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Application of Machine Learning and Statistics to Materials Science 

The principal axes of development in this area can be categorized under two sub-categories of the forward 
problem involving accelerating materials property calculation [3] and the inverse problem of new materials 
discovery or design. We refer to the problem of accelerating materials property calculation using Machine 
Learning as the forward problem and the process of materials discovery and materials design from the desired 
Key-Performance Indicator (KPI) as the inverse problem. The forward problem of accelerating materials property 
calculation, is important because the model gives valuable knowledge for getting the inverse problem right. 

In organic chemistry the approach has a long history generally known as QSAR (Quantitative Structure Activity 
Relationships) or QSPR (Quantitative Structure Property Relationships), where the P may refer to a large 
diversity of properties for a large diversity of materials [4, 5]. 

In a database containing the 𝑁 set of materials, the set of descriptors 𝐷 ∈ ℜ𝑁×𝑃  and the KPI 𝒚 ∈ ℜ𝑁×1 for each of 
the materials, what we define by the forward problem is the process of mapping the descriptors to the KPI for 
accelerating the materials property calculation. In short, the question that we are addressing is:  

Can we build a Machine Learning model, ℳ̂, which is but an estimate of the true model ℳ, such that the KPI 
property can be directly calculated on-the-fly using only a few descriptors? 

As was shown in Figure 1, the true model ℳ, maps the descriptors 𝐷 ∈ ℜ𝑁×𝑃 for a set of materials (𝐶) in the 
database to the application specific KPI, and is mathematically defined as ℳ: 𝐷 ↦ 𝒚. Some of these descriptors 
and the KPIs are generated by using first principle DFT calculations, for each of the material 𝐶 in the database. 
From the dataset it is difficult to determine the true model, ℳ, directly given the limited amount of data and an 

approximation, ℳ̂, of it is built using Machine Learning. 

The advantage of this is two-fold:  

1. For new compounds not already in the database, this reduces the time for calculations, sometimes 
from hours to second and can be done on the fly.  

2. When the estimated model ℳ̂ is close to the true model ℳ, ℳ̂ can now be used for the inverse 
problem of new materials discovery or design.  

 

Bootstrap Projected Gradient Descent (BoPGD) Method: 

1. Introduction 
In Machine Learning, the Least-Square Linear Regression problem models the “best” linear relationship between 
the output (also called response) variable and the input variables (also called features/predictors/covariates), 

given samples containing both. Formally, given a response vector 𝒚 ∈ ℜ𝑁×1 a matrix  𝑋 ∈ ℜ𝑁×𝑃 of predictor 

variables, a true underlying coefficient vector  and an  error/noise vector , the linear model can 
be expressed as: 

  ( 1) 

The objective of Ordinary Least-Square Linear Regression (OLS) is to find out a value of  which minimizes the 
mean squared error i.e., 

  ( 2) 

For high-dimensional data, model interpretation becomes a challenging task. That is why Subset Selection (also 
called Feature Selection) methods are often employed to obtain a sparse yet most significant subset of features 
that affect the output. In literature, this problem of least square linear regression with feature selection is 



popularly known as the Sparse Linear Regression (SPL) problem which alongside minimizing the empirical risk 

also outputs a sparse coefficient vector  as captured in the following optimization problem:  

  ( 3) 

However, optimal estimation of this problem is infeasible because of non-convexity and NP-hardness. One way to 
circumvent this is to make the problem convex by relaxing the constraint (since convex problems are easy to 
solve and they have a unique global minima). A bunch of Iterative Shrinkage Thresholding Algorithms (ISTA) 
[29] [7] exists which do convex-relaxation of SPL, and possibly the most popular among them is LASSO [7] which 

does least square regression with regularization/penalization by the  norm. Lasso precisely solves for a  s.t: 

