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ABSTRACT
The COVID-19 pandemic has inspired several studies on the fluid dynamics of respiratory events.
Here, we propose a computational approach in which respiratory droplets are coarse-grained into
an Eulerian liquid field advected by the fluid streamlines. A direct numerical simulation is carried
out for a moist cough using a closure model for space-time dependence of the evaporation time
scale. Stokes-number estimates are provided, for the initial droplet size of 10μm, which are found
to be � 1, thereby justifying the neglect of droplet inertia, over the duration of the simulation.
Several important features of the moist-cough flow reported in the literature using Lagrangian
tracking methods have been accurately captured using our scheme. Some new results are pre-
sented, including the evaporation time for a ‘mild’ cough, a saturation-temperature diagram and a
favourable correlationbetween the vorticity and liquid fields. Thepresent approach canbeextended
for studying the long-range transmission of virus-laden droplets.
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1. Introduction

The airborne transmission of respiratory infection is
thought to be responsible for theCOVID-19 pandemic
that is afflicting the world. The SARS-CoV-2 virus
responsible for the contagion spreads through the air,
not only by people with respiratory symptoms (cough-
ing/sneezing) (Bourouiba 2020) but also by asymp-
tomatic carriers through speech and even breathing
(Morawska and Cao 2020). As a result, the fluid and
droplet dynamics of the various respiratory events
have been a subject of several investigations, especially
since the start of the pandemic. These include studies
on symptomatic respiratory events such as coughs or
sneezes (Chong et al. 2021; Rosti et al. 2021; Fabregat
et al. 2021; Domino 2021), as well as those on everyday
activities like breathing, talking, or singing (Morawska
et al. 2009; Chao et al. 2009; Abkarian et al. 2020;
Singhal, Ravichandran, Govindarajan, et al. 2021).

Airborne transmission occurs through the trans-
port of tiny, virus-laden liquid droplets expelled
during respiratory events (Bourouiba 2021b; Mit-
tal, Ni, and Seo 2020). These droplets vary in size
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from a few micrometers to hundreds of microme-
ters (Duguid 1946; Somsen et al. 2020). The large
droplets (O(100−1000) µm) settle rapidly and are
thus removed from the flow over distances O(1m)

(Bourouiba, Dehandschoewercker, and Bush 2014).
(They may survive on the surfaces where they land,
leading to ‘fomite’ transmission; this was believed,
at the beginning of the pandemic, to be an impor-
tant mode of transmission of SARS-CoV-2; see Asadi
et al. 2020; Morawska and Cao 2020.) On the other
hand, since small droplets remain suspended in the
respiratory flow for longer times, they are transported
over larger distances. The turbulence present in res-
piratory flows (which can be effectively modelled as
turbulent puffs; Bourouiba, Dehandschoewercker, and
Bush 2014) plays an important role in determining
the trajectories of such droplets. Sufficiently small
droplets (called aerosols) may, in fact, remain sus-
pended and be transmitted through ventilation sys-
tems in large buildings (Qian and Li 2010; Zhao,
Zhang, and Li 2005; Chen and Zhao 2010). Since
the early work of Wells (1934), human respiratory
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flows have been studied experimentally to determine
the droplet size distribution and typical flow veloc-
ities at the mouth, and the subsequent flow and
droplet evolution; for more recent studies, see Abkar-
ian et al. (2020), Bourouiba,Dehandschoewercker, and
Bush (2014), Gupta, Lin, and Chen (2009) and Stad-
nytskyi et al. (2020). The experimental studies have
also served to provide useful inputs to numerical inves-
tigations, e.g. for determining the parameters of the
simulation.

Numerical studies of the dynamics of droplets over
distances larger than a fewmetres are computationally
expensive and typically utilise the Reynolds-averaged
Navier–Stokes (RANS) equations which involve ad-
hoc models for the turbulent viscosities and diffu-
sivities; a typical example is the building ventilation,
which involves large length and time scales (O(10m)

and O(103 s) (Qian and Li 2010; Shao et al. 2021).
Similar approaches have also been used in study-
ing the effects of nonzero ambient flow (such as
the presence of wind) on the dispersion of virus-
laden droplets in individual respiratory events (Dbouk
and Drikakis 2020; Feng et al. 2020). Note that the
individual respiratory flows that travel up to a dis-
tance of 2m are amenable to more accurate simu-
lation methods such as large-eddy simulation (LES)
and direct numerical simulation (DNS). The former
resolves the large energy-carrying scales in the flow
while parameterising the smaller scales (Abkarian
et al. 2020; Liu et al. 2021), whereas the latter aims to
resolve scales sufficiently small (ideally up to the Kol-
mogorov scale) so that the dissipation of energy is cap-
tured accurately (Moin and Mahesh 1998); see Chong
et al. (2021) and Rosti et al. (2021). Such detailed
numerical studies, combined with experimental stud-
ies, offer better insight into the survival and transmis-
sion of droplets, which may in turn help improve the
respiratory-flow models in large-scale studies, such as
ventilation.

Human respiratory flows are essentiallymulti-phase
flows in which the evaporation and condensation
processes play an important role in determining the
droplet lifetime (Chong et al. 2021; Wells 1934). Such
processes can also affect the buoyancy of the respira-
tory flow through the release/absorption of the latent
heat. It is therefore important to incorporate the ther-
modynamics of phase change in a numerical sim-
ulation of such flows. However, for flows generated
during a human speech, the droplets are typically

very small (O(5µm)), and evaporate fast to con-
vert into droplet nuclei in the form of dissolved solid
substances which can continue to harbour virions.
Such flows have been simulated without incorporat-
ing phase changes and using a scalar field to mimic the
transport of the droplet nuclei (Abkarian et al. 2020;
Singhal, Ravichandran, Govindarajan, et al. 2021).

On the other hand, in flows generated by violent res-
piratory events like coughs or sneezes, a wide range
of droplet sizes is present, and there is a consider-
able variation in the maximum droplet size expelled
during a cough or a sneeze from one person to
another (Bourouiba 2021a). As a result, for such flows,
the phase changes of liquid droplets into a vapour
and vice-a-versa are critical for understanding the
flow evolution and droplet dynamics; another relevant
aspect is the gravitational settling of large droplets, typ-
ically greater than 100μm in diameter. Recent numer-
ical studies have investigated these aspects, includ-
ing the role of turbulence on thermodynamics and
droplet motion. Chong et al. (2021) performed DNS
of a turbulent vapour puff and showed that the rela-
tive humidity and temperature of the ambient affect
the longevity of the liquid water droplets; see also Ng
et al. (2021). They carried out simulations for 50% and
90% ambient relative humidity and found the pres-
ence of supersaturation in the flow for the latter case,
which promoted an initial droplet growth resulting in
extended droplet lifetimes. Rosti et al. (2021) com-
pared the results on the evolution of droplets obtained
from a DNS with those obtained from a coarse-DNS
(i.e. after filtering out small-scale fluctuations) and
showed that the latter could considerably underesti-
mate the lifetime of droplets. Liu et al. (2021), in their
LES study, found that a portion of their simulated
moist puff separated from the main flow and trav-
elled along a random direction at a faster speed. They
also proposed a theory for predicting puff size, veloc-
ity, distance travelled and droplet size distribution and
compared the predictions with their LES results.

The above DNS and LES studies have employed a
coupled Eulerian-Lagrangian approach to solve for the
fluid and droplet velocities respectively; see also Fab-
regat et al. (2021). These simulations have provided a
wealth of useful information and have helped enhance
our understanding of the dynamics of respiratory
flows. However, since this approach involves tracking
each individual droplet, the data that needs to be han-
dled can become exceedingly large, especially when
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the respiratory event expels a large number of droplets
of moderate size (which can be as large as 105 droplets
per cm3; Bourouiba 2021a). This also makes such sim-
ulations computationally expensive, inherently limit-
ing their use in numerical experiments and paramet-
ric studies. In this work, we use a middle ground
between the Lagrangian particle tracking methods,
and RANS simulations, by coarse-graining the liquid
water droplets into an Eulerian field that is carried
with the flow, while resolving sufficiently small scales
in the flow. This approach, in principle, solves for only
one of the moments of the droplet distribution–the
total liquid content–in the flow, and is familiar in
the atmospheric sciences as the ‘one-moment’ scheme
(e.g. Lin, Farley, and Orville 1983; Grabowski 1998;
see Beck and Watkins (2002), which discusses the
relevance of this method for analysing dense liquid
sprays). Here we propose an ‘extended one-moment’
scheme in which we interpret the liquid field in terms
of a collection of droplets with the number density
considered uniform in space (but varying in time), and
the droplet radius a function of space and time. Since
we resolve the small scales in the flow, the computa-
tional requirements remain much greater than that for
RANS simulations of the same problem. However, our
approach is algorithmically simpler than Lagrangian
particle tracking while still solving the Navier–Stokes
equations without modelling approximations.

