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A computationally efficient method for generating virtual periodic representative volume element (RVE),
capable of handling arbitrary inclusion shapes, is developed. A universal collision/overlap detection and repair
method is proposed, where each inclusion shape is represented as a union of n-Spheres (UnS). A constrained
optimization problem is formulated and solved to remove inclusion overlaps; a closed-form solution is derived
for calculating the degree of inclusions overlap and its gradient vector with respect to inclusion position. RVE

generation is illustrated with circular, spherical, four non-circular and four non-spherical inclusion shapes.
Computational efficiency is demonstrated using an elaborate RVE generation time study. The generated RVEs
are evaluated using various statistical metrics; results confirm the random distribution of inclusions. Effective
properties of RVEs, representing unidirectional composites, are determined using homogenization with various
fibre cross-section shapes; obtained mechanical properties have shown transverse isotropy.

1. Introduction

Over the past few decades, composites presence is increasing sig-
nificantly in various industries due to their superior properties, such
as higher specific stiffness and strength. Evaluation of these properties
(and damage behaviour) is a non-trivial task. They are controlled by
multiple factors such as constituent material properties, the relative
proportion of constituents, geometrical arrangement of inclusions and
properties of the inclusion—-matrix interface. Experimental and theoreti-
cal approaches exist for evaluating composite properties, but the former
approach is prohibitive due to the enormous amount of human and
capital resources involved in the process. In theoretical approaches, the
material’s representative volume element (RVE) is used to find effective
properties. RVE is chosen to contain all the typical heterogeneities
of the microstructure, and its constitutive behaviour is the same as
that of the whole composite material. Among the different theoretical
methods, finite element analysis based numerical homogenization has
become very popular due to its capability in capturing microstructural
morphology.

Large-scale manufacturing of composites leads to random placement
of fibres instead of regular arrangement. It was observed that in the
case of long fibre reinforced composites, RVE of regularly arranged
inclusions can predict effective properties up to a reasonable accuracy,
but it is not a good choice for damage predictions [1-4]. Also, the
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damage initiation strongly depends on the inter-fibre distances [5], so it
is of interest to reproduce realistic inter-inclusion distance distribution
in RVE. RVE dimensions also influence effective properties, so optimum
RVE size is determined from the convergence study of its properties. For
example, Trias et al. [6,7] suggested RVE side length as about 50 times
fibre radius for carbon fibre reinforced polymer composites.

RVE can be generated, according to Bergmann et al. [8], broadly in
three ways. One, microstructure reconstruction from images [9] using
costly and time-consuming methods like X-ray tomography, digital im-
age correlation. Two, the physical processes involved in manufacturing
are simulated for getting a more realistic distribution of inclusions.
These models simulate the position and orientation of the inclusions
by modelling the resin flow [10,11]. Three, mimicking the actual
microstructure morphology using geometrical methods [12,13] which
is followed in the present work.

Random sequential adsorption (RSA) [14], also known as the hard-
core model, is a simple and widely used approach for generating virtual
RVEs. In this method, inclusions are placed randomly inside the RVE
boundaries, one after the other, such that the new inclusion does
not intersect with the previously placed inclusions until the required
inclusion volume fraction is reached. RSA suffers from lower jamming
limits [14,15], where the jamming limit is defined as the maximum
inclusion volume fraction beyond which adding new inclusions is not
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possible. The jamming limit varies from RVE generation algorithm to
algorithm and generating RVEs with volume fraction close to jamming
limit would take significantly longer times [7]. For example, in the case
of RSA, generating RVE of unidirectional composites, containing fibres
of circular cross-section, with volume fractions greater than 50% would
take very long time as the jamming occurs at about 54.6% inclusion
volume fraction. Similarly, with RSA algorithm, jamming occurs at
about 38% inclusion volume fraction in the case of particle reinforced
composites of spherical shaped inclusions [14-16]. These limits are less
than the inclusion volume fractions of high strength composites used in
aerospace applications and theoretical 1imits(90% for UDCs and 74%
for PRCs).

The lower jamming limit of RSA is due to poor space utilization,
as the position of the accepted inclusions is fixed. In order to over-
come this, one line of RVE generation models [12,17] are focused
on perturbing accepted inclusions so that space is made to accom-
modate extra inclusions, thereby increasing the volume fraction limit.
Recently, Wenlong Tian et al. [18] has coupled RSA with molecular
dynamics simulations to generate RVE of mono-disperse particles (or
spheres) with volume fractions greater than 50%. It is reported that
this model [18] requires large computational times for volume fractions
>50% or number of particles >100. Vaughan et al. [19], and Yang
et al. [20] developed growth-based models where inclusions are added
about an initial seed point (i.e., inclusion) at distances drawn from
experimentally determined distributions. These models are able to
reach fibre volume fractions up to about 65%. In another line of RVE
generation models [21-23], instead of adding inclusions in series, all
inclusions are arranged regularly upfront (for example, in rectangular
or hexagonal patterns) then each of them is given random perturbation
to achieve random distribution of inclusions. It is observed that it is
challenging to obtain randomness at higher volume fractions using
these methods [22].

