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Proteins perform their function by accessing a suitable conformer from the ensemble of available conformations.
The conformational diversity of a chosen protein structure can be obtained by experimental methods under
different conditions. A key issue is the accurate comparison of different conformations. A gold standard used for
such a comparison is the root mean square deviation (RMSD) between the two structures. While extensive re-
finements of RMSD evaluation at the backbone level are available, a comprehensive framework including the side
chain interaction is not well understood. Here we employ protein structure network (PSN) formalism, with the
non-covalent interactions of side chain, explicitly treated. The PSNs thus constructed are compared through graph
spectral method, which provides a comparison at the local and at the global structural level. In this work, PSNs of
multiple crystal conformers of single-chain, single-domain proteins, are subject to pair-wise analysis to examine
the dissimilarity in their network topologies and in order to determine the conformational diversity of their native
structures. This information is utilized to classify the structural domains of proteins into different categories. It is
observed that proteins typically tend to retain structure and interactions at the backbone level. However, some of
them also depict variability in either their overall structure or only in their inter-residue connectivity at the
sidechain level, or both. Variability of sub-networks based on solvent accessibility and secondary structure is
studied. The types of specific interactions are found to contribute differently to structure variability. An ensemble
analysis by computing the mathematical variance of edge-weights across multiple conformers provided infor-
mation on the contribution to overall variability from each edge of the PSN. Interactions that are highly variable
are identified and their impact on structure variability has been discussed with the help of a case study. The
classification based on the present side-chain network-based studies provides a framework to correlate the
structure-function relationships in protein structures.
1. Introduction

The newly synthesized protein sequences in the cell adopt unique
three-dimensional structures (Anfinsen, 1973) to perform their functions.
The native structures thus obtained are stabilized by various
non-covalent interactions like van der Waals, electrostatic interactions
and hydrogen bonds. However, flexibility in its structure allows for it to
perform function (Frauenfelder et al., 2007). For instance, a complex
function such as open-close motions for transporting ligands across cell
membranes or a simple function such as binding of a ligand, require the
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rearrangement of atomic interactions within the protein structure.
Structures of proteins have been determined using methods like X-ray

crystallography, Cryo-EM and NMR in different functional forms. In the
case of crystal structures, they are also determined in different crystalline
states, different crystallization conditions, etc. Three dimensional co-
ordinates, thus obtained, represent snapshots in various conditions. Even
though some of the native conformations of a protein are not crystallis-
able or have not yet been crystallised, differences observed in the
available tertiary structures under various conditions reflect intrinsic
flexibility in its overall structure. Depending on the inherent dynamics of
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the protein, variations in the 3D structure of a protein may be as small as
subtle sidechain variation or a very large deviation of the backbone
conformation.

The pioneering work of GN Ramachandran (Ramachandran et al.,
1963) on the (φ-ψ) map that describes the backbone conformation, has
played a key role in our understanding of the protein structure. A refined
structure can be generated by providing information on sidechain con-
formations. With an increase in high resolution protein structural data,
rotamer libraries of sidechain conformations have become available for
modelling protein structures (Dunbrack, 2002). A recent study of side-
chain conformational preferences in monopeptides (Rose, 2019), pro-
vides insights akin to Ramachandran (φ-ψ) map of secondary structures.
Thus, the allowed and the preferred conformations of the backbone
polypeptide chain and that of the connected sidechains are well under-
stood. Another crucial factor required to understand the global topology
of protein structures, is the interaction between neighbouring sidechains.
The present study focuses on the interactions between spatially proximal
sidechains, which provide a global sidechain connectivity map in protein
structures.

The alteration of protein structure due to dynamics is characterized
by variation of inter-residue interactions. The information of inter-
residue interactions is vital to understanding protein function and is
used in studying protein folding and stability (Gromiha and Selvaraj,
2004; Baker, 2000), homology detection (Bhattacharya et al., 2021),
prediction of protein structures (Yang et al., 2020), and several other
aspects. From a topological perspective, intra-protein interactions be-
tween spatially proximal residues can be represented on a graph using
edges where the residues are represented as nodes. The node-edge rep-
resentation of a protein structure is commonly known as a protein
structural network (PSN). PSNs are used to analyse structural organisa-
tion in proteins based on topological distance, nature of interactions,
solvent accessibility, geometry, charge, energy and many other features
(Vijayabaskar and Vishveshwara, 2010; Bhattacharyya et al., 2015). It
allows for the survey of non-covalent interactions like hydrogen bonds,
ionic, hydrophobic, and van der Waals interactions (Vishveshwara et al.,
2002). There are several advantages of using PSNs to gather structure
and functional information such as analysing subtle conformational
changes due to ligand binding or for identifying communication paths of
allosteric effects (Costanzi, 2016; Guarnera et al., 2017; Brinda and
Vishveshwara, 2005; Amitai et al., 2004). Aside from intra-protein in-
teractions they can also be used in the investigation of protein-ligand and
protein-protein interactions (Taylor, 2013).

