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Abstract. The extensional, breakup and detachment dynamics of an axially stretching Newtonian liquid

bridge are investigated numerically with a dynamic domain multiphase incompressible flow solver. The mul-

tiphase flow solver employs a Cahn–Hilliard phase field model to describe the evolution of the diffuse interface

separating the liquid bridge fluid from the surrounding medium. The governing axisymmetric Navier–Stokes and

Cahn–Hilliard phase field equations are discretized on a continuously expanding domain, the boundaries of

which coincide with the planar solid surfaces containing the liquid bridge. The entire formulation, including the

fast pressure correction for high density ratios and the semi-implicit discretization that overcomes the numerical

stiffness of the fourth-order spatial operators, is performed on a fixed simplified computational domain using

time-dependent transformation. Simulations reveal that the dynamic domain interface capturing technique

effectively captures the deformation dynamics of the stretching liquid bridge, including the capillary wave

formation, necking and interface evolution post breakup and detachment. It is found that the liquid bridge

detachment is strongly influenced by the contact angle prescribed at the stationary and moving solid surfaces. At

relatively small pulling speeds, the entire liquid is found to preferentially adhere to the less hydrophobic surface.

When the prescribed contact angles are equal, however, the liquid bridge undergoes complete detachment so that

no liquid resides either on the stationary or on the moving solid surface.

Keywords. Liquid bridge; multiphase incompressible flows; contact line; phase field method.

1. Introduction

Liquid bridges that are invariably formed during breakup

and coalescence of droplets are frequently observed in a

variety of engineering and day-to- day life process such as

printing and lubrication for industrial application, colouring

of fibres, wall coating for domestic applications, etc. [1].

Depending on the relative importance of the viscous,

inertial and surface tension forces, the deformation and

thinning dynamics of continuously stretched liquid bridges

can generally be classified into inertial thinning, viscocap-

illary and viscocapillary–inertial regimes. Due to the fun-

damental importance of liquid bridge dynamics in several

physical and technological processes, these three regimes,

including a fluctuation-dominated regime for nanoscale

liquid threads, have been the subject of numerous theoret-

ical, experimental and computational investigations.

While the early focus of theoretical investigations was on

prediction of equilibrium profiles and quantification of the

forces exerted by the liquid bridge on the confining solid

boundaries [2, 3], more recent works have analysed the

continuum singularity close to necking and eventual pinch-

off through one-dimensional models. These continuum

models that are derived from asymptotic approximations

for long slender threads [4, 5] assume radial variations to

be negligibly small and employ empirical relationships for

the moving contact line to account for the variations in the

axial velocity and bridge radius in time.

The extensional dynamics of stretched liquid bridges

have also been extensively investigated through numerical

simulations (see Kumar [1] for a review). The moving solid

boundary and the shear-free liquid–air interface are most

naturally handled in an arbitrary Lagrangian–Eulerian

(ALE) framework that allows for continuous deformation

of the computational domain, the boundaries of which

coincide with the moving surface and shear-free surface, in

time. It is therefore no surprise that a vast majority of

simulation-based investigations of liquid bridge dynamics

utilize the ALE [6, 7] method with the finite-element grid

adaptation [8, 9]. ALE methods rely on the smoothness of

boundary to achieve superior accuracy and in principle can

be utilized only before singular merger or breakup events.
*For correspondence
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Beyond these events, application of robust remeshing and

surgical tools that remove the mesh irregularity artificially

becomes inevitable. Moreover, the unstructured grid that is

used for discretization in ALE must also be remeshed with

each step of time advancement to account for the motion of

the solid boundary containing the liquid bridge. The

necessity of frequent remeshing increases the computa-

tional expense of ALE methods substantially and can also

result in a degradation in accuracy owing to the errors

associated with interpolation between original and reme-

shed grids.

In the Cartesian grid framework, the immersed boundary

and immersed interface methods offer an alternative way of

accounting for the motion of the solid boundary containing

the liquid bridge on a fixed structured Cartesian mesh (e.g.,

Marella et al [10]). Typically, these methods rely on

interface capturing techniques (level set method for

instance) that robustly handle large topological variations in

the multifluid interface. Note, however, that to account for

the continuous motion of the solid boundaries, these

methods still require frequent interpolation between the

mesh points over successive time instants. Such interpola-

tion adversely impacts the overall solution

accuracy [11, 12].

