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Abstract. Cavity formation during water entry of a solid corresponds to the deceleration experienced by the

solid. Several experimental studies in the past have facilitated qualitative understanding of the relation between

flow and impact properties and the type of cavity formed. The types of cavities formed are classified primarily

based on the nature of the seal, such as (a) surface seal, (b) deep seal, (c) shallow seal and (d) quasi-static seal.

The flow mechanism behind these features and their effects on the speed of the impacting solid require further

quantitative understanding. A study of such phenomenon is difficult using the existing CFD techniques owing to

the fact that the high density ratios between the two phases, namely water and air, bring in issues with respect to

the convergence of the linear system used to solve for the pressure field for a divergence-free velocity field.

Based on a free surface modeling method, we present Incompressible Smoothed Particle Hydrodynamics (ISPH)

simulations of water entry of two-dimensional solids of different shapes, densities and initial angular momenta.

From the velocity field of the fluid and shape of the cavity, we relate the transfer of kinetic energy from the solid

to the fluid through different phases of the cavity formation. Finally, we present a three-dimensional simulation

of water entry to assert the utility of the method for analysis of real life water entry scenarios.

Keywords. Incompressible smoothed particle hydrodynamics; free surface flows; water entry; fluid–structure

interaction.

1. Introduction

Water entry of solids has been studied for over a century.

The focus of research in this field has been primarily on two

aspects [1]:

1. prediction of impact loads on the body (initial stage of

entry) and

2. evolution of cavity behind the falling body

The dynamics of water impact and cavity dynamics was

first studied by Worthington and Cole [2]. They presented

qualitative features of the splash. The problem of water

entry gained immense interest during the World Wars for

military projectile designs, and resulted in a number of

studies [3–7] focusing on high Froude number

(Fr ¼ VðgDÞ�1=2
) regime, where the gravity effects are not

important. These studies were essentially interested in the

impact forces on the solid body.

For scientific and practical interests, and for civil appli-

cations, the studies later expanded to consider lower Froude

numbers, where the effect of gravity is comparable to

inertial effects. The problem finds significance in the study

of ship slamming, air to sea ballistics for anti-torpedo

defence and in the study of biological creatures utilizing

hydrodynamics to walk on water, for example the loco-

motion of basilisk lizard [8]. Also, water entry is of con-

siderable importance in various off-shore and marine

industries such as oil refineries and offshore wind farms as

various components of the structure in the splash zone of

the incident waves would be frequently entering (and

exiting) the water surface. It was observed that the air

cavity, forming behind the projectile, influences its

dynamics and trajectory at such low speed water entry

[1, 9, 10]. Extensive studies on water entry of spherical

rigid bodies have been performed by Truscott et al [11].

They studied the splash and the Magnus effect on spinning

spheres entering water (see [12, 13]), the effect of different

types of surface coating (hydrophilic and hydrophobic) on

the dynamics of the cavity formation in [14] and the

dynamics of skipping stones in [15]. Various numerical and

theoretical studies have also been performed. Birkhoff et al

[16] used 2D analytical models using an arbitrary constant

to account for 3D scenarios. All the analytical studies use

empirical constants to determine the kinetic energy of the

fluid in the expansion phase, when the radius of the cavity

continues to increase at each vertical location. Numerical

studies of water entry face the difficulty in modelling two-*For correspondence
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way coupled simulation involving the rigid bodies together

with the interaction of the interface between air and water.

Grid-based simulations methods such as volume of fluids

(VoF) and front tracking methods have had some success in

simulating such problems [17]. However, complex flow

phenomena such as breaking waves and fragmented drops

of fluid due to the impacting solid are a challenge to handle

using the grid-based numerical methods.

Smoothed Particle Hydrodynamics (SPH) is a meshless

Lagriangian-particle-based flow simulation method intro-

duced in [18, 19]. A vast account of its applications and

challenges can be found in [20]. Though traditional SPH

algorithms use a stiff equation of state to model incom-

pressibility as weak compressibility, a purely incompress-

ible variant, which solves for pressure that ensures

divergence-free velocity field, was proposed in [21]. In Ref.