Several tools have been developed to compare and quantify the dif-
ference between PSNs (Schieber et al., 2017; Faisal et al., 2017;
Malod-Dognin and Pr �z ulj, 2014). The connectivity information in the
form of binary matrix is computationally easy to handle even for large
number of comparisons. Hence, the strength of interactions has often
been digitised as zero or one based on a selection criterion. Physics based
approach such as the percolation transition point is a method used for
selecting the optimal edge-weight to make the matrix binary. In the
comparison of PSNs, graph-spectra based methods are very useful as they
depict the global arrangement of nodes and their connectivity with
minimal loss of information (Deb et al., 2009). Several methods have
employed the use of graph spectra for the comparison of protein struc-
tures (Chakrabarty and Parekh, 2014a, 2014b; Bhattacharyya et al.,
2013).

Advancement in algorithms and computing power has led to the
development of graph spectral methods to handle weighted matrices.
This allows us to analyse PSNs using graph spectral features, incorpo-
rating the edge differences at the local level and the differences in modes
of clustering at the global level. One such approach is the comparison of
networks using the network similarity score (NSS) (Gadiyaram et al.,
2017), which also serves to quantify the dissimilarity between a pair of
PSNs. NSS can provide the alterations in spatial proximity between
sequentially non-adjacent residues along with any alterations in the
clustering of residues at the global (tertiary structure) as well as at the
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local level (sidechain interactions), making it robust and sensitive to
minute changes between the compared networks. Thus, NSS is sensitive
to minute changes in networks, making it a robust method to perform
quantitative comparison between near-similar protein structures. The
protocol has been earlier employed in the validation of protein structure
models (Ghosh et al., 2017) and for protein structure comparison
(Gadiyaram et al., 2019). We have extensively made use of this method in
the current work for studying dissimilarity between structural networks
of proteins and have termed the measure as the network dissimilarity
score (NDS).

The main focus of this work is to characterise the extent of diversity in
structures of a protein (or its ligand-complex) under varying conditions
obtained from multiple crystal conformers, using the network formalism.
We analyse inter-residue interactions within each protein by employing
PSN that are constructed from coordinates of all non-hydrogen atoms
from multiple crystal structures available for a given protein. The devi-
ation in backbone is measured using the conventional root mean square
deviation (RMSD) and changes in structural network are studied using
the NDS. It is known that the 3D structure of some proteins may have
several regions that are rigid while other regions, generally relating to
their function, may show mobility (Burra et al., 2009). Likewise, in the
analysis of protein structures that are independent of external in-
teractions we observe that the nature of structural variability can range
from strongly rigid behaviour to being highly dynamic and undergoing
large conformational changes. These structure variations within the
protein have been studied, since they are also determinant factors of their
function. Based on these studies, we have categorised the protein struc-
tures into several groups and have discussed their implications. The
methodology is described in the next section and the Results and Dis-
cussion are presented in section 3 and 4 respectively.

2. Materials and methods

2.1. Multiple crystal structures of single domain monomeric proteins

The dataset is assembled by collecting all full-length structures of
single chain protein structures from the protein data bank (PDB) (Berman
et al., 2000) that are obtained using X-ray diffraction. A selection crite-
rion of better than 3 Å resolution with Rfree and Rwork better than 30%
and 25% respectively is considered. Any chain with more than a single
domain (as defined on SCOPe) (Fox et al., 2014), (Chandonia et al., 2019)
is not included. All structures with missing residue information or mu-
tations in the non-terminal regions of the sequence are removed. An
adequate number of structures for each protein is necessary to study
structural variability. A threshold of five PDB entries for a protein is
included for further analysis. The dataset assembled consists of 913 PDB
entries of 56 proteins, with the number of crystal conformers for each
protein ranging from six to fifty-nine. Supplementary Table 1 lists the
details of all proteins in the dataset.

2.2. Protein structural network construction

The protein structural network (PSN) of a crystal conformer is con-
structed from the 3D structure coordinates retrieved from the protein
data bank (PDB). The amino acid residues in the structure are considered
as nodes and undirected weighted edges are drawn between each pair of
interacting residues based on the strength of their interactions. The edge-
weight between nodes in the PSN is equivalent to the fraction of the
number of contacts made by proximal atoms (between ith and jth resi-
dues of the given protein), with respect to the maximum number of such
contacts that are found between the pair of corresponding amino acids
from the entire dataset. Such a ratio translates the interaction strength
between the two connected residues into edge-weight between the two
corresponding nodes. A proximity-based measure of edge-weight (Iij)
between any two sequentially non-adjacent residues i and j is computed
using Equation (1) (Bhattacharyya et al., 2015).



Fig. 1. Illustration of decomposing a complete network into sub-networks made of a subset of elements that are selected based on a certain criterion like the solvent
accessibility of the corresponding residue in a protein structure network.
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Iij ¼ Number of proximal atoms between amino acids i and j
Highest number of proximal atoms between amino acids i and j
Equation 1

where, any pair of atoms from non-adjacent residues that are within a
distance of 4.5 Å are considered to be proximal atoms. The highest
possible number of proximal atoms between all amino acid types is
determined from PSN of all structures in the dataset. The edge-weights
obtained for the structural network are stored as an adjacency matrix,
which are further used for network comparison. The network images
illustrated in this work are drawn on PyMOL (DeLano and Pymol, 2002)
using protein cartoon diagrams.
2.3. Structure and network comparison

Multiple structures of a protein are subject to pairwise comparison
with respect to the backbone structure and their all-atom network. The
most common method used for the comparison of protein structures in-
volves measuring the structural divergence between two superimposed
atomic coordinates commonly known as the root mean square deviation
(RMSD). In this work, the structural divergence between a pair of con-
formers is calculated as the root mean square deviation of C-alpha atoms,
computed using the TM-align tool (Zhang and Skolnick, 2005). The
pairwise comparisons result in quantifying the divergence between the
backbone conformation of all structures of a protein.