For relatively straightforward boundary motion, such as

those encountered in the case of liquid bridges confined

between planar solid boundaries, a rather simplified

approach of employing time-dependent transformations

that map the deforming domain on to a fixed Cartesian

domain seems possible. Such a cost-effective approach

would alleviate problems associated with frequent

remeshing and interpolation, which are necessary in the

case of ALE or immersed boundary methods. Moreover, it

is desirable to have a simulation methodology that allows

for investigation of liquid bridge dynamics in more general

settings that could involve background shear and more than

two components [1]. In this work we pursue such an

approach of utilizing time-dependent transformations that

account for the physical motion of the boundary that

coincides with the moving solid surface and thus perform

interface capturing multiphase flow simulations on a fixed

computational domain discretized using simple Cartesian

mesh. Furthermore, since our simulation method employs

field functions to distinguish between various fluid com-

ponents, it can be easily extended to configurations that

involve three or more phases. The fact that the flow field is

solved for in both the liquid bridge interior and the sur-

rounding medium implies that our method is applicable to

configurations that involve time-dependent background

flow.

Our interface capturing approach is based on the Cahn–

Hilliard phase field method and employs a diffuse mesh-

resolved interface function (phase field) the width of which

is comparable to the mesh spacing. In the past, similar

interface capturing methodologies that rely on field equa-

tions for the scalar interface function have been shown to

accurately describe interfacial dynamics in both com-

pressible and incompressible multicomponent

flows [13–17]. The fact that this interface capturing method

remains robust, even when large topological changes across

material interfaces involving high density ratios (as in the

case of water liquid bridge in air medium for instance) are

encountered, makes it especially well suited for investi-

gating extensional and detachment dynamics of axially

stretched liquid bridges. Furthermore, the Cahn–Hilliard

phase field method also allows for a simplified treatment of

the moving contact line. Note that accounting for the con-

tact line motion in a sharp interface framework is signifi-

cantly more challenging, owing to the stress singularity that

results from the incompatibility between the no-slip

boundary condition and the motion of the sharp contact

line. A majority of the investigations assume that the con-

tact lines are pinned and not permitted to move across the

solid–liquid boundary [18, 19]. Typically, to overcome the

stress singularity, the no-slip boundary condition must be

relaxed in the vicinity of the wetting line through pre-

scription of Navier slip boundary condition with a length

parameter that determines the length scale of the region

beyond which the no-slip boundary condition is recov-

ered [9, 20, 21]. In contrast, the presence of diffusive

transport across the fluid–fluid interface in our present

Cahn–Hilliard phase-field-model-based diffuse interface

framework enables effective elimination of the unphysical

stress singularity, and leads to finite viscous dissipation at

the moving contact line [22, 23].

The organization of this paper is as follows. The flow

configuration of an axially stretching liquid bridge confined

between a stationary lower and moving upper plate is

described in section 2 along with the governing equations

for the evolution of flow field and the fluid–fluid interface.

The discretization methodology and the interface capturing

technique are described in section 3. Results from the

simulations on liquid bridge stretched axially between two

hydrophobic surfaces that are continuously pulled apart are

presented in section 4 before the conclusions.

2. Problem specification and governing equations

Figure 1 depicts a schematic of the set-up under consider-

ation. A liquid bridge is located initially between two pla-

nar hydrophobic surfaces. The contact angle at the bottom

stationary plate is given by hbottom with htop as the one

prescribed at the top moving plate. The top plate is pulled

upwards along the axial direction at a constant speed of Vc.

The resulting deformation, detachment and breakup of the

liquid bridge are assumed to be axisymmetric with z de-

noting the axis of symmetry in the cylindrical coordinate

system (r, z).

The flow and the interface motion resulting from the

pulling action of the upper plate are governed by the
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following incompressible Navier–Stokes Cahn–Hilliard

equations:

r � u ¼ 0; ð1aÞ

q
ou

ot
þ ðqu � rÞu ¼ �rp þr � ½lðruþruTÞ� þ Gr/;

ð1bÞ

o/
ot

þr � ð/uÞ ¼ Mr2G: ð2Þ

Equation (2) represents the dimensional form of the Cahn–

Hilliard phase field model for the phase field / that assumes

asymptotic values of -1 and 1 in the interior of the liquid

bridge and the surrounding medium, respectively. The

sharp interface that separates the two phases is given by the

zero isocontour of /. In Eq. (2), M represents the mobility

parameter while G denotes the chemical potential. More-

over, G can be expressed as a variational derivative of the

total free energy F as [13]

G ¼ dF

d/
s ¼ 3r

2
ffiffiffi

2
p

�
ð/3 � /� �2r2/Þ; ð3Þ

where r denotes the surface tension coefficient and the

parameter � is directly proportional to the interface width.