We use this approach to study the typical flow
produced by a ‘mild’ cough, i.e. involving rela-
tively low cough flow rates as in a ‘throat-clearing’
cough, for example. The Navier–Stokes equation is
solved within the Boussinesq approximation and the
Clausius-Clayperon relation is used for relating local
relative humidity to local temperature. The extended
one-moment scheme provides a closure for the evapo-
ration/condensation rates in the flow. The liquid con-
tent at the orifice (which mimics mouth opening)
is prescribed to be consisting of an initially mono-
disperse distribution of droplets with 10μm of diam-
eter, which is small enough to neglect droplet inertia.
This assumption is supported a posteriori by provid-
ing estimates of the Stokes number which are shown
to be much smaller than unity. We carry out a careful
comparison of our results with those from the litera-
ture obtained using Lagrangian particle tracking and
show that we are able to reproduce many of the impor-
tant features of amoist cough flow, including the initial
supersaturation. We also present some new results on

the relative rates of decay of the saturation and tem-
perature fields away from the orifice, and the interplay
between the liquid content and vorticity fields.

The remainder of the paper is organised as follows.
We describe the geometry of the problem and the
governing evolution equations in Section 2, including
the treatment for incorporating the thermodynamics
of phase change. Therein, we also provide numerical
details for the present simulation. Section 3 reports
simulation results wherein we first compare the results
from the extended one-moment scheme with a more
rudimentary model of treating evaporation time scale
as a constant. This is followed by a detailed anal-
ysis of the data vis-a-vis available results. We end
Section 3 by presenting some thoughts on the advan-
tages/limitations of the proposed approach in the con-
text of respiratory flows. Finally, the conclusions are
presented in Section 4.

2. Governing Equations and Numerical Details

2.1. Geometry and Problem Setup

The domain used in the present numerical simula-
tions, shown schematically in Figure 1(a), is a cuboidal
volume of dimensions Lx × Ly × Lz. Here x, y and
z are the axial, vertical (against gravity) and lateral
co-ordinates respectively. Following Gupta, Lin, and
Chen (2009), the mouth of the person coughing is
modelled as a circular orifice with a diameter do =
2.25cm in the vertical y−z plane, and is centred at the
origin of coordinates (Figure 1(a)). The inlet velocity
u0 at the orifice is obtained from the laboratory mea-
surements of the flow rates in cough flows reported in
Gupta, Lin, and Chen (2009) (see Figure 5 in Gupta,
Lin, and Chen 2009).

Two quantities specify the flow-rate profile as a
function of time at the orifice – (a) the maximum flow
rate or the cough peak flow rate (CPFR) and (b) the
time of its occurrence or the peak-velocity time (PVT).
A wide range of values have been reported for CPFR
(1.6–8.5 l/s) and PVT (0.057–0.11 s); see Gupta, Lin,
and Chen (2009). Here we choose CPFR = 3.0 l/s and
PVT = 0.06 s representative of a ‘mild’ cough, and the
resulting flow rate as a function of time is shown in
Figure 1(b). The total volume of fluid expelled from the
orifice, the cough expiratory volume (Vo), is 0.679 l in
a total cough time of 0.528 s; Vo is the integral under
the curve in Figure 1(b). The average velocity based on
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Figure 1. (a) A Schematic side view (z = 0) of the computational domain used to simulate a mild cough. A jet of velocity u0(t) exits
the mouth, modelled as an orifice of diameter d0. The temperature T and the mixing ratios of the vapour and liquid rv,l at the orifice
(subscript 0) and the ambient (subscript ∞) are specified. (b) The prescribed flow rate at the orifice used to calculate the inlet velocity uo
at the orifice.

the orifice flow rate and total cough time is taken as the
characteristic velocity scale, uc = 3.232m/s.

Since we consider the thermodynamics of evapo-
ration of the liquid droplets expelled during a cough,
the temperature and other thermodynamic variables
at the orifice and in the ambient need to be specified.
We label quantities at the orifice with a subscript o and
ambient quantitieswith a subscript∞ (see Figure 1(a)).
We set the orifice temperature To = 34◦C to a value
slightly lower than the typical body temperature and
set the ambient temperature to a typical indoor tem-
perature of T∞ = 20◦C. These conditions are the
same as those used by Chong et al. (2021); see also
Bourouiba, Dehandschoewercker, and Bush (2014).
We use T∞ and �To = To − T∞ as the characteris-
tic scales respectively for temperature and tempera-
ture difference. The survival time of exhaled droplets
increases as the temperature difference between the
exhaled cough fluid and ambient indoor air, typically
positive, increases (Chong et al. 2021), with other
parameters kept constant.

In addition to liquid droplets of a range of sizes, the
exhaled fluid in a cough also contains water vapour,
both mixed with dry air. The amount of water sub-
stance in a cough is typically a small fraction bymass of
the (dry) air (10−5–10−7; Bourouiba, Dehandschoew-
ercker, and Bush 2014). We define the mixing ratios
(mass per unitmass of dry air) of vapour as rv = ρv/ρd
and liquid as rl = ρl/ρd, where ρd, ρv and ρl are the
densities of dry air, vapour and liquid water respec-
tively. (We do not model the viscoelastic nature of
the saliva droplets or the dissolved solid substances in
these droplets.) The values of rv are more conveniently
expressed in terms of the relative humidity s = rv/rs,
where rs is the saturation vapour mixing ratio. For
the present simulations, the humidity conditions are

assigned as s∞ = 0.9 for the ambient, and so = 1 at the
orifice. These values are chosen so as to replicate one
of the cases in Chong et al. (2021), who have used s of
0.5 and 0.9 for the ambient and 1 for the orifice. This
enables comparison of our results (especially the con-
densational growth due to supersaturation) obtained
within the Eulerian field approximation with those in
Chong et al. (2021) who have done Lagrangian track-
ing of individual liquid droplets. Furthermore, rv and
rl are also normalised using the saturationmixing ratio
of the ambient, rs,∞ as the characteristic scale. We
next describe the assumptions underlying the coarse-
graining of the liquid water droplets into an Eulerian
field.

2.2. Eulerian Treatment of Droplets

Human coughs produce droplets of a wide range
of sizes – a commonly used distribution is the
one provided by Duguid (1946), which ranges from
(2μm–1mm); seeChong et al. (2021), Rosti et al. (2021)
andBourouiba,Dehandschoewercker, andBush (2014).
However, it is important to realise that no two coughs
are identical, and many different droplet-size dis-
tributions obtained from laboratory experiments on
human subjects have been reported in the literature.
Bourouiba (2021a) has compiled the available data,
which shows that coughs can have droplet concen-
trations as low as 0.1 cm−3 and as high as 105 cm−3,
with the maximum droplet sizes ranging from 5μm
to 1mm. Droplets of finite size have velocities that
are, in general, different from the velocity of the car-
rier fluid in which they are suspended. Large droplets
(diameters >100μm) are dominated by gravity and
undergo rapid sedimentation within range of ∼1m
(Chong et al. 2021; Bourouiba, Dehandschoewercker,
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and Bush 2014). Droplets less than 100μm in size are
carried away by the flow over longer distances before
they settle down (Bourouiba 2021b). As the droplet
size reduces, the response time of the droplet (τp)
gets smaller in comparison with the typical flow time
(τf ). This effect is quantified by the Stokes number
St = τp/τf , which indicates how important the iner-
tial effects are for a given droplet size. For droplets
with small Stokes numbers (typically less than 50μm
in diameter), it may be possible to coarse-grain them
in the form of an Eulerian field for the liquid con-
tent (i.e. rl = rl(x, y, z, t)), while still retaining the
inertial effects (Ravichandran, Meiburg, and Govin-
darajan 2020; Ravichandran and Narasimha 2020).
This, in essence, is the Eulerian approximation for
liquid droplets, which we use in this work. Such
an approximation is commonly known as the one-
moment scheme in the atmospheric cloud literature
(see, e.g. Ravichandran, Meiburg, and Govindara-
jan 2020; Ravichandran and Narasimha 2020). When
the inertial effects are retained, the velocity field of the
droplets is not divergence-free, but obeys a compress-
ible advection equation. The time rate of change of the
liquid water mixing ratio, rl, within this framework,
can be written:

drl
dt

≡ Cd = ∂rl
∂t

+ ∇ · (vrl), (1)

where, Cd is condensation rate. The droplet velocity
field (v(t)) can be written down using theMaxey-Riley
equation (Maxey and Riley 1983), which governs the
dynamics of particles in the Stokes regime:

dv
dt

= u − v
τp

+ g, (2)

where the droplets are assumed to be much denser
than air, g is gravitational acceleration, and u is flow
velocity. For small droplets, Equation (2) may be
expanded in powers of τp to give, to first order,

v = u − τp
Du
Dt

+ τpg, (3)

