table 2. Fig. 5
plots the variation of elastic and shear moduli, Poisson’s ratio, and
shear-coupling coefficient with lamina orientation.

An interesting observation in Fig. 5(a) is that the stiffness E3

does not decrease for slight changes in the angle of loading θ.
The increased elastic modulus E3 is maintained, which gradually
reduces to the elastic modulus E1. Therefore aligned reinforcement
of nanotubes is effective in imparting improved stiffness to the
nanocomposite. This happens not just along the reinforcement but
even at angles significantly greater than 0°. This is in contrast to
traditional fiber reinforcement composite, in which the elastic stiff-
ness decreases suddenly for a small increase in θ (Gibson 2011).
Similarly, Fig. 5(b) plots the variation of shear modulus. As ex-
pected, the shear modulus increases with θ to 45° and then gradu-
ally decreases to the same value as at 0° and 90°. The DWBNNT
reinforcement significantly enhances the shear modulus compared
with SWBNNT. This observation further substantiates the previous
deduction that the DWBNNT can provide stiffer reinforcement for
nanocomposite.

Rules of Mixtures
When manufacturing a nanocomposite, it is challenging to place all
nanotubes in an aligned orientation. Generally, nanotube reinforce-
ments are oriented in random directions, yielding a nearly isotropic
nanocomposite. Mechanical properties of this nanocomposite can
be obtained by integrating the off-axis elastic modulus with respect
to the orientation angle. The upper and lower limits for the elastic
modulus are given by Eqs. (14) and (15), respectively. First con-
sider the usual composite theory in which Efa ¼ Efr. Values of Efa
(Krishnan and Ghosh 2014) and Em were substituted in these equa-
tions. Fig. 6(a) plots the variation of the elastic moduli with the
volume fraction (in percentage). In this figure the upper and lower
bounds are marked as UB-composite and LB-composite, respec-
tively. However, for tubular structures, Efr ≪ Efa. Particularly for
BNNT, the difference is of two orders of magnitude. Thus Efa and
Efr were obtained from the literature (Zheng 2012a; Zheng et al.
2012b) and substituted in Eqs. (14) and (15), and also are plotted
in Fig. 6(a). This is referred to as the modified mixture rule. In ad-
dition, whereas the upper and lower bounds of the conventional

Table 2. Elastic Modulus, Poisson’s Ratio, and Failure Strength Obtained
from the MD Simulations

Property Pure Al SWBNNT DWBNNT

E1 (GPa) 59.75 52.373 59.471
E3 (GPa) 59.471 72.775 84.112
G13 (GPa) 32.887 30.508 30.508
ν12 0.32 0.31 0.31
ν13 0.32 0.35 0.36
σ1;ult

a (GPa) 5.975 4.661 5.099
σ3;ult (GPa) 6.066 5.822 7.066
σ13;ult (GPa) 3.558 3.203 3.203
aSubscript ult refers to the ultimate strength along the given direction of
applied strain.
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mixture rule converge for 100% fiber volume, the bounds diverged
significantly in the case of nanotubes. This divergence is due to
the radial weakness of nanotubes. For nanotubes to behave like
a conventional fiber composite, the radial stiffness (Efr) should
be equal to the longitudinal stiffness (Efa). These upper and
lower bounds are marked in Fig. 6(a) as UB-nanocomposite and
LB-nanocomposite, respectively. The conventional composite

theory overestimates the lower bound, whereas the upper bound
is preserved. The actual stiffness of a nanocomposite will lie any-
where between these modified upper and lower limits. These lim-
its are verified against results obtained from MD simulations in
Fig. 6(b). However, note that the MD results lie considerably below
the modified upper bound. This difference can be attributed to
the fact that an actual interface, which is modeled well by an LJ

(a) (b)

(c) (d)

Fig. 5. Variation with orientation of the reinforcement in a nanocomposite of the (a) elastic modulus; (b) shear modulus; (c) Poisson’s ratio;
(d) shear-coupling coefficient

(a) (b)

Fig. 6. (a) Variation of the elastic modulus with the percentage fiber reinforcement; UB and LB correspond to the upper bound and lower bound,
respectively; (b) the values obtained from simulation compared with predicted upper and lower limit considering the nanotube reinforcement

© ASCE 04017014-8 J. Nanomech. Micromech.
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potential, is weaker than an ideal perfect bonding assumed by the
upper bound.