Furthermore, the Cahn number Cn ¼ �=L with L as the

characteristic length scale. The phase field function /
assumes the a hyperbolic tangent functional form and thus

decays exponentially to its asymptotic limits of �1 away

from the sharp fluid–fluid interface given by / ¼ 0. The

fluid density and viscosity are given by

qð/Þ ¼ ð1þ /Þ
2

qa þ
ð1� /Þ

2
ql; ð4aÞ

lð/Þ ¼ ð1þ /Þ
2

la þ
ð1� /Þ

2
ll; ð4bÞ

where qa and ql, and, la and ll represent the densities and

viscosities of the pure fluid components, respectively, with

subscripts l and a denoting liquid bridge fluid and air,

respectively.

The computational domain is fixed such that its lower

and upper boundaries coincide with the bottom stationary

and the top moving plates, respectively. To account for

the motion of the upper boundary, we adopt a general-

ized coordinate transformation approach [24], wherein

the continuously expanding physical domain (r, z) is

mapped onto a time-invariant computational domain

(f; g).
Here, since only the upper boundary of the physical

domain undergoes prescribed time-dependent motion, the

following coordinate relationship can be established

between the physical and the computational domains:

r ¼ f; ð5aÞ

z ¼ g 1þ gðtÞ
L0

� �

; ð5bÞ

t ¼ s; ð5cÞ

where g(t) determines the movement of the top domain

boundary with L0 as the initial domain length (or equiva-

lently initial liquid bridge length) along the axial z direc-

tion. The set of governing equations [Eqs. (1) and (2)] are

transformed onto the computational domain using trans-

formation metrics. In general, the transformation metrics

themselves must satisfy the discrete geometrical conser-

vation laws [25], which preserve freestream uniform flow

conditions exactly. In the present case, the spatially uni-

form Jacobian of the transformation (J) is given by

J ¼ rfzg � rgzf ¼ 1þ gðtÞ
L0

: ð6Þ

The transformed governing equations in the computational

domain are given by

r � u ¼ 0; ð7aÞ

q
o Juð Þ
ot

þr � ðJuuÞ � oðgg0ðtÞu=L0Þ
og

� �

¼ �Jrp þr � ½JlðruþruTÞ� þ JðRHSÞ;
ð7bÞ

Figure 1. Schematic depicting the liquid bridge formed between

two planner surfaces where htop and hbottom represent the contact

angles for the moving top and stationary bottom plates, respec-

tively, while Vc denotes the pulling velocity of the top plate.
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o J/ð Þ
ot

þr � ðJu/Þ � oðgg0ðtÞ/=L0Þ
og

¼ M

Cn
Jr2ð/3 � /� Cn2r2/Þ;

ð7cÞ

where the J(RHS) term that accounts for the surface tension

force and body forces is given by

JðRHSÞ ¼ JGr/þ Jqð/Þg; ð8Þ

with g as the acceleration due to gravity. The gradient,

divergence and Laplacian operators in the transformed

coordinate system are given by

r ¼ f̂
o

of
þ ĝ

1

J

o

og
; ð9aÞ

r2 ¼ o2

of2
þ 1

f
o

of
þ 1

J

o

og
1

J

o

og

� �

: ð9bÞ

The overall dynamics of the liquid bridge and its even-

tual breakup and detachment depend strongly on the pre-

scribed contact angle and pinning and depinning of the

contact line [26]. To account for the contact line motion we

prescribe the following boundary conditions on the upper

and lower boundaries:

u ¼ us; ð10aÞ

n � rG ¼ 0; ð10bÞ

1

J

o/
og

¼ cos hsð1� /2Þ
Cn

ffiffiffi

2
p ; ð10cÞ

where us and hs denote the prescribed velocity and contact

angle, respectively. The subscript s denotes the appropriate

solid surface corresponding to the lower or upper bound-

aries (e.g., hs ¼ htop on the upper boundary). Note that our

prescription of a fixed contact angle corresponds to an ideal

surface that is free of surface heterogeneities, which typi-

cally cause the advancing and receding contact angles to

deviate from the static contact angle. Moreover, as evi-

denced from the results presented in section 4, the apparent

contact angle is found to vary significantly with the contact

line motion even though the contact angle at the solid

surface is kept fixed at its prescribed value. At the lateral

boundaries of the computational domain, outflow boundary

conditions are prescribed by forcing the normal velocity

gradients to vanish identically.