[22] an issue with using divergence-free velocity as the

condition for incompressibility was pointed out and a

deformation-gradient-based algorithm for closing the gov-

erning equations of the system was proposed. SPH simu-

lations have been used extensively in simulating free

surface phenomena; however purely incompressible SPH

methods faced difficulties in imposing Dirichlet boundary

condition (BC) at the free surface. This was overcome in

[23] by introducing a semi-analytical method to apply

Dirichet BC at the free surface. With this free surface

modelling, the application of Dirichlet BC at the free sur-

face is straightforward, and enables one to solve problems

like water entry of solids with greater accuracy.

In this paper, we first explain modelling of rigid body

dynamics and its interaction with the fluid using SPH and

subsequently discuss the validation of the model against

experiments by Greenhow and Lin [24]. Motivated by the

recent experiments by Truscott et al [11], Truscott and

Techet [25] and Aristoff et al [26], we conduct numerical

experiments of water entry of solids of different shapes with

and without imparted spin. We perform a range of simula-

tions in two dimensions with varying parameters such as

aspect ratio (shape) of the impacting solid and the imparted

spin. In these cases, we maintain the same kinetic energy for

the impacting solid. The parametric study is limited to two

dimensions due to computational constraints on performing

simulation for such awide range of parameter values. Finally,

we present a 3D simulation of water entry of a sphere, where

the deceleration upon impact of the sphere is compared to

computations based on an analytical model of the impact.

2. SPH formulation

The incompressible formulations of SPH is discussed in

this section. We use bold notation for vectors and tensors

throughout this paper.

2.1 SPH approximation

In the SPH method, fluid domain is discretized into con-

stant-mass particles, which are treated as interpolation

points as well. These interpolation points have an associ-

ated kernel function with an appropriate support. This

kernel function is a smoothed Dirac-delta function, and

hence a variable A(r) at a position r can be represented as a

convolution product of the field A and the kernel function

over the domain:

AðrÞ ¼
Z

Aðr0ÞWðr� r0; hÞdr0; ð1Þ

where W(r, h) is the interpolating kernel, h is the smoothing

length parameter and r is the location where property A is

to be evaluated. Primed notation refers to the neighbour-

hood of the position in question. The kernel function W has

the following properties:

Z
Wðr� r0; hÞdr0 ¼ 1; ð2Þ

lim
h!0

Wðr� r0; hÞ ¼ dðr� r0Þ; ð3Þ

where d is the Dirac delta function. The above interpolant

in SPH is approximated by a summation over the sur-

rounding particles:

AðrÞ �
X

b

mb

Ab

qb

Wðr� rb; hÞ; ð4Þ

where the index b denotes a particle in the neighbourhood

of the particle at position r, which has mass mb, position rb,

density qb, velocity vb and the variable value Ab. Deriva-

tives of functions can be approximated in several conser-

vative and non-conservative ways [20]. A symmetric and

conservative gradient approximation often used to

approximate pressure gradients is given by

rAa ¼ qa

X
b

mb

Ab

q2b
þ Aa

q2a

� �
raWab: ð5Þ

The order of the kernel affects the accuracy of the

solution and the resolution of the properties at different

length scales. Furthermore, particle approximation trans-

forms the integration over the kernel to summation and

hence invokes integration errors [27–29]. Using the afore-

mentioned formulation, smoothed fields can be obtained

and the corresponding partial differential equations can be

solved for the field values at the interpolation points. In

what follows, we discuss the governing equations for

incompressible free surface flows and the ISPH algorithm

for solving the equations.