To test the validity of the modified mixture rule further,
predictions were compared with the experimental results obtained
(Yamaguchi et al. 2013). Using Eq. (16) with the modified mixture
rule, Fig. 7 plots the stiffness of nanocomposite with randomly
oriented reinforcement. The values obtained by Yamaguchi
et. al. are plotted corresponding to their percentage of nano-
tube reinforcement. The comparison shows that the modified
mixture rule can accurately predict the elastic modulus of nano-
composites. The key factor here is the difference between axial
and radial elastic moduli of reinforcements, which was ignored
in previous studies.

Concluding Remarks

The following major conclusions can be drawn from this paper:
1. The transverse isotropy assumption at the RVE level leads to

stiffness estimates of the bulk nanocomposite comparable to
experimental and molecular simulation results.

2. Depending on the type of loading, the failure of a nanocompo-
site can occur due to the failure of reinforcement, matrix, or
interface. Thus it is important consider all three cases while
designing a composite.

3. The modified mixture rule, which is developed based on a
hierarchical multiscale scheme, provides better bounds of the
stiffness.

4. The radial weakness of nanotubes affects the stiffness of the na-
nocomposite. This weakness can be partially compensated for
by increasing the number of walls. Further research is required
to incorporate this enhancement in a multiscale scheme.
Moreover, the present study can be extended to model the fail-

ure of nanocomposites under tensile loading with special attention
to the stress transfer between the nanotube and the matrix during
pull-out simulations, and associated shear lag. Such studies can
provide a qualitative and quantitative analysis of the effectiveness
of nanocomposites for practical applications.

Acknowledgments

The authors thank the Board of Research in Nuclear Sciences
(BRNS) Grant No. 2012/36/37-BRNS/ 1683 for financial support.

References

Ajayan, P. M., Schadler, L. S., and Braun, P. V. (2006). Nanocomposite
science and technology, Wiley, NJ.

Allen, M. P., et al. (1987). Computer simulation of liquids, Clarendon press
Oxford, Oxford, U.K.

Bakshi, S., Lahiri, D., and Agarwal, A. (2010). “Carbon nanotube rein-
forced metal matrix composites—A review.” Int. Mater. Rev., 55(1),
41–64.

Bernhardt, D. J. (2014). “Composite reinforcement using boron nitride
nanotubes.” Queensland Univ., Brisbane, Australia.

Camargo, P. H. C., Satyanarayana, K. G., and Wypych, F. (2009).
“Nanocomposites: Synthesis, structure, properties and new application
opportunities.” Mater. Res., 12(1), 1–39.

Coleman, J. N., Khan, U., Blau, W. J., and Gunko, Y. K. (2006). “Small
but strong: A review of the mechanical properties of carbon nanotube-
polymer composites.” Carbon, 44(9), 1624–1652.

Delley, B. (1990). “An all-electron numerical method for solving the local
density functional for polyatomic molecules.” J. Chem. Phys., 92(1),
508–517.

Delley, B. (2000). “From molecules to solids with the DMol3 approach.”
J. Chem. Phys., 113(18), 7756–7764.

Esawi, A., and Morsi, K. (2007). “Dispersion of carbon nanotubes (CNTs)
in aluminum powder.” Compos. Part A: Appl. Sci. Manuf., 38(2),
646–650.

Fish, J. (2009). Multiscale methods: Bridging the scales in science and
engineering, Oxford University Press, Oxford, U.K.

George, R., Kashyap, K., Rahul, R., and Yamdagni, S. (2005). “Strength-
ening in carbon nanotube/aluminium (CNT/Al) composites.” Scr. Mater.,
53(10), 1159–1163.