where D/Dt is the material derivative following fluid
streamlines, and τpg is the terminal Stokes velocity
for the droplet. Equation (3) can be written in non-
dimensional form (choosing appropriate flow velocity

and length scales) as

ṽ = ũ − St
Dũ
Dt̃

+ St g̃ + O(St2), (4)

where ˜ indicates a non-dimensional quantity. In the
current study, we consider the liquid content at the ori-
fice to represent an initial mono-disperse collection of
No number of droplets of diameter 10μm. This diam-
eter is sufficiently small to expect the inertial effects to
be negligible, at least for the short-range aerosol trans-
mission. Moreover, typical human coughs consist of
a large number of droplets within the size range of
10–30μm (Zayas et al. 2012; Hersen et al. 2008; Lind-
sley et al. 2013; Yang et al. 2007), including some cases
wherein the maximum droplet size is about 10μm
as mentioned earlier (Bourouiba 2021a). Also this is
the size range that is responsible for the long-range
transport of pathogens contributing to airborne trans-
mission (Rosti et al. 2021; Ng et al. 2021). We, there-
fore, choose droplets of size 10μm, and assume that
the effect of the ‘slip’ velocity between the droplets
and the carrier fluid can be neglected so that the
droplets effectively follow the fluid streamlines, i.e.
ṽ = ũ in Equation (4). (See a discussion in Abkarian
et al. (2020) and Singhal, Ravichandran, Govindara-
jan, et al. (2021) on this aspect with respect to speech
flows.) We justify this assumption a posteriori by com-
puting the Stokes numbers of the droplets as a function
of space and time and show them to be sufficiently
small (see Figure 6). Furthermore, we have carried out
an assessment of the behaviour of the Stokes drag and
gravitational settling terms (i.e. second and third terms
on the right-hand side of Equation (4)) based on the
simulation results, which is presented in section S5 of
the supplementary material. We show that the Stokes
drag term StDũ/Dt̃ decreases continuously with time
and can be neglected in the limit St → 0. On the other
hand, the non-dimensional gravity term g̃ increases
continuously with time and the gravitational settling
velocity can be expected to become comparable with
fluid velocity in the long-time limit (i.e. for simula-
tion times of tens of seconds or longer) in the absence
of background ventilation. For the short-time evolu-
tion of cough flow (such as t = 6 s as done here), the
gravitational settling term is an order of magnitude
smaller than fluid velocity and its neglect is there-
fore justified; see Section 3.3 for further comments on
this point. For the present simulations, we take the
total amount of liquid expelled during the cough to
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Table 1. Physical properties used in the present study.

Latent heat of
vapourisation of water

Lv 2.4 × 106 J/kg

Gas constant for water
vapour

Rv 462 J/K kg

Density of liquid water ρw 1000 kg m−3

Density of dry air ρd 1.2 kg m−3

Kinematic viscosity of air ν 1.5 × 10−5 m2s−1

Acceleration due to gravity g 9.81 m s−2

Saturation vapour mixing
ratio at orifice

rs,o 3.47 × 10−2 kg/kg of dry air

Saturation vapour mixing
ratio in ambient

rs,∞ 1.47 × 10−2 kg/kg of dry air

be 10μl (Duguid 1946), giving No = 1.91 × 107 (i.e.
with droplet concentration of 2.8 × 104 cm−3). For the
total cough volume of 0.679 l, the initial volume frac-
tion of liquid water is 1.47 × 10−5, which translates
into a liquid mixing ratio at the orifice of rl,o ≈ 1.23 ×
10−2 kg/kg of dry air. During the cough (which lasts
for 0.528 s), the instantaneous liquid amount expelled
from the orifice is taken to be proportional to the
cough velocity at that time (Figure 1(b)).

2.3. Thermodynamics of Phase Change

The mixing ratios of vapour and liquid water are cou-
pled to the local temperature through the Clausius-
Clapeyron law which specifies the saturation mixing
ratio of vapour (rs) at a given local temperature:

rs(T) = rs,∞ exp
(
Lv
Rv

(
1
T∞

− 1
T

))
, (5)

where rs,∞ is the saturation mixing ratio of the
ambient (see, e.g. Murphy and Koop 2005), Lv is
the latent heat of vapourisation of water, and Rv
is the gas constant for water vapour. The values
for the various physical constants used in this sim-
ulation are given in Table 1. As ε = �To/T∞ =
14/293 ≡ O(10−2), we approximate the exponent
in equation (5) as Lv(1/T∞ − 1/T)/Rv = Lv(T −
T∞)/RvT2∞; see Ravichandran and Narasimha
(2020).

The saturation mixing ratio rs is the amount of
vapour rv that can exist in equilibrium at a given tem-
perature. In saturated parcels with rv > rs, the vapour
condenses into liquid water. Conversely, the liquid
water in parcels with rv < rs evaporates. In the fol-
lowing, we first provide a treatment for the thermo-
dynamics of phase change for a collection of droplets
and then suggest two closure models that we have
used for thermodynamics of the Eulerian liquid field.

For liquid droplets (which act as nuclei for conden-
sation), the condensation and evaporation processes
occur on a timescale that depends on their numbers
and sizes. Note that we have implicitly assumed that
the ambient has no other nuclei for condensation. The
condensation rate Cd can be written as

Cd ≡ drl
dt

= n · 4πa2 da
dt

· ρw

ρd
, (6)

where a and ρw are droplet radius and the density of
liquid water, respectively, and n is the droplet den-
sity, i.e. number of droplets per unit cough volume.
For isolated droplets growing by vapour diffusion, the
droplet growth rate is given by (see, e.g. Bohren and
Albrecht 2000)

a
da
dt

= 1
Cρw

(
rv
rs

− 1
)
, (7)

where C ≈ 107 ms kg−1 is a weak function of temper-
ature (Ravichandran and Narasimha 2020). The factor
rv/rs − 1 is the ‘supersaturation’; for rv < rs, this fac-
tor is negative and the droplets shrink by evaporation.
Using equation (7) in equation (6), and introducing
non-dimensionalisation, we get

dr̃l
dt̃

= H
τ̃c

(
r̃v
r̃s

− 1
)
, (8)

where the phase change time scale

τ̃c = uc
dc

Cρdrs,∞
4πan

(9)

accounts for the surface area of droplets available for
evaporation, and the modified Heaviside function is
given by

H =
{
1 if rv > rs or rl > 0
0 otherwise.

(10)

Here, τ̃c is an important parameter that tunes the
rate of condensation/evaporation at any given satura-
tion condition and dc is the characteristic length scale
(= do; Figure 1(a)). Note that the quantities a and n
appearing in the equation for τ̃c (Equation (9)) can-
not, by definition, be independently determined in a
one-moment scheme and therefore further modelling
needs to be done. Here we use the following two mod-
els for τ̃c, which depend upon how the Eulerian liquid
field is interpreted in terms of droplets.
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In the first model, we determine τ̃c at the begin-
ning of the cough (at t = 0 s) and treat it as constant
throughout the simulation (denoted as ‘const. τ ’). This
approach is typically used in cumulus cloud studies
where τ̃c is small and is of O(0.1) (Ravichandran,
Meiburg, and Govindarajan 2020; Hernandez-Duenas
et al. 2013). For the present cough flow problem, based
on the initial diameter of droplets Do = 2ao = 10µm
and initial droplet density no = No/Vo, τ̃c comes out
to be 14.34. This is much larger than that in clouds
which is primarily due to the much smaller width of
the cough flow in comparison to that of a cumulus
cloud. As a result, using a constant τ̃c for a cough flow
is strictly not justified. Here we use it to provide a base-
line case for comparison with the second model for τ̃c
explained below.

In the second model, we allow τ̃c to be variable.
Ravichandran, Meiburg, and Govindarajan (2020)
used a variable τ̃c model for computing mammatus
cloud evolution, in which the number density was
assumed constant in time and the droplet radius (con-
sidered initially mono-disperse) decreased as a func-
tion of time. Here we extend this treatment by not-
ing that as the cough volume increases due to con-
tinued entrainment, the droplet number density goes
on decreasing with time. Secondly, since the liquid
content rl is a function of space and time, the prod-
uct n × a3 is essentially a function of space and time
(Equation (12)). Due to the limitation of the Eulerian
approximation for liquid droplets, we cannot deter-
mine both n and a as functions of space and time.
In what follows, we will consider the number density
to be a function of t and the droplet radius to be a
function of x, y, z and t. This model, which repre-
sents an ‘extended’ first-ordermoment scheme, will be
denoted as ‘var. τ ’ and is based on the following two
considerations.

(1) Although the droplets released from the
orifice are mono-disperse initially, they
are subjected to different saturation fields
within the cough volume (as will be shown
below). As a result, one can expect the
resulting droplet distribution to be poly-
disperse. For example, Rosti et al. (2021)
have carried out a simulation with an ini-
tial mono-disperse droplet distribution at
the orifice and observed a considerable
broadening of the evaporation time caused

by turbulence, implying the presence of dif-
ferent droplet sizes.