518 Prapanch Nair and Gaurav Tomar



2.2 Governing equations

Momentum conservation equations for a Newtonian fluid

are solved using the SPH method in the Lagrangian

framework. Navier–Stokes equations governing the

momentum conservation are given as follows:

du

dt
¼ 1

q
�rp þr � 2lDð Þ þ fB
� �

; ð6Þ

where u is the velocity, p is the pressure, q and l are the

density and coefficient of viscosity of the fluid, respec-

tively, D ¼ ðruþruTÞ=2 is the deformation rate tensor,

fB is the body force per unit mass on the fluid element and

t denotes time. The Navier–Stokes equation has been

written in the Lagrangian formulation and d/dt denotes the

material derivative. Mass conservation equation is given

as follows:

1

q
dq
dt

þr � u ¼ 0: ð7Þ

2.3 ISPH formulation

For incompressible fluids, the material derivative of density

is zero and therefore, condition for incompressibility is

given by r � u ¼ 0. In the weakly compressible formula-

tion of SPH (WCSPH) [20, 30], an equation of state relating

pressure field with density is employed that allows fluctu-

ations in the density field. For example, the following

equation of state is generally used for water [31]:

p ¼ q0c
2
0

c
q
q0

� �c

�1

� �
; ð8Þ

where q0 and c0 are the reference density and speed of

sound, respectively, and c ¼ 7 for water. Small errors

incurred in particle positions and therefore in density are

amplified by Eq. (8) and lead to large fluctuations in the

pressure. To circumvent this issue for incompressible flows,

a projection algorithm in which pressure field is obtained by

solving a Poisson equation was proposed by Cummins and

Rudman [21]. This scheme, popularly known as Incom-

pressible Smooth Particle Hydrodynamics (ISPH), is given

by the following algorithm.

This algorithm requires the solution of the SPH

approximation to the pressure Poisson equation (PPE).

2.4 SPH approximation of the pressure Poisson

equation

A finite-difference-based second-order derivative approxi-

mation was provided by [21] and is being widely used for

approximating the Laplacian terms in the PPE. The

approximation is given by the relation

r � rP

q

� �
a

¼
X

b

mb

qb

4

qa þ qb

Pa � Pbð ÞFab: ð9Þ

This is a non-conservative approximation for interaction of

the particle pair a and b. Considering each particle a and its

neighbours b, this results in a symmetric sparse linear

system of equations, which we solve by a Krylov solver

such as BiCGSTAB using the LIS linear solver library [32].

The RHS of the PPE can be approximated conservatively

[21] as follows:

r � ua

Dt
� qa

Dt

X
b

mb

ub

q2b
þ ua

q2a

� �
� raWab; ð10Þ

or non-conservatively as follows:

r � ua

Dt
� � 1

qaDt

X
b

mb ua � ubð Þ � raWab: ð11Þ

For internal flow problems where the PPE has homoge-

neous Neumann BC on all boundaries, only a conservative

divergence approximation satisfies the integral constraint

and ensures existence of a solution [21]. However, free

surface flow problems have Dirichlet and Neumann BCS

for the PPE and the RHS of PPE does not have to satisfy

any constraint. Moreover, the conservative divergence

approximation introduces errors near the free surface due to

kernel truncation. Hence, the non-conservative approxi-

mation for divergence of velocity (Eq. 11) is appropriate for

free surface problems.

In the following section we discuss the imposition of

BCS for PPE at the free surface.

3. Free surface boundary conditions

In ISPH methods, particles at the free surface are tradi-

tionally identified explicitly based on either the change in

the density, colour function or by using the kernel support

deficiency [33, 34]. A certain criterion is generally chosen

to distinguish the free surface particles from the bulk par-

ticles such as q\0:99q0 [33] or
P

b Wðra � rb; hÞ\0:97
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[35]. Another technique is to use the ratio of number of

neighbours around a particular particle to the total number

of neighbours expected in the interior [36, 37]. The diver-

gence of the position vector (r � r) of particles has also

been used to identify free surfaces [38, 39]. For 2D and 3D

simulations, r � r takes values 2 and 3, respectively, for

interior particles. A value of 1.5 is used to demarcate the

free surface particles for 2D simulations. However, a very

low threshold value of these parameters, due to slight errors

in particle configurations, can lead to incorrect marking of

interior points as free boundary, whereas, if a very high

threshold value is used, some free surface particles would

be treated as interior particles. Therefore, choosing an

appropriate threshold value is critical and introduces arbi-

trariness in the simulation. A semi-analytical method to

impose a constant pressure BC at free surfaces was pro-

posed in [23]. This method also allows for pressure gradi-

ents along the free surfaces. In the present work we use this

method to apply the pressure BC at free surface.