Gibson, R. F. (2011). Principles of composite material mechanics, CRC
Press, Boca Raton, FL.

Gojny, F. H., Wichmann, M., Köpke, U., Fiedler, B., and Schulte, K.
(2004). “Carbon nanotube-reinforced epoxy-composites: Enhanced
stiffness and fracture toughness at low nanotube content.” Compos.
Sci. Technol., 64(15), 2363–2371.

Han, Y., Jing, H., Nai, S., Xu, L., Tan, C. M., and Wei, J. (2012). “Creep
mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nano-
tubes.” J. Mater. Sci. Mater. Electron., 23(5), 1108–1115.

He, C., et al. (2007). “An approach to obtaining homogeneously dispersed
carbon nanotubes in Al powders for preparing reinforced Al-matrix
composites.” Adv. Mater., 19(8), 1128–1132.

He, C., Zhao, N., Shi, C., and Song, S. (2009). “Mechanical properties and
microstructures of carbon nanotube-reinforced Al matrix composite
fabricated by in situ chemical vapor deposition.” J. Alloys Compd.,
487(1), 258–262.

Herasati, S., and Zhang, L. (2014). “A new method for characterizing and
modeling the waviness and alignment of carbon nanotubes in compo-
sites.” Compos. Sci. Technol., 100(0), 136–142.

Humphrey, W., Dalke, A., and Schulten, K. (1996). “VMD: Visual molecu-
lar dynamics.” J. Mol. Graphics, 14(1), 33–38.

Ivashchenko, V., Veprek, S., Pogrebnjak, A., and Postolnyi, B. (2014).
“First-principles quantum molecular dynamics study of TixZr1–xN
(111)/SiNy heterostructures and comparison with experimental results.”
Sci. Technol. Adv. Mater., 15(2), 025007.

Kim, C., Rohatgi, P., and Sanaty-Zadeh, A. (2011). “Multi-scale modeling
on the mechanical behavior of aluminum-based metal-matrix nanocom-
posites (MMNCs).” Minerals, Metals and Materials Society/AIME,
Warrendale, PA.

Kim, K. T., Cha, S. I., and Hong, S. H. (2007). “Hardness and wear
resistance of carbon nanotube reinforced Cu matrix nanocomposites.”
Mater. Sci. Eng. A, 449, 46–50.

Krishnan, N. M. A., and Ghosh, D. (2014). “Chirality dependent elastic
properties of single-walled boron nitride nanotubes under uniaxial
and torsional loading.” J. Appl. Phys., 115(6), 064303.

Krishnan, N. M. A., and Ghosh, D. (2014). “Defect induced plasticity and
failure mechanism of boron nitride nanotubes under tension.” J. Appl.
Phys., 116(4), 044313.

Lahiri, D., et al. (2012). “Insight into reactions and interface between boron
nitride nanotube and aluminum.” J. Mater. Res., 27(21), 2760–2770.

0 1 2 3 4 5
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

% nanotube reinforcement

E
la

st
ic

 m
od

ul
us

 (
G

P
a)

 

 
Predicted E

nanocomposite

E
Al

E
nanocomposite

, (experimental)

Fig. 7. Comparison of mixture rule with results of Yamaguchi et al.
(2013)

© ASCE 04017014-9 J. Nanomech. Micromech.

 J. Nanomech. Micromech., 2017, 7(4): 04017014 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e,

 B
an

ga
lo

re
" 