It should be noted that the method of calculating RMSD has several
limitations (Li et al., 2020). For instance, in a pair of close to identical
structures that vary only in a small random coil or turn regions or a single
flexible terminus, the structural comparison can result in a large RMSD.
Likewise, a small alteration in the core of the structure or the
inter-domain region may significantly impact the resulting structure
deviation more greatly than the deviation in loops or terminus. Constant
efforts are being made to address these limitations (Kufareva and
Abagyan, 2012). On the other hand, graph spectra-based methods that
include sidechain orientations consider the change in interactions and
global connectivity. This involves the aspect of clustering of nodes and
quantifying a match between the clusters. A graph spectra-based network
comparison tool termed network dissimilarity score (NDS), mentioned in
the introduction section, is employed in this work. This method also
quantifies the dissimilarity in the local and global node clustering be-
tween a pair of networks. Node clustering represents grouping of nodes
with respect to the edges present in the network. Nodes in each cluster
(or group) are more connected among themselves compared to that with
nodes of other clusters. Changes in local node clusters take place ac-
cording to changes in edge-weight. In other words, residue grouping
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changes locally with respect to changes in strength of interactions be-
tween residues. These changes in local residue clusters result in overall
structural change, which is referred as global clustering change.

An in-house python program is used to compute the NDS between any
pair of PSN. The score is calculated by obtaining its three components –
EDS, EWCS and CRS. The edge difference score (EDS) directly calculates
the difference in their edge weights. The correspondence score (CRS) and
eigen value weighted cosine scores (EWCS) are calculated using the
spectra of their networks, capturing local and global clustering changes
of residues in the PSN respectively. Using these components, NDS is
formulated as in Equation (2).

NDS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EDS2 þ EWCS2 þ ð1� CRSÞ2

q
Equation 2

The NDS can range from a value of zero, that indicates absolute
identical networks, to a value of

ffiffiffi
3

p
that indicates dissimilarity to the

extent of no match between the networks. More details regarding the
significance of the components of NDS can be referred from Gadiyaram
et al. (2017)
2.4. Solvent accessibility and secondary structure based sub-networks

A network that contains a subset of the nodes and edges of the orig-
inal network makes a sub-network. All PSN are decomposed into sub-
networks by choosing specific nodes and edges based on a given
criteria. Two types of sub-networks are defined, the first decomposition is
based on solvent accessibility of residues and the other is based on sec-
ondary structures.

Sub-networks based on solvent accessibility: naccess tool (Hubbard and
Thornton, 1993) is used to compute solvent accessibility of residues in
the protein structure. A relative accessible surface area (RSA) threshold
of 7% is used in recognising solvent-accessible residues. Residues with
RSA lower than 7% are considered as buried in the protein structure.
Fig. 1 shows the three sub-networks that are derived for each conformer.
E-E: A sub-network with exposed residues as nodes and edges among
themselves (solvent-accessible sub-network). B–B: A sub-network with
buried residues as nodes and edges among themselves (solvent
in-accessible sub-network). B-E: A sub-network that is of bipartite nature
such that only edges that connect buried and exposed residues are
included. The NDS of sub-networks for all pairs of conformers of a given
protein are computed and analysed.

Sub-networks based on secondary structure: stride tool (Heinig et al.,
2004) is used to assign secondary structures to each residue. Residues
that form secondary structures such as helix and strands are considered as
ordered residues and the remaining are considered as non-ordered



Fig. 2. Scatter plot of all pairwise comparisons from the dataset of individual
domain proteins. The mean NDS and RMSD of the distribution are shown using
the red line and the standard deviation in the distribution is shown using blue
dotted lines.
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residues. The PSN is decomposed into three sub-networks, similar to
sub-networks based on solvent accessibility. O–O: A sub-network of
edges between nodes of ordered residues, N–N: A sub-network of edges
between nodes of non-ordered residues and O–N: A sub-network of only
edges between nodes of an ordered and non-ordered residue. All pairs of
sub-networks of a protein are subject to NDS analysis.

2.5. Variance of edge weights across an ensemble

The multiple crystal conformers of a protein constitute an ensemble.
The mathematical variance in edge-weights describe variation of the
spatial proximity and inter-connectivity of corresponding residues with
respect to other residues across the ensemble. The edge-weight variance
ðEVijÞ of each edge is calculated using Equation (3) (analogous to EW-
MSF that is discussed in an earlier paper) (Ghosh et al., 2017).

