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Let X be a compact connected Riemann surface of genus at least two, and let QX (r, d) be 
the quot scheme that parameterizes all the torsion coherent quotients of O⊕r

X of degree d. 
This QX (r, d) is also a moduli space of vortices on X . Its geometric properties have been 
extensively studied. Here we prove that the anticanonical line bundle of QX (r, d) is not 
nef. Equivalently, QX (r, d) does not admit any Kähler metric whose Ricci curvature is 
semipositive.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit X une surface de Riemann compacte et connexe de genre au moins deux, et soit 
QX (r, d) le schéma quot qui paramétrise tous les quotients torsion cohérents de O⊕r

X
de degré d. L’espace QX (r, d) est aussi un espace de modules de vortex sur X . Nous 
démontrons que le fibré anticanonique de X n’a pas la propriété nef. De façon équivalente, 
QX (r, d) n’admet aucune métrique kählérienne dont la courbure de Ricci soit semi-positive.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Take a compact connected Riemann surface X . The genus of X , which will be denoted by g , is assumed to be at least 
two. We will not distinguish between the holomorphic vector bundles on X and the torsion-free coherent analytic sheaves 
on X . For a positive integer r, let O⊕r

X be the trivial holomorphic vector bundle on X of rank r. Fixing a positive integer d, 
let

Q := QX (r,d) (1.1)

be the quot scheme that parametrizes all (torsion) coherent quotients of O⊕r
X of rank zero and degree d [17]. Equivalently, 

Q parametrizes all coherent subsheaves of O⊕r
X of rank r and degree −d, because these are precisely the kernels of coherent 
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quotients of O⊕r
X of rank zero and degree d. This Q is a connected smooth complex projective variety of dimension rd. See 

[6,5,4] for the properties of Q. It should be mentioned that Q is also a moduli space of vortices on X , and it has been 
extensively studied from this point of view of mathematical physics; see [3,9,12] and references therein.

Bökstedt and Romão proved some interesting differential geometric properties of Q (see [12]). In [10] and [11], we 
proved that Q does not admit Kähler metrics with semipositive or seminegative holomorphic bisectional curvature. In this 
note, we continue to study the question of the existence of metrics on Q whose curvature has a sign. Our aim here is to 
prove the following.

Theorem 1.1. The quot scheme Q in (1.1) does not admit any Kähler metric such that the anticanonical line bundle K −1
Q is Hermitian 

semipositive.

Since semipositive holomorphic bisectional curvature implies semipositive Ricci curvature for a Kähler metric, Theo-
rem 1.1 generalizes the main result of [11].

Recall that a holomorphic line bundle L on a compact complex manifold M is said to be Hermitian semipositive if L
admits a smooth Hermitian structure such that the corresponding Hermitian connection has the property that its curvature 
form is semipositive. The anticanonical line bundle on M will be denoted by K −1

M . Note that if M admits a Kähler metric 
such that the corresponding Ricci curvature is semipositive, then K −1

M is Hermitian semipositive. Indeed, in that case, the 
Hermitian connection on K −1

M for the Hermitian structure induced by such a Kähler metric has semipositive curvature. The 
converse statement, that the Hermitian semipositivity of K −1

M implies the existence of Kähler metrics with semipositive Ricci 
curvature, is also true by Yau’s solution to the Calabi’s conjecture [1,2,19].

The proof of Theorem 1.1 is based on a recent work of Demailly, Campana, and Peternell on the classification of compact 
Kähler manifolds M with semipositive K −1

M [15,14]. This classification implies that if K −1
M is semipositive, then there is a 

nontrivial Abelian ideal in the Lie algebra of holomorphic vector fields on M , provided b1(M) > 0. On the other hand, for 
M = Q, this Lie algebra is isomorphic to sl(r, C), which does not have any nontrivial Abelian ideal.

