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Hardy-Littlewood—Sobolev Inequality for Upper Half Space

V. P. ANoor
SANJAY PARUI

Abstract

We define an extension operator and study (L?, L9) boundedness of Hardy-Littlewood—Sobolev
inequality and weighted Hardy—Littlewood—Sobolev inequality on upper Half space for the Dunkl
transform.

1. Introduction and Main Theorems

Weighted inequalities have applications in problems of Harmonic analysis and partial
differential equations. Hardy—Littlewood—Sobolev and weighted Hardy—Littlewood—
Sobolev inequality have attracted a great attention to many people and it has been
extended from Euclidean space to other manifolds. One of the simplest manifolds
with boundary is upper-half space R" x (0, o). The Hardy-Littlewood—Sobolev (HLS)
inequalities are equivalent to (LP, L9) boundedness of the convolution with the Riesz
potential. Parallel to the potential equation Au = f on R™, one can consider the Laplacian
on R x (0, co) with Neumann boundary condition. For f € Cy (RN) N > 2 the pointwise
solution of the equation

—Au(x,xn41) =0 for xy41 > 0and x € RN
Upy, (x,0) = =f(x) forx e RN

is equivalent to up to a constant multiplier and harmonic function, the following integral

equation
u(x) = / &) __dy. (1.1)
R

L2 VT

(be-yP i)

This equation can be viewed of another type of harmonic extension of f. With this
motivation Dou and Zhu [2] introduced the extension operator

Eaf(x,xn4+1) = /RN G N+l-a d

2
(b P +ad,)
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for @ € (1, N + 1) and studied the sharp Hardy-Littlewood -Sobolev inequalities for
&4 and it’s dual operator. Dou [4] also proved double weighted HLS inequality on the
upper half space and study the existence of extremal functions for the sharp inequality.
Dunkl transform is one of the generalizations of classical Fourier transform and many
important classical results have been extended to the R" with Dunkl weight. Boundedness
of Riesz potential for Dunkl transform was first proved by Thangavelu and Xu in [10] and
a different proof was given by Gorbachev et al. [5]. Same authors of [5] proved sharped
weighted HLS inequality (Stein—Weiss inequality) with Dunkl weight and found the
sharp constant for p = ¢ in [6]. Our main goal in this paper is to define the extension
operator EX analogous to &, and prove the HLS inequality and weighted HLS inequality
associated with the Dunkl transform on the manifold RY x (0, o).

Let (-, - ) denote the standard inner producton R™ and | - | := 4/(-,-).LetR c RV \{0}
be a finite set. Then R is called a root system, if R N Ra = {+a} for all @ € R and
04(R) = Rforall @ € R. A root system can be written as the disjoint union of R, U (—R5)
and these R, and (—R,) are separated by a hyper plane passing through the origin. This
R, is called as the positive roots of the root system. The subgroup G = G(R) € O(N,R)
which is generated by reflections {0, : @ € R} is called reflection group (or Coxeter-
group) associated with R. A G-invariant function k defined on R, is called as a multiplicity
function. We fix a reflection group G and a multiplicity function k. We can define the
G-invariant homogeneous weight function hi (x) = [1ger, [{x, @) |2k(@) of degree 2y,
where yr = Y ,er, k(). Let di := N + 2y and dui(x) be the weighted measure
Ck hi (x)dx, where

-1 = ‘¥h2 dr=2"T di
Cp /]RNe () ik

For j € {1,2,..., N} the differential-difference operators 7';(the Dunkl operators) are
defined by

Tif(x):=0;f(x)+E;f(x), feC'(RY)
where E;f(x) = Yger, k(a)ajM and @ = (a1,a,...,ay). The Dunkl

operators 7 is a generalization of the égf)t?al differential operator in the classical analysis.
For a fixed y € RY, it is known that there exists a unique real analytic solution
f(x) = Ex(x,y) for the system T; f = y; f; 1 <i < N satisfying f(0) = 1. The kernel
Ex(x,y) is called the Dunkl kernel and it is clearly a generalization of the exponential
functions e‘*¥}. Dunkl transform is defined as a generalization of Fourier transform. For

u € L'(RN,duy (x)), its Dunkl Fourier transform is defined by

Feu(e) = /R (B (i, 2 ().
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Dunkl translation operator is defined through the Dunkl transform. The Dunkl trans-
lation T)]ff is defined by ﬂ(‘rﬁf) (&) = Er(iy,&)Fr f(¢) and it makes sense for all
f e L* (RN, dui(x)) as Ex(iy,£) is a bounded function. Dunkl translation has the
property; ‘r;‘ f(x) =7, f(-y). We refer [7, 9, 10] and the references there in for further
reading on Dunkl kernel and Dunkl transform. Let LP (RN, duy ) be the space of complex
valued measurable functions f such that