(2) Since we do not consider inertial effects for
liquid droplets (or liquid field), the preferen-
tial clustering of droplets will not be present
(Monchaux, Bourgoin, and Cartellier 2012;
Yoshimoto and Goto 2007). There can still
be some concentration and dilution of liq-
uid field as the instantaneous fluid stream-
lines come closer or diverge. But this effect
is expected to bemuchweaker than the iner-
tial clustering. It is, therefore, reasonable to
consider an ‘effectively uniform’ distribu-
tion of droplets so that the number density
is only a function of time. One may also
consider this as an ‘equivalent’ uniform dis-
tribution of droplets that enables (approxi-
mately) characterising the liquid fieldwithin
the cough volume as a poly-disperse dis-
tribution of droplets (considered in point 1
above).

With these considerations, the local value of τ̃c(x, t)
may be written as

τ̃c(x, t) = uc
dc

Cρdrs,∞
4πa(x, t)n(t)

, (11)

where a(x, t) is the local droplet radius given implicitly
from the definition of rl as

ρdrl(x, t) = 4π
3
n(t)a3(x, t)ρw, (12)

and n(t) is given by

n(t) = N(t)/V(t). (13)

The total number of droplets (including liquid droplets
and droplet nuclei) in the cough volume, N(t) = No
for t > to = 0.528 s. For t < to,N(t) is taken to be pro-
portional to the fluid volume expelled (= ∫ t

0 ‘cough
flow-rate’ dt) at the origin up to time t. V(t) is the vol-
ume of cough at time t and is determined based on a
threshold for the cough-flow presented in Section 3.
The evaporation model used in the solver has been
validated against the standard case of a collection
of droplets evaporating in stationary air (not shown
here).
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2.4. Governing Equations

As the flow velocities and the temperature differences
in the flow are small, we make the Boussinesq approx-
imation, with density differences appearing only in the
buoyancy term. This approximation has been used in
the recent DNS and LES studies on cough and speech
flows (Chong et al. 2021; Rosti et al. 2021; Abkar-
ian et al. 2020; Singhal, Ravichandran, Govindarajan,
et al. 2021). The equations governing the dynamics are
thus the incompressible Navier–Stokes equations for
the velocity, coupled with scalar equations for the tem-
perature and mixing ratios of vapour and liquid water
with appropriate source/sink terms for the scalars.

∇ · u = 0; (14)
Du
Dt

= −∇p
ρ∞

+ ν∇2u + B; (15)

Cp
Dθ

Dt
= κ∇2θ + LvCd; (16)

Drv
Dt

= κv∇2rv − Cd; (17)

Drl
Dt

= κl∇2rl + Cd. (18)

Here, ν is the fluid viscosity of air, κ , κv and κl are
the diffusivities of temperature, vapour and liquid,
respectively, Lv is the latent heat of vaporisation of
water, and θ = T − T∞ is the temperature difference.
The buoyancy term, obtained within the Boussinesq
approximation, is given by,

B = g
ρ∞ − ρ

ρ∞
êy = g

×
[
T − T∞
T∞

+ (ξ − 1)(rv − rv,∞) − rl
]
êy,

(19)

where ξ (= 1.61) is the ratio of gas constants of air
and water vapour. This is obtained by writing ρ =
ρd(1 + rv + rl) andρ∞ = ρd,∞(1 + rv,∞), and by per-
forming a linearisation for small magnitudes of rl and
rv. A detailed derivation of Equation (19) can be found
in Ravichandran and Narasimha (2020).

Equations (14)–(18) are non-dimensionalised using
the length scale dc(= do), the velocity scale uc, the
temperature scale �To, and the scale for water mix-
ing ratios rs,∞, giving the non-dimensional governing
equations

∇̃ · ũ = 0, (20)

Dũ
Dt̃

= −∇̃p̃ + 1
Re

∇̃2ũ + 1
Fr2

×
[
θ̃ + rs,∞

ε
((ξ − 1)(r̃v − r̃v,∞) − r̃l)

]
êy,

(21)

Dθ̃

Dt̃
= 1

RePr
∇̃2θ̃ + L1C̃d, (22)

Dr̃v
Dt̃

= 1
ReScv

∇̃2r̃v − C̃d, (23)

Dr̃l
Dt̃

= 1
ReScl

∇̃2r̃l + C̃d, (24)

where the Reynolds number Re = dcuc/ν = 4849,
the inverse-square Froude number Fr−2 = gεdc/u2c =
1.01 × 10−3, the Prandtl number Pr = 0.71, the
Schmidt numbers Scv,l = 1, and the non-dimensional
latent heat of vaporisation

L1 = Lvrs,∞
CpT∞ε

= 2.73. (25)

In the above Equations (20)–(24), all the variables with
s̃ represent normalised quantities of their respective
parameters, for example, ũ represents the normalised
velocity vector. The saturation vapour mixing ratio in
Equation (5) is also normalised and will be used in a
form given as,

r̃s(θ̃) = exp(L2θ̃ ), (26)

where non-dimensional constant L2 is,

L2 = Lvε
RvT∞

. (27)

2.5. Numerical Method and Code Validation

Equations (20)–(24) are solved in a cuboidal domain of
dimensions 80do (= 1.8 m in x-direction) × 40do ×
40do using the finite-volume solverMegha-5, which is
second-order accurate in space and time. The domain
is discretised with uniform and equal grid spacing (�)
in all three directions, with a total of 1024 × 512 × 512
grid points. The grid resolution in the present study is
found to be as good as or better than that reported in
the literature on cough-flow DNS (Chong et al. 2021;
Rosti et al. 2021); see section S1 in the supplementary
material. A second-order Adams-Bashforth scheme
is used for time-stepping, with a CFL number of
0.15. Convective boundary conditions are imposed
on all flow variables at the x = Lx, y = ±Ly/2 and
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Figure 2. (a) A slice through the z = 0 plane at t = 0.96 s after the flow initiation, showing vorticity magnitude |ω| bounded by a
contour line (in black) corresponding to the density difference of 1% of the value at the orifice. The white dashed circle representing the
‘head’ of the cough flow is drawn with a centre decided based on the vorticity magnitude (see the adjoining text). The inset shows the
normaliseddistributionof |ω| summedover y–z planes,which is used to locate the x coordinate of the cough-flowhead. (b) The trajectory
of the centre of the cough-flow head compared with the cough-flow trajectory from the experimental measurements of Bourouiba,
Dehandschoewercker, and Bush (2014) (see their Figure 11). The purple semi-transparent region indicates the vertical spread of the
present cough-flow head. The error-bar reported in Bourouiba, Dehandschoewercker, and Bush (2014) is also included.

z = ±Lz/2 boundaries (see Figure 1(a)). A free-slip,
no penetration boundary condition on the velocity,
and zero-flux boundary conditions on the scalars are
imposed at x = 0, except for the orifice where Dirich-
let boundary conditions are specified. The solver has
been extensively validated and has previously been
used to study the statistics of steady jets & plumes
(Singhal, Ravichandran, Diwan, et al. 2021), cumu-
lus &mammatus clouds (Ravichandran, Meiburg, and
Govindarajan 2020), aswell as previous studies of virus
transmission by respiratory flows (Singhal, Ravichan-
dran, Govindarajan, et al. 2021; Diwan et al. 2020).
Each of the present simulated cases was run on the
CRAY supercomputer (CRAY XC40) using 2048 cores
and the total run time ≈43,000 core-hours.

As a further validation test, we simulate the ‘dry’
cough case (i.e. a puffwhich is lighter than the ambient
but does not contain evaporating water droplets), with
the experimental results from Bourouiba, Dehand-
schoewercker, and Bush (2014) for ‘Case I’ in their
experiment (see Table 1 in Bourouiba, Dehand-
schoewercker, and Bush 2014). In this experimental
case, Bourouiba,Dehandschoewercker, andBush (2014)
injected saline payload of 88 cm3 in a water tank with
a density difference of 3.15 × 10−3 g/cm3, treated as a
buoyancy scalar which under Boussinesq approxima-
tion acts as a source term for the vertical velocity; the
fluid velocity at the orificewas kept approximately con-
stant during the release of payload. We have replicated
these conditions in our simulation for comparison.