2. Proof of Theorem 1.1

2.1. Semipositive Ricci curvature

Let J d(X) = Picd(X) be the connected component of the Picard group of X that parameterizes the isomorphism classes 
of holomorphic line bundles on X of degree d. Let Sd(X) denote the space of all effective divisors on X of degree d, so 
Sd(X) = Xd/Pd is the symmetric product, with Pd being the group of permutations of {1 , · · · , d}. Let

p : Sd(X) −→ Picd(X) (2.1)

be the natural morphism that sends a divisor on X to the holomorphic line bundle on X defined by it.
Take any coherent subsheaf F ⊂ O⊕r

X of rank r and degree −d. Let

sF : O⊕r
X = (O⊕r

X )∗ −→ F ∗

be the dual of the inclusion of F in O⊕r
X . Its exterior product

∧r
sF : OX =

∧r
O⊕r

X −→
∧r

F ∗

is a holomorphic section of the holomorphic line bundle 
∧r F ∗ of degree d. Therefore, the divisor div(

∧r sF ) is an element 
of Sd(X). Consequently, we have a morphism

ϕ : Q −→ Sd(X) , F �−→ div(
∧r

sF ) , (2.2)

where Q is defined in (1.1). We note that when r = 1, then ϕ is an isomorphism.
Assume that Q admits a Kähler metric ω such that K −1

Q is Hermitian semipositive. Then there is a connected finite étale 
Galois covering

f : Q̃ −→ Q (2.3)

such that (Q̃, f ∗ω) is holomorphically isometric to a product

γ : Q̃ −→ A × C × H × F , (2.4)

where

• A is an Abelian variety,
• C is a simply connected Calabi–Yau manifold (holonomy is SU(c), where c = dim C ),
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• H is a simply connected hyper-Kähler manifold (holonomy is Sp(h/2), where h = dim H), and
• F is a rationally connected smooth projective variety such that K −1

F is Hermitian semipositive.

(See [15, Theorem 3.1].) Henceforth, we will identify Q̃ with A × C × H × F using γ in (2.4). We note that F is simply 
connected because it is rationally connected [13, p. 545, Theorem 3.5], [18, p. 362, Proposition 2.3].

2.2. A lower bound of d

We know that b1(Q) = 2g , and the induced homomorphism

(p ◦ ϕ)∗ : H1(Q, Q) −→ H1(Picd(X), Q) ,

where p and ϕ are constructed in (2.1) and (2.2), respectively, is an isomorphism [5], [6, p. 649, Remark]. Since f in (2.3)
is a finite étale covering, the induced homomorphism

f∗ : H1(Q̃, Q) −→ H1(Q, Q)

is surjective. Therefore, the homomorphism

(p ◦ ϕ ◦ f )∗ : H1(Q̃, Q) −→ H1(Picd(X), Q) (2.5)

is surjective.
There is no nonconstant holomorphic map from a compact simply connected Kähler manifold to an Abelian variety. In 

particular, there are no nonconstant holomorphic maps from C , H and F in (2.4) to Picd(X). Hence, the map p ◦ϕ ◦ f factors 
through a map

β : A −→ Picd(X) .

In other words, there is a commutative diagram

Q̃ = A × C × H × F
p◦ϕ◦ f−→ Picd(X)

q
⏐⏐� ‖Id

A
β−→ Picd(X)

(2.6)

where q is the projection of A × C × H × F to the first factor. Since H1(A × C × H × F , Z) = H1(A, Z) (as C , H and F are 
simply connected), and (p ◦ ϕ ◦ f )∗ in (2.5) is surjective, it follows that the homomorphism

β∗ : H1(A, Q) −→ H1(Picd(X), Q)

induced by β is surjective. This immediately implies that the map β is surjective. Since β is surjective, from the commuta-
tivity of (2.6) we know that the map p is surjective. This implies that

d = dim Sd(X) ≥ dim Picd(X) = g ≥ 2 . (2.7)