£ 1l p.ape, = ( /R i |f<x>|Pduk<x>)" < oo

and L? (RN x (0, ), durdxy41) be the space of complex valued measurable functions
g such that

1

P
gl p.durdxne = (/N |g(x,xN+1)|pduk(x)de+1) < 00,
R

Thangavelu and Xu [10] defined the Riesz potential 7X associated to Dunkl operator
on Schwartz space by

1 = 087 [ (),

where 0 < a < di and yX = 2979%T(a/2)/T((d; — @)/2). Maximal function My f
defined for f € S(R") was introduced and studied by Thangavelu and Xu [10] as follows

\(f ¢ x8,) )]
M = ,
T m, () ()

where yp, is the characteristic function of the Euclidean ball B, of radius r centered

at the origin. Later Deleaval [3] proved a refined scalar maximal theorem. With these
notations we can state the results of Gorbacheyv etal. [6] as follows.

Theoreml.l.LetNeN,lSqu<oo,y<ﬂ,y+,820,0<a<dkand

q
a—y-B=dc(;; - ).

(a) Ifl<p§q<ooand/3<%then

X118 fllg e < C (@, Boys s gy di) N £l ae (1.2)

with the sharp constant C(a, 3,7, p,q,dy). Moreover for p = q the sharp
constant is given by

TG (% = yT(G5(% - B)
T(3(% +y)C(3(% + )

C(a,B,7,p,p.di) =2
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b)) Ifp=1,1<qg <o, B<0andd >0, then for f € S(RV)

I 12 1 )q

A (x) < ( !

/{'xeRN:|x|7|1"§f (x)[>}

Dou and Zhu [2] established the following HLS inequality for the extension operator
&, on the upper half space.

Theorem 1.2. Foranyl <a <N+1,1<p< % and

1 N (1 a-1
g N+1\p N

there is a best constant C(N, «, p) > 0 such that

( / (Eaf (roxn el dxdxw)q < C(N.a.p) ( / |f<x)|de)"
RN x(0,00) RN

forall f € S(RV).

Using the weighted Hardy type inequality on the upper half space Dou [4] proved the
following weighted HLS inequality for the extension operator &,,.
Theorem 1.3. Let 1 §p£q<00,y<NT+1,ﬂ< %,y+,820, l<a<N+1,and
1 N (l a—y—ﬁ—l)
g N+1p N
then for 1 < p < g < oo there is a best constant C(N, «, p) > 0 such that

1 1

q P

( / ||x|-yaaf(x,xN+1>|‘fdxde+1) sc:(N,a,p)( / lelﬁf(x)l”dX)
RN x(0,00) RN

forall f € S(RV).

One can ask for the natural extension operator analogous to &, in Dunkl setting and
expect to extend the Theorem 1.1 on the upper half space.

We introduce an extension operator X for a € (1, dy + 1) as the following integral
operator which acts on f € S(RV) as

_ 1
et o) = A [ ok | —— e | @ ()
om (2 +1- )
1
— ok [ du ),
R
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dy
a-1-—== a-1

2 T( >
dk*(y*’l))

where (y’(‘l )= 2 . Our first main theorem is the following Hardy-Littlewood—

I(
Sobolev inequality on the upper half space.

Theorem 14. Forl <a <dp+1,1<p< % and

1 d 1 -1
—= k(22 (1.3)
q di+1\p dy

there exist an optimal constant C(dy, p, @) > 0 such that

( / |6’:,f<x,xN+1>|qduk<x>de+1)q < Cdepra) ( / |f<x>|Pduk<x>)”
RN x(0,00) RN

(1.4)
forall f € S(RV).

Also the map f — EK f is of weak type (1, q).

A simple proof of HLS inequality for Dunkl operator was given by Gorbachev et.al.
[5, Theorem 4.1] using the L? boundedness of the spherical mean operator in the Dunkl
setting. We will follow this approach with some modification to prove the Theorem 1.4.
The key point to prove the inequality (1.2) was to rewrite the inequality as a convolution
inequality in the multiplicative group R, with the Haar measure dr/r and then apply
Hausdorff Young inequality for the multiplicative group R.. Our proof of the following
weighted HLS inequality is inspired by the approach of Gorbachev et al. in proving the
inequality (1.2).

Theorem 1.5. Letlgpgq<oo,y<%,ﬁ<%,y+ﬁzo,1<a<d,{+1,and

1 d (1 a—y—,B—l)
r di '

q_dk+1

(1.5)

If1 < p <q <oo, then

L
q

(1) (/ ||(X,XN+1)|_y85f(x,XN+1)|qdﬂk(X)dXN+1)
RN x(0,00)

< C(@..7.p.q. i) ( In ||x|ﬁf<x>|"duk<x))') .

