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Concurrent outcomes from multiple 
approaches of epistasis analysis 
for human body mass index 
associated loci provide insights 
into obesity biology
Sheldon D’Silva1, Shreya Chakraborty1,2 & Bratati Kahali1*

Genome wide association studies (GWAS) have focused on elucidating the genetic architecture of 
complex traits by assessing single variant effects in additive genetic models, albeit explaining a 
fraction of the trait heritability. Epistasis has recently emerged as one of the intrinsic mechanisms 
that could explain part of this missing heritability. We conducted epistasis analysis for genome-wide 
body mass index (BMI) associated SNPs in Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 
followed up top significant interacting SNPs for replication in the UK Biobank imputed genotype 
dataset. We report two pairwise epistatic interactions, between rs2177596 (RHBDD1) and rs17759796 
(MAPK1), rs1121980 (FTO) and rs6567160 (MC4R), obtained from a consensus of nine different 
epistatic approaches. Gene interaction maps and tissue expression profiles constructed for these 
interacting loci highlights co-expression, co-localisation, physical interaction, genetic interaction, and 
shared pathways emphasising the neuronal influence in obesity and implicating concerted expression 
of associated genes in liver, pancreas, and adipose tissues insinuating to metabolic abnormalities 
characterized by obesity. Detecting epistasis could thus be a promising approach to understand the 
effect of simultaneously interacting multiple genetic loci in disease aetiology, beyond single locus 
effects.

Susceptibility to complex human diseases, example, type 2 diabetes and Alzheimer’s disease, among others are 
conferred by more than one gene as well as environmental influences. Technological advances in genomics 
have equipped researchers to make substantial progress in the field of genome wide association studies (GWAS) 
which is a robust hypothesis-free approach to scan entire genomes of individuals for identifying genetic loci 
that define susceptibility to complex diseases. GWAS have identified thousands of loci implicated in complex 
diseases unequivocally1,2. Nevertheless, complete understanding of the pathophysiology of complex diseases 
remains elusive through GWAS, and the genetic variations identified through GWAS explains only a fraction of 
the heritability of the disease3. GWAS carried out for adult human height, detected associations with common 
variants that could explain about 60% of population variation3,4. Near-independent genome-wide significant 
SNPs explain about ∼6.0% of the variance of BMI (by 785 SNPs) in ~ 700,000 European ancestry individuals5. 
However, by carrying out GWAS on a relatively small cohort size of 96 cases and 50 controls, a variant causing 
an amino-acid replacement in the complement factor H gene (CFH) was found to increase the risk of age-
related macular degeneration (AMD) by sevenfold when occurring in homozygous state6. Also, just 52 genome 
wide associated variants explain more than half of the genomic heritability for AMD7. Thus, GWAS has been 
a huge or moderate success depending on the disease trait or phenotype of interest. It has also been proposed 
that undetermined heritability is due to incomplete linkage disequilibrium (LD) between low frequency or rare 
causal variants and genotyped SNPs, and thus not detected by stringent significance tests8. Another proposition 
is that rare variants contribute to the missing heritability and optimally designed rare variant association studies 
would highlight important biological pathways for understanding disease aetiology9. Furthermore, evaluating 
each SNP individually and enforcing stringent correction for multiple testing can result in crucial variants to 
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be overlooked. This is a severe problem given that these variants arise from components of pathways and genes 
that work in tandem to impact the concerned phenotype10.