The simulated dry-cough flow at time t = 0.96 s,
visualised by contours of the vorticity magnitude

|ω|(=
√

ω2
x + ω2

y + ω2
z ) and an iso-surface of den-

sity difference, is shown in Figure 2(a). The ‘head’
of the cough flow at a given time instant is deter-
mined as follows. To obtain the x co-ordinate of the
centre of the head (xh), the vorticity magnitude is
summed over the y–z plane (
y,z|ω|) and the result-
ing distribution as function of x is shown in the inset
in Figure 2(a); xh is taken to be the x co-ordinate
corresponding to the maximum value of 
y,z|ω|. To
determine the y co-ordinate of the cough-head cen-
tre (yh), 
x,z|ω| is calculated as a function of y, where
the sum over x is carried out in the immediate vicin-
ity of xh (bounded by x locations at which 
y,z|ω|
reaches 50% of its peak value, shown as dashed lines
in the inset in Figure 2(a)). yh is then calculated as
the vorticity-weighted y co-ordinate, i.e. yh = 
y[y ·

x,z|ω|]/
y[
x,z|ω|]. The centre of the cough-flow
is marked in Figure 2(a) and its trajectory in time is
shown in Figure 2(b). The present cough-head tra-
jectory is compared with the experimental result of
Bourouiba, Dehandschoewercker, and Bush (2014),
and the two results can be seen to agree well. The
purple semi-transparent region indicates the vertical
spread of the simulated cough-flow head, determined
as the vertical region occupied by 90% of the total vor-
ticity in the axial vicinity of xh at a given time instant;
Figure 2(a). To get a visual feel for the position of the
cough-flow head, we have marked the head visually
using the best-described shape for a puff or thermal, an
ellipsoid (Scorer 1957); this is also done in Bourouiba,
Dehandschoewercker, and Bush (2014). The dashed
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ellipsoid in Figure 2(a) coincides with the centre of
the head and is the smallest ellipsoid enveloping the
vortical region under consideration.

3. Results

Here, we present simulation results for the mild cough
flow described in Section 2.1 using the Eulerian mod-
els detailed in Section 2.3. We first discuss how the
closure assumption of uniform (in space) number den-
sity of droplets, Equation (11), affects the dynamics in
‘var. τ ’ model and compare the results between the two
models. In order to specify the droplet number density
in Equation (11) for the var. τ model, the volume of the
cough V(t) at each time instant needs to be be defined
in a self-consistent manner; i.e. the turbulent puff with
a complex boundary has to be delineated from the
ambient. We define the cough volume as the volume
of the flow with vapour mixing ratio larger than a
chosen threshold. Once V(t) is determined at a given
time instant, n(t) can be calculated fromEquation (13)
and a(x, t) (droplet radius) from Equation (12), from
which τ̃c is obtained (Equation (11)). This enables
calculating the condensation/evaporation rate C̃d(t)
which is used to solve the equations for the next time
instant (Equations (22)–(24)). Thus the threshold used
for determiningV(t) needs to be ‘pre-set’ into the code
for marching the solution in time.

Figure 3(a) shows an instantaneous distribution of
r̃v with two different line contours corresponding to
the thresholds of r̃v = 0.905 and r̃v = 0.91. As can be
seen, both the thresholds are effective in delineating
the cough flow from the ambient. The cough volumes
calculated based on these two thresholds are plotted as
a function of time in Figure 3(b). There is a consider-
able increase inV(t)with time compared to the orifice
cough volume of 0.679 l; this is due to the turbulent
entrainment of the ambient fluid into the cough flow
(Diwan et al. 2020). At a given time instant,V(t) for the
threshold of r̃v = 0.905 is larger than that for r̃v = 0.91
as expected, and the difference between them increases
to about 15% after 6 s (Figure 3(b)). Thus the precise
choice of the threshold will affect the droplet number
density (Equation (13)) and therefore the value of τ̃c.
However, for a given rl, an increase (decrease) in the
number density (due to a different choice of the thresh-
old) causes a decrease (increase) in the droplet radii
(Equation (12)), which has a compensating effect for
the determination of τ̃c (Equation (11)). As a result,

the thermodynamic quantities like the total liquid con-
tent and the net evaporation rate do not show much
difference with a change in the threshold value; see
section S2 in the supplementary material for more
details. This situation is entirely acceptable consider-
ing the scope of the var. τ model, which is supported
by a good comparison of our results (presented below)
with the available literature. Inwhat follows, we choose
a threshold of r̃v = 0.91. Note that the cough volume
follows a V(t) ∼ t3/4 variation over a certain time
interval for both the values of threshold as seen in
Figure 3(b), consistent with the previous results (see,
e.g. Rosti et al. 2021). Since the t3/4 scaling is strictly
valid for a dry puff (Kovasznay, Fujita, and Lee 1975),
it is expected to hold for the present cough flow (which
is moist) only approximately.

3.1. Comparison of Results between the TwoModels
for τ̃c

Westart by comparing broad features of the coughflow
for the const. τ and var. τ models. The mean velocity
of the cough flow (umean) and its streamwise extent
(xc) are plotted in Figure 4(a) for the two models.
umean is calculated by averaging the streamwise com-
ponent of velocity over the cough volume V(t) at a
given time instant and xc is determined as the farthest
point from the orifice where r̃v > 0.91. The exhaled
total momentum of the cough flow in the stream-
wise direction can be expected to be approximately
constant. Therefore, the cough-flow velocity should
decrease with time following t−3/4, as the puff vol-
ume increases with the power law t3/4 (Figure 3(b)).
Figure 4(a) shows that the mean cough-flow velocity
follows the t−3/4 relation well, for both the models.
The streamwise extent or ‘reach’ of the cough flow
is another important parameter, as it determines how
far droplets from an infected person can potentially
transmit the virus. As seen from Figure 4(a), xc fol-
lows the t1/4 variation (i.e. cube-root of V(t)) well for
the var. τ model, whereas the const. τ model shows a
continuous departure from this law as time increases.
This is seen more clearly in the linear graph for xc
shown in Figure 4(b), wherein the const. τ model is
seen to depart from the t1/4 variation for t>2 s. Inter-
estingly, this departure for the const. τ model is related
to the size and behaviour of a chunk of the cough-flow,
which separates from themain flow near its head. This
feature will be discussed in relation to Figure 10(a);
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Figure 3. (a) Filled contours for the vapour mixing ratio r̃v overlaid with line contours (in white) corresponding to r̃v = 0.905 and r̃v =
0.91 in the vertical (z = 0) plane. The inset shows a zoomed-in view at the location indicated, showing that the line contours do not
change significantly as the threshold value is changed. (b) Cough volume V(t) based on the two thresholds shown in (a); V(t) variation
approximately obeys the 3/4 scaling for a turbulent puff.

Figure 4. (a) Mean velocity umean (squares) and streamwise extent (or horizontal ‘reach’) xc (circles) of the cough flow as a function of
time. The dashed lines show the expected behaviour for a turbulent puff. The colours indicate the two models for τs (see Section 2.3).
Note that the axes here are logarithmic. (b) Time variation of xc plotted on linear axes.

Figure 5. Time variation of the total liquid content in the cough
flow for the const. τ and var. τ models.

see also Figure S5(a) in the supplementary material.
Figure 4(b) also shows a comparison of the present
results with those reported by Chong et al. (2021). As
can be seen, there is a goodmatch between the xc vari-
ation from Chong et al. (2021) and that for the var. τ
model from the present study.

Figure 5 shows the total liquid-water content within
the cough volume as a function of time. The black solid
line indicates the liquid volume exhaled at the orifice;
a total of 10μl is expelled over the cough duration of
0.528 s. The total liquid contents for both the models
show an initial increase and exhibit consistently larger

values than the exhaled liquid content (Figure 5). At
the end of the cough duration, there is an incre-
ment in liquid volume of 18% and 25%, respectively,
for the const. τ and var. τ models compared to the
total exhaled liquid. This implies that there is an ini-
tial condensation of the water vapour expelled from
the orifice, which can be attributed to supersatura-
tion, causing an increase in the liquid volume. In this
connection, Chong et al. (2021) found that higher
saturation and lower temperature conditions of the
ambient (90% and 20◦C) were favourable for longer
survival of droplets in their simulations, again due
to condensation of the supersaturated water vapour
in the cough. We have replicated the same ambient
conditions here and, therefore, the trend in Figure 5
indicates that we have been able to accurately cap-
ture the physical effects of supersaturation using the
present scheme. After t = 0.528 s, the liquid volume
starts decreasing as the droplets evaporate in the
sub-saturated environment created due to the dilu-
tion of the cough flow by the entrained ambient air
(Figure 5). The evolution of the saturation field within
the cough flow will be presented in some detail in
Section 3.2.



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 789

Comparing the const. τ and var. τ models in rela-
tion to Figure 5 shows that the const. τ model consid-
erably under-predicts the liquid content as compared
to that for the var. τ model at a given time instant
(especially for t>0.528). Alternatively, liquid water
takes a longer time to evaporate down to a specified
level for the var. τ model compared to that for the
const. τ model. This is due to an increase in the value
of τ̃c (implying longer evaporation time scales) for the
former model as a result of a decrease in the num-
ber density and droplet size with time (Equation (11));
for the latter model τ̃c is kept fixed giving a constant
evaporation time scale. We therefore expect the var. τ
model to be more realistic in simulating the thermo-
dynamics of phase change in mild cough flows and
present more results for this case in the next section.
A few additional results for the const. τ model are
presented in Figures S4 and S5 in the supplementary
material.