Q) Ifp=1,1<q <o, B<0,thenfor f € S(RV)and A >0

018 £l g )q

dpaa (¥) sy < c( !

/{xeRN:lxl-ﬂs{;f (x,xN+1) >}

121



V. P. Anoop & S. Parui

We will first represent the extension operator EX as a kernel operator and study basic
properties of the kernel. Proof of the HLS inequality (1.4) is given in the Section 1. In
Section 2 we stated an auxiliary lemma and proved sharp Hardy type inequalities which
will be used to give a proof of the weighted HLS inequality in Section 3. We added an
Appendix where the best constant for weighted HLS inequality in the case of p = ¢q is
expressed as an integral involved with hypergeometric function.

Foreach a € (1, di+1) we consider the extension operator which acts on f € S(R™) as

_ 1
&5 =0k [ o | | 0.
R W%+
2(z—l—diF(a_1)
where (X)) = WT‘M)? If we denote
e
1
DL ((x, xn+1),¥) = 75, e | ™)

(ax + 1P

then the kernel of the operator & is (y*_)7'®% ((x,xn+1),y). Therefore, using the
integral identity

1 _ 1 o dk+]—(y_l _‘lelz
e|diri—a ~ r(dk+1a)/0 s e ds (1.6)
2

and the formula 7fe~*!" *(x) = e+ By (V2sx, V2sy) ([9])

1
CI)lfl((x,xNH),y) = Tfy dptl-a (x)

(o +1- P

! ; / ¢S5k 5T s ) By (V25w V2sy)ds.
0

F( dk+21—(1

Now writing x = rx’, y =y’ and changing the variable s — -5 we find

q)lzl((xst+l)’ y)

1 w2 dg-l-a  _ 2 t
= —r_dk_l+a e r2xN+1u 2 e u(l+r2)Ek 2ux” \/Zu—y’ du
r di+l-a r
(#=5—) 0

1 —dj-1 k XN+l I,
= mdoia mq’“((x,’ r )’?y)'
I(5—)
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HLS Inequality for Upper Half Space

If we use the change of variable s — 5 then we obtain

DX ((x,xNn+1),y) = e gk ((x Il ) , ;y') '

F( dk+21 —Q) t
Let do (x') = ax hi (x”)do (x”) be the normalized surface measure on SV ~!'. Then

we find dug (x) = bgrc~'drdoy (x"), where b = 2%’]1“(%). From [6, p. 12] we note
down the formula

/9
SN-1 0
and
(% n
/N l Tftyl(e—s\ . lz)(}’x’)dO'k (y/) _ W[ e*S(r 2412-2rt cos ¢) SlIl ¢d¢
SN-

Hence from the definition of @’fx((x, XN+1),Y) We get

[, @5ty e ()
- /.. d>’;(<x',rxN+1),zy')dcrk<y'>
SN

F(1/2)F(d‘ ; / (x5, + 1 +1* =2t cos ¢) = sind 2 pde

= 0k (1, xw41), 1), (17)

For radial functions f € S(RN) we have the following formula [7]

i@ = [ R - 20mdon,

where fy(|x|) = f(x) and uX is the probability measure with supp uX c {n : |n| < |x|}.
Therefore using the identity (1.6) we find another expression for the kernel

a+ dk

(I)l((z((x’xN+l)vy):W/ (|x|2+xN+1+|y| -2<y,n>) du ().

I(
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Proof of Theorem 1.4

From the definition of the extension operator EX we write using the polar coordinates

1 7 4di—1
7a 1 arf(-x xN+1)—/ /N] _ty ; dk” ——————do (Yt dr

(x + t?%)

) 1 ~
=/ th(x)ﬁ rldr
0 (x +12)

where
nfw= [ o).
Using the integral Minkowski’s inequality we get

k k aq 5
Ya-1 (/ 1Eaf (X, xN4+1)] dXN+1)
RN

1

q

[ee) (ee) 1 B
= / |th(x)| / 2 diri—a) de+1 tdk ldt
0 0 (x2 +1) T

N+1

< [ et gy
0

We write for R > 0

I = / |th(x)|t—(dk—(0—1+$))tdk—1dt
0

R o
ol A O A O
0 R
=1+ 1.
Rosler [7] proved that 77 is a positive operator on C® (RM) and hence
R
I s/ T, 1 f 1 (o) (e 1g)) k=1 gy
0
Now we can proceed as [5] and keeping in mind the relation (1.3) to get the estimate
(e _di, _di
I <R 7?7 M| fI(x) and I <R || fllpap,
. i
Choosing R 7 = (M| f1(x) /1| fll .y, ) we find

I< (M 1) P! )5 (1.8)
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HLS Inequality for Upper Half Space

for 1 < p < g. Using the fact that for p > 1, [|[Mg|flllp.due 3 Ifllp.du, and the
inequality (1.8) we have for 1 < p < g