3.1 Solid wall boundary conditions

In this study, we use the method proposed by Koshizuka et al

[37] in the context of solid wall BCS for the Moving Particle

Semi-Implicit method. The method essentially involves

using static particles with same properties as those of fluid

particles to represent solid wall boundaries. The pressure

equation is also solved on these static wall particles. As the

divergence is zero within the solid walls (due to zero veloc-

ity), the method tends to simulate a diffused interface

between the fluid and the solid only to the order of the

smoothing kernel of particles. By including a few layers of

wall particles in the domain of the Poisson solver, we

effectively impose homogeneousNeumannBCS at thewalls.

3.2 Rigid body formulation

Motion of rigid bodies can be modelled by computing the

net fluid force and torque acting on them. We model the

rigid body with SPH particles as well. For a rigid body with

the centre of mass at R and translational velocity V, the
equation of motion for the centre of mass is given by

M
dV

dt
¼

X
k

mkak; ð12Þ

where M and mk are the mass of the rigid body and mass of

the SPH particles representing the rigid body, respectively.

Figure 1. Water entry of rigid bodies of aspect ratio 1.0 (circular cylinder).
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The acceleration of the particle k is ak. The position and

velocity of the SPH particles constituting the solid are

updated using the rigid body acceleration dV/dt and

velocity V, respectively, instead of using the acceleration ak

that is based on the local force on the particles.

Conservation of angular momentum of a rigid body is

given by

I
dX
dt

¼ s; ð13Þ

where I is the moment of inertia, X is the angular velocity

and s is the torque. Using particle approximation, Eq. (13)

can be written as

I
dX
dt

¼
X

k

mkðrk � RÞ � ak; ð14Þ

where rk is the position of the particle k. Since the rigid

body moves as a whole, its particles change their positions

according to

drk

dt
¼ Vþ X� ðrk � RÞ: ð15Þ

Monaghan [20] showed that the algorithm discussed earlier

for velocity computation for rigid body conserves linear

and angular momentum in SPH approximations for rigid

body motion.

Since the pressure correction equation is solved in a

region including the rigid body, the pressure field exists

within the rigid body as well, and using the divergence

theorem we get

Z

S

pdS ¼
Z

V

rpdV : ð16Þ

Hence the total force on the rigid body can be computed

from the SPH approximation of the RHS of Eq. (16).

Similarly, viscous forces are computed on individual solid

particles and integrated to give the total force and torque on

the whole solid. The free surface correction of the Lapla-

cian term is not performed for the particles representing

rigid bodies. The acceleration ak for the particle k essen-

tially comprises the components from the forces discussed

earlier.

Figure 2. Kinetic energy of rigid body on water entry and the

imparted kinetic energy to the fluid. Labels correspond to those of

figure 1.

Figure 3. Kinetic energy of impacting elliptic cylinders with

different aspect ratios.

Figure 4. Impact pressure at cylinder bottom for different aspect

ratios.

Figure 5. Position of cylinder during water entry for different

aspect ratios.
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Figure 6. Water entry of rigid bodies of aspect ratios 0.5.

Figure 7. Water entry of rigid bodies of aspect ratio 0.8.
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4. Results and discussion

The SPH algorithm presented earlier with the implemen-

tation of free surface BC can be used to study water entry of

solids with all degrees of freedom encountered in real life

scenarios. We present simulations of water entry of solids

with varying shapes, angular velocities and densities and

present observations on the splash and energy transfer to

the liquid body. A 3D simulation is also presented and

compared to the solution of an analytical model for water

entry in this section.

4.1 Water entry of cylinders of varying shapes

In this section, we look at the simulated interface, pressure

and energetics of water entry of a cylinder (2D) for dif-

ferent aspect ratios. We begin by considering the water

entry of a circular cylinder of 1-in diameter (simulated in

2D with no restriction on degrees of freedom) into a still

fluid of density 1000 kg/m3 (see figure 1). The Froude

number for this problem is *4.6. As the solid impacts the

free surface, two jets emerge from both sides and they

begin to expand. A cavity is formed behind the cylinder

(see figure 1c and d). The jets fold inwards towards the

cylinder after the cavity starts collapsing. In figure 1e we

see the two walls of the cavity come together to form a seal.

