

Semi-equivelar and vertex-transitive maps on the torus

Basudeb Datta1 · Dipendu Maity¹

Received: 6 December 2016 / Accepted: 13 February 2017 / Published online: 23 February 2017 © The Managing Editors 2017

Abstract A vertex-transitive map *X* is a map on a closed surface on which the automorphism group $Aut(X)$ acts transitively on the set of vertices. If the face-cycles at all the vertices in a map are of same type then the map is said to be a semi-equivelar map. Clearly, a vertex-transitive map is semi-equivelar. Converse of this is not true in general. We show that there are eleven types of semi-equivelar maps on the torus. Three of these are equivelar maps. It is known that two of these three types are always vertex-transitive. We show that this is true for the remaining one type of equivelar maps and one other type of semi-equivelar maps, namely, if *X* is a semi-equivelar map of type $[6^3]$ or $[3^3, 4^2]$ then *X* is vertex-transitive. We also show, by presenting examples, that this result is not true for the remaining seven types of semi-equivelar maps. There are ten types of semi-equivelar maps on the Klein bottle. We present examples in each of the ten types which are not vertex-transitive.

Keywords Polyhedral map on torus · Vertex-transitive map · Equivelar maps · Archimedean tiling

Mathematics Subject Classification 52C20 · 52B70 · 51M20 · 57M60

 \boxtimes Basudeb Datta dattab@math.iisc.ernet.in Dipendu Maity dipendumaity16@math.iisc.ernet.in

¹ Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

1 Introduction

By a map we mean a polyhedral map on a surface. So, a face of a map is a *p*-gon for some integer $p > 3$. A map X is said to be *weakly regular* or *vertex-transitive* if the automorphism group $Aut(X)$ acts transitively on the set $V(X)$ of vertices of X.

If v is a vertex in a map *X* then the faces containing v form a cycle (called the *face* $cycle$) C_v in the dual graph $\Lambda(X)$ of *X*. Clearly, C_v is of the form $P_1-P_2-\cdots-P_k-P_1$, where P_i is a path consisting of n_i p_i -gons and $p_i \neq p_{i+1}$ for $1 \leq i \leq k$ (addition in the suffix is modulo *k*). A map *X* is called *semi-equivelar* (or *semi-regular*) if C_u and C_v are of same type for any two vertices *u* and *v* of *X*. More precisely, there exist natural numbers $p_1, \ldots, p_k \geq 3$ and $n_1, \ldots, n_k \geq 1$, $p_i \neq p_{i+1}$ such that both C_u and C_v are of the form $P_1 - P_2 - \cdots - P_k - P_1$ as above, where P_i is a path consisting of n_i p_i -gons. In this case, we say that *X* is *semi-equivelar of type* $[p_1^{n_1}, \ldots, p_k^{n_k}]$. (We identify $[p_1^{n_1}, \ldots, p_k^{n_k}]$ with $[p_2^{n_2}, \ldots, p_k^{n_k}, p_1^{n_1}]$ and with $[p_k^{n_k}, \ldots, p_1^{n_1}]$.) An *equivelar* map (of type $\left[p^q\right]$, $\left(p, q\right)$ or $\left\{p, q\right\}\right)$ is a semi-equivelar map of type $\left\{p^q\right\}$ for some $p, q \geq 3$. Clearly, a vertex-transitive map is semi-equivelar.

A *semi-regular* tiling of the plane \mathbb{R}^2 is a tiling of \mathbb{R}^2 by regular polygons such that all the vertices of the tiling are of same type. A *semi-regular* tiling of R² is also known as *Archimedean*, or *[homogeneous](#page-17-0)*, or *uniform* tiling. In Grünbaum and Shephard [\(1977](#page-17-0)), Grünbaum and Shephard showed that there are exactly eleven types of Archimedean tilings on the plane. These types are $[3^6]$, $[3^4, 6^1]$, $[3^3, 4^2]$, $[3^2, 4^1, 3^1, 4^1]$, $[3^1, 6^1, 3^1, 6^1]$, $[3^1, 4^1, 6^1, 4^1]$, $[3^1, 12^2]$, $[4^4]$, $[4^1, 6^1, 12^1]$, $[4^1, 8^2]$, $[6^3]$. Clearly, a *semi-regular* tiling on \mathbb{R}^2 gives a semi-equivelar map on \mathbb{R}^2 . But, there are semi-equivelar maps on the plane which are not (not isomorphic to) an Archimedean tiling. In fact, there exists $[p^q]$ equivelar maps on \mathbb{R}^2 whenever $1/p + 1/q < 1/2$ (e.g., [Coxeter and Moser 1980](#page-16-0); [Fejes Tóth 1965](#page-17-1)). Thus, we have

Proposition 1.1 *There are infinitely many types of equivelar maps on the plane* \mathbb{R}^2 .

All vertex-transitive maps on the 2-sphere are known. These are the boundaries of Platonic and Archimedean solids and two infinite families of types (namely, of types $[4^2, n^1]$ and $[3^3, m^1]$ for $4 \neq n \geq 3, m \geq 4$) [\(Grünbaum and Shephard 1977](#page-17-0)). Similarly, there are infinitely many types of vertex-transitive maps on the real projective plane [\(Babai 1991\)](#page-16-1). Thus, there are infinitely many types of semi-equivelar maps on the 2-sphere and the real projective plane. But, for a surface of negative Euler characteristic the picture is different. In [Babai](#page-16-1) [\(1991](#page-16-1)), Babai has shown the following.

Proposition 1.2 *A semi-equivelar map on a surface of Euler characteristic* χ < 0 *has at most* −84χ *vertices.*

As a consequence of this we get

Corollary 1.3 *If the Euler characteristic* χ (*M*) *of a surface M is negative then the number of semi-equivelar maps on M is finite.*

We know from [Datta and Nilakantan](#page-17-2) [\(2001\)](#page-17-2) and [Datta and Upadhyay](#page-17-3) [\(2005](#page-17-3)) that infinitely many equivelar maps exist on both the torus and the Klein bottle. Thus, infinitely many semi-equivelar maps exist on both the torus and the Klein bottle.

But, only eleven types of semi-equivelar maps on the torus and ten types of semiequivelar maps on the Klein bottle are known in the literature. All these are quotients of Archimedean tilings of the plane [\(Babai 1991](#page-16-1); Such 2011a, [b\)](#page-17-5). Since there are infinitely many equivelar maps on the plane, it is natural to ask whether there are more types of semi-equivelar maps on the torus or the Klein bottle. Here we prove

Theorem 1.4 *Let X be a semi-equivelar map on a surface M.* (a) *If M is the torus then the type of X is* [3⁶]*,* [6³]*,* [4⁴]*,* [3⁴, 6¹]*,* [3³, 4²]*,* [3², 4¹, 3¹, 4¹]*,* [3¹, 6¹, 3¹, 6¹]*,* [31, ⁴1, 61, ⁴1]*,* [31, ¹²2]*,* [41, 82] *or* [41, 61, ¹²1]*.* (b) *If M is the Klein bottle then the type of X is* [36]*,* [63]*,* [44]*,* [33, ⁴2]*,* [32, ⁴1, 31, ⁴1]*,* [31, 61, 31, 61]*,* [31, ⁴1, 61, ⁴1]*,* $[3^1, 12^2]$, $[4^1, 8^2]$ *or* $[4^1, 6^1, 12^1]$ *.*

Theorem [1.4](#page-2-0) and the known examples (also the examples in Sect. [4\)](#page-9-0) imply that there are exactly eleven types of semi-equivelar maps on the torus and ten types of semi-equivelar maps on the Klein bottle.

In [Brehm and Kühnel](#page-16-2) [\(2008\)](#page-16-2), Brehm and Kühnel presented a formula to determine the number of distinct vertex-transitive equivelar maps of types $[3⁶]$ and $[4⁴]$ on the torus. It was shown in [Datta and Upadhyay](#page-17-3) [\(2005](#page-17-3)) that every equivelar map of type $[3⁶]$ on the torus is vertex-transitive. By the similar arguments, one can easily show that a equivelar map of type $[4^4]$ [on](#page-16-2) [the](#page-16-2) [torus](#page-16-2) [is](#page-16-2) [vertex-transitive](#page-16-2) [\[also](#page-16-2) [see](#page-16-2) [\(](#page-16-2)Brehm and Kühnel [2008](#page-16-2), Proposition 6)]. Thus, we have

Proposition 1.5 *Let X be an equivelar map on the torus. If the type of X is* [3⁶] *or* [44] *then X is vertex-transitive.*

Here we prove

Theorem 1.6 Let X be a semi-equivelar map on the torus. If the type of X is $[6^3]$ or [33, ⁴2] *then X is vertex-transitive.*

In Sect. [4,](#page-9-0) we present examples of the other seven types of semi-equivelar maps which are not vertex-transitive. This proves

Theorem 1.7 *If*[$p_1^{n_1}, \ldots, p_k^{n_k}$] =[3², 4¹, 3¹, 4¹]*,*[3⁴, 6¹]*,*[3¹, 6¹, 3¹, 6¹]*,*[3¹, 4¹, 6¹*,* 4¹], $[3^1, 12^2]$, $[4^1, 8^2]$ *or* $[4^1, 6^1, 12^1]$ *then there exists a semi-equivelar map of type* $[p_1^{n_1}, \ldots, p_k^{n_k}]$ *on the torus which is not vertex-transitive.*