_r
1(1

1
k 5 rla
(/RNx(o o 1Eaf (x| 9dur (x)dxn s | 3 WM A gy 1N e = I Nl -

Since the maximal function My is of weak type (1, 1), putting p = 1 in (1.8) we conclude
the map f +— EX f is weak (1, ¢q). O

2. Auxiliary Lemma and Hardy type Inequalities

We define the operators V and W analogous to the Hardy operator and Bellman operator
defined in [6]

W (e xnan) = / FO)ue(y)

[YI<](xxn+1) |
and

Vg(y) =/ g(x, xn+1)dug (x)dxy 41
[(x,xnv ) <]y
Our interest to prove the following weighted Hardy type inequalities

G XNDTW Fllpaararnas < € (an b, DI Fllp.aju
and

y1“Vellpae < € (@b, PG XN )18l paudxn -
with the sharp constant ¢}’ (a, b, p), ¢} (a, b, p).

We state here the following lemma which will be used to prove Hardy type inequalities
and our main theorem.

Lemma2.1. Let 1 < p < ooand f € LP(R, %), g € L'(R. L), h € LP (R, %), Then

©re dr dr
[ [ orwent

o AT ([ d\7 [ dr
<([Tmor )T ([Cror)” [Ceer

Moreover if we define the operator Ag by

o d
Agf(r) = /O Fr g
and g > 0 then ||Agllp—p = llglh-

For a proof of this lemma we refer to [6].
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Theorem 2.2. Let 1 < p < co. Then there exists a sharp constant cl‘?/ (a, b, p) such that

I XN D)W Nl papann < € (@b, PIIXI £l - (2.1)

ifandonlyifb<%anda+b=dk+%.

1

d-1y\p

Moreovercl‘:v(a,b,p): ik_ %F(I/Z)i(+lz "
kb (9t

Proof. Consider the modified operator

Af(xxna) = / D) due(y).

[YI<(xP4xg, )12

Using the polar coordinates the operator H can be written as
_ ) 0 , _ ,. dt
AN =i [ [ @) o) S
0 JSN-

where g(#(1,xn41)) = 1 if 2 > (1 +x12\,+1)‘1, otherwise it is zero. We express

G, xna) TP HFD as
/ |Gy ) P B F (e 1P dpag (6)
RN x(0,00)
o0 © ap —~ d
_ b / / (2l F / PV F (s xvan) P o () ey
0 0 SN-1 r

[oe] (o) a . d
= b / / (1423, % / p et | T £ () Pdor () S .
0 0 SNfl r

On the other hand

[ e = b [ ) [

d
Replacing f by |x|77k f we have to show

oo oo ap
2 - —ap+di+1
/ / (I +xp,) 2 / r
0 0 SN-I

« d
sdabp [ [ 1re)rano T

A P ,.dr
tpf(ty)‘ do'k()’)?-

P , dr
dog (x )deN+1

~( _dk
(o7 f) ' ryan)

We set

o o ) _a _gyedkt!
J=/ / / (I +xp,) 2r P
0 0 SN-1

‘ﬁ(t_%kf) (rx',rxn+1)

, ,.dr
h(rx’, xn+1)doy (x )deNH-
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Now
~ _di ,
A7 7)o rxnan)

0P [T [ st (5) ? o

Hence by Lemma 2.1 we obtain

Jdr\ ¥ « o p A g
<o [ /SNI/SNIUH,VH) o E)” ([T

/0 8L e )i L (e () ey

<cavn ([ [ [ o xN+1)|Pdak<x>—de+1)’
L |f(zy')|”d<rk<y'){) ,

(o) (o) _dik
where CY(a.b.p) = by (/0 (1+23,) 5 () 18 (LI %)dew)

Therefore we find

1

1 ©  (dg+) P

C,YV(a,b,p)=bk(dk b)(/o (14x3,)7 2 de+1)
I

b (1F(1/2)F("k 1)
b

T dr di+1
Fl;_ 2 F( kz)

r

One can show the constant C,‘{V (a, b, p) is optimal by taking a radial function f and
then following the method used in [6]. If the inequality (2.1) holds then considering
fi(x) = f(tx) we can find the condiditon a + b = dy + 1_1?' O

Theorem 2.3. Let 1 < p < oo. Then there exists a sharp constant CZ (a, b, p) such that

“ |y|_an”p,d/1k S C[‘(/ (Cl, b’ P) || | ()C, xN+l) |bg”p,d,ukdx1\/+1 (22)

ifand only if b < d”l ,a+b= dk+—,and

|
dk 1
e (a.b.p) = g (lr(”z)ffl )
Ty |27 red)
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Proof. We consider the modified operator