3. Simulation methodology

We perform a conservative finite-volume discretization of

the transformed governing equations on a fully staggered

grid arrangement. The scalar quantities, namely the phase

field function /, pressure, viscosity and density are defined

at cell centres while the velocities are located at intercell

boundaries. For spatial approximation, we employ standard

second-order accurate central differencing for the diffusion

terms with a Minmod-reconstruction-based upwind

approximation for the convective terms.

The incompressible Navier–Stokes equations are solved

using a second-order accurate projection method [27–29].

To overcome the numerical stiffness of the linear viscous

terms, momentum equations are discretized semi-implicitly

through a combination of Adams–Bashforth and Crank–

Nicolson integrators as follows:

Juð Þ�� Juð Þn

Dt
¼ 1

qnþ1

3

2
Nn � 1

2
Nn�1

� ��

þ 1

2qnþ1
Lðlnþ1; u�; Jnþ1Þ þ Lðln;un; JnÞ
� 	


 ð11Þ

Juð Þnþ1� Juð Þ�

Dt
¼ � 1

qnþ1
rðJpÞnþ1: ð12Þ

In these expressions, L represents the linear diffusion

operators with N as the nonlinear operator that includes

both the convection as well as surface tension terms.

Equation (12) yields a variable-coefficient Poisson-like

equation for the pressure field, which must be solved at

each step of the flow evolution. Presence of variable density

terms in the elliptic equation (12) for the pressure results in

an ill-conditioned linear system. To alleviate numerical

instability resulting from this ill-conditioning at high den-

sity contrasts, we split the variable-coefficient elliptic

operator into a constant coefficient type following prior

work of Dodd and Ferrante [30] as follows:

1

qnþ1
rðJpÞnþ1 �! 1

qc

rðJpÞnþ1 þ 1

qnþ1
� 1

qc

� �

rðJnþ1~pÞ;

ð13Þ

where ~p ¼ 2pn � pn�1 and qc ¼ min ðq1; q2Þ is a constant.
This splitting simplifies computations significantly as the

variable-coefficient linear equation for the pressure field is

converted into a constant-coefficient Poisson equation

given below:

1

qc

r2ðJpÞnþ1 ¼ r � 1

qnþ1
� 1

qc

� �

rðJnþ1~pÞ
� �

þr � ðJnþ1uÞ�

Dt
: ð14Þ

Equation (14) can be easily solved with standard efficient

direct solvers such as the one based on matrix diagonal-

ization method [29].

An additional difficulty arises from the fact that the

Cahn–Hilliard phase field equation for / involves fourth-

order spatial operators so that stringent restrictions on the

maximum allowable time step size (from the CFL criterion)

are encountered for explicit temporal integrators. To over-

come the numerical stiffness arising from the presence of
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fourth-order spatial operators in Eq. (7c) and thus maintain

numerical stability for reasonably large time steps, we

devise splitting techniques similar to the ones suggested in

prior works (e.g., Badalassi et al [31]). Since we rely on a

direct linear solver, we split the fourth-order biharmonic

term in the Cahn–Hilliard equation into two coupled

Helmholtz equations. Thus, we rewrite time-discretized

versions of Eqs. (2) and (3) in the following form:

Mr2Gnþ1 � k/nþ1 ¼ f1; ð15aÞ

�Gnþ1 þ Cn2r2/nþ1 ¼ f2; ð15bÞ

where f1 ¼ �/n=Dt � Nnð/Þ, f2 ¼ 0, k ¼ 1=Dt and the

new intermediate variable G ¼ Cnr2/. In these equations,

the unknowns Gnþ1 and /nþ1 must be solved for in a

coupled manner.

We solve the two-dimensional Laplace and Helmholtz

equations that appear in Eqs. (14) (for pressure field) and

(15), respectively, through a very efficient direct solver.