Figure 5 gives us useful information about the time
it takes for most of the expelled liquid to get evapo-
rated. We find that it takes about 10 times the cough
duration for the liquid content to drop to less than 5%
of its initial value for the var. τ model (and 7.5 times
the cough duration for the const. τ model; Figure 5).
During this time, the streamwise distance travelled by
the cough flow is about 1.3–1.5m (Figure 4(b)). Liquid
droplets in such flows are thus long-lived. (We note,
however, that we have assumed an initially monodis-
perse droplet size distribution.) It is expected that for a
stronger cough the lifetimes and the distances travelled
would be even larger.

3.2. Flow Evolution and Thermodynamics for the
var. τ Model

Figure 6(a) shows the variation of the Stokes number
for the cough flow, St = τp/τf , as a function of time.
The droplet response (or relaxation) time is calculated
as τp = ρlD2

o/18μg , for the initial droplet diameter
(Do = 2ao) of 10μm; here μg is the dynamic viscos-
ity of air. The flow time scale τf is typically written
as the ratio of a flow length scale to a flow velocity
scale. We use three different measures for τf based
on different choices of velocity and time scales. A
natural choice is to use the mean cough-flow veloc-
ity umean (averaged over V(t); see Figure 4(a)) and
the mean width of the cough-flow σmean defined in

Equation (28), where the mean is taken over x.

π

4
σ 2
mean = mean

[∫
y,z

dy dz

]
for r̃v > 0.91. (28)

For this measure of τf , which represents a large-eddy
turnover time, the Stokes number is found to be neg-
ligibly small, dropping from about 5 × 10−4 to less
than 10−5 as time progresses (Figure 6(a)). The sec-
ond choice for τf is taken to be the Kolmogorov time
scale, which is the smallest time scale in the turbulence
cascade, given as

√
νσmean/u3mean (Rosti et al. 2021).

This is based on the estimate of energy dissipation as
∼ u3mean/σmean. The Stokes number calculated from
this measure of τf shows somewhat higher values than
that based on the large-eddy time, but the absolute val-
ues of St are still fairly small, ranging from 10−2 to
10−4 (Figure 6(a)).

The third measure of τf is obtained based on the
maximum velocity (umax) and the minimum flow
width (σmin) of the cough flow as the velocity and
length scales; σmin is defined in Equation (29). This
results in the maximum possible values for the Stokes
number at a given time instant, shown in Figure 6(a) as
dashed lines. Note that these St values are not necessar-
ily realised by the cough liquid droplets but represent
an upper bound that is not likely to be exceeded by any
droplet. As seen from Figure 6(a), the upper bound on
St has a value of 10−1 at t = 0 but drops rapidly to 10−2

after the end of cough duration (∼0.5) s and contin-
ues to drop to reach values less than 10−3 at t = 6 s.
Thus even the largest possible estimates of St within
the cough flow are less than 10−1.

π

4
σ 2
min = min

x

[∫
y,z

dy dz

]
for r̃v > 0.91. (29)

This exercise shows that for droplets of the order of
10μm in diameter and with flow parameters repre-
senting a mild cough, the Stokes numbers within the
flow domain are sufficiently small (�1). As shown in
section S5 of the supplementary material, the Stokes
drag term is negligible in this limit and the gravita-
tional settling effects are small over the duration of
the simulation. This provides a support to our earlier
premise (Section 2.2) that the droplets in our simu-
lation follow the streamlines of the flow and that the
effect of slip velocity can be neglected. Note that even
for a somewhat larger droplet diameter of, say, 30μm,
the Stokes numbers based on the Kolmogorov time
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Figure 6. (a) Variation of the Stokes number for the cough flow (St = τp/τf ) with time, where τp and τf are the droplet-response and
flow time scales respectively, with three different measures for τf . The initial droplet diameter is 2ao = 10µm. (b) Streamwise variation
of the local Stokes number for three time instants.

Figure 7. (a) Time variation of the effective droplet diameter Deff/Do; Do being the initial diameter. The inset compares the droplet
lifetimes in the present simulation with predictions from Wells (1934) for different shrinkage criteria. (b) Comparison of probability
distribution function (pdf ) for droplet diameters at different times instants. The mean droplet size decreases as the liquid evaporates.

scale can be expected to be of the order of 10−2–10−3,
which are �1. Thus the present formulation can, in
principle, be applied to somewhat larger droplets sizes
as well.

Figure 6(b) shows the streamwise variation of the
Stokes number at three time instants of the cough
duration: 0.1 s which is close the peak cough flow rate,
0.52 s which is close to the end of the cough dura-
tion, and 0.31 s which is an intermediate time instant
(Figure 1(b)). For these cases, the local τf (i.e. at a given
x) is calculated based on the local width of the flow
and the maximum streamwise velocity at that x. At
t = 0.1 s, St values are somewhat higher (6 × 10−2 −
10−1) for x<0.05m but beyond this distance they are
smaller. For the two later time instants St is typically
of the order of 10−2, providing a further support to
our main premise. In this connection, it is relevant to
refer to the results of Rosti et al. (2021) who carried out
a numerical experiment for an initial mono-disperse
droplets of 10μm diameter, wherein simulations were
carried out with and without droplet inertia. They
plotted the centre of mass of the cloud of droplets
(Figure 9 in Rosti et al. 2021) and found that the x
location of the centre of mass was closer to the ori-
fice when inertia was accounted for as compared to the

no-inertia case. This can be understood in relation to
Figure 6(b) (t = 0.1 and 0.31 s), wherein droplets with
higher Stokes numbers are found located closer to the
orifice. If such droplets are large enough for the iner-
tial effects to be important (say, due to much higher
Re and therefore smaller τf in Rosti et al. 2021), the
centre of mass of the resulting droplet cloud can be
expected to shift towards the orifice, in comparison to
the no-inertia case.

Next, we calculate the lifetimes (χ) of droplets from
our simulation and compare them with the theoret-
ical estimates of Wells (1934) and Xie et al. (2007);
also see Chong et al. (2021). Towards this, we con-
sider the total liquid content at a given time instant
(Figure 5) to be consisting of No droplets of uniform
size and calculate the effective droplet diameter Deff
by equating the total liquid volume to No(π/6)D3

eff .
The variation of Deff/Do with time is presented in
Figure 7(a). Following Chong et al. (2021), we first cal-
culate the 80% lifetime, i.e. the time taken by droplets
to shrink to 80% of the initial diameter. This comes
out to be χvar. τ = 2.47 s marked in Figure 7(a). Also
shown in the figure are the estimates of Wells (χWells)
and Xie et al. (χXie) for the 80% lifetime. We find
that χvar. τ /χWells = 153.4 which is consistent with
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the range 100–150 obtained for this ratio by Chong
et al. (2021) in their simulations. The accurate capture
of extended lifetimes of the cough droplets, vis-a-vis
Wells (1934), provides a further verification to the
present approach. Note that Wells (1934) derived the
dependence of droplet lifetime on its size, considering
an isolated droplet evaporating in an ambient whose
temperature and relative humidity remain unchanged
(see Section S3 in the supplementary material). Since
the temperature and relative humidity experienced by
droplets within the cough volume can vary consider-
ably in space and time due to turbulence (see Figures 8
and 9 and also Chong et al. 2021), χWells underesti-
mates the actual droplet lifetime by two orders of mag-
nitude. On the other hand, Xie et al. (2007) coupled
the local temperature and humidity fields experienced
by a single droplet to a steady-state jet in estimat-
ing droplet lifetime. As a result, χXie is much larger
than χWells but still falls short of χvar. τ by a factor of
2.4 (Figure 7(a)). This points out the need to invest
further modelling efforts to predict droplet lifetimes
accurately for a realistic cough, which is inherently
transient in nature.

The 80% criterion used by Chong et al. (2021) was
possibly due to a short simulation time (1.2 s) used
in their study. In the present work, we have run the
simulation till 6 s, which allows us to determine the
time taken for a droplet to shrink to about 30% of the
initial diameter. We have determined droplet lifetimes
for the shrinkage criterion ranging from 80% to 30%
and compared them with the Wells’ estimates, calcu-
lated using equation S3 in the supplementary material
for these shrinkage criteria. The ratio χvar. τ /χWells
is plotted as a function of Deff/Do corresponding
to the different shrinkage criteria; see the inset in
Figure 7(a). The variation of χvar. τ /χWells is non-
monotonic, highlighting the crucial role played by the
effective temperature and relative-humidity fields sur-
rounding droplets in determining the evaporation rate
for a given droplet size.Note that the ratioχvar. τ /χWells
remains of the order ∼100, consistent with previous
results.