Ben= [ e (e e ().
{GexnD: (o xn) [y [}
Using the polar coordinates we can write
Bg(ty")

cre _ b , t , dr
o[ R ) e e (6 e o () ey
0 0 SN-1 r r

) oo b—(di+1
= bkt_b+(dk+l)/ / / (1 +x]2\,+1)_%g(rx',rx1v+1) (5) (i
0 0 SN-1 r
t , dr
f(‘(x -XN+1))d(Tk(X )—dxn.1,
r r
where f(1(x’,xn41)) = 1if 2 > (1 +x12\l+1). Since
—ap S « _ ~ ,. dr
[ orerBerauy <o [ [ e By rao ) S
RN 0 SN—] t

and

[ [ et iPaue e
0 R

(o] (o] d
- by / / / (s rxa) Pdor ()i Ly
0 0 SN-1 r

dj+1
replacing g by |(x, xN+|)|_§7Jg we need to prove

[e9)
t—ap+dk
0 SN-1

<o re , , dr
< C,Y (a,b,p)/0 /0 /SN?I lg(rx’, rxn41)|Pdoy (x )deNH-

dj+1

Y — ’ P ’ dr
B g) o) don () S

We write

« Casdk ~( _dit! dr
1= [ [ B ) om0
0 SN-1 t

Using the relation a + b = dy + 1%
+1

i
[ee] [ee] (o] _Q , t b, =
J=bk/ / / / / (1+x%,)) 2g(rx,rxN+])(—> v
0 0 0 SN-1 JgN-1 r
dr

£ (L6 e ey e (e () L ey .
r r 1
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Using the Lemma 2.1

1 1

oy AN , dr\r

J<bk/ (1+x3,1)” / / (/ [R(ty")|P —) (/ Ig(rx,rxN+1)|"—)
SN-1 SN 1 t 0 r

A PO a5 Lo () do (e

1

dk+l d P
Sdm sy ® [ ([ e T
[ |h(ry'>|"’$)”’ 47 (¥)dor ()
v o po , ,drTI’
cavn([7 [ [ oxraniran @)
([ [, mooranon)”.

c!(a,b,p)=—— dm (/ (1+x3 )_)/

br (1r<1/2>r(dk ! )
b

:dv+1 di+1
A

IA

where

One can show the constant C,:/ (a, b, p) is optimal by considering a function g(x, xy+1),
radial in x and then following the method used in [6]. If the inequality (2.2) holds then
considering g; (x,xn+1) = g(¢(x, xn4+1)) we can find the conditon a + b = dy + #. O

3. Weighted Hardy-Littlewood—Sobolev Inequality

In this section we will give a proof of the Theorem 1.5. In the classical case it was proved
by Dou [4] using the weighted Hardy type inequality for upper half space. However we
will reduce the inequality to a convolution inequality on R, with Haar measure 4 and
apply the Lemma 2.1. For the case p = ¢ we are able to find the sharp constant in terms
of integral involving hypergeometric function. We will closely follow the idea from [6].
First we will consider the case p = g and then it will be used together with (2.1) and 2.2
to prove the case 1 < p < g by suitably decomposing the space R x (0, c0) x R" into
three regions.
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Proof of Theorem 1.5

Proof of (1). First we will consider the case 1 < p = ¢. In this case from the equation (1.5)
we have % =7y + B+ (1 — @). Let us consider the modified operator

ERF0 xaa) = [ FOIDIPR (ot 3)dae ()
R
® N =PB+di gk ’ ’ ’ dr
= Fay )P @ ((rx’, xy41), 1y")dor (y) —.
0 SN-1 t
Then it is equivalent to prove the inequality of the form
_xp - , , dr P
(7] et tes [ 18k ronxaniPao o) v
0 Jo SN-I r
P
< C'(a,B,7,p,q,dk) (/ / Irdk/”f(rx')l”dak(x')—r) :
0 SN-1 r
d,
By a change variable x4 to rxy4; and replacing f by | - |_7kf, it is enough to show

S} S} ~ dy,
(/ / (1+x12\/+1)_¥r_7p+dk+1‘/ ‘85(r77f)(rx,,rxN+l)
0 0 SN-1

<cepypad ([ [ e aT)

<=

p ,. dr
doy (x )deNH)

Recalling the fact that ®X ((rx’, rxn 41, ty’) = 4 1+e@k ((x/, TXN+1), 7Y') together

=7, —% .
with the relation y + 8+ 1 —a = ﬁ we can express EX (r~ 7 f)(rx’, rxn41) as an integral

operator

di

gg(rijf)(rx',rxN+1)
0 o it , r, ,.dt
=bk/ / fQyHe +7@';((%,—)wvn),—y)dcrk(y)—
0 SN-1 t t t
yodert [ ok , , , dt
= b A /S,H Fy@h, /1, (6 x )3 () S

where

it
OF (1, (W xna1),y) = 0778 (W, txnan). 1),
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We set

o oo y et
J:bk‘/o /o -/SN_1(1+x12V+1)_gr T ER T f) (X rxy )