The standard central differencing for second-order spatial

operators yields coefficient matrices that simplify consid-

erably into a significantly reduced one-dimensional linear

system for the present axisymmetric configuration. For

planar two-dimensional systems, uncoupled linear equa-

tions that can be solved using direct substitution are

obtained [32]. For the axisymmetric configuration, the

discrete Helmholtz equation obtained from the spatial dis-

cretization can be expressed as

Drrwþ wDT
zz þ kw ¼ F; ð16Þ

where Drr and Dzz denote the discrete operator matrices for

the second-order derivative along the radial and axial

directions, respectively, with w as the unknown variable.

Application of the matrix bidiagonalization technique [29]

allows us to reexpress this linear system in a substantially

simplified form:

DrrwP þ wPkþ kwP ¼ FP; ð17Þ

ðDrr þ kÞ ~wþ ~wK ¼ ~F; ð18Þ

where DT
zz ¼ PKP�1, with P and K as orthogonal and

diagonal matrices, respectively.

In Eq. (18) we have ~w ¼ wP with ~F ¼ FP. It can be easily

deduced that Eq. (18) corresponds to a tridiagonal linear sys-

tem that can be inverted very efficiently using Thomas algo-

rithm. Discretization of the axisymmetric computational

domain using Nr and Nz cells along the radial and axial

directions, respectively, results in a total of Nz tridiagonal

systems of the form given by Eq. (18). Each of these linear

systems can be solved independently and in parallel. Thus the

original two-dimensional linear systemof sizeNrNz � NrNz is

reduced to Nz one-dimensional linear subsystems of size

Nr � Nr. This reduction therefore results in a significant sav-

ings in computational expense as well as memory

requirements. Since the computational expense of Thomas

algorithm for direct solution of tridiagonal systems scales as

OðNÞ; where N denotes the size of the tridiagonal linear sys-

tem, the overall computational expense is dominated by the

matrix vector multiplications, which scale as OðN2Þ. Such
matrix vector multiplication operations are required twice,

before and after the diagonalization and eventual solution

recovery steps (i.e., in calculation of the intermediate ~F ¼ FP

and also the calculation of the final solution w ¼ ~wP�1). The

overall procedure for the solution of the linear system

described here is computationally efficient and highly paral-

lelizable. In practice, we typically observe over ten-fold

speedups comparedwith our own implementation of the hypre

multigrid solver [33], which relies on OpenMP directives for

fast computations on 12-core shared memory processors.

4. Simulation results

Before investigating the deformation dynamics of axially

stretching liquid bridges confined between hydrophobic

surfaces, we validate our simulation methodology for

multicomponent flows that involve contact line motion over

a stationary solid boundary. Results from standard tests

aimed at assessing the accuracy and robustness of our

solver, in simulating two-phase incompressible flows

involving high density and viscosity contrasts in the pres-

ence of surface tension forces, can be found elsewhere [32].

4.1 Bouncing water drop test

To begin with, we simulate the interaction between a freely

falling water drop and a hydrophobic solid surface placed

underneath it. The drop is located initially at a prescribed

distance of two initial diameters from the solid surface with

air as the surrounding fluid medium. The principal objec-

tive here is to assess the robustness and accuracy of our

numerical technique in simulating multicomponent flows

involving high density ratios (�1:103), with significantly

high surface tension forces and contact line motion.

The simulation is performed on a fixed grid that is used

to discretize the time-invariant computational domain

Xr;z ¼ ½0;Lc� � ½0; 1:5Lc�. A spherical drop of radius R0 ¼
Lc=4 is centred at ½0; Lc� at the beginning of simulation. The

velocity of drop is zero initially before it begins to accel-

erate under the influence of gravity. The direction of gravity

is set to �z direction. The top and bottom boundaries of the

computational domain are treated as solid walls. A very

high static contact angle of 165	 is assigned to the bottom

boundary. This high contact angle results in hydrophobic

characteristics along the bottom wall and leads to a full

bounce-back of the impinging drop.

Figure 2 depicts the temporal evolution of the water–air

interface, including its initial position (top left frame of
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figure 2), Additional details of this test case, including the

physical properties, have been taken directly from [34]. In

accordance with [34], we have chosen a density ratio of

qa : qw = 1:829, and viscosity ratio of la : lw = 1:56.29.