  ( 4) 

where  is a tuning parameter (also called regularization/penalization factor). Depending on the value of , 
the Lasso estimate will have many coefficients set to zero, because of the nature of  penalty. The features 
corresponding to the non-zero coefficients, also called the support is regarded as the active set of predictors 
which captures the maximum information in the linear relationship between  and . Although Lasso is a 
popular choice when it comes to feature selection due to its model consistency [30, 31, 32] behavior, however, 
there exists scenarios where strong correlation among the predictors bring instability in Lasso estimate i.e., Lasso 
tends to select different variables (from the group of correlated or linearly dependent variables) in different 
independent iterations. A bunch of convex-relaxation based methods (viz. Elastic-net [33], Clustered Lasso [34], 
CRL [35], BoLasso [36]) have been proposed to solve this problem, however, all of them have slower convergence 
rate since the optimization problems that they end up solving is non-smooth. The other way of solving this 
problem as proposed by Jain et. al. [37] is to apply Projected Gradient Descent (PGD) (also called Iterative Hard 
Thresholding (IHT)) based update rules, wherein at each iteration till convergence, the gradient descent update 
is projected onto the underlying non-convex feasible set. This is the basis of our algorithm, Bootstrap Projected 
Gradient Descent (BoPGD) [25] which offers the fastest and consistent solution to the above problem. 

2. Bootstrap Projected Gradient Descent (BoPGD) 
Given samples containing the input and output variables, the goal of BoPGD [25] is to output a sparse linear 
model which satisfies the following:  

 The model is a “good fit” to the data 

 The model can be interpreted easily 

 It is consistent when the predictors are highly correlated 
Our algorithm scales well under the high dimensional setting too, and has faster convergence rate compared to 
other existing methods.  

There are three key ingredients in BoPGD [25]: 

 Clustering 

 Projected Gradient Descent 

 Bootstrapping 
The first step in BoPGD is clustering based on sample correlation among the predictors. This step essentially 
takes care of the inter-feature correlation which is the root cause of inconsistency in LASSO [7]. The covariates 
which are strongly correlated are grouped into the same cluster and those which are weakly correlated end up in 
different clusters. We use bottom-up agglomerative (hierarchical) clustering algorithm to compute the clusters. 
We then create a representative feature from each cluster as follows: 

 



  ( 5) 

 

where  denotes the  cluster and  is the  predictor belonging to . We stack all these cluster 

representatives column wise and create a Cluster Representative Matrix which forms the input feature matrix for 
our next step.  

The next step involves using a simple Projected Gradient Descent based update rule, as explained in Jain et. al's 
work [37], on the Cluster Representative Matrix. This step requires the involvement of a hyper-parameter , the 
sparsity value which governs the selection of  top most cluster representatives (in terms of their effect on the 
output variable). We try out a range of values for  and choose the one which corresponds to the minimum 
average cross-validation error. 

The final step is called Bootstrapping. Here we use a voting scheme to eliminate the effect of noise (if any). The 
idea of how to generate a bootstrap sample is explained in Tibshirani et. al's work [27]. We generate  
bootstrapped replicas of the given dataset and run clustering and projected gradient descent on each of these  
copies of  with the sparsity parameter  chosen in the second step. We then take the intersection of 
the supports across these  copies to choose the surviving set of cluster representatives. The variables belonging 
to those clusters are treated as the most significant variables. Using these cluster representatives we identify the 
clusters and the corresponding features present in each of them. We consider the union of all these features from 
the selected clusters as the sparse yet most significant subset of features affecting the output linearly. The pseudo 
code of BoPGD is presented in Algorithm 1. 

 

Algorithm 1: BoPGD 

 

Input: data , number of bootstrap replicates  

Steps:  

1. Perform hierarchical agglomerative clustering based on correlation among the covariates in . Let us denote it 

by  i.e.,  refer to the  cluster. 

2. For different values of sparsity , do:  

     2.1.  

     2.2.  

     2.3. Selected features,  

     2.4.  

3. Let  

4. For k= 1 to m, do: 

     4.1. Generate Bootstrap samples  

     4.2.  



     4.3.  

5. Compute  

6. Extract features,  

7. Report  

 

PGD:  

Input:  Least Square Linear Regression Cost function  

Steps:  

1. Compute Cluster Representative Matrix . 

2. t = 0. 

3.  

4. while not converged do: 

     4.1. , where  retains only the top  values of  

     4.2.  