, , dr
h(rx’, xn+1)do (x) —dxy.
Our aim is to show

s Caprppan ([ [ 1r00rane )

1
I , L dr\ ¥
(/ / / Ih(rx,xN+1)|”dUk(X)—) ,
0 0 SN-1 r

where the constant C’(a, 3,7y, p, p, di) will be specified latter. Using the Lemma 2.1 we
obtain

Vi< /OW/SNI /SN,I(l +xh) 7 (/000 |h(rx’,xN+1)|P'%)’:' (/OOO |f(ty’)|1’%)']7

« ’ ! dt ! ’
/0 Ok, (1, (8 o), ') o (e (3 ).
Let

= ® ’ ’ dr ’
oo = [ [0k (6 y) o)
SN—I 0 t

« ’ /dt ’
=/ /@21(<r,<x,xN+1>,y>—dcrk<y>
SN-1.J0 ’ t

o0 L dett dt
=/0 @ o ((Lxnan), D7 7P rE (3.1)

From the equation (1.7) and the fact pL +

% = 1 we can write

1
o7

o, Y=k °° , ' , dr\r
I <br | (T+xy,) 2@ o(1,xn41) [ (rx", xn+) [P dog (x)— | dxn
0 ’ 0 SN-1 r
1
e , , de\ P
( [ [ ra)raeo )—)
0 SN-1 t
, (o) o) , p' , dr P
S C (av57Y7p7p7dk) Ih(rx 3-XN+1)| da—k(x )_de+1
0 0 SN-1 r

© : dr)?
[ [ ranranong])
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Where C’((Y,ﬁ, ’)/$ P’ P’ dk) = bk (‘/600(1 + x12V+l)_7% (5§’0(1,XN+]))deN+1 ) P <
which follows from the Remark 4.2 in the appendix. Thus it follows from Lemma 4.1 in
the Appendix and the definition of EX

”l . |_78£(1f||p,d[1kdx1\/+1 S C(Cy’ﬁ’ Ysp9 p’ dk)”l . |ﬁf||p,dﬂk3

with

C(a,B,v,p,p,dr)

21-a dj+1

o P
= W (‘/0 (1+x%,)" 2 |F(a’, b’ c"s (1+x3, ) )P dxna
2

One can show that the constant C(«, 8,7, p, p, di) is optimal by considering a function
f(x) which is radial and then following the argument used in [6].

1

Case: 1 < p < g < co. We recall that
Ehr = [ FOO(Grva. ().

Here the kernel ®% ((x,xx+1),y) has the following expression

a-1-
2

1 dp,
V(0w = o /R (P P - 200m) T d ),
2

and p is the probability measure with supp uX c { : |n| < |x|}. We define

O F()g (e, xn1) D ((x, xn41),y)
ja_/o ‘/RN RN [, xn+) |7 [y

dpg (v)dpg (x)dxp 1.

Then it is sufficient to show

Th 3 £ lglly (3.2)
for f € S(RY),g € S(RN x (0, )) with f,g > 0. Note that for y = 0,8 = 0 and «
satisfying é = %(% - %) the inequality (3.2) holds by Theorem 1.4. Essentially
following the idea of Stein [8], the domain RY x (0, c0) x RV is decomposed into three
domains Fi, F;, F3 and the integral on each domain is estimated to apply the Theorem 1.4.

Let RN x (0,00) xRN = F| U F, U F3, where

1
Fy = {((x,xNH),y) syl <1 Xl < 2|y|},

FZ = {((X’XNH)’)’) : |('x9-xN+l)| < %lyl}
-

((r,xn41),9) 2 [yl < %I(x,xml)l}-

132



HLS Inequality for Upper Half Space

Then Jﬁ = Zi‘:l wa., where

Jho= / F()gCe,xn) P ((x, xn+1), )
F;

[Cexn) PP dpasc () dpai (¥)
> +

Estimate for Ji’l. For (x,xn+1) € F and || < |x|

¥
(x4 334 + P =200 T 51 Geoxna) 7 PP
and hence
DX ((x,xn41).y) -
|Ge, xnv) 7 Iy1F ™
where @ = @ —y — 8. From the relation (1.5) 1 < a@ < d¢ + 1 and cl_z =245 ~ @
Therefore, we find the desired inequality

‘I)i(i((xﬁxN+l)7 y)’

di 1 a-1

k
Ja1 SN p.awIgllg dudxns: -

by applying the Theorem 1.4.
Estimate for J(Ii,z- For ((x,xNn+1),Y) € F>
D (6, xn41),y) 3 [y,