As discussed in Section 2.3, the var. τ model
enables us to calculate the local diameter D(x, t)
based on the local r̃l(x, t) distribution (Equation (12)).
Figure 7b shows the probability density function (pdf )
of the droplets (for D(x, t) > 2µm) at different time
instants. A range of droplet sizes up to a maximum
of 18μm is present, all of which originate from the

mono-disperse initial droplet diameter of 10μm. For
t = 0.1 and 1.15 s, the pdf peaks at diameters greater
than 10μm indicating that, for small times, the dom-
inant phase-change process is the condensation of
water vapour due to supersaturation. This is apparent
from Figure 8(a), which shows that the maximum rel-
ative humidity within the cough flow much exceeds
RH = 1 for t<2 s. The presence of supersaturation is
the primary reason why Deff/Do > 1 for small times
(Figure 7(a)) and why the droplets have extended life-
times as seen earlier; see Chong et al. (2021). Refer-
ring back to Figure 7(b), for t ≥ 2.2 s, the peak in the
pdf shifts to droplets smaller than 10μm suggesting
that droplet evaporation becomes the dominant phase-
change process, due to an increased sub-saturation of
the environment; see Figure 8(b).

Figure 8(a) shows the maximum temperature
(Tmax) and relative humidity ((rv/rs)max) present
within the cough volume; the corresponding mean
values (Tmean, (rv/rs)mean), averaged over V(t), are
plotted in Figure 8(b).Due to the presence of large con-
densation rates during the cough (t<0.528 s), some
regions undergo sufficient heating to raise the max-
imum temperature slightly above 34◦C, which is the
orifice temperature (Figure 8(a)). After the cough
ends, Tmax declines at a rapid rate primarily due to
the entrainment of ambient fluid (Diwan et al. 2020);
there is also a contribution from the droplet evapo-
ration which acts as a sink for temperature. On the
other hand, the maximum and mean relative humid-
ity decreases much more slowly (Figure 8(a,b)), as
the evaporation acts as a source of water vapour.
Due to the decrease in temperature (requiring less
water vapour for saturation) and continued evapora-
tion, there always exists a region in the flow which
is near saturation condition; i.e.(rv/rs)max ≈ 1 even
for t>2.5 s (Figure 8(a)). On average, however, the
cough fluid is sub-saturated for the entire simulation
time as seen in Figure 8(b). Rosti et al. (2021) have
argued that the mean saturation in a moist puff should
decay like t−3/4. They observed the t−3/4 behaviour
for an extended time duration (0.1–100 s) due to a
smaller value (60%) of the ambient relative humidity
used in their simulations, which is not expected to lead
to supersaturation (Chong et al. 2021). In the present
case, the t−3/4 variation for (rv/rs)mean is apparent
after t = 3 s (Figure 8(b)), presumably because of the
presence of supersaturation in some parts of the flow
at earlier time instants. Interestingly, the start of this
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Figure 8. Time variation of (a) maximum and (b) mean temperature and relative humidity within the cough volume.

Figure 9. (a) Contours of relative humidity (top) and temperature (bottom) at time t = 0.629 s. (b) Contourswrapping 90%of total liquid
content at time t plotted on a local supersaturation (rv/rs − 1) vs. temperature (T) diagram. The plot shows the saturation-temperature
conditions at which most of the liquid content (or droplets) exists at any time t.

power-law decay coincides with the location where
Tmean nearly reaches a constant value close to the
ambient temperature. One may expect that the t−3/4

variation would continue if the present simulation
was run for a longer time. A similar behaviour of
(rv/rs)mean is also observed for the const. τ case, as
shown in Figure S4 in the supplementary material.

In the following, we present detailed distributions
of the various flow and thermodynamic quantities,
which is the real strength of the present computational
scheme. Figure 9(a) shows contour plots of the relative
humidity and temperature at t = 0.629 s, i.e. just after
the cough ends; both exhibit a considerable degree of

inhomogeneity due to turbulence. At this time instant,
the regionwithin the core of the coughflow is supersat-
urated (indicated by saturated red colour in the colour
map; Figure 9(a)), whereas the region near the edges
of the flow is in a sub-saturated state; see also Chong
et al. (2021). Thus both condensation and evapora-
tion take place simultaneously within the cough vol-
ume. This is seen more clearly in Figure 9(b) which
presents the evolution of the phase-change character-
istics on a supersaturation (rv/rs − 1) vs. temperature
plot. This plot is obtained as follows. The total liq-
uid content present within the cough volume (r̃v >

0.91) at a given time instant is distributed over 250 ×

Figure 10. (a) Iso-surfaces of the vapourmixing ratio at r̃v = 0.92 (semi-transparent red) and the liquidmixing ratio (blue) at r̃l = 5.96 ×
10−4. (b) The axial distributionof liquid content per unit length and total vorticity at a given x location (summedover the y–z plane). These
plots for the var. τ model can be compared with those for the const. τ model presented in Figure S5 of the supplementary material. In
particular, Figure S5(a) shows that the chunk separated from themain flow for the const. τ modelmoves to greater streamwise distances
than that seen here for the var. τ model.



INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS 793

250 bins of the saturation-temperature grid and is
summed over each bin. A specific contour level is cho-
sen such that 90%of the total liquid present at that time
instant lies inside that contour. Such contours are plot-
ted in Figure 9(b) for three time instants. For exam-
ple, at time t = 0.31 s, 90% of the liquid content (or
droplets) experience the supersaturation-temperature
conditions that lie inside the black curve in Figure 9(b).
The dashed line at rv/rs = 1 (Figure 9(b)) provides
a demarcation between condensation (due to super-
saturation) and evaporation (due to sub-saturation).
These can be mapped onto the regions in physical
space affected by condensation/evaporation bymaking
contour plots such as the one presented in Figure 9(a).
At t = 0.31s in Figure 9(b), a considerable region is
subjected to supersaturation causing an increase in liq-
uid content, consistent with the previous discussion
in relation to Figures 7 and 8. As time increases, the
contour contracts more rapidly along the temperature
axis as compared to the saturation axis. Furthermore,
the effect of supersaturation (i.e. rv/rs > 1) diminishes
rapidly with time so that beyond at t = 1.26 s, the
liquid content is expected to decay by evaporation;
see Figure 5. The saturation-temperature diagram in
Figure 9(b) can serve as a useful tool in visualising the
thermodynamics of phase change in an evolving cough
flow.

An iso-surface of water vapour with r̃v = 0.92 at
t = 5.24 s is shown in Figure 10(a). The slightly higher
value of r̃v = 0.92 chosen here (as compared to 0.91
used earlier as a threshold for determining V(t))
enables discerning certain flow features better, espe-
cially the chunk of fluid which is about to separate
from the main cough flow at this time instant seen
in Figure 10(a). This feature has been reported by Liu
et al. (2021), who found that the separated portion of
the cough flow carries droplets with it and travels at
a faster speed than the main flow, potentially result-
ing in a faster spread of infection. Figure 10(a) also
shows an iso-surface of liquid water (blue) with r̃l =
5.96 × 10−4, which is visualised through the semi-
transparent vapour contour (red). The vapour is seen
to wrap around the liquid content and shield it from
the ambient conditions, providing a visual confirma-
tion to the inference drawn in Chong et al. (2021)
that this vapour shielding effect contributes to the
extended droplet lifetimes by providing an elevated
local relative-humidity field. Note that the liquid
mixing ratio of r̃l = 5.96 × 10−4 corresponds to the

droplet diameter of 4μm (Equation (12)); droplets of
larger size are expected to be present within the central
region of the cough flow.

Figure 10(b) presents the liquid content per unit
length and the absolute vorticity magnitude (summed
over the y–z plane) as a function of x for two time
instants. It is seen that the majority of liquid is con-
centrated within the ‘head’ of the cough flow, which
is also the region where vorticity magnitude is large.
In fact the streamwise distributions of the liquid con-
centration and vorticity are similar to each other
(Figure 10(b)). The large vorticity present within the
cough head suggests the presence of a torroidal vor-
tex which can trap liquid droplets within it. Since such
vortex structures are known to maintain their iden-
tity over long distances, we may expect the trapped
liquid droplets to travel with them and contribute to
the long-range transmission of pathogens; see also Liu
et al. (2021). The interaction between the liquid con-
tent and vorticity fields represents an important aspect
of the dynamics of a moist puff, and is being investi-
gated further.