In a more recent line of research [13,24,25], the required num-
ber of inclusions are randomly initialized, then inclusion overlaps
are removed using an iterative procedure. Pathan et al. [13] used L-
BFGS-B constrained optimization algorithm to minimize/eliminate the
inclusion overlaps. Though it can generate RVEs with higher inclusion
volume fractions, very high computational times are reported. Herrdez
et al. [25] considered inclusions as rigid bodies where overlaps are
removed using repulsive force and momentum. This model,[25], gen-
erates RVEs of non-circular cross-sections with higher volume fractions
in relatively shorter times. In this work, [25], RVE overlap is quantified
using the area of inclusions intersection, which may not be easily
determined for arbitrary inclusion shapes. Inclusion overlap check-
ing, in general, is non-trivial for non-circular or non-spherical shapes,
especially when they are arbitrarily aligned in the space [26,27].
Among the various existing methods, Gilbert-Johnson-Keerthi (GJK)
algorithm [28] is more efficient for checking overlap of two arbitrary
shapes in arbitrary positions. However, it is iterative in nature and
intended for convex shapes. It can be extended to concave shapes as
well by representing as a combination of convex shapes with increased
complexity.

Machine Learning (ML) models [29-32] were developed to predict
the effective properties of the composite materials. ML models, in gen-
eral, are data-intensive and require a variety of data for better learning.
In the case of RVE, this variety in data can be obtained from a broad
spectrum of inclusion volume fractions, different inclusion shapes and
different degrees of inclusion randomness. So, it is of interest to have an
RVE generation algorithm handling these variations while maintaining
the computational speed.

In this work, the RVE generation method based on bounds con-
strained optimization is proposed which works for any 2D and 3D
inclusion shapes. An optimization problem is formulated to eliminate
the inclusions overlap that occurred due to random initialization. As
explained, algorithms like GJK can be used to efficiently detect the
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overlap between arbitrary shapes but finding the closed form expres-
sion for overlap cost and especially its gradient is not easy. Hence,
in this work, a new method is developed for this purpose where each
inclusion shape is represented as a union of n-Spheres(UnS). Also, the
same UnS representation of a shape is used to determine its periodic
copies. In Section 2, the proposed RVE generation methodology is de-
scribed. Then, the method is applied to generate RVEs of five different
2D and five different 3D inclusion shapes in Section 3. Finally, in Sec-
tions 4 and 5, statistical and micromechanical validation is performed
on the generated RVEs.

2. RVE generation methodology

RVE generation is accomplished majorly in two steps. First, in-
clusions are initialized randomly within the bounds of RVE, which
may lead to inclusion-overlapping. Second, eliminating overlaps by
inclusion repositioning while keeping them in contact with RVE. Fig. 1
shows all the steps involved in generating RVE of arbitrary inclusion
shapes and a sample RVE generated using this algorithm.

2.1. Initialization

The inclusions are randomly placed, one after the other allowing
overlaps, within the RVE boundary until the desired volume fraction
is reached. In the present work, inclusion shapes are categorized as
circular, spherical, non-circular and non-spherical shapes and their
dimensions can be constant or drawn from a distribution of choice.
Inclusions location and alignment are drawn from uniform distribution
where each inclusion takes a position in the RVE domain with equal
probability. For example, Eq. (1) shows optimization variables and
their initialization formulae for rectangular or cubical shaped RVE. The
set of optimization variables applicable for an inclusion depends on
its geometry. Circular and spherical shapes need (x, y) and (x, y, z)
respectively, as their orientations are immaterial so that the remaining
terms can be set to zero or some arbitrary constant. Similarly, non-
circular and non-spherical shapes need (x, y, 6) and (x, y, z, 0, ¢)
respectively.

X = Xpin + PXmax = Xpmin) (1a)
Y= Ymin + 4Vmax ~ Ymin) (1b)
Z = Zpin + S(Zpax = Zmin) (1c)
0 =2nu ad
¢ =cos™'Qu—1) (1e)

where p,q,s,u,w € [0,1] are drawn from uniform distribution, 0 is
azimuthal angle, ¢ is polar angle and (x,,;,;> Yiins Zmin> Xmaxs Ymaxs Zmax)
are bounds of the RVE in (x, y, z) directions. The choice of ¢, in
Eq. (1), is to ensure uniform distribution of points on the unit sphere,
otherwise choosing ¢ = zw would cluster points near the poles [33].
Random initialization, as per Eq. (1), may lead to the overlapping of
inclusions, which must be removed. For this purpose, an optimization-
based iterative procedure for inclusions repositioning is presented in
the next section.

2.2. Overlap elimination

In this section, all the steps involved in inclusion overlap elimina-
tion are presented in detail. Let i and j be any two inclusions with
centres at x; and x; in a RVE domain £ as shown in Fig. 2. The domain
Q is chosen as periodic to avoid gaps and overlaps when it is repeated
in the space. Overlap between a pair of inclusions can be quantified
either by using the intersection area or penetration distance along the
line connecting centres. Due to its simplicity, we chose the distance-
based approach. Let d;; and Z-j, respectively, denote centre-to-centre
Euclidean distance and distance of the closest approach for i and .
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Fig. 1. RVE generation flow chart and a sample RVE of different inclusion shapes.