Since F> € {((x,xn+1),Y) : [(x,xn41)] < |y]}

felx,xn41)
s / / djar () e w1 dpae ()
2 Joen Jiexnen 1<ly] 10 X)) [V [y Bratitdi *

< / FOIT BT Vg () dur ()
RN

L
24

’ —1-B- 1y ~ I ’
T T

where

= —(dr+L X, XN +1
Vo(y) = [y~ @+ / BLeIve) ) deya.
|Gexnan <ty [ xXveD) Y

A straight forward calculation shows that
/ o) e () < [y] 74D
[Ce,xn+n) <]yl

and hence

= _ i
|Vg(y)| 3 |y| a ”g”q’,dﬂkdeH- (33)
Taking b=y, a=d+k+ é — v in the Theorem 2.3 we deduce

IVellg .ame = gllq . duedxn. - (3.4)
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From the relation (1.5), inequality (3.3) and (3.4) we have for p > 1
q q

T 5 1 gl 2o 1T

~ ||f||p,d/.lk ||g||q/,dﬂkde+| .

Forp=1,y < d"”
—1-p- g(x,xN+1)
oo 3 / Iy * 7P () s dug () duya g ()
RN oxnanl<lyl 16 XN +1)]

dj+1
—1—B-d—y+
s [ OB E AT G )l it = 1 18l sy
R

Estimate for ]fl 5 I ((x,xn+1),y) € F3 we have

1
VI + 1312 = 26m) 2 51w

and hence
(sz((xaxNH), y) 3 I(x’xN+1)|a_1_d"',
Therefore,
f()gx, xn+1)
B dpe (") dpg () dx 41
a 3 / /RN ‘/y|<|(x,xN+1)| |(x,xN+1)|y—a+l+dk|y|B 4 s

a-1-B-y+i =
= [ ] el 7 B o i (ke
0 R
where

—~ g, 1 _
W f (roxnan) = |Croxnan) P9 / 1 £ )k ()
[yI<(x,xn41) |

Applying Holder’s inequality and the fact that

/ IV PP dpr (y) = [(x, x40 PP+
[YI<(x,xn+1) |

we obtain -
~ _ et
W xne) S 1 xve)l 7 11 pdu - (3.6)
Applying the Theorem 2.1 with b = B and a = dy + % -B
W £llp.apdrner S 1F 1l (3.7)

Taking into account the relation (1.5) and the inequality (3.6) we get
|G )[4 PR W A1 = |, ) |9 PR W 1P W £
SIAIE P Iw AP (3.8)
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Now combining (3.7) and (3.8) and applying Holder’s inequality to (3.5) for p > 1 we
obtain

‘15,3 S ”g”q/,d[lkdX[\/.H ||f||p,d[lk .
For p = 1, we find 8 < 0. First consider the case 8 < 0. Using the fact 8 < 0 from the
definition of W f for p = 1 we obtain

W6, xn41) 316 2n D Dl (3.9)
and
W £l apueanar < 11 - (3.10)
Taking into account the relation (1.5) for p = 1 and the inequality (3.9) we get

|, xn ) [ TOPNW I = |, xn40) 9P |W 97 W |

ST, IWEL. 3.11)

Therefore by Holder’s inequality,

1-L
k
Ja3 3 gllq aueaxma 11 g IW I aueazn S N8l dpedxnan 1 11 dpar -

For 8 = 0 from the relation (1.5) a—y = d"‘;l

holds with 8 = 0 and hence the desired inequality Jg 53 S 8llg . dprdxnr 1F 11 dper -

and proceeding as before we can show (3.11)

Proof of (2). It is sufficient to prove that for any 4 > 0

AN |7
dup (x)dxys1 3 (—#k

e [ |
{Crxny): (XX an) [ EE F (xoxnan) 24} z

for f € S(R™). We define the operators

A f i) = [ OOty ) (i) ¥ )

for i = 1,2, 3. Noting the fact a"l =Y | Al we get
Se = Zle Sa.i» Where

Sa,i = dpg (x)dxy 41

</{(x,XN])I(x,XN+1)7A’&f (x,xn+1)24/3}

Now we will estimate each of S, ; fori =1,2,3.

Estimate of S,,1. Proceeding as in the estimate of J fy s we deduce
[ xn+) 7Y Aa, 1 f (6, XN+1)

< [ FOIPOR((oxnen) »)dn(3) = B oxen)
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1
with @ satisfying é = diﬁl 1- ‘Z—;l). Now it follows S,.1 < (”f”%)  from the fact

that f — EX f is weak (1, q) (Theorem 1.4).