In [Datta and Upadhyay](#page-17-3) [\(2005\)](#page-17-3), the first author and Upadhyay have presented examples of $[3⁶]$ equivelar maps on the Klein bottle which are not vertex-transitive. In Sect. [4,](#page-9-0) we present examples of the other nine types of semi-equivelar maps on the Klein bottle which are not vertex-transitive. Thus, we have

Theorem 1.8 *If* $[p_1^{n_1}, \ldots, p_k^{n_k}]$ *is one in the list of* 10 *types in Theorem* [1.4\(](#page-2-0)b) *then there exists a semi-equivelar map of type* $[p_1^{n_1}, \ldots, p_k^{n_k}]$ *on the Klein bottle which is not vertex-transitive.*

If the type of a semi-equivelar map *X* on the torus is different from $[3^3, 4^2]$ then, by Theorem [1.7,](#page-2-1) the vertices of X may form more than one $Aut(X)$ -orbits. Here we prove

Theorem 1.9 *Let X be a semi-equivelar map on the torus. Let the vertices of X form m* Aut(*X*)-*orbits.* (a) *If the type of X is* $[3^2, 4^1, 3^1, 4^1]$ *then m* < 2*.* (b) *If the type of X* is $[3^1, 6^1, 3^1, 6^1]$ *then m* < 3*.*

Several examples of $[3^6]$ and $[4^4]$ [equivelar](#page-17-2) [maps](#page-17-2) [on](#page-17-2) [the](#page-17-2) [torus](#page-17-2) [are](#page-17-2) [in](#page-17-2) Datta and Nilakantan [\(2001\)](#page-17-2). From this, one can construct equivelar maps of type $[6^3]$ on the torus. In Example [4.1,](#page-9-1) we also present a semi-equivelar map of type $\widehat{[3^3, 4^2]}$ on the torus for the sake of completeness.

2 Proofs of Theorem [1.4](#page-2-0) and Proposition [1.1](#page-1-0)

For $n \geq 3$, the *n*-gon whose edges are $u_1u_2, \ldots, u_{n-1}u_n, u_nu_1$ is denoted by u_1 − $u_2 - \cdots - u_n - u_1$ or by $C_n(u_1, \ldots, u_n)$. We call 3-gons and 4-gons by *triangles* and *guadrangles* respectively. A triangle $u - v - w - u$ is also denoted by uvw . If X is a map on a surface *M* then we identify a face of *X* in *M* with the boundary cycle of the face.

Proof of Proposition [1.1](#page-1-0) In [Datta and Nilakantan](#page-17-2) [\(2001](#page-17-2)), it was shown that there exists equivelar map of type $\lceil 3^8 \rceil$ on the orientable surface of genus *g* for each *g* > 4. For a fixed $g \geq 4$, let *X* be one such equivelar map of type $[3^8]$ on the surface M_g of genus g. Since the 2-disk \mathbb{D}^2 is the universal cover of M_g , by pulling back X, we equivelar map of type $[3^8]$ on the orientable surface of genus g for each a fixed $g \ge 4$, let X be one such equivelar map of type $[3^8]$ on the s
genus g. Since the 2-disk \mathbb{D}^2 is the universal cover of M_g , by get an equivelar map \widetilde{X} of type $[3^8]$ on \mathbb{D}^2 and a polyhedral map $\eta : \widetilde{X} \to X$. From the constructions in [Datta](#page-17-6) [\(2005](#page-17-6)) and [Datta and Nilakantan](#page-17-2) [\(2001\)](#page-17-2), we know that an equivelar map of type $[p^q]$ exists on some surface (orientable or non-orientable) of appropriate genus for each $[p^q]$ in $\{[3^7], [4^5], [4^6], [3^{3\ell-1}], [3^{3\ell}], [k^k] : \ell \geq 3, k \geq 1\}$ 5}. So, by the same arguments, equivelar maps of types $[p^q]$ exist on \mathbb{D}^2 for $[p^q]$ in $\{[3^7], [4^5], [4^6], [3^{3\ell-1}], [3^{3\ell}], [k^k] : \ell \geq 3, k \geq 5\}$. More generally, there exist equivelar maps of type $[p^q]$ on \mathbb{D}^2 whenever $1/p+1/q < 1/2$ (cf., [Coxeter and Moser](#page-16-0) [1980;](#page-16-0) [Fejes Tóth 1965](#page-17-1); [Grünbaum and Shephard 1977\)](#page-17-0). Since \mathbb{R}^2 is homeomorphic to \mathbb{D}^2 , an equivelar map of type $[p^q]$ on \mathbb{D}^2 determines an equivelar map of type $[p^q]$ on \mathbb{R}^2 . Thus, there exist equivelar maps of types $[p^q]$ on \mathbb{R}^2 whenever $1/p + 1/q < 1/2$.
The result now follows. The result now follows.

Lemma 2.1 *Let X be a semi-equivelar map on a surface M. If* $\chi(M) = 0$ *then the type of X is* [3⁶]*,* [3⁴, 6¹]*,* [3³, 4²]*,* [3², 4¹, 3¹, 4¹]*,* [4⁴]*,* [3¹, 6¹, 3¹, 6¹]*,* [3², 6²]*,* [32, ⁴1, ¹²1]*,* [31, ⁴1, 31, ¹²1]*,* [31, ⁴1, 61, ⁴1]*,* [31, ⁴2, 61]*,* [63]*,* [31, ¹²2]*,* [41, 82]*,* $[5^2, 10^1]$, $[3^1, 7^1, 42^1]$, $[3^1, 8^1, 24^1]$, $[3^1, 9^1, 18^1]$, $[3^1, 10^1, 15^1]$, $[4^1, 5^1, 20^1]$ *or* $[4^1, 6^1, 12^1]$

Proof Let the type of *X* be $[p_1^{n_1}, \ldots, p_k^{n_k}]$. Consider the ℓ -tuple $(q_1^{m_1}, \ldots, q_\ell^{m_\ell})$, where $[5^2, 10^1]$, $[3^1, 7^1, 42^1]$, $[3^1, 8^1, 24^1]$, $[3^1, 9^1, 18^1]$, $[3^1, 10^1, 15^1]$, $[4^1, 5^1, 20^1]$ or
 $[4^1, 6^1, 12^1]$.
 Proof Let the type of *X* be $[p_1^{n_1}, \ldots, p_k^{n_k}]$. Consider the ℓ -tuple $(q_1$ \cdots > (m_{ℓ}, q_{ℓ}) . (Here, $(m, p) > (n, q)$ means either (i) $m > n$ or (ii) $m = n$ and $p < q$.)

Claim. $(q_1^{m_1}, \ldots, q_\ell^{m_\ell}) = (3^6), (3^4, 6^1), (3^3, 4^2), (4^4), (3^2, 6^2), (3^2, 4^1, 12^1),$ $(4^2, 3^1, 6^1)$, (6^3) , $(12^2, 3^1)$, $(8^2, 4^1)$, $(5^2, 10^1)$, $(3^1, 7^1, 42^1)$, $(3^1, 8^1, 24^1)$, $(3^1, 9^1)$, (18^1) , $(3^1, 10^1, 15^1)$, $(4^1, 5^1, 20^1)$ or $(4^1, 6^1, 12^1)$.

Let f_0 , f_1 and f_2 denote the number of vertices, edges and faces of *X* respectively. Let *d* be the degree of each vertex. Then, $d = n_1 + \cdots + n_k = m_1 + \cdots + m_\ell$ and $f_1 = f_0 \times d/2$. Clearly, the number of q_i -gons is $f_0 \times m_i/q_i$. This implies that $f_2 = f_0(m_1/q_1 + \cdots + m_\ell/q_\ell)$. Since $\chi(M) = 0$, it follows that $f_0 - f_0(m_1 + \cdots + m_\ell/q_\ell)$ m_{ℓ})/2 + $f_0(m_1/q_1 + \cdots + m_{\ell}/q_{\ell}) = 0$ or *m* : number of q_i = q_i

Since $\chi(M)$ = q_ℓ) = 0 or
 $m_1 + \cdots + \left(\frac{1}{2}\right)$

$$
\left(\frac{1}{2} - \frac{1}{q_1}\right)m_1 + \dots + \left(\frac{1}{2} - \frac{1}{q_\ell}\right)m_\ell = 1.
$$
 (1)

Since $q_i \geq 3$, it follows that $d \leq 6$. Moreover, if $d = 6$ then $\ell = 1$ and $q_1 = 3$. In this case, $(q_1^{m_1}, \ldots, q_\ell^{m_\ell}) = (3^6)$.