The relevant non-dimensional parameters are given as

follows: Reynolds number Re (¼ qaUcLc=la) ¼ 23:29,

Weber number We (¼ qaU2
c Lc=r) ¼ 4:315� 10�4 and the

Froude number Fr (¼ Uc=
ffiffiffiffiffiffiffi

gLc

p
) ¼ 0:319 where qa and la

represent the density and viscosity of surrounding air

medium, respectively. The computational domain is dis-

cretized using 300� 450 uniform cells. The width of the

diffuse interface is determined by the Cahn number; Cn ¼
0:01 while the Peclet number Pe (¼ Cn=M) ¼ 102.

In figure 3, we depict the position of the droplet centre of

mass as a function of time. A near-quadratic dependence is

observed initially (for non-dimensional time less than about

0.4) and till the point of impact. Beyond a non-dimensional

time of about 0.5 the centre of mass of the drop rises as the

drop begins to bounce back. For comparison, results from

prior investigations of [34] are also included in figure 3.

We find our results to be in reasonably good agreement

with the ones reported in [34].

4.2 Spreading of an axisymmetric drop

Next, we simulate spreading of an axisymmetric drop on a

fixed time-invariant computational domain. In this case, the

contact line dynamics predominantly determines the droplet

shape and the dependence of the spreading radius on time.

This test case is especially important since it assesses the

effectiveness of our interface capturing technique in accu-

rately and robustly accounting for the contact line motion.

Note that our target physical problem concerning exten-

sional dynamics of stretching liquid bridges depends

strongly on the contact line dynamics. Additionally, the test

case also sheds light on the key issue of convergence of the

present contact line treatment with respect to refinements in

both mesh spacing and interface thickness (Cahn number,

Cn).

In the following, we compute the spreading of axisym-

metric drop over a partially wetting surface using our dif-

fuse interface approach and compare our simulation results

with the experimental work of Zosel [35]. The configura-

tion considered in the experimental investigation of [35]

consists of a small polyisobutylene (PIB) solution (with

various concentrations) drop of 1.2–1.5 mm radius, which

is allowed to spread on a PTFE (polytetrafluoroethylene)

surface. For these settings the static contact angle (hs) is

approximately 56	. These settings and the associated

bFigure 2. The water–air interface (/ ¼ 0 isocontour) and the

pressure field as a function of time for the bouncing drop test case.

The fluid–fluid interface that demarcates the water drop from the

surrounding air medium is represented by the solid black line.

Colour contours depict the non-dimensional pressure distribution

(pressure has been non-dimensionalized using the inertial scale

Dp
 qU2, where q denotes the density of the water drop and U its

terminal velocity.
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configuration were also used in the work of Khatavkar

et al [36] towards validation of their interface treatment

technique.

Figure 4 illustrates the fluid–fluid interface (/ ¼ 0 iso-

contour) for the spreading drop test case at three time

instants starting from the initial condition at time t ¼ 0. In

our simulations, the viscosity ratio (of drop to the sur-

rounding medium) is set to 100 while the density of both

the fluid mediums is chosen to be equal. For this surface-

tensiondriven test case, we perform non-dimensionalization

using the capillary scale for the velocity (Ucap ¼ r=l) and
the initial radius of the spherical drop R0 as the length scale.

The capillary number is set equal to unity (Ca ¼ 1).

Moreover, to closely match the experimental conditions, we

set Reynolds number to a small value of 0.1, at which

inertial effects are expected to remain substantially low.

To analyze convergence attributes of our interface cap-

turing methodology, we analyse the sensitivity of our

results concerning droplet spreading to progressive refine-

ment in the width of the diffuse interface. To perform this

analysis we vary the Cahn number (Cn) from 0.01 to 0.0286

along with the corresponding mesh spacing. Such an

analysis allows us to draw important conclusions concern-

ing the convergence of the interface capturing technique as

the sharp interface limit of the present diffuse interface

approach is attained [26]. Furthermore, in this interface

width sensitivity analysis, the non-dimensional mobility

parameter (M), which determines the relaxation rate of the

phase field function to its equilibrium hyperbolic tangent

profile, is kept constant at 4� 10�5 over the entire range of

Cn considered in the simulations [26]. We perform simu-

lations over a fixed computational domain Xr;z ¼
½0; 3R0� � ½0; 2:75R0� and apply outflow boundary condi-

tions on the top and right boundaries. Moreover, we apply

symmetry boundary conditions on the left boundary, which

coincides with the axis at r ¼ 0. On the stationary bottom

boundary, we model the wetting characteristics of the solid

surface by enforcing a static contact angle of 56	.
The temporal evolution of the dynamic radius R(t) of the