This is described as the deep seal, characteristic of the low

Froude number regime. The present simulations do not

account for the presence of air in the cavity and hence the

seal is observed very close to the cylinder, which may be

different from the actual physical case. However, we con-

tinue the simulation to observe the free surface dynamics.

After the cavity collapses, we see a small jet (see figure 1f)

at the middle of the surface. In 3D, this jet would have had

a greater height due to the focusing effect. The kinetic

energy transfer from the solid to fluid is depicted in figure 2

and the various stages are annotated in the graph.

The kinetic energy transfer from the solid to fluid is

shown in figure 2. The points labelled correspond to dif-

ferent stages of the cavity development and collapse

shown in figure 1. After impacting the water surface, the

projectile transfers its kinetic energy to the fluid until the

point (b), when the initial jets of the fluid emerge from the

neck of the impact. The region from (c) to (d) marks the

separation of the fluid from the solid, when the kinetic

energy of the fluid varies little. The region (d) to (e) rep-

resents the expansion and collapse of the cavity with the

minima in this region corresponding to an instance when

the cavity is the widest. A deep seal of the cavity is

observed at (e) and is marked by a local surge in the

kinetic energy of the fluid. We expect the flow to deviate

from reality at this point due to the absence of air in the

simulations. Subsequent to the collapse of the cavity, a

progressive drop in kinetic energy is observed beyond (f),

Figure 8. Water entry of rigid bodies of aspect ratio 1.2.
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which suggests dissipation of energy due to viscous

effects.

We now present the simulations of water entry of elliptic

cylinders for different aspect ratios to look at how the

splash zone, cavity and the impact pressure on the solid

change with the shape of the impacting solid. We choose

elliptic cylinders of five different aspect ratios, 0.5, 0.8, 1.2,

1.5 and the circular cylinder presented earlier, with the

same mass and density. Here, aspect ratio is the ratio of

horizontal measure (width) to the vertical measure (height)

of the solid. Figure 3 shows the kinetic energy variation of

the cylinders. The graphs show oscillations of the computed

value. The sharp oscillations observed are essentially

numerical and correspond to flow separation at the point

where free surface meets the solid surface and the values

oscillate about a local mean. These spurious oscillations

can be controlled using higher order time stepping schemes.

The energy drop happens at a slower rate for the solid of

AR 0.5, at the initial part of the entry. This can be explained

due to its more streamlined shape. The pressure force on the

solid is measured at the bottom of the bodies as shown in

figure 4. The variation in pressure peaks experienced by

different shapes essentially corresponds to the streamlined

shape of the body. Subsequently the pressure decreases

continuously as the solid body enters further into the fluid.

An inflection point is observed in pressure curve, which

Figure 9. Water entry of rigid bodies of aspect ratio 1.5.
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marks a sudden decrease in the slope of the curve and is

more remarkable for low aspect ratios. Further, decrease in

pressure is observed with a minimum occurring for aspect

ratios greater than unity. Beyond this minimum, the pres-

sure again increases slightly. Interestingly, all the pressure

curves merge at around 0.007 s, essentially because the

pressure force balances the reaction force of the fluid to

solids of equal mass impacting on its surface. Subsequently,

the pressures deviate based on the coefficient of form drag

for the different shapes.

Figure 5 shows the position of a cylinder during water

entry and figures 6–9 show the different stages of water

entry of the cylinders for different aspect ratios at dif-

ferent times. A prolate-shaped particle shows small

amplitude rotations during its motion in the liquid pool

(see figure 6). Figure 7 shows a small change in the nature

of cavity closing behind the particle with an increase in

the circularity of the particles (from 0.5 in figure 6 to 0.8

in figure 7). The cavity becomes wider with an increase in

the cylinder-aspect ratio (see figures 8 and 9). For an

aspect ratio of 1.2, the cavity shows formation of stepped

profile whereas for aspect ratio of 1.5, a more well-formed

triangular shape is observed, similar to the one for circular

cylinders.