Now, assume $d = 5$. Then $(m_1, \ldots, m_\ell) = (5)$, $(4, 1)$, $(3, 2)$, $(3, 1, 1)$, $(2, 2, 1)$, $(2, 1, 1, 1)$ or $(1, 1, 1, 1, 1)$. It is easy to see that for $(m_1, \ldots, m_\ell) = (5), (3, 1, 1)$, $(2, 2, 1), (2, 1, 1, 1)$ or $(1, 1, 1, 1, 1),$ Eq. [\(1\)](#page-4-0) has no solution. So, (m_1, \ldots, m_ℓ) = $(4, 1)$ or $(3, 2)$. In the first case, $(q_1, q_2) = (3, 6)$ and in the second case, $(q_1, q_2) =$ (3, 4). Thus, $(q_1^{m_1}, \ldots, q_\ell^{m_\ell}) = (3^4, 6^1)$ or $(3^3, 4^2)$.

Let $d = 4$. Then $(m_1, \ldots, m_\ell) = (4)$, $(3, 1)$, $(2, 2)$, $(2, 1, 1)$ or $(1, 1, 1, 1)$. Again, for $(m_1, \ldots, m_\ell) = (3, 1)$ or $(1, 1, 1, 1)$, Eq. [\(1\)](#page-4-0) has no solution. So, $(m_1, \ldots, m_\ell) =$ (4) , $(2, 2)$ or $(2, 1, 1)$. In the first case, $q_1 = 4$, in the second case, $(q_1, q_2) = (3, 6)$ and in the third case, $(q_1, \{q_2, q_3\}) = (3, \{4, 12\})$ or $(4, \{3, 6\})$. Thus, $(q_1^{m_1}, \ldots, q_\ell^{m_\ell}) =$ (4^4) , $(3^2, 6^2)$, $(3^2, 4^1, 12^1)$ or $(4^2, 3^1, 6^1)$.

Finally, assume $d = 3$. Then $(m_1, \ldots, m_\ell) = (3)$, $(2, 1)$ or $(1, 1, 1)$. In the first case, $q_1 = 6$, in the second case, $(q_1, q_2) = (12, 3), (8, 4)$ or $(5, 10)$ and in the third case, $\{q_1, q_2, q_3\} = \{3, 7, 42\}, \{3, 8, 24\}, \{3, 9, 18\}, \{3, 10, 15\}, \{4, 5, 20\}$ or $\{4, 6, 12\}$. Thus, $(q_1^{m_1}, \ldots, q_\ell^{m_\ell}) = (6^3), (12^2, 3^1), (8^2, 4^1), (5^2, 10^1), (3^1, 7^1, 42^1),$ $(3^1, 8^1, 24^1), (3^1, 9^1, 18^1), (3^1, 10^1, 15^1), (4^1, 5^1, 20^1)$ or $(4^1, 6^1, 12^1)$. This proves the claim.

The lemma follows from the claim.

We need the following technical lemma for the proof of Theorem [1.4.](#page-2-0)

Lemma 2.2 *If* $[p_1^{n_1}, \ldots, p_k^{n_k}]$ *satisfies any of the following three properties then* $[p_1^{n_1}, \ldots, p_k^{n_k}]$ can not be the type of any semi-equivelar map on a surface.

- (i) *There exists i such that* $n_i = 2$, p_i *is odd and* $p_i \neq p_i$ *for all* $j \neq i$.
- (ii) *There exists i such that* $n_i = 1$ *,* p_i *is odd,* $p_i \neq p_i$ *for all* $j \neq i$ *and* $p_{i-1} \neq p_{i+1}$ *.*
- (iii) *There exists i such that* $n_i = 1$ *,* p_i *is odd,* $p_{i-1} \neq p_j$ *for all* $j \neq i 1$ *and* $p_{i+1} \neq p_\ell$ *for all* $\ell \neq i + 1$ *.*

(*Here, addition in the subscripts are modulo k.*)

Proof If possible let there exist a semi-equivelar map *X* of type $[p_1^{n_1}, \ldots, p_k^{n_k}]$ which satisfies (i). Let $A = u_1 - u_2 - u_3 - \cdots - u_{p_i} - u_1$ be a p_i -gon. Let the other face containing $u_r u_{r+1}$ be A_r for $1 \le r \le p_i$. (Addition in the subscripts are modulo p_i .) Consider the face-cycle of the vertex u_1 . Since $p_i \neq p_i$ for all $j \neq i$ and $n_i = 2$, it follows that exactly one of A_1 and A_{p_i} is a p_i -gon. Assume, without loss, that A_1 is a p_i -gon. Since u_2 is in two p_i -gons, it follows that A_2 is not a p_i -gon. Therefore (by considering the vertex u_3 , as in the case for the vertex u_1), A_3 is a p_i -gon. Continuing this way, we get A_1, A_3, A_5, \ldots are p_i -gons. Since p_i is odd, it follows that A_{p_i} is a p_i -gon. Then we get three p_i -gons, namely, A , A_1 and A_{p_i} , through u_1 . This is a contradiction.

Now, suppose there exists a semi-equivelar map *Y* of type $[p_1^{n_1}, \ldots, p_k^{n_k}]$ which satisfies (ii). Let $B = u_1 - u_2 - u_3 - \cdots - u_{p_i} - u_1$ be a p_i -gon. Let the other face containing $u_r u_{r+1}$ be B_r for $1 \le r \le p_i$. Consider the face-cycle of the vertex u_2 . Since $p_i \neq p_i$ and $n_i = 1$, *A* is the only p_i -gon containing u_2 . Since $p_{i-1} \neq p_{i+1}$, it follows that one of B_1 and B_2 is a p_{i-1} -gon and the other is a p_{i+1} -gon. Assume, without loss, that B_1 is a p_{i-1} -gon and B_2 is a p_{i+1} -gon. Then, by the same argument as above, B_1, B_3, B_5, \ldots are p_{i-1} -gons and B_2, B_4, \ldots are p_{i+1} -gons. Since p_i is odd, it follows that B_{p_i} is a p_{i-1} -gon. Then, from the face-cycle of u_1 , it follows that $p_{i+1} = p_{i-1}$. This contradicts the assumption.

Finally, assume that there exists a semi-equivelar map *Z* of type $[p_1^{n_1}, \ldots, p_k^{n_k}]$ which satisfies (iii). Let *P* and *Q* be two adjacent faces through a vertex u_1 , where *P* is a p_i -gon and *Q* is a p_{i-1} -gon. Assume that $P = u_1 - u_2 - u_3 - \cdots - u_{p_i} - u_1$ and $Q = u_1 - v_2 - v_3 - \cdots - v_{p_{i-1}-1} - u_{p_i} - u_1$. Let the other face containing $u_r u_{r+1}$ be *P_r* for $1 \le r \le p_i$. (Addition in the subscripts are modulo p_i .) Since $p_{i-1} \neq p_i$ for all $j \neq i - 1$ and $p_{i+1} \neq p_{\ell}$ for all $\ell \neq i + 1$, considering the face-cycle of u_1 , it follows that P_1 is a p_{i+1} -gon. Considering the face-cycle of u_2 , by the similar argument (interchanging p_{i-1} and p_{i+1}), it follows that P_2 is a p_{i-1} -gon. Continuing this way, we get P_1, P_3, \ldots are p_{i+1} -gons and P_2, P_4, \ldots are p_{i-1} -gons. Since p_i is odd, it follows that P_{p_i} is a p_{i+1} -gon. This is a contradiction since $P_{p_i} = Q$ is a p_{i-1} -gon and $p_{i-1} \neq p_{i+1}$. This completes the proof.

In Maity and Upadhyay [\(2015,](#page-17-7) Theorem 2.1), the second author and Upadhyay have proved the following.

Proposition 2.3 *There is no semi-equivelar map of type* $[3^4, 6^1]$ *on the Klein bottle.*

Proof of Theorem [1.4](#page-2-0) Let *X* be a semi-equivelar map of type $[p_1^{n_1}, \ldots, p_k^{n_k}]$ on the torus. By Lemma [2.2](#page-4-1) (i), $[p_1^{n_1}, \ldots, p_{k}^{n_k}] \neq [3^2, 6^2]$, $[3^2, 4^1, 12^1]$, $[5^2, 10^1]$. By Lemma [2.2](#page-4-1) (ii), $[p_1^{n_1}, \ldots, p_k^{n_k}] \neq [3^1, 4^2, 6^1], [3^1, 7^1, 42^1], [3^1, 8^1, 24^1], [3^1, 9^1,$ 18¹], $[3^1, 10^1, 15^1]$, $[4^1, 5^1, 20^1]$. Also, by Lemma [2.2](#page-4-1) (iii), $[p_1^{n_1}, \ldots, p_k^{n_k}] \neq$ $[3^1, 4^1, 3^1, 12^1]$. The result now follows by Lemma [2.1.](#page-3-0)

Let *X* be a semi-equivelar map of type $[p_1^{n_1}, \ldots, p_k^{n_k}]$ on the Klein bottle. As above, by Lemma [2.2,](#page-4-1) $[p_1^{n_1}, \ldots, p_k^{n_k}] \neq [3^2, 6^2]$, $[3^2, 4^1, 12^1]$, $[5^2, 10^1]$, $[3^1, 4^2, 6^1]$, $[3^1, 7^1, 42^1], [3^1, 8^1, 24^1], [3^1, 9^1, 18^1], [3^1, 10^1, 15^1], [4^1, 5^1, 20^1], [3^1, 4^1, 3^1, 12^1].$ By Proposition [2.3,](#page-5-0) $[p_1^{n_1}, \ldots, p_k^{n_k}] \neq [3^4, 6^1]$. The result now follows by Lemma [2.1.](#page-3-0) \Box

3 Proof of Theorem [1.6](#page-2-2)

A triangulation of a 2-manifold is called *degree-regular* if each of its vertices have the same degree. In other word, a degree-regular triangulation is an equivelar map of type $[3^k]$ for some $k \geq 3$. The triangulation *E* given in Fig. [1](#page-6-0) is a degree-regular triangulation of \mathbb{R}^2 .