EVij ¼ 1
N

XN
n¼1

ðIn � μÞ2 Equation 3
Fig. 3. Categorisation of proteins based on the nature of their structural variability. (
structure deviation information (backbone RMSD) is plot on the x-axis and network di
of a protein would be characterised based on the predominance of datapoints that are
criteria that is used to characterise the structure variability and categorise proteins
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where, In is edge-weight of an edge between residues i and j across the
ensemble of N structures and μ is the mean of edge-weights across the N
structures. The edge-weight variance, thus obtained from Equation (3),
quantifies the mean and the fluctuations of all the edges in the network.
This metric is used to identify the most variable interactions within the
PSN, which points to the regions of protein that show higher variability
in network topology.

3. Results

In this section, we present our results on the comparison of different
conformers of chosen proteins using the conventional parameter RMSD
and the parameter network dissimilarity score (NDS) obtained from the
global analysis of protein structure networks (PSN). Here, we provide a
classification scheme for protein structural domains, based on these
analyses.

Crystal conformers of a protein present their native conformational
states which have been used for the analysis of their structural variability.
A dataset of 56 proteins is assembled with more than five crystal struc-
tures for each protein (913 PDB entries) that are of a resolution better
than 3 Å. PSN for all the crystal conformers are constructed. All pairs of
conformers of a protein are subjected to pairwise structural network
comparison resulting in 12,251 network dissimilarity scores (NDS).
Similarly, Cα-atom root mean square deviation (RMSD) is computed to
obtain 12,251 pairwise backbone-structure comparisons. All the
computed structure and network comparison scores are listed in Sup-
plementary Table 2 (provided separately).
3.1. Structural diversity in individual domain proteins

A scatter plot of the comparison scores is illustrated in Fig. 2 where
the data points correspond to RMSD on x-axis and NDS on y-axis.
Examining the plot, one is provided an understanding of the extent of
structural variability and diversity of conformers among individual
domain proteins. Mean RMSD for the dataset is found to be 0.34 Å with a
standard deviation of 0.3 Å. Mean NDS is 0.113 with a standard deviation
of 0.048, as shown in Fig. 2. From the data presented on the plot of
backbone and network comparison scores, a curve of best fit with
maximum R-square (R2) is plotted. A power equation is found to best fit
the data inferring that no linear relationship exists between the RMSD
and NDS. The Pearson correlation between the data is found to be 0.59,
A) A schematic scatter plot that is used to study conformational diversity, where
ssimilarity (All-atom NDS) is plot on the y-axis, such that the structure variability
localised to specific area designated to each of the categories. (B) A flowchart of
in the dataset.



V.M. Prabantu et al. Current Research in Structural Biology 4 (2022) 134–145
that supports the understanding that there is no strong linear relationship
shared between the scores.

It should be noted that in the scenario where we observe low RMSD
scores, NDS is found to vary between a range of small to large values. This
implies that, even though there is not much change in the backbone
structure of a protein, the variation in sidechain interactions impart a
large change into its structural network. However, the converse is not
always true. As RMSD increases, NDS has only higher values. This is
because variation in backbone will inevitably bring changes to the un-
derlying sidechain interactions.

3.2. Characterisation of protein structure variability

The scatter plot is partitioned into four quadrants based on the sta-
tistical average that is computed for the entire dataset. The third quad-
rant, where both RMSD and NDS are lower, corresponds to the
comparison of conformers that are highly superposable in terms of
backbone and sidechain. Contrarily, both the scores are higher in the first
quadrant. If the compared conformers have preserved sidechain in-
teractions but vary only in backbone atom positions, i.e., RMSD is high
and NDS is low, the points fall into the fourth quadrant. Also, when the
backbone is preserved and there is variation only in sidechain in-
teractions the points fall in the second quadrant.

The data points (scatter) corresponding to individual proteins are
analysed. Data points in the third quadrant correspond to conformers
with a preserved network and structure and the protein is known to be of
rigid type. Likewise, when the scatter spread across other quadrants on
the plot, they are classified as non-rigid proteins. Using the scatter from
all conformers of each protein, they are grouped into five categories
based on the nature of their structural variability:

1. Rigid (R)
2. Preserved network, with variation in backbone (N)
3. Variable network, with preserved backbone (B)
4. Flexible in backbone and network (F)
5. Mixed (M)

Fig. 3 shows the area on the scatter plot designated for each of the
categories. A protein is categorised based on whether more than 60% of
its scatter falls within a specific area on the plot that is designated to each
of the categories. Also, none of the data points should lie outside a
permissible area (The permissible area for each category is discussed
along with examples later in this section). Supplementary Fig. 1 shows
the percentage of datapoints with lesser than mean NDS and RMSD of the
entire dataset. Sixteen proteins are found to have more than or equal to
60% data points in the rigid area (lower than the mean of dataset).
However, not all of these proteins satisfy the ‘permissible extremity’
criteria defined for rigid proteins, i.e., all comparison scores of the protein
should be lower than the sum of mean and standard deviation of the
dataset. Similar criteria are used in the segregation of proteins into each
of the categories. The criteria for classifying a protein into each of the
categories are discussed in detail with the help of examples.