2.3. Albanese for Q̃

The homomorphism of fundamental groups

ϕ∗ : π1(Q) −→ π1(Sd(X))

induced by ϕ in (2.2) is an isomorphism [8, Proposition 4.1]. Since d ≥ 2 (see (2.7)), the homomorphism of fundamental 
groups

p∗ : π1(Sd(X)) −→ π1(Picd(X))

induced by p in (2.1) is an isomorphism. Indeed, π1(Sd(X)) is the Abelianization

π1(X)/[π1(X), π1(X)] = H1(X, Z)

of π1(X) [16]. Combining these we conclude that the homomorphism of fundamental groups

(p ◦ ϕ)∗ : π1(Q) −→ π1(Picd(X)) (2.8)

induced by p ◦ ϕ is an isomorphism.
Since the homomorphism in (2.8) is an isomorphism, the covering f in (2.3) is induced by a covering of Picd(X). In 

other words, there is a finite étale Galois covering
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μ : J −→ Picd(X) (2.9)

and a morphism λ : Q̃ −→ J such that the following diagram is commutative:

Q̃ f−→ Q⏐⏐�λ

⏐⏐�p ◦ ϕ

J
μ−→ Picd(X)

(2.10)

where f is the covering map in (2.3). The projection q in (2.6) is clearly the Albanese morphism for Q̃, because C , H and 
F are all simply connected. On the other hand, p ◦ ϕ is the Albanese morphism for Q [11, Corollary 2.2]. Therefore, its 
pullback, namely, λ, is the Albanese morphism for Q̃. Consequently, we have A = J with λ coinciding with the projection 
q in (2.6). Henceforth, we will identify A and q with J and λ respectively.

2.4. Vector fields

The differential df of f identifies T Q̃ with f ∗TQ, because f is étale. Using the trace homomorphism t : f∗OQ̃ −→ OQ , 
we have

f∗T Q̃ = f∗ f ∗TQ
p f−→ ( f∗OQ̃) ⊗ TQ t−→ OQ ⊗ TQ = TQ ,

where p f is given by the projection formula. This produces a homomorphism

� : H0(Q̃, T Q̃) = H0(Q, f∗T Q̃) −→ H0(Q, TQ) (2.11)

(the equality H0(Q̃, T Q̃) = H0(Q, f∗T Q̃) follows from the fact that f is a finite morphism). This homomorphism � is 
surjective. Indeed, as f ∗TQ = T Q̃, any section of TQ pulls back to a section of T Q̃.

Since Q̃ = A × C × H × F , we have

H0(Q̃, T Q̃) = H0(A, T A) ⊕ H0(C, T C) ⊕ H0(H, T H) ⊕ H0(F , T F ) . (2.12)

Note that H0(Q̃, T Q̃) is a Lie algebra under the operation of Lie bracket of vector fields, and the subspace

H0(A, T A) ⊂ H0(Q̃, T Q̃)

(see (2.12)) is an ideal in this Lie algebra. Since A = J is a covering of Picd(X), we have

dim H0(A, T A) = dim Picd(X) = g > 1 . (2.13)

Since H0(A, T A) is an ideal in H0(Q̃, T Q̃), it follows immediately that

�(H0(A, T A)) ⊂ �(H0(Q̃, T Q̃)) = H0(Q, TQ)

is an ideal, where � is constructed in (2.11). Note that H0(A, T A) is an Abelian Lie algebra, so the Lie algebra �(H0(A, T A))

is also Abelian.
Since μ : J = A −→ Picd(X) in (2.9) is a covering map between Abelian varieties, the trace map H0(A, T A) −→

H0(Picd(X), T Picd(X)) is an isomorphism. In view of this, from the commutativity of the diagram in (2.10), it follows that 
the restriction

�|H0(A, T A) : H0(A, T A) −→ H0(Q, TQ)

is injective (see (2.12) and (2.11)). But H0(Q, TQ) = sl(r, C) [7, p. 1446, Theorem 1.1]. Hence the Lie algebra H0(Q, TQ)

does not contain any nonzero Abelian ideal. This is in contradiction with the earlier result that �(H0(A, T A)) is a nonzero 
Abelian ideal in H0(Q, TQ) of dimension g (see (2.13)). This completes the proof of Theorem 1.1.
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