Fig. 1 Regular $[3^6]$ -tiling *E* of \mathbb{R}^2

From [Datta and Upadhyay](#page-17-3) [\(2005\)](#page-17-3) we know

Proposition 3.1 *Let M be a triangulation of the plane* \mathbb{R}^2 *. If the degree of each vertex of M is* 6 *then M is isomorphic to E.*

Using Proposition [3.1,](#page-6-1) it was shown in [Datta and Upadhyay](#page-17-3) [\(2005\)](#page-17-3) that 'any degreeregular triangulation of the torus is vertex-transitive'. Here we prove

Lemma 3.2 *Let X be a triangulation of the torus. If X is degree-regular then the automorphism group* Aut(*X*) *acts face-transitively on X.*

Proof Since *X* is degree-regular and Euler characteristic of *X* is 0, it follows that the degree of each vertex in *X* is 6.

Since \mathbb{R}^2 is the universal cover of the torus, there exists a triangulation *Y* of \mathbb{R}^2 and a simplicial covering map $\eta: Y \to X$ [cf. [\(Spanier 1966](#page-17-8), Page 144)]. Since the degree of each vertex in *X* is 6, the degree of each vertex in *Y* is 6. Because of Proposition [3.1,](#page-6-1) we may assume that $Y = E$. Let Γ be the group of covering transformations. Then $|X|=|E|/\Gamma$.

We take $V = \{u_{i,2j} = (i, j\sqrt{3}), u_{i,2j+1} = (i + 1/2, (2j + 1)\sqrt{3}/2) : i, j \in \mathbb{Z}\}\$ as the vertex set of *E*. Then $H := \{x \mapsto x + a, a \in V\}$ is a subgroup of $Aut(E)$ and is called the group of translations. Clearly, *H* is commutative.

For $\sigma \in \Gamma$, $\eta \circ \sigma = \eta$. So, σ maps the geometric carrier of a simplex to the geometric carrier of a simplex. This implies that σ induces an automorphism σ of E. Thus, we can identify Γ with a subgroup of Aut(*E*). So, *X* is a quotient of *E* by the subgroup Γ of Aut(E), where Γ has no fixed element (vertex, edge or face). Hence Γ consists of translations and glide reflections. Since $X = E/\Gamma$ is orientable, Γ does not contain any glide reflection. Thus $\Gamma \leq H$.

Consider the subgroup *G* of Aut(*E*) generated by *H* and the map $x \mapsto -x$. So,

$$
G = \{ \alpha : x \mapsto \varepsilon x + a : \varepsilon = \pm 1, a \in V \} \cong H \rtimes \mathbb{Z}_2.
$$

Claim 1. G acts face-transitively on *E*.

Since H is vertex transitively on E , to prove Claim 1, it is sufficient to show that *G* acts transitively on the set of six faces containing $u_{0,0}$. This follows from the following: $u_{-1,0}u_{0,0}u_{-1,1} + u_{1,0} = u_{0,0}u_{1,0}u_{0,1} = u_{-1,-1}u_{0,-1}u_{0,0} + u_{0,1}$

 $u_{-1,0}u_{-1,-1}u_{0,0} + u_{1,0} = u_{0,0}u_{0,-1}u_{1,0} = u_{-1,1}u_{0,0}u_{0,1} + u_{0,-1}$ and -1 $u_{0,0}u_{-1,0}u_{-1,-1} = u_{0,0}u_{1,0}u_{0,1}.$

Claim 2. If $K \leq H$ then $K \leq G$.

Let $\alpha \in G$ and $\beta \in K$. Assume $\alpha(x) = \varepsilon x + a$ and $\beta(x) = x + b$ for some $a, b \in V(E)$ and $\varepsilon \in \{1, -1\}$. Then $(\alpha \circ \beta \circ \alpha^{-1})(x) = (\alpha \circ \beta)(\varepsilon(x - a)) =$ $\alpha(\varepsilon(x-a)+b) = x-a+\varepsilon b + a = x+\varepsilon b = \beta^{\varepsilon}(x)$. Thus, $\alpha \circ \beta \circ \alpha^{-1} = \beta^{\varepsilon} \in K$. This proves Claim 2.

By Claim 2, $\Gamma \leq G$ and hence we can assume that $G/\Gamma \leq \text{Aut}(E/\Gamma)$. Since, by Claim 1, *G* acts face-transitively on *E*, it follows that G/Γ acts face-transitively on E/Γ . This completes the proof since $X = E/\Gamma$.

We need the following two lemmas for the Proof of Theorem [1.6.](#page-2-2)

Lemma 3.3 Let X be a map on the 2-disk \mathbb{D}^2 whose faces are triangles and quad*rangles. For a vertex x of X, let n₃(x) and n₄(x) <i>be the number of triangles and quadrangles through x respectively. Suppose* $(n_3(u), n_4(u)) = (3, 2)$ *for each internal vertex u. Then X does not satisfy any of the following.*

- (a) $1 \leq n_4(w) \leq 2$, $n_3(w) + n_4(w) \leq 4$ *for one vertex w on the boundary, and* $(n_3(v), n_4(v)) = (0, 2)$ *for each boundary vertex* $v \neq w$ *.*
- (b) $1 \le n_3(w) \le 3$, $n_4(w) \le 2$ *and* $n_3(w) + n_4(w) \le 4$ *for one vertex* w *on the boundary, and* $(n_3(v), n_4(v)) = (3, 0)$ *for each boundary vertex* $v \neq w$ *.*

Proof Let f_0 , f_1 and f_2 denote the number of vertices, edges and faces of *X* respectively. Let n_3 (resp., n_4) denote the total number of triangles (resp., quadrangles) in *X*. Let there be *n* internal vertices and $m + 1$ boundary vertices. So, $f_0 = n + m + 1$ and $f_2 = n_3 + n_4$.

Suppose *X* satisfies (a). Then $n_4 = (2n+2m+n_4(w))/4$ and $n_3 = (3n+n_3(w))/3$. Since $1 \le n_4(w) \le 2$, it follows that $n_4(w) = 2$ and hence $n_3(w) \le 2$. These imply that $n_3(w) = 0$. Thus, the exceptional vertex is like other boundary vertices. Therefore, each boundary vertex is in three edges and hence $f_1 = (5n + 3m + 3)/2$. These imply $f_0 - f_1 + f_2 = (n + m + 1) - (5n + 3m + 3)/2 + (n + (n + m + 1)/2) = 0$. This is not possible since the Euler characteristic of the 2-disk \mathbb{D}^2 is 1.

If *X* satisfies (b) then $n_3 = (3n + 3m + n_3(w))/3$ and $n_4 = (2n + n_4(w))/4$. Since $1 \le n_3(w) \le 3$, it follows that $n_3(w) = 3$ and hence $n_4(w) \le 1$. These imply that $n_4(w) = 0$. Thus, the exceptional vertex is like other boundary vertices and each boundary vertex is in four edges. Thus, $f_1 = (5n + 4m + 4)/2$ and $f_2 = n_4 + n_3 =$ $3n/2+m+1$. Then $f_0 - f_1 + f_2 = (n+m+1) - (5n+4m+4)/2 + (3n/2+m+1) = 0$, a contradiction again. This completes the proof.

Lemma 3.4 *Let* E_1 *be the Archimedean tiling of the plane* \mathbb{R}^2 *given in Fig.* [2.](#page-8-0) *If X is a semi-equivelar map of* \mathbb{R}^2 *of type* $[3^3, 4^2]$ *then* $X \cong E_1$ *.*

Proof Let the type of *X* be $[3^3, 4^2]$. Choose a vertex $v_{0,0}$. Let the two quadrangle through $v_{0,0}$ be $v_{-1,0} - v_{0,0} - v_{0,1} - v_{-1,1} - v_{-1,0}$ and $v_{0,0} - v_{1,0} - v_{1,1} - v_{0,1} - v_{0,0}$. Then the second quadrangle through $v_{1,0}$ is of the form $v_{1,0}-v_{2,0}-v_{2,1}-v_{1,1}-v_{1,0}$ and the second quadrangle through $v_{-1,0}$ is of the form $v_{-2,0}-v_{-1,0}-v_{-1,1}-v_{-2,1}-v_{-2,0}$.