3.3. Advantages and Limitations of the Present
Approach

The coarse-graining of liquid droplets into an Eule-
rian liquid field is conceptually simpler and compu-
tationally easier to implement as compared to the
Eulerian-Lagrangian solvers which track individual
droplets (Rosti et al. 2021; Fabregat et al. 2021; Ng
et al. 2021). For example, the Eulerian field approx-
imation supports specification of any profile of liq-
uid content at the orifice as a function of y, z and t.
Especially, when the number of droplets in a cough
becomes large, Lagrangian tracking can become com-
putationally expensive. To illustrate this point, ideally,
a comparison of Eulerian and Lagrangian treatments
should be done with the same solver. However, our
solver does not yet handle Lagrangian droplets, and
most Lagrangian particle tracking studies in the lit-
erature (e.g. Chong et al. 2021; Liu et al. 2021; Ng
et al. 2021) do not report the data on utilised com-
putational resources. Yet, a careful comparison of the
computational resource utilised in the present simula-
tion is done with the available computational-resource
data from the recent study by Fabregat et al. (2021)
on the DNS of cough flow. We find that the compu-
tational cost for the present Eulerian-Eulerian solver is
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about 31 times smaller as compared to the Lagrangian-
Eulerian solver of Fabregat et al. (2021) when solving
for the full set of governing equations. When applied
to the computation of scalars (including particles in
Fabregat et al. 2021) alone, the current approach is 65
times less expensive than that in Fabregat et al. (2021).
A detailed discussion on this exercise is provided in
section S4 in the supplementary material.

The number of droplets used in the simulation of
Fabregat et al. (2021) is 1.932 × 105 (consisting of
seven sizes for the initial droplet diameter between 4
and 256μm), whereas the DNS by Rosti et al. (2021)
and Ng et al. (2021) use much less number of droplets,
equal to 5000 (in the size range 10–1000μm). On
the other hand, the equivalent number of droplets
(of initial diameter 10μm) in the present simulation
is ∼2 × 107. This corresponds to a droplet concen-
tration of ∼3 × 104 cm−3 (in terms of the expelled
cough volume), which is relevant for realistic coughs
with maximum droplet diameters of 10–20μm; see
Bourouiba (2021a). The present approach iswell suited
for such situations.

From the point of view of epidemiological mod-
elling, an important input needed is the probability of
infection to a susceptible person standing a few feet
away from an infected person (Domino 2021; Chaud-
huri, Basu, and Saha 2020). This probability can be
calculated from the dose of virus-laden cough fluid to
the susceptible person. This is another area where sim-
ulation of the kind presented here will be of value. For
example, the present cough flow reaches an axial dis-
tance of about 5 ft at the end of 6 s (Figure 4(b)) and the
total liquid content reaching a person at this distance
can be readily determined from the results reported
here (Figure 10(b)).

The limitations of the present approach should also
be noted. Firstly, the use of the extended one-moment
scheme implemented here requires a closure assump-
tion relating the local droplet number density and
the local droplet size. Our choice for this closure for
the var. τ model, Equation (11), is to assume that the
number density of droplets is uniform in the cough
volume. Secondly, our approach works for an ini-
tial mono-disperse distribution of droplets released
from the orifice, whereas respiratory events are known
to produce a range of droplet sizes, as discussed
above. Thirdly, we do not incorporate droplet iner-
tia and settling effects and therefore preclude large-
sized droplets, with higher Stokes numbers, from our

analysis; the analysis also precludes the long-time evo-
lution of small droplets (see section S5 in supplemen-
tary material). Finally, we implicitly assume that there
are no aerosol particles (or condensation nuclei) in the
ambient air, which may not always be true.

Some of these limitations can be overcome, to vary-
ing degrees, by introducing additional considerations.
A scalar transport equation may be solved for (an)
additional moment(s) of the droplet size distribution
to obtain its distribution in space and time (Beck and
Watkins 2002). The droplet inertia and gravitational
settling can be introduced (within the liquid field
approximation) for larger droplets with small but finite
Stokes numbers using Equation (4) above. Moreover,
additional liquid water scalars representing different
initial droplet sizes could be used, in analogy with
multiple hydrometeor classes in simulations of atmo-
spheric flows (e.g. Hernandez-Duenas et al. 2013),
although at the cost of simplicity. A development of the
present solver along some of the lines mentioned here
is being carried out.

A further limitation of the solver is its simple geom-
etry; real-life geometries are rarely cuboidal (Shao
et al. 2021). This limitation may be overcome using
volume penalisation (e.g. Ravichandran and Wett-
laufer 2020), such that solid regions of complex shapes
may be incorporated in the domain. The relatively
small time step used in our explicit time-stepping
permits the use of a small penalisation parameter,
allowing the physics of flow around objects of com-
plicated shapes to be adequately captured. Along with
these practical domain settings, the evolution of cough
droplets can be analysed in practical time settings
which can span from tens of seconds to tens of min-
utes, provided the field approximation to droplet dis-
tribution continues to hold. As discussed in Section 2.2
above and in section S5 of the supplementary mate-
rial, for large times, the decreasing Stokes number is
compensated by a much larger increase in the non-
dimensional gravity term, thereby making the grav-
itational settling velocity to be of the same order
as the fluid velocity in the absence of any back-
ground ventilation. We plan to incorporate this effect
in our solver along the lines done in Ravichandran
and Narasimha (2020), wherein the same basic solver
(Megha-5) has been used for simulating a mammatus
cloud.

Despite the computational efficiency of the solver
and the chosen Eulerian treatment of droplets, DNS
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remains much more computationally expensive than
other model-based approaches. For example, simulat-
ing the flow in a domain of size 3 × 22 m3 (a typical ele-
vator) for about 30 s would require 1.75 million core-
hours at the present resolution, which would be much
higher for Lagrangian-based solvers. This suggests the
need for better subgrid models for thermodynamics,
which requires careful direct numerical simulations
(like the one presented here).

4. Conclusion

We have used a computational approach (that may be
called the extended one-moment scheme) for simu-
lating moist cough flows, that uses an Eulerian field
approximation for liquid droplets, which are advected
by fluid streamlines. A closure model is proposed for
the time scale of evaporation (τ̃c), which is a crucial
parameter for the thermodynamics of phase change.
The model considers the droplet density to be uni-
form in space (but varying in time) and the droplet
radius a function of space and time. Thismodel (called
the var. τ model) is compared with the const. τ model,
in which τ̃c is kept constant. We find that the liquid
content within the cough flow takes much longer to
evaporate for the var. τ model, as compared to that
for the const. τ model, due to a gradual increase in τ̃c
with time for the former, caused by dilution and evap-
oration. The var. τ model is shown to be closer to the
realistic cough flow scenarios and has been used for a
detailed investigation in the context of a mild cough.
The Stokes numbers associated with the initial droplet
diameter of 10μm are plotted as a function of space
and time, for three different measures of the flow time
scale. The Stokes number based on the Kolmogorov
time scale is found to be of the order of 10−2 or smaller,
providing a verification to our assumption that the
liquid-droplet inertia is negligible over the duration of
simulation and that the liquid field is carried by the
local fluid velocity. A careful analysis of the evolution
and thermodynamics of the cough flow has been car-
ried out, and a comparison is made with the results
available in the literature. The following aspects of the
available results have been successfully reproduced.

• The mean velocity and the streamwise extent
of the cough flow follow the t−3/4 and t1/4

variations, respectively. Themean relative humidity
follows the t−3/4 law for the latter part of the flow
evolution (Rosti et al. 2021).

• The liquid field in the core of the cough flow
undergoes an initial condensation followed by
evaporation at later times (Chong et al. 2021).
This is due to the initial supersaturation on
account of a high ambient relative humidity
(90%).

• The effective droplet diameter shows an extended
lifetime, which is 120–150 times larger than that
predicted by the Wells’ model (Wells 1934); see
Chong et al. (2021).

• At later time instants in the flow evolution, a
chunk of fluid separates from the main cough
flow and causes an increased spread of the flow in
the lateral/streamwise direction (Liu et al. 2021).

This comparison provides a strong support for the
utility of our proposed approach, and we have used
it to obtain some new results. For the ‘mild’ cough
simulated herein (with the initial droplet diameter of
10μm) the time taken for the liquid content to reach
5% of its initial value has been found to be about 7-
10 times the cough duration. The interpretation of
the liquid field in terms of local droplet sizes (for
the var. τ model) has enabled us to plot a probability
density function for droplet sizes and track its evo-
lution with time. A saturation-temperature diagram
has been constructed at different time instants, which
shows that the temperature of the cough flowdecreases
with time more rapidly than the relative humidity,
thereby promoting conditions of supersaturation close
to the orifice. Finally, a portion of the liquid content is
shown to be trapped within the head of the cough flow,
which is also a region of high vorticity and is there-
fore likely to survive over longer distances from the
orifice. We believe the present approach is well suited
to study the long-range transport of small droplets
in a cough flow (after inclusion of the gravitational
settling effects), which is responsible for the airborne
transmission of the COVID-19 type pathogens. Our
results can also provide useful inputs for calculating
infection probabilities (Singhal, Ravichandran, Govin-
darajan, et al. 2021), in the context of epidemiological
modelling.
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