spreading droplet normalized with the initial radius of the

droplet R0 is depicted in figure 5 for varying Cn and suc-

cessively refined computational grids. We find an effective

collapse of the normalized dynamic radius profiles with

successive interface width refinements. This suggests that

our interface capturing methodology does converge

towards a sharp interface limit as the interface width is

decreased progressively. Furthermore, the dynamic radii for

the progressively refined runs are also compared with the

experimental data from [35] in figure 5. We observe a

reasonably good agreement between the experimental

results and the predictions from our simulations. The slight

discrepancy between the two results could very likely be

due to our choice of Re ¼ 0:1, which does not exactly

correspond to the inertialess limit considered in the

experimental work of [35].

4.3 Liquid bridge simulations

Having validated our interface capturing methodology, we

now apply our dynamic domain flow solver to compute the

extensional dynamics of a liquid bridge located initially

between stationary lower and moving upper hydrophobic

solid surfaces. The initial shape of the liquid bridge corre-

sponds to a cylindrical column of fixed radius R. The Rey-

nolds and capillary numbers defined using this initial radius

of the cylindrical liquid bridge R, and the pulling speed Vc,

as the characteristic length and velocity scales, are set to

Re ¼ 1, Ca ¼ 0:01. The density and viscosity ratios (liq-

uid:gas) are fixed at 826.94:1 and 56.29:1, respectively.
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Figure 3. The temporal dependence of the position of the centre

of mass of the falling droplet computed from our present

simulations compared with the results taken from [34].

Figure 4. The fluid–fluid interface (/ ¼ 0 isocontour) at succes-

sive times for the spreading axisymmetric drop. The initial

interface profile (at t� ¼ 0) is depicted using dashed black lines.
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Simulations are performed on an axi-symmetric domain

X ¼ ½0; 3R� � ½0; 2R�. The thickness of the diffuse interface

is given by the Cahn number Cn ¼ 0:01, while the Peclet

number (Pe ¼ Cn=M) is given by M / 3Cn2 (see Magaletti

et al [37]). The static contact angle on the stationary bottom

solid surface is set at hbottom ¼ 100	. The top surface is

prescribed a slightly higher hydrophobicity through a contact

angle of htop ¼ 120	.
Figure 6 depicts the fluid–fluid interface (/ ¼ 0 isocon-

tour) along with non-dimensional pressure distribution. The

impulsive motion of the top solid surface and the contact

line gives rise to capillary waves along the fluid–fluid

interface. In time these interfacial capillary waves are

gradually damped out owing to the fluid viscosity and a

gradual necking of the bridge ensues on the top moving

surface. The necking gives way to a complete detachment

of the liquid bridge from the top solid surface and even-

tually the entire liquid adheres to the bottom stationary

surface as evidenced from the bottom frames of figure 6.

Next, we interchange the hydrophobicity of the top and

bottom surfaces by increasing the prescribed contact angle

at the bottom plate to hbottom ¼ 140	 while keeping the

contact angle prescribed at the top plate fixed at

htop ¼ 120	. Figure 7 illustrates the fluid–fluid interface

(/ ¼ 0 isocontour) and the corresponding non-dimensional

pressure distribution as a function of time for the afore-

mentioned configuration. The evolution of the fluid–fluid

interface and the contact line motion is analogous to the

previous case considered earlier in that the contact line

undergoes significantly larger displacement on the surface

with higher hydrophobicity. The bridge necking is therefore

observed principally on the surface with higher hydropho-

bicity (i.e., the bottom stationary surface). As a conse-

quence, in this case the entire liquid bridge fluid eventually

adheres to the lower surface.

Next, we consider a configuration in which the contact

angle prescribed on the stationary and the moving surfaces

are equal (htop ¼ hbottom ¼ 120	) so that both the top and

the bottom plates are equally hydrophobic. Figure 8 illus-

trates the fluid–fluid interface (/ ¼ 0 isocontour) and the

corresponding non-dimensional pressure distribution as a

function of time for this set-up. In this particular case, since

the contact angles prescribed at the top and the bottom

surfaces are equal, the contact line motion along the top

moving and the bottom stationary surfaces are identical and

very nearly symmetric, with slight asymmetry

attributable to the inertial effects, which are expected to be

small but non-vanishing at finite Reynolds number

(Re ¼ 1). Thus, unlike in the case of previous two config-

urations, necking and eventual detachment occur along

both the top and the bottom surfaces so that eventually the

entire liquid bridge fluid undergoes complete detachment

with none of it adhering to either of the two solid surfaces.