Fig. 2 Elongated triangular tiling *E*1

Continuing this way, we get a path $P_0 := \cdots - \nu_{-2,0} - \nu_{-1,0} - \nu_{0,0} - \nu_{1,0} - \nu_{2,0} - \cdots$ in the edge graph of X such that all the quadrangles incident with a vertex of P_0 lie on one side of P_0 and all the triangles incident with the same vertex lie on the other side of P_0 . If P_0 has a closed sub-path then P_0 contains a cycle *W*. In that case, the bounded part of *X* with boundary *W* is a map on the 2-disk D^2 which satisfies (a) or (b) of Lemma [3.3.](#page-7-0) This is not possible by Lemma [3.3.](#page-7-0) Thus, *P*⁰ is an infinite path. Then the faces through vertices of P_0 forms an infinite strip which is bounded by two infinite paths, say $P_{-1} = \cdots - v_{-2,-1} - v_{-1,-1} - v_{0,-1} - v_{1,-1} - v_{2,-1} - \cdots$ and $P_1 = \cdots - v_{-2,1} - v_{-1,1} - v_{0,1} - v_{1,1} - v_{2,1} - \cdots$, where the faces between P_0 and P_1 are quadrangles and the faces between P_0 and P_{-1} are triangles and the faces through v_i ,0 are v_{i-1} ,0 $-v_i$,0 $-v_{i-1}$,1 $-v_{i-1}$,1 $-v_{i-1}$,0, v_i ,0 $-v_{i+1}$,0 $-v_{i+1}$,1 $-v_{i}$,1 $-v_{i}$,0, $v_{i,0}v_{i+1,0}v_{i,-1}, v_{i,0}v_{i,-1}v_{i-1,-1}, v_{i,0}v_{i-1,-1}v_{i-1,0}$

Similarly, starting with the vertex $v_{0,1}$ in place of $v_{0,0}$ we get the paths P_0 , P_1 , P_2 = $\cdots -v_{-2,2}-v_{-1,2}-v_{0,2}-v_{1,2}-v_{2,2}-\cdots$, where the faces between P_1 and P_2 are triangles and the triangles through $u_{i,1}$ are $v_{i,1}v_{i+1,1}v_{i,2}$, $v_{i,1}v_{i,2}v_{i-1,2}$, $v_{i,1}v_{i-1,2}v_{i-1,1}$. Continuing this way we get paths \cdots , *P*_{−2}, *P*_{−1}, *P*₀, *P*₁, *P*₂, \cdots such that (i) the faces between P_{2j} and P_{2j+1} are rectangles, (ii) the faces between P_{2j-1} and *P*₂*j* are triangles, (iii) the five faces through $v_{i,2j}$ are $v_{i-1,2j} - v_{i,2j} - v_{i,2j+1}$ − $v_{i-1,2j+1} - v_{i-1,2j}$, $v_{i,2j} - v_{i+1,2j} - v_{i+1,2j+1} - v_{i,2j+1} - v_{i,2j}$, $v_{i,2j}v_{i+1,2j}v_{i,2j-1}$, $v_i, 2j$ $v_i, 2j-1$ $v_{i-1,2}$ $j-1$, $v_i, 2j$ $v_{i-1,2}$ $j-1$ $v_{i-1,2}$, and (iv) the five faces through $v_{i,2}$ $j+1$ are $v_{i-1,2j} - v_{i,2j} - v_{i,2j+1} - v_{i-1,2j+1} - v_{i-1,2j}$, $v_{i,2j} - v_{i+1,2j} - v_{i+1,2j+1} - v_{i,2j+1} - v_{i-1,2j+1}$ $v_{i,2j}$, $v_{i,2j+1}v_{i+1,2j+1}v_{i,2j+2}$, $v_{i,2j+1}v_{i,2j+2}v_{i-1,2j+2}$, $v_{i,2j+1}v_{i-1,2j+2}v_{i-1,2j+1}$ for all *j* ∈ \mathbb{Z} . Then the mapping *f* : $V(X) \rightarrow V(E_1)$, given by $f(v_{k,t}) = u_{k,t}$ for $k \neq \mathbb{Z}$ is an isomorphism. This proves the lemma $k, t \in \mathbb{Z}$, is an isomorphism. This proves the lemma.

Proof of Theorem [1.6](#page-2-2) Let *^X* be an equivelar map of type [63] on the torus. Let *^Y* be the dual of *X*. Then *Y* is an equivelar map of type $[3⁶]$ on the torus and Aut(*Y*) \equiv Aut(*X*).

By Lemma [3.2,](#page-6-2) Aut(*Y*) acts face-transitively on *Y*. These imply, Aut(*X*) acts vertextransitively on *X*. So, *X* is vertex-transitive.

Now, assume that *X* is a semi-equivelar map of type $[3^3, 4^2]$ on the torus. Since \mathbb{R}^2 is the universal cover of the torus, by pulling back *X* [using similar arguments as in the provided by Definition 2.5, 120(1) and the transitively on X. So, X is vertex-transitive.

Now, assume that X is a semi-equivelar map of type $[3^3, 4^2]$ on the torus. Since

is the universal cover of the torus, by pulli *X* of Now, assume that *X* is a semi-equivelar map of type $[3^3]$
is the universal cover of the torus, by pulling back *X* [using
proof of Theorem 3 in Spanier (1966, Page 144)], we get
type $[3^3, 4^2]$ on \mathbb{R}^2 and a po type $[3^3, 4^2]$ on \mathbb{R}^2 and a polyhedral covering map $\eta_1: \widetilde{X} \to X$. Because of Lemma is the universal cover of the proof of Theorem 3 in Span type $[3^3, 4^2]$ on \mathbb{R}^2 and a po [3.4,](#page-7-1) we may assume that X 3.4, we may assume that $\widetilde{X} = E_1$. Let Γ_1 be the group of covering transformations. Then $|X|=|E_1|/\Gamma_1$.

Let V_1 be the vertex set of E_1 . We take origin $(0, 0)$ is the middle point of the line segment joining *u*_{0,0} and *u*_{1,1}. Let $a = u_{1,0} - u_{0,0}$, $b = u_{0,2} - u_{0,0} \in \mathbb{R}^2$. Then $H_1 := \langle x \mapsto x + a, y \mapsto y + b \rangle$ is the group of all the translations of E_1 . Under the action of H_1 , vertices form two orbits. Consider the subgroup G_1 of $Aut(E_1)$ generated by H_1 and the map $x \mapsto -x$. So,

 $G_1 = {\alpha : x \mapsto \varepsilon x + ma + nb : \varepsilon = \pm 1, m, n \in \mathbb{Z}} \cong H_1 \rtimes \mathbb{Z}_2.$

Clearly, *G*¹ acts vertex-transitively on *E*1.

Claim. If $K \leq H_1$ then $K \leq G_1$.

Let $g \in G_1$ and $k \in K$. Assume $g(x) = \varepsilon x + ma + nb$ and $k(x) = x + pa + qb$ for some *m*, *n*, *p*, *q* ∈ Z and ε ∈ {1, -1}. Then $(g \circ k \circ g^{-1})(x) = (g \circ k)(\varepsilon(x - ma$ $n(b) = g(e(x - ma - nb) + pa + qb) = x - ma - nb + e(pa + qb) + ma + nb =$ $x + \varepsilon (pa + qb) = k^{\varepsilon}(x)$. Thus, $g \circ k \circ g^{-1} = k^{\varepsilon} \in K$. This proves the claim.

For $\sigma \in \Gamma_1$, $\eta_1 \circ \sigma = \eta_1$. So, σ maps a face of the map E_1 in \mathbb{R}^2 to a face of E_1 (in \mathbb{R}^2). This implies that *σ* induces an automorphism *σ* of *E*₁. Thus, we can identify Γ₁ with a subgroup of $Aut(E_1)$. So, *X* is a quotient of E_1 by the subgroup Γ_1 of $Aut(E_1)$, where Γ_1 has no fixed element (vertex, edge or face). Hence Γ_1 consists of translations and glide reflections. Since $X = E_1/\Gamma_1$ is orientable, Γ_1 does not contain any glide reflection. Thus $\Gamma_1 \leq H_1$. By the claim, Γ_1 is a normal subgroup of G_1 . Since G_1 acts transitively on V_1 , G_1/Γ_1 acts transitively on the vertices of E_1/Γ_1 . Thus, *X* is vertex-transitive.

4 Examples of maps on the torus and Klein bottle

Example 4.1 Eight types of semi-equivelar maps on the torus given in Fig. [3.](#page-10-0) It follows from Theorem [1.6](#page-2-2) that the map T_1 is vertex-transitive.

Example [4.](#page-11-0)2 Ten types of semi-equivelar maps on the Klein bottle given in Fig. 4.

In the next two proofs, we denote the *n*-cycle whose edges are $u_1u_2, \ldots, u_{n-1}u_n$, u_nu_1 by $C_n(u_1,\ldots,u_n)$. This helps us to compare different sizes of cycles.

Lemma 4.3 *The semi-equivelar maps* T_2, \ldots, T_8 *in Example* [4.1](#page-9-1) *are not vertextransitive.*

Proof Let G_2 be the graph whose vertices are the vertices of T_2 and edges are the diagonals of 4-gons of T_2 . Then G_2 is a 2-regular graph. Hence, G_2 is a disjoint

Fig. 3 Semi-equivelar maps on the torus

union of cycles. Clearly, Aut(T_2) acts on G_2 . If the action of Aut(T_2) is vertextransitive on T_2 then it would be vertex-transitive on G_2 . But this is not possible since $C_4(u_1, u_4, u_8, u_{11}), C_{12}(v_1, v_4, v_9, v_{12}, v_3, v_6, v_8, v_{11}, v_2, v_5, v_7, v_{10})$ are components of \mathcal{G}_2 of different sizes.