Here, the distance of the closest approach is defined as the centre-
to-centre Euclidean distance when inclusions are just touching each
other externally. Then, the total magnitude of inclusion overlap, f, in
the RVE is defined as the cumulative sum of the overlap between all
inclusion pairs as shown in Eq. (2)

N-1 N N-1 N
f=2 Y max(d; —d;,00= ) Y (@;-d)Hd;-dy)) @)
i=1 j=i+l i=1 j=i+l
where H(x) is Heaviside step function with unit value for all x > 0.
An optimization problem is formulated to minimize the total over-
lap, f, subject to the constraints that centre points, Xp, of inclusions
does not cross the RVE domain Q.
Minimize f
. 3
subjected to x, € Q
In Eq. (3), the RVE domain (£) can be in any shape of interest and it
decides the nature of the constraint equations. In the present study, the
RVE domain € is chosen as rectangular in 2D and cuboid in 3D as it
ensures simple bounds on the spatial variables (x, y, z). Non-monotone
spectral projected gradient (NMSPG) is used, in the present work, to
solve the Eq. (3) as explained in Section 3 while any constrained
optimization solver can be used.

2.2.1. Shape representation as a union of n-Spheres (UnS)

The overlap evaluation is a non-trivial task for non-circular and non-
spherical shapes. In this section, we describe a novel, time-efficient/
scalable approach to identify overlaps, thereby allowing our method
to handle non-circular and non-spherical inclusion shapes. The idea is,
overlap detection between a pair of arbitrary shapes can be converted
to overlap detection between two groups of n-Spheres by represent-
ing inclusion shape as a union of n-Spheres (UnS). Here, the term
“n-Sphere” implies a circle in 2D and a sphere in 3D, as used in
mathematics. Fig. 3 shows the UnS representation of inclusion shapes
considered in the present work. For example, checking the overlap
between an ellipse and a rectangle requires finding the overlap between
circles representing these two shapes. Overlap computation time is
directly related to the number of n-Spheres used for each shape. Hence,
using the minimum possible number of n-Spheres is desirable.

We proceed to find the centres and radii of n-Spheres to represent a
shape. Let C; and C, represent the equations of i’ shape boundary and
a concentric outer curve around C; with a thickness of d , minimum
distance between boundaries of any two shapes. Here, Ei represents
the region within which the boundary of the other shapes is barred
from entering. Assuming that we know the position x, and radii r,
of the starting n-Sphere, then x, and r, of the successive n-Spheres

are chosen such that the concentric n-Spheres of radius r; + d,, would
intersect on C;. This would ensure that the successive n-Spheres are
separated by an optimum distance dx;. Overlap of inclusions may not
be captured if n-Spheres are placed at a distance greater than dx;
because such a UnS may not represent the shape accurately. Also, n-
Spheres closer than dx; would unnecessarily increase the number of
n-Spheres there by increasing the computation time. In Appendix A,
formulae for finding the n-Spheres centre and radius are given for
representing the ellipse/spheroid shape, the region between a pair of
lines/planes separated by an angle 2.

2.2.2. Periodic copies addition

In a micromechanical analysis of the RVE, applying periodic bound-
ary conditions (PBC) is more advantageous over homogeneous bound-
ary conditions [34,35]. In order to apply PBC, RVE must be continuous
across its boundary when it is repeated in the space. To achieve
this, if some part of an inclusion leaves the RVE boundary, then an
appropriate number of its copies must be added to RVE at appropriate
locations. Here, the number of periodic copies of an inclusion equals the
number of RVE faces &/ edges &/ a vertex intersecting the inclusion.
These periodic copies must be placed on the corresponding opposite
face &/ edge &/ a vertex. For example, in 2D RVE, if an inclusion
intersects two edges and a vertex, then three copies are added on
two opposite edges and the opposite vertex. Finding intersections of
RVE faces/edges/vertices with circular (in 2D) and spherical (in 3D)
inclusion shapes is relatively simple. So, in this work, periodic copies
are determined using the inclusions Union of n-Spheres (explained in
the previous section) representation.

For each inclusion, the intersection of each of its n-Sphere with the
RVE boundary is evaluated. Instances of inclusion’s intersection with
RVE is the same as the set of all n-Sphere’s intersections with RVE
faces &/ edges &/ a vertex. Accordingly, periodic copies of inclusions
are added to RVE. As it involves running over each n-Sphere of each
inclusion, filtering out boundary inclusions saves the computational
effort. This can be done by checking the overlap of inclusion’s bounding
box with that of the RVE.

2.2.3. Cost function and gradient evaluation

Let inclusions i and j, as shown in Fig. 2, have N; and N ; number
of n-Spheres in their UnS form. The case of circular/spherical inclusion
shape can be obtained by choosing N; = 1 and N; = 1. The cost of
overlap between k'* n-Sphere of i"" inclusion and /" n-Sphere of ;"
inclusion is defined as

Cixji = max(0,d; ;; — dy j) = (dik,jl - dik,jl) H(dy j; — dig j1) 4
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Fig. 2. Schematic of inclusions with n-Spheres.

with,

dipji = Fig +rjp +dgg

dig i = X — X5ll2
Xik = (Xi» ik Zi) = X; + Ei (63 B3)
Xj = (x5, Y1 2jp) = X5 + §51(65, B5)

)

where, H is the Heaviside step function, d, is the minimum surface-to-
surface distance between any two inclusions, x;, and x; are centres of
k™ and I'"" n-Spheres of i"" and j* inclusions.