5. end while 

6. Report  

 

Descriptor Fingerprinting by BoPGD Algorithm 

There are N material candidates for the descriptor set 𝐷 ∈ ℜ𝑁×𝑃 of dimension P and for the KPI/property 
𝒚 ∈ ℜ𝑁×1. As explained in the Introduction section, the set of descriptors 𝐷 given in the database, and their linear 
and nonlinear combinations produced by engineering them, to give the new extended bag of engineered 
descriptor 𝑋𝐸 ∈ ℜ𝑁×𝑅, 𝑅 ≫ 𝑃 and 𝑋 ⊆ 𝑋𝐸 . As explained in the Introduction Section, the KPI and the engineered 
descriptors can be related as: 

𝑀: 𝒚 = 𝛽 𝑓(Φ(𝐷)) + 𝝐 

Where the engineered descriptor is obtained from the original descriptor space 𝑋𝐸: = Φ(𝐷). However, there 
occur only a smaller number of descriptors, say K, which are useful for predicting the KPI (Binding Energy) s. t. 
𝐾 < 𝑃 and 𝑃 ≪ 𝑅. We introduce the Bootstrapped Projected Gradient Descent (BoPGD) algorithm, which is 
represented by the functional form f. It is used here to choose the sparsest representation of the descriptors and 
its derivatives from the original or the engineered descriptor space. To summarize the algorithm,  

Step 1: BoPGD takes up the descriptor engineered dataset (𝑋𝐸 , 𝒚) and clusters the descriptors together depending 
on their cross-correlation strength. The resulting clustered dataset is represented as (𝑋𝐶 , 𝒚) s.t 𝑋𝑐 ∈ ℜ𝑁×𝑀and 
𝑀 ≪ 𝑃. 



Step 2: Predict the minimum sparsity or support of the clustered descriptor space (i.e. set of dominant clusters 
that affect the KPI) 𝐾 = supp(𝛽), 𝑠. 𝑡. 𝐾 ∈ [1, 2, … , 𝑀], 𝐾 < 𝑃 ≪ 𝑀 < 𝑅 using a simple projected gradient descent-
based update.  

Step 3: For every bootstrapping trial, T, iteratively, fit the reduced descriptor space Xc to the KPI y so as to 

estimate the set of coefficients 𝛽 ∈ ℜ𝑀 that best maps Xc to 𝒚 such that 𝑦 ≈ 𝛽̂𝑋𝑐. At every iteration, limit the 

number of 𝛽̂ to the non-zero values or set ‖𝛽̂‖
0
=K. 

 Step 4: Group the T-bootstrapped coefficients to a matrix Β ∈ ℜ𝑇×𝐾 that consists of the selected coefficients from 
each bootstrap iterations. 

Step 5: Calculate the final ranked descriptor cluster 𝛽̂ from the coefficient matrix B by taking the most recurring 
descriptor cluster, or the soft intersections, from the T trials. Usually, the estimated coefficient has a cardinality 

‖𝛽̂‖ ≤ 𝐾. 

Step 6: We choose one representative descriptor from the down selected descriptor cluster that is closest to the 
centroid. 

This representative descriptor becomes the unique fingerprint for predicting the target property or KPI using a 
linear or nonlinear function to our dataset. The clustering of the descriptors together ensures that the descriptors 
that are collinear are cumulated together into a single representative descriptor. In order to obtain the most 
stable fingerprint descriptors, we take several bootstrap iterations of the description selection process results and 
select the ones that most “frequently” appear. This ensures that any uncertainty in the selection process due to 
noise in the dataset or due to the limited size of the dataset is smoothened out. 

For the BoPGD, the increase in the number of features beyond K did not decrease the error rates in the linear or 
the nonlinear fit. The maximum error is 0.3eV between the predicted and the calculated BE and minimum error 
is 0eV.  

The computational time complexity for the LASSO descriptor selection algorithm, measures as 𝒪(M2N + M3) 
when implemented using the LARS algorithm [7], where the number of columns is M and the numbers of 
samples is N. For the BoLASSO algorithm [36], involving bootstrapped trials T of the LASSO algorithm, the 
complexity is 𝒪(TM2N + TM3). For the BoPGD algorithm, the hierarchical clustering algorithm has an 

independent order of  𝒪(M2log(M)) and for T bootstraps, the complexity is 𝒪(TK2N + TK log(K)) with K ≪ M. 



Principal Component Analysis: 

 

Figure S1: Score plot of the first two principal components. There is a clear clustering among the 
different data points indicative of the substrate with positive first principal component scores for Pd, Pt 

and Au, and negative first principal component scores for Ni, Cu and Ag. The two outliers of the 
substrate Au namely “Au-La@Au” and “Au-Y@Au” are shown highlighted by the yellow circle. 
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