Let G_3 be the graph whose vertices are the vertices of T_3 and edges are the long diagonals of 12-gons of T_3 . Then G_3 is a 2-regular graph. Hence, G_3 is a disjoint

Fig. 4 Semi-eqivelar maps on the Klein bottle

union of cycles. Clearly, Aut(T_3) acts on G_3 . If the action of Aut(T_3) is vertextransitive on T_3 then it would be vertex-transitive on \mathcal{G}_3 . But this is not possible since $C_4(a_{17}, a_{22}, a_{19}, a_{24})$ and $C_{12}(c_1, a_6, b_9, c_{14}, a_1, b_6, c_9, a_{14}, b_1, c_6, a_9, b_{14})$ are components of *G*³ of different sizes.

Let \mathcal{G}_4 be the graph whose vertices are the vertices of T_4 and edges are the diagonals of 4-gons and long diagonals of 12-gons of T_4 . Then \mathcal{G}_4 is a 2-regular graph. Clearly, Aut(T_4) acts on \mathcal{G}_4 . If the action of Aut(T_4) is vertex-transitive on T_4 then it would be vertex-transitive on \mathcal{G}_4 . But this is not possible since $C_8(v_2, u_4, x_5, w_{10}, v_8, u_{10},$ x_{11} , w_4) and $C_4(x_1, u_2, x_7, u_8)$ are components of \mathcal{G}_4 of different sizes.

Let \mathcal{G}_5 be the graph whose vertices are the vertices of T_5 and edges are the diagonals of 4-gons of T_5 . Then \mathcal{G}_5 is a 2-regular graph. Hence, \mathcal{G}_5 is a disjoint union of cycles. Clearly, Aut(T_5) acts on \mathcal{G}_5 . If the action of Aut(T_5) is vertex-transitive on T_5 then it would be vertex-transitive on \mathcal{G}_5 . But this is not possible since $C_6(x_9, v_3, x_3, v_6, x_6,$ v_9) and $C_4(u_2, v_2, x_1, w_2)$ are components of \mathcal{G}_5 of different sizes.

Let \mathcal{G}_6 be the graph whose vertices are the vertices of T_6 and edges are the long diagonals of 6-gons of T_6 . Then \mathcal{G}_6 is a 2-regular graph. Hence, \mathcal{G}_6 is a disjoint union of cycles. Clearly, Aut(T_6) acts on \mathcal{G}_6 . If the action of Aut(T_6) is vertex-transitive on T_6 then it would be vertex-transitive on \mathcal{G}_6 . But this is not possible since $C_8(w_1, w_2,$ w_7 , w_8 , w_5 , w_6 , w_3 , w_4) and $C_4(u_1, u_2, u_3, u_4)$ are components of \mathcal{G}_6 of different sizes.

Let G_7 be the graph whose vertices are the vertices of T_7 and edges are the diagonals of 4-gons and common edges between any two 8-gons of *T*7. Then *G*⁷ is a 2-regular graph. Hence, G_7 is a disjoint union of cycles. Clearly, Aut(T_7) acts on \mathcal{G}_7 . If the action of Aut(T_7) is vertex-transitive on T_7 then it would be vertextransitive on \mathcal{G}_7 . But this is not possible since $C_8(v_1, w_2, w_3, x_4, x_5, u_6, u_7,$ v_{12}) and $C_{24}(v_2, w_1, w_{12}, x_{11}, x_{10}, u_9, u_8, v_{11}, v_{10}, w_9, w_8, x_7, x_6, u_5, u_4, v_7, v_6$ w_5 , w_4 , x_3 , x_2 , u_1 , u_{12} , v_3) are components of \mathcal{G}_7 of different sizes.

We call an edge uv of T_8 *nice* if at u (respectively, at v) three 3-gons containing u (respectively, v) lie on one side of *u*v and one on the other side of *u*v. (For example, $v_{10}v_{15}$ is nice). Observe that there is exactly one nice edge in T_8 through each vertex. Let \mathcal{G}_8 be the graph whose vertices are the vertices of T_8 and edges are the nice edges and the long diagonals of 6-gons. Then \mathcal{G}_8 is a 2-regular graph. Hence, \mathcal{G}_8 is a disjoint union of cycles. Clearly, Aut(T_8) acts on \mathcal{G}_8 . If the action of Aut(T_8) is vertex-transitive on T_8 then it would be vertex-transitive on \mathcal{G}_8 . But this is not possible since $C_4(v_7, v_{15},$ v_{10} , v_{18}) and $C_8(v_1, v_{23}, v_{17}, v_{11}, v_4, v_{20}, v_{14} v_8)$ are components of \mathcal{G}_8 of different sizes. sizes. \Box

Proof of Theorem [1.7](#page-2-1) The result follows from Lemma [4.3.](#page-9-2)

Lemma 4.4 *The maps* K_1, \ldots, K_{10} in Example [4.2](#page-9-3) *are not vertex-transitive.*

Proof Let H_1 be the graph whose vertices are the vertices of K_1 and edges are the diagonals of 4-gons of K_1 . Then H_1 is a 2-regular graph. Hence, H_1 is a disjoint union of cycles. Clearly, Aut(K_1) acts on H_1 . If the action of Aut(K_1) is vertextransitive on K_1 then it would be vertex-transitive on H_1 . But this is not possible since $C_6(v_7, v_{14}, v_9, v_{16}, v_{11}, v_{18})$ and $C_3(v_{20}, v_{24}, v_{22})$ are two components of \mathcal{H}_1 of different sizes.

There are exactly two induced 3-cycles in K_2 , namely, $C_3(x_1, x_2, x_3)$ and $C_3(v_1, v_2, v_3)$. So, some vertices of K_2 are in an induced 3-cycle and some are not. Therefore, the action of $Aut(K_2)$ on K_2 can not be vertex-transitive.

Like G_3 in the proof of Lemma [4.3,](#page-9-2) let H_3 be the graph whose vertices are the vertices of K_3 and edges are the long diagonals of 12-gons of K_3 . Then, Aut (K_3) acts on the

2-regular graph H_3 . If the action of Aut(K_3) is vertex-transitive on K_3 then it would be vertex-transitive on H_3 . But this is not possible since $C_4(a_{17}, a_{22}, a_{19}, a_{24})$ and $C_{24}(a_3, b_4, c_3, a_1, b_6, c_9, a_7, b_8, c_7, a_{13}, b_2, c_5, a_{11}, b_{12}, c_{11}, a_9, b_{14}, c_1, a_{15}, b_{16}, c_{15},$ a_5 , b_{10} , c_{13}) are components of H_3 of different sizes.

Let H_4 be the graph whose vertices are the vertices of K_4 and edges are the diagonals of 4-gons and long diagonals of 12-gons of K_4 (like \mathcal{G}_4 in the proof of Lemma [4.3\)](#page-9-2). Then, Aut(K_4) acts on the 2-regular graph H_4 . If the action of Aut(K_4) is vertextransitive on K_4 then it would be vertex-transitive on H_4 . But this is not possible since $C_4(v_5, w_2, v_{11}, w_8)$ and $C_8(v_2, u_4, x_5, w_{10}, v_7, u_5, x_4, w_5)$ are components of \mathcal{H}_4 of different sizes.

Let H_5 be the graph whose vertices are the vertices of K_5 and edges are the diagonals of 4-gons in K_5 (like \mathcal{G}_5). Then, Aut(K_5) acts on the 2-regular graph \mathcal{H}_5 . If the action of Aut(K_5) is vertex-transitive on K_5 then it would be vertex-transitive on H_5 . But this is not possible since $C_{12}(v_1, u_2, u_7, v_8, v_4, u_5, u_1, v_2, v_7, u_8, u_4, v_5)$ and $C_3(u_3, u_9, u_6)$ are components of H_5 of different sizes.

Let H_6 be the graph whose vertices are the vertices of K_6 and edges are the long diagonals of 6-gons of K_6 (like \mathcal{G}_6). Then, Aut(K_6) acts on the 2-regular graph H_6 . If the action of Aut(K_6) is vertex-transitive on K_6 then it would be vertextransitive on H_6 . But this is not possible since $C_{24}(a_2, w_2, v_2, a_5, w_3, v_1, a_8, w_8,$ v_8 , a_7 , w_5 , v_3 , a_6 , w_6 , v_6 , a_1 , w_7 , v_5 , a_4 , w_4 , v_4 , a_3 , w_1 , v_7) and $C_4(u_1, u_2, u_3, u_4)$ are components of H_6 of different sizes.

Let \mathcal{H}_7 be the graph whose vertices are the vertices of K_7 and edges are the diagonals of 4-gons and common edges between any two 8-gons in K_7 (like \mathcal{G}_7). Then Aut(K_7) acts on the 2-regular graph H_7 . If the action of Aut(K_7) is vertextransitive on K_7 then it would be vertex-transitive on H_7 . But this is not possible since $C_{24}(v_1, w_2, w_3, x_4, x_5, v_{11}, v_{10}, w_9, w_8, x_7, x_6, v_{12}, v_2, w_1, w_{12}, x_{11}, x_{10}, v_8$ $v_9, w_{10}, w_{11}, x_{12}, x_1, v_3$ and $C_{12}(v_5, w_6, w_7, x_8, x_9, v_7, v_6, w_5, w_4, x_3, x_2, v_4)$ are components of H_7 of different sizes.