The total cost of overlap, f, for all N inclusions is given by

N
i

N-1 N N; N;

feyz0.¢)= ) >,

i=1 j=itlk=1I=1

(6)

Gradient, the rate of change of the cost function, f, due to change
in i inclusion variable w; € {x;,y;,z;,6;,$;} is evaluated as (refer to
Appendix B for detailed derivation)

_|of of of of of
Vi= [6xi ay, 0z, 06, 6q§,~] (72)
NN e
1K,
=—22 ZZ d - [Axik,jl Ay ji Azycji AOy i A¢ik,jl] (7b)
j=1 | k=11=1 “ik.jl
#i
where,

Axik,jl = Xik — X
Ayik,jl =Yik = Vji
AZy i1 = Zig — 2
Aby i

Ay ji

= (Vi = Vi) A ji — (x; = X ) Ay i
Z; — Zjg
%(Axik,jl(xi =Xy + A j1 Vi = Yir)) — (Azyg jim)

n= \/(xi =Xy + (0 = yu)?

The cost function and its gradient vector, as given by Egs. (6) and (7),
can be used with any inclusion geometry by considering the appropriate
set of optimization variables. For example, in the case of circular shapes
(z,0,¢) are constant hence gradients vanish corresponding to these
variables.

3. Generating RVE of different inclusion shapes

This section demonstrates RVE generation for circular, spherical,
four non-circular and four non-spherical inclusion shapes. Fig. 3 shows

Table 1
RVE parameter sets used in the present study.
vy 13 Ry, Ro, dg,
Set 1 0.65 25 6x107° m 0.0 0.07 X Ry,
Set 2 0.65 50 6x107° m 0.0 0.07 X Ry,
Set 3 0.40 15 6x107° m 0.0 0.07 X Ry,

the UnS form of non-circular and non-spherical inclusion shapes. Gen-
erating an RVE requires solving the optimization problem given in
Eq. (3). Constraints of Eq. (3) become simple bounds on the spa-
tial variables for box shaped RVE (i.e., rectangle in 2D and cuboid
in 3D). Gradient projection methods, an extension of the steepest
descent method to the constrained optimization, are proved to be effec-
tive choices [36] for solving optimization problems with such simple
bounds. Hence, Non-monotone spectral projected gradient (NMSPG)
algorithm [37,38], a variant of gradient projection methods, is used
to solve the Eq. (3). The particular choice of the algorithm is based
on two reasons. One, the speed of convergence due to the choice of
spectral step length. Two, guaranteed global convergence due to the
non-monotone nature of the line-search. In NMSPG implementation,
parameters M = 50, a,,;, = 107%, a,,,, = 10%,6, = 0.1,6, = 0.9,y = 107*
are used with the same naming convention as in [37]. RVE generation
procedure is designed to restart if the solution does not converge in a
predefined number of iterations.

Table 1, lists three different sets of RVE parameters used in the
present work. In this table, v, is the inclusion volume fraction,
(Ry,, Ro,) are mean and standard deviation of reference circle/sphere
radii, 56 = L/Ryu, is the RVE size, L is RVE side length and d,,
is inclusions minimum surface-to-surface distance. Dimensions of dif-
ferent inclusion shapes, see Fig. C.11, are chosen to give the same
area/volume as that of the reference circle/sphere so that their RVE
generation times can be compared. Although RVEs can be generated for
variable inclusion sizes, we have used Ro, = 0 to study RVE generation
for monodisperse inclusions. This is because the monodisperse case
requires more computational effort and have lower jamming limits than
those with polydisperse inclusions [13]. Two and three-dimensional
RVEs generated using the set 1 and set 3, respectively, are shown in
Fig. 4

3.1. RVE generation time.

The RVE generation module is written in the open-source compu-
tational language Julia [39] and used on a computer with 1.19 GHz,
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(c) Rectangle

170/

(d) 6-tip Star

(g) Oblate spheroid (h) Cylinder

Fig. 3. Non-circular and non-spherical shapes representation as a union of n-Spheres.

four-core, 8 GB RAM specifications. Lower RVE generation times are
desirable for producing large data sets which may be used for studying
composites with data-hungry approaches like deep learning. To assess
the computational performance, RVE generation time study (7,,,) is
performed with various inclusion shapes having different aspect ratios
and RVE sizes (§). For this purpose, RVE parameters of sets 2 and
3 of Table 1, are used respectively, with 6 € {25,50,75,100} in 2D
and § € {15,20,30,35} in 3D. It is observed that, a large part of
the Toen is due to overlap cost function (f) and its gradient (Vf)
evaluations, and it gets enhanced with number of n-Spheres used in
UnS form of inclusion(see Section 2.2.1). The f and Vf are evaluated
between a pair of inclusions only if their bounding boxes overlap to
avoid unnecessary overlap check with far-off inclusions. This reduces
computation costs significantly while dealing with non-convex shapes.
The minimum (#,,,), mean (#,), standard deviation (,) and maxi-
mum (t,,,,) values of 7,,, are reported for 2D and 3D RVEs of different
inclusion shapes in Tables C.5 and C.6, respectively, obtained from 20
realizations in each case of 3D RVEs and 50 realizations in each case of
2D RVEs. Of all four indicators, meantime is more reliable, as the other
metrics are sensitive to outliers. If the random initialization is far from
the solution, convergence may not be achieved in the predefined num-
ber of iterations, so the RVE generation restarts with new initialization.
This leads to higher #,,, and 7, in some cases. Thus, the parameters
Emins Tos Tmax Can be used to understand the uncertainty involved in that
particular case. It is found that 7,,, is directly proportional to the RVE
size and aspect ratio of the inclusion because the increase in RVE
size leads to more number of inclusions, and an increase in aspect
ratio leads to more chances of inclusion overlap. For n-tip stars, 7, is
decreasing from a 3-tip star to a 5-tip star, as the 5-tip star has fewer
chances of entanglement/overlap with other inclusions. This is because
more tips would result in a smaller tip height for a given star area.
For circle-shaped inclusions, the present algorithm generated RVE
of size 6 = 50 with 65% inclusion volume fraction in about 0.2-
0.3 s, while [13] has reported 107.02 min on a computer with similar
specifications. This drastic reduction 7,,, may be majorly due to explicit
gradient evaluation, which otherwise has to be calculated using com-
putationally expensive numerical methods. Recently, [25] has reported