on
 0

5/
31

/2
2.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1179/095066009X12572530170543
https://doi.org/10.1179/095066009X12572530170543
https://doi.org/10.1590/S1516-14392009000100002
https://doi.org/10.1016/j.carbon.2006.02.038
https://doi.org/10.1063/1.458452
https://doi.org/10.1063/1.458452
https://doi.org/10.1063/1.1316015
https://doi.org/10.1016/j.compositesa.2006.04.006
https://doi.org/10.1016/j.compositesa.2006.04.006
https://doi.org/10.1016/j.scriptamat.2005.07.022
https://doi.org/10.1016/j.scriptamat.2005.07.022
https://doi.org/10.1016/j.compscitech.2004.04.002
https://doi.org/10.1016/j.compscitech.2004.04.002
https://doi.org/10.1007/s10854-011-0557-9
https://doi.org/10.1002/adma.200601381
https://doi.org/10.1016/j.jallcom.2009.07.099
https://doi.org/10.1016/j.jallcom.2009.07.099
https://doi.org/10.1016/j.compscitech.2014.06.004
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1088/1468-6996/15/2/025007
https://doi.org/10.1016/j.msea.2006.02.310
https://doi.org/10.1063/1.4864781
https://doi.org/10.1063/1.4891519
https://doi.org/10.1063/1.4891519
https://doi.org/10.1557/jmr.2012.294


Lahiri, D., et al. (2013). “Boron nitride nanotubes reinforced aluminum
composites prepared by spark plasma sintering: Microstructure,
mechanical properties and deformation behavior.” Mater. Sci. Eng. A,
574, 149–156.

Li, Y., Zhou, Z., Golberg, D., Bando, Y., Schleyer, P. v. R., and Chen, Z.
(2008). “Stone-Wales defects in single-walled boron nitride nanotubes:
Formation energies, electronic structures, and reactivity.” J. Phys.
Chem. C, 112(5), 1365–1370.

Liu, W., Karpov, E., and Park, H. (2006). Nano mechanics and materials:
Theory, multiscale methods and applications, Wiley, NJ.

Miller, R. E., and Tadmor, E. (2009). “A unified framework and perfor-
mance benchmark of fourteen multiscale atomistic/continuum coupling
methods.” Modell. Simul. Mater. Sci. Eng., 17(5), 053001.

Moon, W. H., and Hwang, H. J. (2004). “Molecular-dynamics simulation
of structure and thermal behaviour of boron nitride nanotubes.”
Nanotechnol., 15(5), 431–434.

Noguchi, T., et al. (2004). “Carbon nanotube/aluminium composites with
uniform dispersion.” Mater. Trans., 45(2), 602–604.

Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient
approximation made simple.” Phys. Rev. Lett., 77(18), 3865–3868.

Plimpton, S. (1995). “Fast parallel algorithms for short-range molecular
dynamics.” J. Comput. Phys., 117(1), 1–19.

Pogrebnjak, A. D., and Beresnev, V. M. (2012). Nanocoatings nanosystems
nanotechnologies, Bentham Science Publishers, United Arab Emirates.

Pogrebnjak, A. D., Borisyuk, V. N., Bagdasaryan, A. A., Maksakova, O. V.,
and Smirnova, E. V. (2014). “The multifractal investigation of surface
microgeometry of (Ti–Hf–Zr–V–Nb)N nitride coatings.” J. Nano Elec-
tron. Phys., 6(4), 4018-1.

Porwal, H., Grasso, S., and Reece, M. (2013). “Review of graphene-
ceramic matrix composites.” Adv. Appl. Ceram., 112(8), 443–454.

Sekkal, W., Bouhafs, B., Aourag, H., and Certier, M. (1998). “Molecular-
dynamics simulation of structural and thermodynamic properties of
boron nitride.” J. Phys. Condens. Matter, 10(23), 4975–4984.

Sevik, C., Kinaci, A., Haskins, J. B., and Çağın, T. (2011). “Characteriza-
tion of thermal transport in low-dimensional boron nitride nanostruc-
tures.” Phys. Rev. B, 84(8), 085409.

Silvestre, N. (2013). “State-of-the-art review on carbon nanotube reinforced
metal matrix composites.” Int. J. Compos. Mater., 3(6A), 28–44.

Silvestre, N., Faria, B., and Canongia Lopes, J. N. (2014). “Compressive
behavior of CNT-reinforced aluminum composites using molecular
dynamics.” Compos. Sci. Technol., 90, 16–24.

Song, H.-Y., and Zha, X.-W. (2010). “Influence of nickel coating on
the interfacial bonding characteristics of carbon nanotube-aluminum
composites.” Comput. Mater. Sci., 49(4), 899–903.