Let Skel₁(K_8) be the edge graph of K_8 and \mathcal{N}_8 be the non-edge graph (i.e., the complement of Skel₁(K_8) of K_8 . If Aut(K_8) acts vertex-transitively then Aut(K_8) acts vertex-transitively on Skel₁(K_8) and hence on \mathcal{N}_8 . But, this is not possible since \mathcal{N}_8 is the union of two cycles of different lengths, namely, $\mathcal{N}_8 = C_6(2, 4, 3, 5, 7, 9)$ $C_3(1, 6, 8)$.

Consider the triangles $C = 256$ and $O = 238$ in K_8 . If there exists $\alpha \in Aut(K_8)$ such that $α(C) = O$ then $α$ acts on $N_8 = C_6(2, 4, 3, 5, 7, 9) \sqcup C_3(1, 6, 8)$ and hence $\alpha(6) = 8, \alpha({2, 5}) = {2, 3}.$ This is not possible, since 25 is a long diagonal in $C_6(2, 4, 3, 5, 7, 9)$ where as 23 is a short diagonal in $C_6(2, 4, 3, 5, 7, 9)$. Thus, the action of Aut(K_8) on K_8 is not face-transitive. Observe that K_9 is the dual of K_8 . Hence the action of $Aut(K_9) = Aut(K_8)$ on K_9 is not vertex-transitive.

There are exactly four induced 3-cycles in K_{10} , namely, $C_3(v_1, v_2, v_3)$, $C_3(v_1, v_4, v_5)$ v_7 , $C_3(v_2, v_5, v_8)$ and $C_3(v_3, v_6, v_9)$. Let $\mathcal{H}_{10} := C_3(v_1, v_2, v_3) \cup C_3(v_1, v_4, v_7) \cup C_3(v_1, v_4, v_7)$ $C_3(v_2, v_5, v_8) \cup C_3(v_3, v_6, v_9)$. Clearly, Aut(K_{10}) acts on \mathcal{H}_{10} . If the action of Aut(K_{10}) is vertex-transitive on K_{10} then it would be vertex-transitive on H_{10} . But this is not possible since the degrees of all the vertices in H_{10} are not same. this is not possible since the degrees of all the vertices in \mathcal{H}_{10} are not same.

Proof of Theorem [1.8](#page-2-3) The result follows from Lemma [4.4.](#page-12-0)

5 Proof of Theorem [1.9](#page-2-4)

Lemma 5.1 *Let X be a map on the* 2-disk \mathbb{D}^2 *whose faces are triangles and quadrangles. For a vertex x of X, let* $n_3(x)$ *and* $n_4(x)$ *be the number of triangles and quadrangles through x respectively. Then X does not satisfy all the following four properties.* (i) $(n_3(u), n_4(u)) = (3, 2)$ *for each internal vertex u,* (ii) $n_3(w) \leq 3$, $n_4(w) \le 2$, $n_3(w) + n_4(w) \le 4$, $(n_3(w), n_4(w)) \ne (3, 0)$, $(0, 2)$ *for one vertex* w *on the boundary,* (iii) $(n_3(v), n_4(v)) = (1, 1)$ *or* $(2, 1)$ *for each boundary vertex* $v \neq w$ *, and* (iv) $n_3(v_1) + n_3(v_2) = 3$ *for each boundary edge* v_1v_2 *not containing* w.

Proof Let f_0 , f_1 and f_2 denote the number of vertices, edges and faces of *X* respectively. Let n_3 (resp., n_4) denote the total number of triangles (resp., quadrangles) in *X*. Let there be *n* internal vertices and $m + 1$ boundary vertices. So, $f_0 = n + m + 1$ and $f_2 = n_3 + n_4$.

Suppose *X* satisfies (i), (ii), (iii) and (iv). First assume that *m* is even. Let $m =$ 2*p*. Then $n_3 = (3n + 2p + p + n_3(w))/3$ and $n_4 = (2n + 2p + n_4(w))/4$. So, $n_3(w) \in \{0, 3\}$ and $n_4(w) \in \{0, 2\}$. Since $1 \le n_3(w) + n_4(w) \le 4$, these imply $(n_3(w), n_4(w)) \in \{(3, 0), (0, 2)\},$ a contradiction. So, *m* is odd. Let $m = 2q + 1$. Then $n_4 = (2n + 2q + 1 + n_4(w))/4$. So, $n_4(w) = 1$. Now, $n_3 = (3n + 2q + 1)$ $q + \varepsilon + n_3(w)/3$, where $\varepsilon = 1$ or 2 depending on whether the number of boundary vertices which are in one triangle is $q + 1$ or q . So, $\varepsilon + n_3(w) = 3$. This implies that the alternate vertices on the boundary are in 1 and 2 triangles and the degrees of $q + 1$ boundary vertices are 4 and the degrees of the other $q + 1$ vertices are 3. Thus, $f_2 = (n + q + 1)/2 + (n + q + 1)$ and $f_1 = (5n + 4(q + 1) + 3(q + 1))/2$. Then $f_0 - f_1 + f_2 = (n + 2q + 2) - (5n + 7q + 7)/2 + (3n + 3q + 3)/2 = 0$. This is not possible since the Euler characteristic of the 2-disk \mathbb{D}^2 is 1. This completes the proof. \Box

Lemma 5.2 *Let X be a map on the* 2-disk \mathbb{D}^2 *whose faces are triangles and hexagons. For a vertex x of X, let n₃(x) and n₆(x) <i>be the number of triangles and hexagons through x respectively. Then X does not satisfy all the following three properties.* (i) $(n_3(u), n_6(u)) = (2, 2)$ *for each internal vertex u,* (ii) $n_3(w), n_6(w) \leq 2$, $1 \leq$ $n_3(w)+n_6(w) \leq 3$, for one vertex w on the boundary, and (iii) $(n_3(v), n_6(v)) = (1, 1)$ *for each boundary vertex* $v \neq w$ *.*

Proof Let *f*0, *f*¹ and *f*² denote the number of vertices, edges and faces of *X* respectively. Let n_3 (resp., n_6) denote the total number of triangles (resp., hexagons) in *X*. Let there be *n* internal vertices and $m + 1$ boundary vertices. So, $f_0 = n + m + 1$ and $f_2 = n_3 + n_6$.

Suppose *X* satisfies (i), (ii) and (iii). Then $n_3 = (2n + m + n_3(w))/3$ and $n_6 =$ $(2n + m + n_6(w))/6$. So, $n_6(w) - n_3(w) = 6n_6 - 3n_3 = 3(2n_6 - n_3)$. Since $0 \le n_3(w)$, $n_6(w) \le 2$, these imply $n_6(w) - n_3(w) = 0$. So, $n_6(w) = n_3(w)$. Since $1 \le n_3(w) + n_4(w) \le 3$, these imply that $n_6(w) = n_3(w) = 1$. Thus, the exceptional vertex is like other boundary vertices. Therefore, each boundary vertex is in three edges and hence $f_1 = (4n + 3(m + 1))/2$. So, $m + 1$ is even, say $m + 1 = 2\ell$.

Fig. 5 Two Archimedean tiling of the plane

Thus, $f_1 = 2n + 3\ell$. Now, since $n_6(w) = n_3(w) = 1$, $f_2 = n_3 + n_6 = (2n + 1)$ $m + 1/3 + (2n + m + 1)/6 = (2n + m + 1)/2 = n + \ell$. Then $f_0 - f_1 + f_2 =$ $(n+2\ell) - (2n+3\ell) + (n+\ell) = 0$. This is not possible since the Euler characteristic of the 2-disk \mathbb{D}^2 is 1. This completes the proof.

Lemma [5.](#page-15-0)3 *Let* E_2 *and* E_6 *be the Archimedean tilings of* \mathbb{R}^2 *given in Fig.* 5. Let Y *be a semi-equivelar map on the plane* \mathbb{R}^2 . (a) If the type of Y is $[3^2, 4^1, 3^1, 4^1]$ *then Y* \cong *E*₂*.* (b) *If the type of Y is* [3¹*,* 6¹, 3¹*,* 6¹] *then Y* \cong *E*₆*.*

Proof If the type of *Y* is $[3^2, 4^1, 3^1, 4^1]$ then by the similar arguments as in the proof of Lemma [3.4,](#page-7-1) we get $Y \cong E_2$. In this case, to show that the path in *Y* (similar to the path *P*₀ in the proof of Lemma [3.4\)](#page-7-1) corresponding to the path $\cdots - u_{-2,0} - u_{-1,0}$ – $u_{0,0} - u_{1,0} - u_{2,0} - u_{3,0} - \cdots$ in E_2 is an infinite path, we need to use that there is no map on the 2-disk \mathbb{D}^2 which satisfies (i)–(iv) of Lemma [5.1.](#page-14-0)

If the type of *Y* is $[3^1, 6^1, 3^1, 6^1]$ then by the similar arguments as in the proof of Lemma [3.4,](#page-7-1) we get $Y \cong E_6$. In this case, to show that the path in *Y* corresponding to the path $\cdots - v_{-2,0} - w_{-2,0} - v_{-1,0} - w_{-1,0} - v_{0,0} - w_{0,0} - v_{1,0} - w_{1,0} - v_{2,0} - w_{2,0} - \cdots$ in E_6 is an infinite path, we need to use that there is no map on the 2-disk \mathbb{D}^2 which satisfies (i)–(iii) of Lemma [5.2.](#page-14-1)

Proof of Theorem [1.9](#page-2-4) Let *X* be a semi-equivelar map of type $[3^2, 4^1, 3^1, 4^1]$ on the torus. By similar arguments as in the proof of Theorem [1.6](#page-2-2) and using Lemma [5.3\(](#page-15-1)a), we assume that there exists a polyhedral covering map $\eta_2: E_2 \to X$. Let Γ_2 be the group of covering transformations. Then $|X|=|E_2|/\Gamma_2$.