Rigid category: In the discussed scatter plot for each protein, if more
than 60% of the scatter lies in the rigid area and none of the data points
regress with comparison scores greater than the sum of the mean and
standard deviation of the entire dataset, the protein is categorised as a
rigid protein. For example, the individual plot of Lysozyme C is shown in
Supplementary Figure 2 (A). The comparison of all nine crystal structures
of this protein is found to have 94.44% of the scatter in the rigid area and
all points within the permissible extremity. The proteins of this category
are rigid in nature with conformations of well-preserved backbone and
side chain interactions. Listed in Supplementary Table 3 are ten proteins
from the dataset that have been categorised as rigid along with the in-
formation of mean and standard deviation from their respective distri-
bution of comparison scores. Nearly all proteins have datapoints in this
rigid area of the plot which correspond to low conformational variations.
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Supplementary Fig. 1 shows a bar plot of the percentage of data that lie in
the rigid area.

Preserved network category: If the interactions (mostly sidechain) in a
protein are preserved even when the backbone shows divergence, they
are categorised as proteins with preserved network. In the individual
scatter plot of such a protein, excluding data points in the rigid area, more
than 60% of the scatter lie in the preserved network area that lies on the
bottom right of the plot. Also, none of the network comparisons have
NDS greater than 0.181 (sum of mean and standard deviation in NDS of
the dataset). The nature of structural variability in the protein is a flexible
backbone with a preserved network. Four proteins from the dataset,
listed in Supplementary Table 4, fall under this category. It should be
noted that the backbone deviation in all these four proteins is not
significantly high. This may be since the dataset consists of only single-
domain proteins. It is possible for a non-single-domain and monomeric
protein to have large structural backbone deviation (domain movement)
even when the network is well preserved. Such a scenario has been dis-
cussed in Ghosh et al. (2017) (refer to Figure 14 of the citation) Sup-
plementary Figure 2 (B) shows the plot of N-acetyltransferase
domain-containing protein obtained from their 18 crystal structures as an
example. Excluding the data points of this protein in the rigid area, 100%
of the scatter is in the preserved network area. All the data points lie
within the permissible extremity and hence this protein is of the pre-
served network category.

Variable network category: On the individual scatter plot for each
protein, excluding the data points from the rigid area, if more than 60%
of the scatter lie in the variable network area and none of the structure
comparisons have RMSD greater than 0.64 Å (sum of the mean and
standard deviation of the entire dataset), the nature of structural vari-
ability of these proteins is of a flexible network with a preserved back-
bone. Eight proteins from the dataset fall under this category which have
been summarised in the Supplementary Table 5. In Supplementary
Figure 2 (C) we show the individual plot of Prolyl endopeptidase ob-
tained from its twelve crystal structures as an example. Excluding the
data points of this protein in the rigid area, 84.62% of the scatter lies in
the variable network area. All the points in the plot lie within the
permissible extremity and hence the protein is of variable network
category.

Flexible category: In individual scatter plots, after excluding the data
points in the rigid area, if more than 60% of the scatter from a protein has
NDS and RMSD greater than the mean of the dataset then the nature of
structural variability of these proteins is flexible. Twenty-one proteins
from the dataset are found to be flexible and are detailed on Supple-
mentary Table 5. The individual plot of Casein Kinase II (α-subunit)
obtained from the eighteen crystal structures is shown as an example in
Supplementary Figure 2 (D). Excluding the data points of this protein in
the rigid area, 83.55% of the scatter of this protein is found in the flexible
area of the plot. Hence this protein is categorised as a flexible protein.

Mixed category: Proteins that do not fall into any of the above cate-
gories are grouped as mixed category of proteins and the nature of
structural variability of the mixed category of proteins is of the non-rigid
type. The remaining 13 uncategorised proteins are classified as mixed
category and are listed in Supplementary Table 6. Certain proteins that
have data points beyond the permissible extremity of comparison scores
make it into this category. From the individual plot of Myoglobin (Equus
caballus shown in Supplementary Figure 2 (E)) it is observed that a lot of
the datapoints lie in the preserved network area, however a single
datapoint is found to have a significantly higher NDS score, hence this
protein is categorised as mixed. Some of the proteins are classified here
since one or more conformations diverge drastically from the existing
space of conformations and hence the scatter of such a protein do not
confine to a specific area in the plot which complicate classifying the
protein into any specific category. Similarly, in the case of methionine
aminopeptidase (shown in Supplementary Figure 2 (F)) it is discernible
than most of the datapoints lie in the variable network area. However, a
cluster of data points that depicts backbone structure deviation greater