4.2 Varying spin

In this section we consider the water entry of cylinders with

different angular velocities. For the same geometry and

fluid properties considered earlier, we spin the cylinders

with an initial angular velocity of 157 and 200 Rad/s,

respectively, while reducing the velocity correspondingly

such that the total kinetic energy of the cylinders before

impact remains the same. We note that the cylinders consist

of SPH particles, and these particles are set to have a high

viscosity coefficient to make the interface a close approx-

imation to a no-slip wall.

As seen in figure 10 the impact pressure of the cylinders

with finite angular velocity is lesser due to the reduced

translational kinetic energy. Also the inflection point after

the impact disappears with imparted spin. Figure 11 shows

the variation in penetration of the solids with different

initially imparted spins. Clearly, for a higher initial spin

case, translational energy is less and therefore we observe a

slower rate of penetration. Figure 12 shows both the

translational and total kinetic energy of the cylinders. The

Figure 10. Impact pressure at water entry of rigid body with

different angular velocities.

Figure 11. Position of rigid bodies with different angular

velocities during water entry.

(a)

(b)

Figure 12. Energy transfer between solid and fluid with varying

angular velocities. (a) Kinetic energy (total and translational) of

rigid body. (b) Kinetic energy imparted to the fluid.
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Figure 14. Water entry of cylinder spinning at x0 ¼ 200.

Figure 13. Water entry of cylinder spinning at x0 ¼ 157.
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total kinetic energy of the cylinders is transferred the least

to the fluid when the spin velocity is high. The kinetic

energy of the fluid is shown in figure 12b. For the case with

zero spin, the kinetic energy, after reaching its peak,

decreases down to a local minimum as explained earlier.

However, for the cases with spin, the local minimum is

more pronounced and delayed, suggesting a delayed

instance of maximum cavity volume. The kinetic energy

rises considerably after this minimum and approaches the

kinetic energy of fluid in the case without spin.

4.3 Varying solid density

In the study of decelerating spheres by Aristoff et al [26],

spheres of different density were considered. We conduct

simulations of different density cylinders with the same

velocity of entry. Figures 13–15 show the different stages

of water entry in our simulations. In general, the increase in

density causes the pinch-off to happen later in time and

farther from the cylinder. For cases that are close to neutral

buoyancy, the pinch-off is predicted to happen rather close

to the solid cylinder than shown in experiments (figure 3 of

[26]). Effect of presence of air could be the reason for this.

Also the experiments in [26] are conducted for spheres and

there is a focusing effect due to three dimensionality of the

shape. Another noticeable aspect of these simulations is

that as the density increases, the undulations on the surface

of the cavity are more pronounced and lead to filament-like

breakup of the free surface. This could be because of the

two dimensionality of the simulation, and requires further

attention.

4.4 Three-dimensional simulation

We have conducted a 3D simulation of water entry. In this

simulation we use about one million particles and it is

therefore computationally intensive. We use a shared

memory parallelization to parallelize this case. Owing to

the computational limitation the simulation is limited to

low Froude number (*3.2) with impact velocity of 1.6 m/

s. Figure 16 is a ray-traced render of the simulation of water

entry of a 1-in sphere entering the surface of water at Fr �
3:2 and with an impact velocity of 1.6 m/s. The sphere is

set to be neutrally buoyant. In agreement with the experi-

ments of [26], very little splash is observed in the simula-

tion at such a low Froude number. As the sphere enters the

water surface, the cavity shows formation of waves on the

free surface. The cavity then pinches off very close to the

sphere, characterizing a deep seal. Figure 17 shows the

impact pressure at the bottom-most point of the sphere.