RVE generation times for non-circular inclusion shapes. In comparison
with this study, for generating the RVE of approximately 2070 elliptical
and rectangular inclusions, the present algorithm takes 35 and 20 s,
respectively, while [25] has reported 69 and 86 s. Higher t,,, of
3D RVEs, compared to 2D RVEs, is due to an increased number of
inclusions for a given RVE size and volume fraction. Note that, we
have not reported t,,, for RVEs of cylinders with 6 € (30,35} as
the total number of spheres in the system (representing all cylinders
in RVE) has reached 200,000 to 300,000, thus leading to very high
1,00~ RVE generation of such shapes can be made faster by developing
cost-effective UnS representation in future work.

4. Statistical validation

It is important to assess the distribution of inclusions in the RVE,
as it influences the mechanical response and damage initiation. In the
following sections, the spatial distribution of inclusions is evaluated in
the neighbourhood and at several radial distances about each inclusion.
For this purpose, 20 different realizations of RVEs are generated for
each inclusion shape, using the parameters given in set 2 (for 2D) and
set 3 (for 3D) of Table 1.

4.1. Voronoi regions areas and volumes

The RVE domain is discretized using Voronoi tessellation [40], with
inclusions centres as seed points, to demarcate a unique region (hence
neighbours) for each inclusion. Voronoi tessellation of a RVE with
circular inclusions of 65% volume fraction is shown in Fig. 5(a). The
regular arrangement of inclusions generates Voronoi regions with the
uniform area (or volume) and equidistant neighbours. So, these metrics
are used to determine the randomness in the immediate neighbourhood
of the inclusion. Coefficient of variation, mean normalized standard
deviation(c, = o/u), of Voronoi region areas (c,,, for 2D RVE) and
Voronoi region volumes (c,,, for 3D RVE) is shown with box plots
in Fig. 5. For regular arrangement, c¢,, = 0 due to vanishing standard
deviation of Voronoi region areas or volumes and higher c,,, imply more
randomness. Table 2 shows good agreement of c,, for RVE of circular
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Fig. 4. (a)-(g) 2D RVEs and (h)-(1) 3D RVEs with 65% and 40% inclusion volume fractions respectively.

inclusions when compared with that reported in literature. For the same

Table 2
set of RVE parameters, c,, and c,, of all inclusions, except stars, are Coefficient of variation of area, c,, for RVE of circular inclusions.
in the range of 0.1 to 0.15, see Fig. 5, in line with the observations Present Pathan et al. Melro Wongsto’s
algorithm [13] et al. [12] et al. [21]
of [22,25]. It is observed that c,, is increasing with aspect ratio and v, = 56% 0.168 0.139 0.137 0.129
v, =65% 0.119 0.114 0.099 0.077

decreasing with the number of tips in the case of the n-tip star. As
explained previously, a 3-tip star has more chances of entanglement

than a 5-tip star.
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Fig. 5. A typical Voronoi tessellation and its area and volume metrics for different inclusions.

4.2. Nearest neighbour distributions

In this section, distributions of the first two nearest neighbour
distances and nearest neighbour orientation are studied. Probability
density functions(PDF) of distances from every inclusion to its closest
and second-closest inclusion are plotted, for all the considered inclusion
shapes, in Fig. 6. PDFs are determined using kernel density estimation
with Gaussian kernel and Scott method based bandwidth. PDF becomes
a sharp peak at the neighbour distance if all neighbours are equidistant,
as in the case of a regular arrangement. PDF gets flat as the neighbour
distance distribution changes from regular to random. Fig. 6 shows
such PDF curves flattening with increasing aspect ratio and decreasing
number of tips on the star. This further supports previous observations
with ¢,,.

Cumulative distribution function (CDF) of nearest neighbour orien-
tations is evaluated, for different inclusion shapes, using kernel density
estimation and plotted in Fig. 7. When inclusions are in complete state
of randomness (CSR), nearest neighbour angles are expected to take
all possible values with equal probability. These angles are evaluated,
using Egs. (1d) and (1e), and plotted on the same Fig. 7. It is observed
that, in all three plots of Fig. 7, CDF of different inclusion shapes is
closely following that of the CSR. This indicates retained randomness
in the nearest neighbour orientations, after the inclusions re-positioning
during overlap removal process.

4.3. Ripley’s K function, K(r)

Ripley’s K function, K(r), determines the expected number of points
inside a search circle (or sphere) of radius r, centred at any point i,
using the Eq. (8)

1 n n

E(r) = AK(r) = — ; ; 1(d;; < rw;;(r) (8)
where, A is point density, n is the number of points and I is the
indicator function with value of 1 if the point j is inside the search
circle (or sphere), otherwise zero. Edge correction term, w;;(r), factors
the absence of points in the exterior part of the search circle (or sphere)
if it crosses the bounds of the domain. The edge correction term can be
avoided by replicating RVEs around the RVE due to the virtue of its
periodicity.