Fig. 4. Comparison of different conformational states of a protein can result in clustering of data points observed on their individual scatter plot. (A) The plot of
comparison scores in the sperm whale myoglobin protein (Physeter macrocephalus). Coloured rectangular boxes indicate the clustering of data points on the plot. (B)
The cartoon diagram of crystal conformer of deoxy conformational state of sperm whale myoglobin that is superposed with the oxy conformational state, where the
protein cofactor (HEME) is bound to oxygen is illustrated. The reference deoxy conformational state that is superposed with the protein bound to HEME-CYN (C) and a
non-HEME bound state (D) are also illustrated. (E) A table containing information of the comparison scores for the superposed structures and the bound ligands
are shown.
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than the mean and standard deviation of the dataset is observed.
If a protein exists in more than one structurally deviant conforma-

tional state then the data points corresponding to the comparison appear
as more than one cluster on the scatter plot of the individual protein. This
is recognised in many non-rigid type proteins and is discernible from the
scatter plots shown in Supplementary Fig. 2 (E &F). For example, the
myoglobin protein is known to exist in an oxy and deoxy state. In the
individual scatter plot of Sperm whale myoglobin (Physeter Macro-
cephalus), distinct clusters are observed as shown in Fig. 4 (A). In the
cluster with high comparison scores (illustrated in Fig. 4 (A) using col-
oured boxes) the compared conformers have diverse topologies and come
from different conformational states. For instance, comparing the pair of
crystal structures of PDB ID: 4PNJ (deoxy state) and PDB ID: 2Z6S (oxy
state) that share a NDS of 0.143 and RMSD of 0.46 Å. Likewise, in the
comparison of different conformational states of the protein, it is
observed that the scatter is spread across different clusters as shown in
Fig. 4.
3.3. Sub-network analysis

The nature of a residue such as solvent accessibility and secondary
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structure are frequently conserved during evolution in order to preserve
the tertiary structure of the protein and retain its function (Sitbon and
Pietrokovski, 2007). The influence of these two parameters on the overall
structural variability is presented in this section. To perform this study,
the all-atom PSN is decomposed into sub-networks that consist of only
specific elements of the network as shown in Fig. 1. The sub-networks
with subsets of nodes and edges based on solvent accessibility or sec-
ondary structure are analysed.

Using the solvent accessibility information of residues in a protein
structure, the all-atom PSN is decomposed into three sub-networks as
detailed in the methods section (Section 2.4). The three sub-networks
(B–B, E-E and B-E) are subject to pairwise network comparison. All
12,251 pairs of multiple conformers with identical protein sequence from
the dataset are compared and the sub-network NDS is computed. The
results of sub-network NDS obtained for each protein are illustrated using
a boxplot as shown in Supplementary Fig. 3 and the scores are available
in Supplementary Table 2. Fig. 5 shows the average NDS of various sub-
network comparisons from each protein. It is found that, in almost all
protein instances, the sub-network of buried residues (B–B) is more
strongly retained than the sub-network of exposed residues (E-E). This is
fairly conventional in understanding how the buried residues and the



Fig. 5. Trace of average NDS from the compared sub-networks, obtained based on solvent accessibility information. The sub-network that captures edges between
nodes of only buried residues (B–B) has lower sub-network NDS than the sub-networks that capture edges between nodes of only exposed residues (E–E) and edges
between a buried and an exposed residue (B–E). An exception is that of the Rubredoxin protein where it is found that the sub-network of exposed residues (E–E) is
well retained.

Fig. 6. Trace of average NDS, comparing the individual sets of network comparison scores from different kinds of sub-networks that are based on secondary structure
information. It is predominantly observed that the sub-network of ordered residues (O–O) is better retained than the sub-network of non-ordered residues (N–N),
except in five proteins which are Leucoterine A-4 hydrolase, Quinolate synthase A, S-hydroxynitrile lyase, NADH-cytochrome b5 reductase 3 and rRNA N-glycosidase
where they have better retained sub-network of non-ordered residues (N–N). Also, in four other proteins, the sub-network of ordered and non-ordered residues (N–O)
is better preserved than sub-network within secondary structures (O–O) which are Heart fatty acid binding protein, Myoglobin (Physeter macrocephalus), Peptidyl-tRNA
hydrolase and Glutaredoxin.
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connections amongst themselves are well retained whereas the solvent
exposed residues have higher variation amongst their connections. This
shows that the mobility of exposed residues contributes to the overall
protein structural variability more than the buried residues. Also, it is
observed that B-E sub-networks are found to be the most variable. Higher
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NDS is observed in B-E sub-networks than in E-E sub-networks in all the
proteins.

In a similar kind of analysis, information of secondary structures is
used in constructing sub-networks. The residues of a protein are distin-
guished as ordered and non-ordered residues based onwhether they form



Fig. 7. Edge-weight variance profile can describe
network variations. Edges of the PSN whose variance
in edge-weight is greater than three times their stan-
dard deviation are shown in different colours. In
descending order of their numerical variance, the top
five edges are shown in red, the next ten edges are
shown in yellow and the remaining edges, if any are
shown in blue. The edge variance profile of (A)
Lysozyme C (B) N-acetyltransferase domain-
containing protein, (C) Prolyl endopeptidase, (D)
Casein Kinase II (α-subunit) proteins are shown here.
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ordered secondary structures such as helices and sheets or if they make
up the non-ordered secondary structures such as coils and turns. Three
sub-networks (O–O, N–N and O–N) are generated for each conformer as
described in the methods section (Section 2.4). All pairs of sub-networks
are compared and the scores are plot on boxplots as shown in Supple-
mentary Fig. 4 and are available in Supplementary Table 2. Fig. 6 shows
the average NDS of sub-networks in each protein. In most proteins the
sub-networks of non-ordered residues (N–N) have higher dissimilarity
than the sub-networks of ordered residues (O–O). This implies that the
interactions between non-ordered residues, which are known to be more
flexible than ordered residues, have greater variability than the in-
teractions between ordered residues that make up helices and sheets. It is
also interesting to note that the O–N sub-network exhibits higher
dissimilarity than N–N sub-network in many cases.
3.4. Edge-weight variance in protein ensembles