After a peak pressure is reached, the pressure drops till

about 0.006 s and reaches a plateau for a short duration,

after which the pressure declines steadily. Figure 18 shows

the decrease in downward velocity of the sphere. After the

initial steep decrease in velocity, the reduction in velocity

slows down and reaches a plateau at 0.1 s. Buoyancy

governs the later part of the velocity change. The deceler-

ation of the sphere can be computed from the momentum

Figure 15. Water entry of cylinders of different densites.
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equations based on the theory proposed by von Karman

during his investigation into the stress analysis of sea plane

floats [40, 41], and this can be used as a first approximation

to the computed values of acceleration from the SPH

simulation. The vertical velocity of the sphere drops

exponentially (see figure 18) and reaches a zero very soon

and is expected to have a short duration of upward velocity.

Figure 19 shows the acceleration of the sphere as it impacts

the water surface. A theoretical estimate of the acceleration

can be derived as follows: the momentum balance at a time

t during the water entry of the sphere can be written as

mV0 ¼ mV þ f ðaÞV ; ð17Þ

Figure 16. Water entry of a sphere at Fr = 3.2.
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where V0 is the velocity with which the sphere impacts the

water surface. The mass of the sphere is given by m and f(a)

is the term that accounts for the added mass effect when a

plate impacts a water surface parallel to it. The variables

used in the derivation are presented in the schematic of

figure 20. The radius of the sphere is given by r. During the

impact, y represents the depth of immersion of the sphere

beneath the water surface and a denotes the radius of the

circle formed at the intersection of the sphere and the water

surface. We have

V ¼ V0

1þ f ðaÞ=m
: ð18Þ

A volume corresponding to 64% of the volume of a sphere

is assumed to be ‘added’ by a flat plate of the same radius.

The added mass is then

0:64q
4

3
pa3: ð19Þ

For the impact at a free surface, the added mass can be

assumed to be half of the above, accounting for one side of

the plate alone. Therefore

f ðaÞ ¼ 0:32q
4

3
pa3: ð20Þ

Now, we have

V ¼ dy

dt
¼ V0

1þ f ðaÞ=m
ð21Þ

and

d2y

dt2
¼ �V0

m
1þ f ðaÞ

m

� ��2
df ðaÞ

dx

dx

dt
: ð22Þ

From the geometry of the sphere shown earlier

a2 ¼ 2ry � y2: ð23Þ

Using this and simplifying, we have

d2y

dt2
¼ �V0

m

1:28qpaðr � yÞ dy
dt

1þ 1:28
3m

pqa3
� �2 ; ð24Þ

Figure 17. Impact pressure of sphere on water entry.

Figure 18. Vertical velocity of sphere on water entry.

Figure 19. Vertical acceleration of sphere on water entry:

simulation and theory [40].

Figure 20. Schematic of water entry of sphere with the geometric

notations.
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where a ¼
ffiffi
ð

p
2ry � y2Þ, m is the mass and V0 is the

velocity of the sphere at impact. The differential equation is

solved numerically using second-order explicit Runge–

Kutta method, and the result is used for comparison in

figure 19. Note that the initial steep rise, as predicted by

theory, is due to the assumption that the sphere is made of

layers of circular plates and this does not account for the 3D

shape of the sphere itself. However the maximum decel-

eration experienced by the sphere upon impact is well

predicted by the SPH method. The simulation shows a

reasonable agreement with this acceleration limit.

5. Conclusions

We employed an improved free surface algorithm for

Incompressible Smoothed Particle Hydrodynamics together

with a rigid body dynamics algorithm to simulate the

impact of solids into water. After validating the free surface

profile and the penetration dynamics of a neutrally buoyant

rigid body against experimental results available in litera-

ture, we performed a parametric study of water entry of 2D

solids (cylinders) of different shapes, different imparted

angular velocities and densities. The total kinetic energy of

the falling solids was maintained the same for the different

shapes and the different angular velocity cases. We pre-

sented a comparison of the impact pressure profile, vertical

velocity, angular velocity, kinetic energy of the solid and

the energy imparted to the liquid for these various cases.

We simulated a 3D sphere at low Froude number and

compared the impact pressure profile with a theoretical

estimate. The free surface features of the splash were also

discussed in all the cases.