Residual Ripley’s K function, L(r), given in Eq. (9) measures the
deviation of a given distribution from that of the CSR. In the case of

CSR, K,(r) have zr? and %nﬁ for 2D and 3D RVEs respectively.

K —r, for 2D case

L(r) = z (C)]
: M —r, for 3D case
TT

In a search circle (or sphere) of a given radius r, the number of
expected points higher than K ,(r) indicates clustering, while the lower
number implies dispersion. Hence, L(r) takes the value of zero for CSR
distribution and oscillates about zero for a regular arrangement. In
Figs. 8(a) and (b), L(r) is plotted for 2D and 3D cases, with standard
deviation error bars, evaluated from 20 realizations. In the case of
2D inclusion shapes, L(r) is stabilized at about a radial distance ratio
of 7 and remained constant but slightly above zero, indicating minor
clustering for longer distances. In the case of 3D inclusion shapes, L(r)
is not fluctuating but monotonically reduced to zero, indicating the
absence of regular arrangement.

4.4. Radial distribution function, G(r)

Ripley’s K function evaluates point patterns up to radius r in a
cumulative manner. Hence, it becomes difficult to identify the radial
distance where the given distribution is deviating from the CSR. For
this purpose, the radial distribution function, G(r), given in Eq. (10),
is derived from K(r). It evaluates the probability of finding points in a
circular strip (or spherical shell) of inner radius r and small thickness
dr, centred at any arbitrary point.

L KO _ ;2 Yy Ni(r,r +dr) for 2D case
2zr dr 2xrdrN 10)

1 dK(r)
o dr iy Ni(r,r +dr) for 3D case

G =

= Gerarn?
where, N; is the number of points in an annulus of inner radius r
and outer radius r + dr centred at ith inclusion centre. In the case of
CSR, G(r) approaches unity at sufficiently longer distances from the
inclusion centre. Radial distribution functions for 2D and 3D inclusion
shapes, evaluated from 20 realizations, is shown in Figs. 8(c) and (d)
with standard deviation as error bars. In the case of both 2D and
3D inclusion shapes, G(r) approaches unity at radial distance ratios
of about 7, indicating the randomness at sufficiently longer radial
distances.

5. Micro-mechanical validation

In this section, 2D RVEs generated using the proposed algorithm are
assessed for transverse isotropy, using finite element based microme-
chanical analysis. Isotropy is expected on the cross-section normal to
fibre direction due to the random distribution of fibres. In order to com-
pare with the literature results, the same RVE parameters and material
set E-glass/MY750/HY917/DY063 are considered [41]. Four different
inclusion shapes, circle, ellipse, capsule and rectangle, are considered
in this analysis. The material set contains linear elastic isotropic matrix
and fibre with Young’s modulus and Poisson’s ratio E, = 3.35 GPa,
Vy =035, E; =74 GPa, v, = 0.2 respectively. RVEs are generated with



R. Nakka et al.

—— NND1-Circles
40 NND2-Circles
L
[a)
%20
0
1.93 2.00 2.07 2.14 2.21
r/R
4 —— NND1-Capsules, 1.25
NND2-Capsules, 1.25
3 —=- NND1-Capsules, 2.00
w — - NND2-Capsules, 2.00
22
e 7\
e\
1 =TT, 0N N
/./ \\\ \,\.\
Op—_tn —— o= =
2.0 2.5 3.0 3.5 4.0
r/b

—— NND1-Rectangles, 1.25
NND2-Rectangles, 1.25
NND1-Rectangles, 2.00
— - NND2-Rectangles, 2.00

~
Sl e~

3.5 4.0
r/b

3.0

—— NND1-Prolate Spheroid

2 NND2-Prolate Spheroid
[TH
[a]
a1
0f—
200 225 250 275 3.00 3.25
r/b
___ NND1-
Sphero cylinder
1.5 NND2-
Sphero cylinder
L1.0
o
0.5
(1) e e —
2.0 2.5 3.0 3.5
r/b

4.5 5.0

Composite Structures 291 (2022) 115560

—— NND1-Spheres

40 NND2-Spheres
[T
[a]
20

0, ________________ J
1.93 2.00 2.07 2.14 2.21
r/R

NND1-Ellipses, 1.25
NND2-Ellipses, 1.25
- NND1-Ellipses, 2.00

w - NND2-Ellipses, 2.00
[a)
o
‘N,
-~ ~-
3.5 4.0

—— NND1-Stars 3 tips

NND2-Stars 3 tips
—-- NND1-Stars 4 tips
NND2-Stars 4 tips
— - NND1-Stars 5 tips
—— NND2-Stars 5 tips

2.5 3.0 3.5 4.0
r/R;
—— NND1-Oblate Spheroid
3 NND2-Oblate Spheroid
52
o
1
0}— — ]
2.00 225 250 275 3.00 3.25
r/a
NND1-
2.0 T cylinder
NND2-
1.5 cylinder
a
al.0
0.5
0.0—-~ ]
2.0 2.5 3.0 3.5
r/b

Fig. 6. Probability density function (PDF) of first two nearest neighbour distances of various inclusion shapes.

constant fibre radius r, = 2.6 pm, RVE window size § = 50.0, d,, =
0.07r, and inclusion volume fraction vf € {0.2,0.3,0.4,0.5,0.6}. For
each vf and inclusion shape, 20 different realizations are generated.
Finite element models of RVE are generated in ABAQUS using
python scripts. As we are interested only in transverse properties of
the composite, four-node plane strain elements (CPE4), along with a
small proportion of three-node triangular elements (CPE3), are used in
finite element modelling. The number of elements in each model is cho-
sen as approximately 50,000 elements following a mesh convergence
study. Periodic boundary conditions (PBC) are chosen over uniform

boundary conditions. This is because, when PBC are applied, equivalent
properties of composite converge faster with RVE size [42-44]. PBC
are applied on the four edges using dummy nodes (known as reference
points in ABAQUS terminology) using the procedure explained in [45].