The conservation of structural interactions within the protein struc-
ture is essential for maintaining its function. Consequently, perturbations
that alter the intra-connectivity of amino acids can modify the stability
(Worth et al., 2011; Pandurangan et al., 2017) or function of the protein
(Frauenfelder et al., 2007; Redfern et al., 2008). The spatial proximity
between residues in 3D structure of the protein describes the
intra-connectivity of residues that are captured using edges in the PSN.
Given an ensemble of PSN, variation in proximity of residues is studied
by using variance in network edge-weight parameter which is discussed
in detail in the methods section. Variance of the edge parameters in every
protein of the dataset is computed to yield an edge variance profile. Fig. 7
shows the edges with very high variance in the discussed examples for
each category. The coloured edges have a variance greater than three
times the standard deviation of the variance recorded in all edges of the
given protein. In descending order of the recorded variance, the top five
edges are coloured in red, the next ten are coloured in yellow and all the
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remaining are coloured in blue. The number of such highly variable
edges is lower in proteins of rigid and preserved network category
whereas they are higher in proteins of network variable and flexible
category.

The method has been discussed with Camphor 5-monooxygenase
(Cytochrome P450 protein) as a case study. The data points corre-
sponding to pairwise comparison of all pairs of nineteen crystal struc-
tures of Camphor 5-monooxygenase obtained from Pseudomonas putida
are illustrated on a scatter plot shown in Fig. 8 (A). Since, more than 60%
of the scatter of this protein has NDS and RMSD greater than the mean of
the dataset, the structural variability of this non-rigid type protein is
grouped under the flexible category. In Fig. 8 (A), which shows the in-
dividual plot, distinct clusters of the scatter are observed. The first cluster
having low RMSD has a diversity of network dissimilarity scores which
shows that the structural network of sidechain interactions is variable.
The second cluster of data points, with higher NDS and RMSD than the
initial cluster, correspond to the comparison of altogether different
conformations. In order to identify specific residues and regions of the
protein that contribute to such variability we study their edge variance
profile.

Fig. 8 (B) shows a cartoon diagram of the structure of camphor 5-
monoxygenase where edges of the PSN are coloured based on the
edge-weight variance across the ensemble. Residues that are highly
variable are identified by arranging the residues in descending order of
their edge-weight variance. A list of the eleven most variable interactions
(edges of PSN) and their details are shown on the table in Fig. 8 (C). Few
of the most variable edges are observed on the C-terminal region that
interacts with the core of the protein (shown in Fig. 8 (B) depicted using
orange colour). It is inferred from the case that polar residues that are
predominantly exposed in the structure have a higher probability of
making an edge that is more variable. By performing such an analysis, we
make use of the variance profile as a tool to recognise nodes in the PSN
that have a greater influence on their overall variability. It will be



Fig. 8. Edge-weight variance in the crystal conformers of Camphor 5- monooxygenase. (A) Individual scatter plot of structural comparison of all pair of crystal
conformers of Camphor 5-monooxygenase in the dataset. (B) Cartoon diagram of the protein structure depicting the edge-weight variance profile, where residues of
higher variance are depicted in colours red, yellow and blue in descending order of the numerical variance. The C-terminal region of the protein is coloured in orange
to show that most of the variable edges are found to be associated with this region. The Cα atom of nodes that make these variable edges are shown using spheres in the
cartoon diagram. (C) Table of eleven most variable interactions in the protein. The interactions that are associated with the C-terminal region are highlighted in
orange colour.
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interesting to analyse the functional relevance of such network vari-
ability in our future work.

4. Discussion

The flexibility in protein structure enables them to bind to a wide
variety of molecules and undergo conformational alterations, to perform
its function in living cells. The extent of deviation changes from protein
to protein. Native states of proteins that are captured using structure
determination methods, such as X-ray diffraction, pave the way in un-
derstanding its conformation diversity. The flexibility in atom positions
across several conformations of a protein constitutes its structural
variability.

The nature of structural variability may vary depending on protein
function even when the fold is conserved. Hence, the structural vari-
ability of a given protein can be utilized as a metric to correlate with
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protein structure-function relationship. In this study, proteins have been
characterised as rigid or non-rigid based on how diverse their conformers
are in terms of their topologies. The mean value along with standard
deviation information from the entire dataset is employed in formulating
a criterion to segregate the proteins. Some of the salient features
emerging from our analyses are presented below.

� Proteins belonging to the family of protein kinase, catalytic subunits
(SCOPe family: d.144.1.7) which are Cyclin dependent kinase 2,
Casein kinase-II and Mitogen activated protein kinase are all grouped
as flexible proteins.

� Orthologs of Myoglobin and dihydrofolate reductase are predomi-
nantly characterised as flexible although few are in the ungrouped
mixed category.