The deformation dynamics of the liquid bridge are sig-

nificantly influenced by the contact angle prescribed at the

top and moving solid surfaces. This sensitivity of the

extensional and detachment dynamics is expected to lead to

significant variations in the net force experienced by the top

moving and the bottom stationary plates. To quantify the

effect of a change in the contact angle prescribed at the

bottom stationary plate on the forces exerted on the plate

we employ the following expression:

F ¼
Z

oX
½�pIþ lðruþruTÞ� � ds;

to compute the net force F exerted on the solid surfaces.

Note that this expression includes all the components of

traction forces exerted on the plate. Since the liquid bridge

deformation is circumferentially symmetric, the tangential

component of the net traction force vanishes identically and

only the normal component is non-zero.

In figure 9, we show the total normal force exerted on the

top and bottom plates as a function of time for the three
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Figure 5. The normalized dynamic radius of the spreading drop (RðtÞ=R0) for various Cn as a function of time (non-dimensional time

t� ¼ tUcap=R0 with Ucap ¼ r=l), compared with the experimental results of Zosel [35].
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configurations with distinct hbottom. Relatively large tem-

poral variations in the total normal force experienced by the

top and the bottom plates are observed for hbottom ¼ 100	

and 140	 cases, for which the entire fluid adheres to one of

the two plates. Furthermore, beyond the point of detach-

ment, the force exerted on the surface with higher

hydrophobicity diminishes considerably as the entire liquid

bridge fluid adheres to the less hydrophobic surface. In

contrast, when htop ¼ hbottom ¼ 120	, the temporal variation

of the magnitude of the net force exerted on the two plates

is very nearly the same (the sign of the force undergoes a

complete inversion due to the fact that the normals on the

two surfaces point along exactly opposite directions).

Moreover, the magnitude of the normal force acting on the

two plates decreases gradually with necking and vanishes

almost completely beyond the point of complete

detachment.

5. Conclusions

In summary, we presented an efficient numerical

scheme based on Cahn–Hilliard phase field method coupled

with an incompressible Navier–Stokes flow solver to inves-

tigate extensional and detachment dynamics of stretching

Figure 6. The fluid–fluid interface (/ ¼ 0 isocontour) and the

pressure field as a function of time for an axially stretching liquid

bridge confined between stationary bottom (hbottom ¼ 100	) and

moving top plates (htop ¼ 120	Þ. The fluid–fluid interface that

demarcates the liquid bridge fluid from the surrounding air

medium is represented by the solid black line. The straight red line

depicts the top moving plate, which coincides with the upper

boundary of the computational domain. Colour contours depict the

non-dimensional pressure distribution (pressure has been non-

dimensionalized using the inertial scale Dp
 qV2
c , where q

denotes the density of the liquid bridge fluid).

Figure 7. The fluid–fluid interface (/ ¼ 0 isocontour) and the

pressure field as a function of time for an axially stretching liquid

bridge confined between stationary bottom (hbottom ¼ 140	) and

moving top plates (htop ¼ 120	Þ. The fluid–fluid interface that

demarcates the liquid bridge fluid from the surrounding air

medium is represented by the solid black line. The straight red line

depicts the top moving plate, which coincides with the upper

boundary of the computational domain. Colour contours depict the

non-dimensional pressure distribution (pressure has been non-

dimensionalized using the inertial scale Dp
 qV2
c , where q

denotes the density of the liquid bridge fluid).
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liquid bridges. Our general simulation methodology is

applicable to physical problems that involve one-dimensional

steady or unsteady motion of domain boundaries. Our inter-

face capturing technique effectively handles high density

ratios as revealed by the bouncing water drop test case. This

test case also establishes the effectiveness of our method in

accounting for relatively large contact-angle-induced

interfacial deformations (contact angle hs 
 165	) on solid

surfaces with high hydrophobicity. Axisymmetric simulations

of a continuously stretched liquid bridge showed that our

method accurately models the contact line motion in a time-

evolving domain with a single moving boundary. Simulations

revealed the strong dependence of the liquid bridge exten-

sional and detachment dynamics, and the resulting forces, on

the contact angles prescribed at the moving and stationary

solid surfaces that contain the liquid bridge.
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