The effective material properties evaluated from the micromechan-
ical analysis of RVEs, containing 60% volume fraction of circular
inclusions, match closely with the values reported in the literature (see
Table 3). Also, as shown in Table 4, transverse isotropy is observed in
the RVEs of different fibre shapes. In Fig. 9, effective transverse elastic
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Table 3

Transverse effective properties for RVE of circles.

Composite Structures 291 (2022) 115560

E,,(in GPa)

E;; (in GPa)

G,; (in GPa)

Va3

V32

Mean (Std. dev) 13.656(0.126) 13.710(0.24) 4.842(0.08) 0.400(0.007) 0.402(0.004)
Experimental [41] 16.2 16.2 5.786 0.4 0.4
Pathan et al. [13] 13.02 12.927 4.736 0.4037 0.4008
Melro et al. [12] 13.367 13.387 4.851 0.370 0.371
fffff ROM Capsule —— HS~™ y 251 ----- ROM Capsule —— HS~ y
77777 HS* + Elipse ~ —— IROM ----- HS*  « Ellipse =~ —— IROM
20 Circle = Rectangle * 7 e Circle = Rectangle
15
Exn
Em
10
5
0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
volume fraction volume fraction
(a) Elastic moduli (b) Shear moduli
Fig. 9. Transverse elastic and shear moduli for different inclusion shapes.
Table 4 position of their neighbours, to reduce the overall inclusion over-
Transverse isotropy for different inclusion shapes, with 60% volume fraction. lap in the RVE
Inclusion shape Ey/Es Vs / Vi Gys/ Z(TZ’) » Increasing aspect ratio of the inclusions has increased computa-
v - - - -
- = tional time, lowered the maximum reachable volume fraction due
Circle 0.9961 0.9955 0.9931 to the i d ch ¢ )
Ellipse 0.9966 0.9983 0.9875 0 the Increased chances of overlap. )
Capsule 0.9956 0.996 0.9933 » Statistical analysis of RVEs has shown randomness, both, in the
Rectangle 0.9968 0.9967 0.9981 neighbourhood and at longer distances from the inclusion centre.

and shear moduli are plotted for different inclusion shapes of five dif-
ferent volume fractions. It is observed that all the evaluated properties
are within the absolute (Voigt-Reuss) bounds and are very close to
Hashin-Shtrikman lower bound as expected for transverse properties.
Hence, RVEs generated using the proposed algorithm are suitable for
modelling the microstructure of the unidirectional composite materials.

6. Conclusions

A computationally efficient method is developed for generating
periodic RVEs of arbitrary inclusion shapes. Inclusion overlaps that
occurred during random initialization are removed by solving a con-
strained optimization problem. Overlap detection between arbitrary
inclusion shapes is accomplished by representing each of them as a
union of n-Spheres(UnS). The following conclusions are drawn from
a detailed RVE generation time study, statistical and micromechanical
analysis of RVEs. In these studies, ten different inclusion shapes are
used and the influence of varying aspect ratios is also considered.

 Repositioning of the inclusions using the proposed overlap cost
function gradient had enabled faster RVE generation; gradient
yields a coordinated movement of inclusions, by considering the

10

Micromechanical analysis of RVEs has shown transverse isotropy
for circular, elliptical and rectangular inclusion shapes, indicating
the random distribution of inclusion shapes.

Inclusions overlap detection using UnS representation can make the
existing RVE generation algorithms handle arbitrary inclusion shapes.
Also, UnS representation could be used for object/shape collision de-
tection in other fields like robotics and computer graphics. Due to
computational efficiency and capability to work with different inclusion
shapes, large and rich/varied data sets of RVEs can be generated for
data-driven studies of composite materials.
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(a) Pair of lines/planes
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(b) Ellipse/spheroid

Fig. A.10. Schematic representation of n-Spheres arrangement.

Appendix A. Shape representation as a union of n-Spheres

Egs. (A.1) and (A.2) give successive n-Spheres for representing the
region between a pair of lines/planes and ellipse/spheroid, respec-
tively. Fig. A.10 shows the schematic of these n-Spheres arrangement
along with the parameters used in Egs. (A.1) and (A.2). Note that, for
the sake of simplicity, n-Spheres position and radii are determined for
shapes placed at the origin with its axis aligned with the positive x-
axis. Then these n-Spheres are rotated and translated, about the origin,
to the actual position of the inclusion. Eq. (A.1), can be used for many
standard shapes like n-sided regular polygon (with g == — 2z at each
corner), capsule (with g = 0), rectangle (with g = z/4 at eeﬁ:h corner
and g = 0 along the axis).

2d, 1+ 2ry tan §
— —tan
cos 4,

X =Xx;, +
e+l = Xk (A1)
Fip1 = F = (X — X)) sin B
Xt = X428 — )+ 2E1/(1 = £)2 + &b + d, )2 ~ b2
< 3 (A.2)
—1/p2 [ ZkL
Tk+1 b ( . )
b+d,)?
where, £ = E/e, E = - Q’
(a+dg)?