Additionally, Bateson proposed that a variant or allele at one locus could prevent a variant at another locus 
from manifesting its effect11. Bateson’s theory was corroborated by Sewall Wright12, where he acknowledged the 
relevance of gene–gene interaction by stating that selection pressure acts on the effects of the genetic background 
instead of individual genes. Shortly after, Sir Ronald Fisher described epistasis as the divergence from added 
effects on quantitative traits due to alleles at different loci13. Epistasis denotes the event in which the status of a 
trait arising from a genetic background deviates from the sum of its single locus effects, and can be interpreted 
as the effect of one locus being dependent on the allelic state of another or several other loci14. This idea has 
further been expounded when epistatic or gene–gene interactions among multiple loci in the genome have been 
observed for model organisms15. Even for human complex traits, it has been proposed that genetic interactions 
could explain some of the “missing heritability” undetected by GWAS16,17, and can thus act as a governing factor 
underlying the biology of non-Mendelian phenotypes18. Epistasis from a biological perspective represents the 
synergy of gene products that are part of interconnected pathways associated with the concerned phenotype19. 
Significant epistasis analysis in recent years have furthered our understanding of complex traits, such as, atrial 
fibrillation20, lung cancer21 and multiple sclerosis22, among others. In the pre-GWAS era, increased evidence 
for linkage at one locus had been observed when the interaction with another locus was considered for type 
123 and type 2 diabetes24 and inflammatory bowel disease25,26 showed that genetic variance for complex traits 
is predominantly additive and a large sample size of millions of unrelated individuals are needed for precise 
estimation of epistatic variance. Recently, successful epistasis in humans have been detected through genome 
screening projects27,28, and by statistical methods of epistasis analysis29–31. Campbell et al. has argued that studies 
about genotypic combinations in model organisms could facilitate our understanding for detection of epistasis in 
natural populations32.In this communication, we use the terms epistasis and genetic interactions interchangeably.

In this study, we have used population data from 785 individuals belonging to the Alzheimer’s Disease Neu-
roimaging (ADNI) cohort in order to detect second order genetic interactions for SNPs known to be associated 
with body mass index (BMI). A recent exhaustive review meticulously details the journey of identifying single 
locus effects associated with human BMI, and how multidisciplinary analytical approaches could enhance our 
understanding of the biology of obesity and identify newer treatments33. We employed nine different epistasis 
detection tools representing exhaustive, heuristics, and stochastic algorithms and identified 20 significant epi-
static interactions for human BMI. We then take these top SNPs comprising the interactions for follow-up in 
the UKB imputed genotype dataset, constituting more than 188,000 individuals to carry out replication analysis. 
Our analysis shows that variants at genomic loci in or near FTO and MC4R; RHBDD1 and MAPK1, exhibit 
reproducible pairwise interactions associated with human BMI.

Results
Statistical epistasis in human BMI‑associated loci.  We identified twenty significant pairwise inter-
actions among BMI-associated loci (Supplementary Table S1), from the consensus results of nine tools in the 
ADNI dataset. We took forward the comprising SNPs in these interactions for replication in the independent 
imputed genotype dataset of UK BIOBANK for uncovering pairwise epistatic interactions associated with BMI.

We finally obtain two pairs of significant interactions in more than 188,000 individuals between rs2177596 
(RHBDD1) and rs17759796 (MAPK1), rs1121980 (FTO) and rs6567160 (MC4R), from a consensus of nine dif-
ferent epistatic approaches. The detailed characterization of these interactions is given in the following sections.

Pairwise interactions detected.  One of the significant interacting SNP pairs in ADNI replicated in the 
UKB dataset, as a consensus obtained from SNPRuler and AntEpiSeeker- rs2177596 (A/T) and rs17759796 
(C/A), (padj = 3.24E−02, 2.0E−02) (Table 1), with corresponding BMI increasing alleles T (β = 0.017, p = 5.61E−06), 
freq = 46% (ADNI), 42% (UKB) and A (β = 0.018, p = 4.2E−05), freq = 14% (ADNI), 15% (UKB) respectively. 

Table 1.   Significant epistatic pairwise SNP interactions for BMI associated loci. Chromosome and position 
with respect to GRCh37. *P < 10−16. (Effect allele: Frequency in ADNI: Frequency in UKB). **P-adj is based on 
1000 permutation testing.