� Mycocyclosin synthase has network variation with preserved back-
bone structure, while its homologs NADP nitrous oxide-forming nitric



Fig. 9. Fiedler vectors analysis between de-oxy state (PDB ID: 4PNJ) and oxy state (PDB ID: 2Z6S) of myoglobin protein. (A) Absolute difference between the Fiedler
vectors of 4PNJ and 2Z6S. (B) Top 10 residues in the structures of myoglobin that show highest absolute difference between Fiedler vectors of 4PNJ and 2Z6S. (C)
Cartoon diagram of myoglobin protein structure highlighting top 10 residues with highest absolute difference between Fiedler vectors of 4PNJ (de-oxy state) vs 2Z6S
(oxy state). These residues are shown as red sticks.
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oxide reductase and Camphor 5-monoxygenase are found to be
flexible.

� The four members of the fatty acid binding protein family (SCOPe
family: b.0.1.2) in the dataset are all grouped in different categories.
While the Heart fatty acid binding protein is found to be rigid, Retinol
binding protein is flexible. The Liver fatty acid binding protein which
is categorised as mixed is observed to have strong network variation.
On the other hand, Adipocyte fatty acid binding protein has limited
network variation even when there is backbone structure deviation.

It will be interesting to follow a similar protocol in identifying the
variability across proteins with difference in sequence such as homologs.

The PSN comparison method used here is shown to be effective in
capturing the variation of the overall network. What has not been dis-
cussed in detail is how this method is also effective in capturing minute
differences in the network such as a change in local or global clustering.
The method has been discussed in detail with the help of examples before
(Ghosh et al., 2017). We revisit the method by analysing the Fiedler
vectors (eigen vector corresponding to second smallest eigen value) be-
tween the oxy (PDB ID: 2Z6S) and de-oxy (PDB ID: 4PNJ) states of
myoglobin. The highest absolute difference between their Fiedler vectors
also correspond to the nodes in the PSN with the most change in local
clustering. We identify these residues in the structure of myoglobin
protein and find that they are in the vicinity of the HEME cofactor that is
known to undergo a structural change between the oxy and deoxy states
as shown in Fig. 9.

The analysis of sub-networks based on solvent accessibility show that,
in all proteins the sub-network of buried residues (B–B) sub-network,
forming the core of the protein is well preserved. It is interesting to note
that the average NDS is much higher in the connections between buried
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and exposed residues (B-E) than in connections between exposed residues
(E-E) alone. This may imply that the displacements in exposed residue
pairs are more associative than the displacements between buried-exposed
connections. Likewise, in the analysis of sub-networks based on secondary
structure information, ordered residue connections are found to be sub-
stantially well preserved (in forty-seven proteins) as expected. However,
the N–N sub-networks and the O–N sub-networks are better preserved than
O–O sub-networks in five and four different proteins respectively and the
corresponding proteins are listed in the legend for Fig. 6. This implies that
in certain scenarios the network of connections between random coils and
turns are better preserved than within secondary structures (helices and
sheets). The characterization of the variability metric is likely to provide
greater insights in complex situations like multidomain that include
domain-domain interactions and also across homologs.

Analogous to the edge weight mean square fluctuations (EW-MSF)
discussed in reference Ghosh et al. (Ghosh et al., 2017), here we have
discussed the edge-weight variance procedure in the context of crystal
structure ensembles and their variability. The information of the vari-
ance, points to the mobility of nodes in the multiple PSN, in other words,
pointing to variability of residue positions in the native structures.
Moreover, it helps in understanding the variability among different re-
gions of the same protein. Thus, in addition to quality check programs
like PROCHEK (Laskowski et al., 1993), the incorporation of features
related to the side-chain conformational preferences (Rose, 2019) and
the currently described variability metric, elucidating the dynamics of
side-chain interactions, can contribute towards the accuracy enhance-
ment of side chain modelling. The modelled sidechain information can
improve the accuracy of CASP and other protein structure prediction
methods (Jumper et al., 2021; Leman et al., 2020) that rely on available
protein structure information.
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5. Conclusions

The advantages of studying global and local connectivity within
protein structures using graph spectral methods have been exploited in
our analysis of structural variations in monomeric proteins. Ensembles of
multiple crystal structures of 56 proteins are collected in a dataset for the
analysis of structural variability by employing protein structural net-
works. The conformational diversity is described from pairwise com-
parison of their backbone structure and network topology that is used to
group them into categories based on nature of their structural variability.
Most of the proteins in the dataset are categorised as either rigid or
flexible conformations. Furthermore, in certain proteins it is observed
that the network of edges (mostly sidechain) may be variable even when
the backbone positions are preserved, and the vice versa. This is an
advantage using a method such as network dissimilarity to study side-
chain connectivity rather than just by looking at the backbone structure
deviation to understand diversity in protein conformations.

Sub-network analysis reveals that connections of non-ordered sec-
ondary structures and solvent exposed residues depict high dissimilarity
in inter-residue interactions thus imparting less rigidity to the structure.
In a case study, it is seen that edges made with polar residues that are
predominantly exposed show greater variability than their counterparts.
Such an analysis can also be used as a basis for understanding the vari-
ability brought about by external perturbations that may influence the
structure and dynamics of a protein.
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