Let V_2 be the vertex set of E_2 . We take origin $(0, 0)$ is the middle point of the line segment joining $u_{0,0}$ and $u_{1,1}$ (see Fig. [5a](#page-15-0)). Let $a = u_{2,0} - u_{0,0}$, $b = u_{0,2} - u_{0,0} \in \mathbb{R}^2$. Consider the translations $x \mapsto x + a, x \mapsto x + b$. Then $H_2 := \langle x \mapsto x + a, x \mapsto x + b \rangle$ is the group of all the translations of E_2 . Under the action of H_2 , vertices form four orbits. Consider the subgroup G_2 of Aut(E_2) generated by H_2 and the map (the half rotation) $x \mapsto -x$. So,

$$
G_2 = \{ \alpha : x \mapsto \varepsilon x + ma + nb : \varepsilon = \pm 1, m, n \in \mathbb{Z} \} \cong H_2 \rtimes \mathbb{Z}_2.
$$

Clearly, under the action of G_2 , vertices of E_2 form two orbits. The two orbits are $O_1 = \{u_{i,j} : i + j \text{ is odd}\}\$ and $O_2 = \{u_{i,j} : i + j \text{ is even}\}.$

Claim. If $K \leq H_2$ then $K \leq G_2$.

Let $g \in G_2$ and $k \in K$. Assume $g(x) = \varepsilon x + ma + nb$ and $k(x) = x + pa + qb$ for some *m*, *n*, *p*, *q* ∈ $\mathbb Z$ and ε ∈ {1, -1}. Then $(g \circ k \circ g^{-1})(x) = (g \circ k)(\varepsilon(x - ma$ $n(b) = g(e(x - ma - nb) + pa + qb) = x - ma - nb + e(pa + qb) + ma + nb =$ $x + \varepsilon (pa + qb) = k^{\varepsilon}(x)$. Thus, $g \circ k \circ g^{-1} = k^{\varepsilon} \in K$. This proves the claim.

For $\sigma \in \Gamma_2$, $\eta_2 \circ \sigma = \eta_2$. So, σ maps a face of the map E_2 (in \mathbb{R}^2) to a face of E_2 (in \mathbb{R}^2). This implies that σ induces an automorphism σ of *E*₂. Thus, we can identify Γ₂ with a subgroup of Aut(E_2). So, *X* is a quotient of E_2 by a subgroup Γ_2 of Aut(E_2), where Γ_2 has no fixed element (vertex, edge or face). Hence Γ_2 consists of translations and glide reflections. Since $X = E_2/\Gamma_2$ is orientable, Γ_2 does not contain any glide reflection. Thus $\Gamma_2 \leq H_2$. By the claim, Γ_2 is a normal subgroup of G_2 . Thus, G_2/Γ_2 acts on $X = E_2/\Gamma_2$. Since O_1 and O_2 are the G_2 -orbits, it follows that $\eta_2(O_1)$ and $\eta_2(O_2)$ are the (G_2/Γ_2) -orbits. Since the vertex set of *X* is $\eta_2(V_2) = \eta_2(O_1) \sqcup \eta_2(O_2)$ and $G_2/\Gamma_2 \leq$ Aut(*X*), part (a) follows.

Let *X* be a semi-equivelar map of type $[3^1, 6^1, 3^1, 6^1]$ on the torus. By similar arguments as in the proof of Theorem [1.6](#page-2-2) and using Lemma [5.3](#page-15-1) (b), we assume that there exists a polyhedral covering map η_6 : $E_6 \rightarrow X$. Let Γ_6 be the group of covering transformations. Then $|X|=|E_6|/\Gamma_6$.

Let V_6 be the vertex set of E_6 . We take origin $(0, 0)$ is the middle point of the line segment joining $u_{-1,0}$ and $u_{0,0}$ (see Fig. [5b](#page-15-0)). Let $r = u_{1,0} - u_{0,0} = v_{1,0} - v_{0,0} =$ $w_{1,0} - w_{0,0}, s = u_{0,1} - u_{0,0} = v_{0,1} - v_{0,0} = w_{0,1} - w_{0,0}$ and $t = u_{-1,1} - u_{0,0} = u_{0,0}$ $v_{-1,1} - v_{0,0} = w_{-1,1} - w_{0,0}$. Consider the translations $x \mapsto x + r, x \mapsto x + s$ and $x \mapsto x + t$. Then $H_6 := \langle x \mapsto x + r, x \mapsto x + s, x \mapsto x + t \rangle$ is the group of all the translations of E_6 . Since H_6 is a group of translations it is abelian. Under the action of H_6 , vertices form three orbits. The orbits are $O_u = \{u_{i,j} : i, j \in \mathbb{Z}\}\,$ $O_v = \{v_{i,j} : i, j \in \mathbb{Z}\}, O_w = \{w_{i,j} : i, j \in \mathbb{Z}\}.$

As before, we can identify Γ_6 with a subgroup of H_6 . So, X is a quotient of E_6 by a group Γ_6 , where $\Gamma_6 \leq H_6 \leq \text{Aut}(E_6)$. Since H_6 is abelian, Γ_6 is a normal subgroup of *H*₆. Thus, H_6/Γ_6 acts on $X = E_6/\Gamma_6$. Since O_u , O_v and O_w are the *H*₆-orbits, it follows that $\eta_6(O_u)$, $\eta_6(O_v)$ and $\eta_6(O_w)$ are the (H_6/Γ_6) -orbits. Since the vertex set of *X* is $\eta_6(V_6) = \eta_6(O_u) \sqcup \eta_6(O_v) \sqcup \eta_6(O_w)$ and $H_6/\Gamma_6 \leq \text{Aut}(X)$, part (b) follows. \Box

Acknowledgements The first author is supported by DST, India (DST/INT/AUS/P-56/2013(G)) and DIICCSRTE, Australia (Project AISRF06660) under the Australia-India Strategic Research Fund. The second author is supported by NBHM, India for Post-doctoral Fellowship (2/40(34)/2015/R&D-II/11179). The authors thank the anonymous referee for some useful comments and for drawing their attention to the Reference [Brehm and Kühnel](#page-16-2) [\(2008](#page-16-2)).

References

Babai, L.: Vertex-transitive graphs and vertex-transitive maps. J. Gr. Theory **15**, 587–627 (1991)

Brehm, U., Kühnel, W.: Equivelar maps on the torus. Eur. J. Combin. **29**, 1843–1861 (2008)

Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1980)

- Datta, B.: A note on the existence of{*k*, *k*}-equivelar polyhedral maps. Beiträge Algebra Geom. **46**, 537–544 (2005)
- Datta, B., Nilakantan, N.: Equivelar polyhedra with few vertices. Discret. Comput Geom. **26**, 429–461 (2001)
- Datta, B., Upadhyay, A.K.: Degree-regular triangulations of torus and Klein bottle. Proc. Indian Acad. Sci. (Math. Sci.) **115**, 279–307 (2005)
- Fejes Tóth, L.: Reguläre Figuren. Akadémiai Kiadó, Budapest (1965). English translation: Regular Figures, Pergmon Press, Oxford (1964)
- Grünbaum, B., Shephard, G.C.: Tilings by regular polygons: patterns in the plane from Kepler to the present, including recent results and unsolved problems. Math. Mag. **50**, 227–247 (1977)
- Grünbaum, B., Shephard, G.C.: The geometry of planar graphs. Combinatorics (Swansea) In: Temperley HNV (ed), pp. 124–150, London Math. Soc. LNS, vol. 52. Cambridge University Press, Cambridge (1981)
- Maity, D., Upadhyay, A.K.: On enumeration of a class of maps on Klein bottle. [arXiv:1509.04519v2](http://arxiv.org/abs/1509.04519v2) [math.CO] (2015)
- Spanier, E.H.: Algebraic Topology. Springer, New York (1966)
- Such, O.: Vertex transitive maps on a torus. Acta Math. Univ. Comen. **53**, 1–30 (2011)
- Such, O.: Vertex transitive maps on the Klein bottle. ARS Math. Contemp. **4**, 363–374 (2011)