Estimate of So.2. Applying the estimate obtained in J (’; o We obtain

Ao f (X, XN+1) 3 / Iyl * P F () dpr (y) = Vif (e, xn41).-

[¥121(xxN41) |

From the calculations performed in J ft 2 withp=1,<0,y < % we obtain

[ texemman)l Vi e o) e s (e r 5 1 g g o
R

and hence

1O xXn DT Vif ll g durdxns: S NFN du -

Therefore,
1
I age \ @
San S/ dug (x)dxys1 3 (Tﬂk .
{Gxna) Gexv ) [TYVLf (3, xv 1) 22}
Estimate of So 3. Applying the estimate obtained J, 3 we deduce
Aa3f (6 xna1) 3106 xn)| 7774 / [P £ () dur () = Wi f (x, xn41).
[yI=I(x,xn) |

For p = 1 we note that y < % and S8 < 0. Again from the calculation in obtaining the
estimate J, 3 for the case p = 1

o0
Lo [ 1m0 ol ovan) < W g

and hence we obtain ||| (x, xn+1) 7" W1 fllg.duxdxnes < I1f111,duy - Therefore,

1
£, due Y@
Sa3 S/ dup (x)dxy4r 3 (Tyk .
{G6xn ) (XN ) [TYWILS (XN 41) 24}
If 8 = 0 then from the relation (1.5) @ —y = % and
_ _dgHt
(x| WA (o) = x5 [ £ ()
[yI<1(x,xn41) |
g
< |Goxn+) 7 1 lage -
Therefore,
1 |7
Sa3 5/ dg+l dur (x)dxysr 3 (—/l =
{Coxne): 1 xne) 9 L lldpy, 243
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Hence the proof is completed. O

4. Appendix

We will express the function 5’; 0(1,xN+1) in terms of hypergeometric function [1,
Chapter II] defined by

Vo g I'(a’"+m)I'(b" +m) *.
F(a,b,c,z)—; r'(l+mI(c¢ +m)

Lemma 4.1.

(%)

r(1/2)r(%4-e) —)(1+ 1)2(7 TUR@ . ()T,
2

~ 1
®F (L xne) = 3

: : : : p_ Y L dktl Y a, ditl . odi
where F is a hypergeometric function witha' = —% + %—=,b" = 7 — Z + 5 C =5

Proof. Write b = w, I = dy — 2, then we can write

(Ff)];,()( 1 xN+1)

F(l/z)p(dk 1 / / £ t +1-2— cos¢) sin’ ¢d¢—

2y-bpyeit(y 20 o dr
dkl //(1‘”) t ( A+ cos¢| sin ¢d¢t'

The integral with respect to ¢ has singularity at r = 0, 1, co. The integral converges at the
origin and oo if and only if y < ditl and y + == ditl _ o 5 0 which is equivalent to 8 < %
by the relation (1.5). When a = 1 that is xy4; = O the integral has singularity at # = 1 and
is integrable at the singular point = 1 (see [6]).

We observe that if m is odd and [ > 0, f07r cos™ @ sin’ 6dH = 0 where as for m even
and/ >0

=a

l“(1/2)1“(

n /2
/ cos™ ¢ sin’ ¢pdg = 2 / cos™ ¢ sin’ ¢de
0 0
T(m+ 5T
C T(m+ L+1)
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Now using the expansion of (1 —r cos ¢)~” forr < 1

. a1 (b +2m) Dom+ () S,
/o(l reos ) sin ¢d¢‘r(b);r(2m+1) Tm+l+1)

This identity leads to conclude

&d)]é,()(l,-xN+l)
C(b +2m) T(m + HC(5L)

dy co 00
- ay—dk,%l ') ! / Z 22m ~2m
L I'(b) Jo 4 F@m+1) Tm+Li+1)

di—1
r(1/2)r(%—=
‘/oot_y+%+2m—l(l+t2)—(b+2m)dt
0
et INES TS Y Zzzm o D(b +2m) T(m + HC(BL)
(1/2)0(%1) T(b) F@Cm+1) T(m+1L+1)

di+1 di+1
F(m—%+%)f‘(m+%+b—é‘—+)

4
(b +2m)
1 F(di) y_dk+1 Z F( + dk+l )F( + dk+l " )2/ _ %) .
= - —a P a
21(1/2)0 (&= 5 r(m+ D (m + %k)

1 T3
2r(1/2)r (4=

dp+1
(1423, )25 F(a b, s (1+2%,,) 7).

di+l vy g _
where a’ = 5 2,b =5, +2

Thus we obtain

br(yg )@k ((Lxna)
21—(1 ( ) 1
- F(a—l)(l"'xNH)2 ” F(a',b',c"; (1+XN+1) )-
3
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Remark 4.2. We remark thata’ +b’ —¢’ = I_T"‘ < 0,and hence F(a’,b’,c’; (1 +x,2\l+] )‘1)

is a bounded function and [~ ((1+x2, )28k (1 "
is a bounded function an /0 (I+xy,,) a,o( LXN+1) N+l < 0.
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