Subramaniyan, A. K., and Sun, C. (2008). “Continuum interpretation of
virial stress in molecular simulations.” Int. J. Solids Struct., 45(14),
4340–4346.

Tsai, S. W. (1964). “Structural behavior of composite materials.” Philco-
Ford Corporation, Newport Beach, CA.

Winey, J., Kubota, A., and Gupta, Y. (2009). “A thermodynamic approach
to determine accurate potentials for molecular dynamics simulations:
Thermoelastic response of aluminum.”Modell. Simul. Mater. Sci. Eng.,
17(5), 055004.

Yamaguchi, M., et al. (2013). “Utilization of multiwalled boron nitride
nanotubes for the reinforcement of lightweight aluminum ribbons.”
Nanoscale Res. Lett., 8(1), 3–6.

Yamaguchi, M., Tang, D.-M., Zhi, C., Bando, Y., Shtansky, D., and
Golberg, D. (2012). “Synthesis, structural analysis and in situ transmis-
sion electron microscopy mechanical tests on individual aluminum
matrix/boron nitride nanotube nanohybrids.” Acta Mater., 60(17),
6213–6222.

Yang, J., Zhang, Z., Friedrich, K., and Schlarb, A. K. (2007).
“Creep resistant polymer nanocomposites reinforced with multi-
walled carbon nanotubes.” Macromol. Rapid Commun., 28(8),
955–961.

Zhan, G.-D., Kuntz, J. D., Wan, J., and Mukherjee, A. K. (2003). “Single-
wall carbon nanotubes as attractive toughening agents in alumina-based
nanocomposites.” Nature Mater., 2(1), 38–42.

Zheng, M., et al. (2012a). “Radial mechanical properties of single-walled
boron nitride nanotubes.” Small, 8(1), 116–121.

Zheng, M., Ke, C., Bae, I., Park, C., Smith, M., and Jordan, K.
(2012b). “Radial elasticity of multi-walled boron nitride nanotubes.”
Nanotechnol., 23(9), 095703.

Zobelli, A., Ewels, C., Gloter, A., and Seifert, G. (2007). “Vacancy migra-
tion in hexagonal boron nitride.” Phys. Rev. B, 75(9), 094104.

© ASCE 04017014-10 J. Nanomech. Micromech.

 J. Nanomech. Micromech., 2017, 7(4): 04017014 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

"I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e,

 B
an

ga
lo

re
" 

on
 0

5/
31

/2
2.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

https://doi.org/10.1016/j.msea.2013.03.022
https://doi.org/10.1016/j.msea.2013.03.022
https://doi.org/10.1021/jp077115a
https://doi.org/10.1021/jp077115a
https://doi.org/10.1088/0965-0393/17/5/053001
https://doi.org/10.1088/0957-4484/15/5/005
https://doi.org/10.2320/matertrans.45.602
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1179/174367613X13764308970581
https://doi.org/10.1088/0953-8984/10/23/006
https://doi.org/10.1103/PhysRevB.84.085409
https://doi.org/10.5923/s.cmaterials.201309.04
https://doi.org/10.1016/j.compscitech.2013.09.027
https://doi.org/10.1016/j.commatsci.2010.06.044
https://doi.org/10.1016/j.ijsolstr.2008.03.016
https://doi.org/10.1016/j.ijsolstr.2008.03.016
https://doi.org/10.1088/0965-0393/17/5/055004
https://doi.org/10.1088/0965-0393/17/5/055004
https://doi.org/10.1186/1556-276X-8-3
https://doi.org/10.1016/j.actamat.2012.07.066
https://doi.org/10.1016/j.actamat.2012.07.066
https://doi.org/10.1002/marc.200600866
https://doi.org/10.1002/marc.200600866
https://doi.org/10.1038/nmat793
https://doi.org/10.1002/smll.201100946
https://doi.org/10.1088/0957-4484/23/9/095703
https://doi.org/10.1103/PhysRevB.75.094104