Appendix B. Gradient evaluation

The gradient of cost function, f, is evaluated, with respect to an
independent variable w, of the p'" inclusion, as follows

3

N- N; N-1 N N

N N
aw Z z Clk Wl =2 Z Clk Gl

Jj=itl k=1 I=1 i=1 j=i+lk=1I=1

aclk Ll

(B.1)

For the overlap cost, C;; ;; between k' and /" n-Sphere of i and j
inclusion,

* Ci.ji = Cji x> as the cost overlap between i and j should be the
same as that between j and i.

* Cyjy =0 fori=j=p, as the cost of overlap is defined for a pair
of two different inclusions
. 9C ji
0wp
a pair of inclusions is independent of other inclusions position

=0 for i # p and j # p, as the overlap magnitude between

using the above properties of Cy ;;, Eq. (B.1), is simplified as,

=
=z

i

= aCik pl

N
ik,pl ow Z
=1 k=11=1 P J=p+

N/
Sl e
=1

In the first term, replacing i with j and using C; ;, = C;;; gives,

N N; N;
of : 9Cp i
2L 533y
pk.jl (BB)
aLvl’ J=1 k=1 I=1 aw[’
#p
Now, using i to represent any inclusion instead of p,
N N, N;
af - 9C ji
L =2 Cyp i —L (B.4)
ow; 121‘ a5 ow
#i

NN od od
ik, jl ik, jl _
. =22 Z(dik.jl_dik,j1)< ow. ~ ow >H[d,.k,,l—d,~k,j,]

i

0d!k Jl

j )
Z Cikji a_w,
(B.5)
Using Eq. (5) in Eq. (B.5) gives the cost function gradient as shown
in Eq. (7).

Appendix C. Geometry of shapes

See Fig. C.11 for geometry details of inclusion shapes.
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Fig. C.11. Geometrical details of inclusion shapes.

Table C.5
RVE generation times (in seconds) for different 2D inclusion shapes, with different RVE size 5 and number of inclusions N,,,.
Circle Capsule Ellipse Rectangle Star
AR=a/b AR=a/b AR=a/b n=3 n=4 n=>5
1.25 2.0 1.25 2.0 1.25 2.0
boin 0.01 0.02 0.04 0.05 0.06 0.09 0.29 0.17 0.24 0.21
6=25 1, 0.02 0.04 0.16 0.10 0.18 0.24 1.58 0.64 0.53 0.48
Ny = 130 t, 0.05 0.03 0.33 0.05 0.08 0.11 1.86 0.33 0.33 0.2
tnax 0.37 0.20 2.42 0.34 0.39 0.79 10.09 1.74 2.25 1.18
toin 0.12 0.19 0.44 0.39 0.71 0.57 2.68 2.07 211 1.89
5=50 1, 0.22 0.37 1.49 0.88 2.47 1.93 9.41 26.22 7.00 4.72
N, ® 520 t, 0.1 0.17 2.53 0.43 3.54 1.0 6.74 48.39 4.31 2.72
s 0.56 1.12 18.55 2.57 26.41 5.84 32.92 250.0 23.22 12.0
boin 0.49 0.84 2.13 1.70 2.81 2.32 9.66 7.03 5.60 5.34
6=175 1, 0.84 2.31 7.97 5.37 10.31 8.44 43.54 106.43 47.22 24.01
N;, = 1170 t, 0.51 1.49 11.46 2.52 5.89 17.21 32.92 159.39 76.47 21.07
trax 3.11 6.49 82.1 10.72 31.0 126.11 155.48 763.54 509.15 65.18
Loin 1.30 2.30 5.0 4.70 5.67 7.60 49.65 21.42 19.49 19.75
6 =100 1, 2.43 5.87 36.1 15.44 35.55 20.99 253.74 278.86 232.34 140.87
N, 2070 t, 1.37 4.88 50.57 13.75 28.37 17.57 188.32 271.36 313.97 191.71
Loas 11.11 29.59 347.16 70.11 111.12 94.93 856.15 1451.25 1258.27 1333.78
Table C.6
RVE generation times (in seconds) for 3D inclusion shapes, with different RVE size 6 and number of inclusions N,,..
Sphere Sphero-cylinder Spheroid Cylinder
AR = a/b AR=a/b AR=a/b
2.0 0.75 2.0 2.0
Loin 0.1 0.56 0.79 1.79 160.0
6=15 1, 0.18 8.75 2.36 2.42 470.23
N, ~323 t, 0.08 2.54 1.34 0.52 269.5
Loax 0.47 26.48 5.96 3.29 1471.4
Lin 0.40 4.2 3.39 7.68 526.74
5=20 1, 0.62 40.7 8.34 16.82 1166.9
Ny = 764 1, 0.17 20.01 4.66 8.11 190.0
ax 1.13 94.77 21.03 40.93 1589.1
Loin 3.91 184.23 32.88 73.84 -
5 =30 1, 5.11 405.21 92.69 206.4 -
N, ~ 2579 I 0.82 90.77 30.25 110.4 -
Tonax 6.51 590.61 201.57 412.05 -
Loin 9.24 227.2 60.11 169.4 -
6=35 1, 12.99 709.7 361.28 526.46 -
Ny, ~ 4095 1, 2.51 180.9 200.26 120.54 -
t 17.19 1102.4 756.06 1127.5 -

12
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