References

[1] Yan H, Liu Y, Kominiarczuk J and Yue D K P 2009 Cavity

dynamics in water entry at low froude numbers. J. Fluid

Mech. 641: 441–461

[2] Worthington A M and Cole R S 1897 Impact with a liquid

surface, studied by the aid of instantaneous photography.

Philos. Trans. R. Soc. A 189: 137–148

[3] Gilbarg D and Anderson R A 1948 Influence of atmospheric

pressure on the phenomena accompanying the entry of

spheres into water. J. Appl. Phys. 19(2): 127–139

[4] May A and Woodhull J C 1948 Drag coefficients of steel

spheres entering water vertically. J. Appl. Phys. 19(12):

1109–1121

[5] May A 1951 Effect of surface condition of a sphere on its

water-entry cavity. J. Appl. Phys. 22(10): 1219–1222

[6] May A 1952 Vertical entry of missiles into water. J. Appl.

Phys. 23(12): 1362–1372

[7] Richardson E G 1948 The impact of a solid on a liquid

surface. Proc. Phys. Soc. 61(4): 352

[8] Glasheen J W and McMahon T A 1996 A hydrodynamic

model of locomotion in the basilisk lizard. Nature 380(6572):

340–341

[9] Holland K T, Green A W, Abelev A and Valent P J 2004

Parameterization of the in-water motions of falling cylinders

using high-speed video. Exp. Fluids 37(5): 690–700

[10] Chu P C, Fan C, Evans A D and Gilles A 2004 Triple

coordinate transforms for prediction of falling cylinder

through the water column. J. Appl. Mech. 71(2): 292–298

[11] Truscott T T, Epps B P and Belden J 2014 Water entry of

projectiles. Annu. Rev. Fluid Mech. 46: 355–378

[12] Techet A H and Truscott T T 2011 Water entry of spinning

hydrophobic and hydrophilic spheres. J. Fluid. Struct. 27(5):

716–726

[13] Truscott T T and Techet A H 2006 Cavity formation in the

wake of a spinning sphere impacting the free surface. Phys.

Fluids 18(9): 91113–91113

[14] Truscott T T and Techet A H 2009 A spin on cavity for-

mation during water entry of hydrophobic and hydrophilic

spheres. Phys. Fluids 21(12): 121703

[15] Truscott T, Belden J and Hurd R 2014 Water-skipping stones

and spheres. Phys. Today 67(12): 70–71

[16] Birkhoff G et al 2012 Jets, wakes, and cavities. Elsevier,

Amsterdam

[17] Ahmadzadeh M, Saranjam B, Hoseini Fard A and Binesh A

R 2014 Numerical simulation of sphere water entry problem

using Eulerian–Lagrangian method. Appl. Math. Model.

38(5–6): 1673–1684

[18] Gingold R A and Monaghan J J 1977 Smoothed particle

hydrodynamics – theory and application to non-spherical

stars. Mon. Not. R. Astron. Soc. 181: 375–389

[19] Monaghan J 1985 Particle methods for hydrodynamics.

Comput. Phys. Rep. 3(2): 71–124

[20] Monaghan J J 2005 Smoothed particle hydrodynamics. Rep.

Prog. Phys. 68(8): 1703

[21] Cummins S J and Rudman M 1999 An SPH projection

method. J. Comput. Phys. 152(2): 584–607

[22] Nair P and Tomar G 2015 Volume conservation issues in

incompressible smoothed particle hydrodynamics. J. Com-

put. Phys. 297: 689–699

[23] Nair P and Tomar G 2014 An improved free surface mod-

eling for incompressible SPH. Comput. Fluids 102: 304–314

[24] GreenhowMandLinW-M1983Nonlinear-free surface effects:

experiments and theory. Technical Report, DTIC Document

[25] Truscott T T and Techet A H 2009 Water entry of spinning

spheres. J. Fluid. Mech. 625: 135–165

[26] Aristoff J M, Truscott T T, Techet A H, and Bush J W M

2010 The water entry of decelerating spheres. Phys. Fluids

22(3): 032102

[27] Antuono M, Colagrossi A, Le Touzé D and Monaghan J J
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