Interaction RSID

Coordinates
Interaction results from SNPRuler, AntEpiSeeker, 
MDR, GMDR

SNP1 SNP2 ADNI UKB

SNP1 SNP2 Chromosome Position Chromosome Position P-adj** P-adj

rs2177596 (T: 46%: 42%) rs17759796 (A:14%: 15%) chr2 227,890,283 chr22 22,190,163 0.0324, 0.02005 (SNPRuler, 
AntEpiSeeker) 0.0 (SNPRuler)*

rs1121980 (A: 44%:42%) rs6567160 (C: 23%: 23%) chr16 53,809,247 chr18 57,829,135 0.0392, 0.0229 (SNPRuler, 
AntEpiSeeker)

(GMDR) CVC : 8
Testing Balanced Accuracy 
(TBA): 0.5346
Cutoff TBA (p = 0.05): 
0.5034
Cutoff TBA (p = 0.01): 
0.5044
p value : < 0.001 (MDR) 
CVC: 9/10
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Additionally, one interaction, as a consensus of GMDR and MDR, between rs1121980(G/A) and rs6567160 (C/T) 
(padj = 0.001) was replicated independently in the UKB genotype matrix, with corresponding BMI increasing 
alleles: A (β = 0.079, p = 1.8E−142), freq = 44% (ADNI), 42% (UKB) and C (β = 0.056, p = 3.93E−53), freq = 23% 
(ADNI), 23% (UKB) (Table 1, Table S1). Moreover, rs7613875 (C/A) (MON1A/RBM5) and rs8050136 (C/A) 
(FTO/RPGRIPL1), identified as interacting in ADNI, failed to meet the criteria for permutation testing in MDR 
(cross validation consistency value of at least 7/10) in the UKB.

Allelic combinations observed in individuals for significantly interacting SNPs.  We have inves-
tigated the genotype combinations of the two interacting SNPs against their prevalence in the UKB (Fig. 1). 
We observe that for every genotype combination in Fig. 1, the number of individuals is invariably more in the 
higher BMI group. This representation is based on absolute number of individuals carrying the said genotype 
combinations, and does not consider the total number of individuals in the high BMI and low BMI groups 
(126,651 and 61,969 respectively). There is marked difference in the total number of samples falling in the above-
mentioned groups. When we closely observe the genotype combinations of effect and other alleles for the two 
interacting SNPs, individuals homozygous for BMI decreasing allele of both SNPs for the pair rs1121980 and 
rs6567160 were more likely to be predisposed to lower BMI as reflected in the UKB. This is because the pro-
portion of individuals in the lower BMI group is significantly greater than the proportion in the higher BMI 
group; where proportions were assessed with respect to the total number of individuals in lower and higher BMI 
groups respectively (two sample z-test for proportions, P < 0.0001) (Table 2). Similarly, proportion of individu-
als heterozygous for rs1121980 and homozygous for the BMI-decreasing allele of rs65678160 are significantly 
more in the lower BMI group (P = 0.0025, Table 2). Proportion of carriers with heterozygous combination of 
rs1121980 and rs6567160 are observed to be predisposed to having increased BMI in UKB (P = 0.029, Table 2). 
In UKB, individuals who are homozygous for the BMI increasing allele for rs1121980, however, either heterozy-
gous (P = 0.014) or homozygous carriers (P = 0.0185) of BMI decreasing allele for rs6567160, are more likely to 
exhibit higher BMI for this SNP pair (Table 2). None of the genotypic combinations for interacting SNP pair 
rs2177596 and rs17759796 show any significant over or under-representation of proportional carriers towards 
high or low BMI.

This analysis shows the importance of deciphering the simultaneous effects from multiple SNPs acting in 
conjunction to influence the phenotypes of our interest in large-scale population datasets.

Further, we examine the interaction effects versus main effects for rs1121980 and rs6567160 where BMI is 
regressed for the SNPs with age and gender as covariates (Fig. S1A), and we see that the proportion of variance 
explained by main effects is 0.0122 and that by including interaction term the proportion of variance explained 

Figure 1.   3-D plot showing three genotypes at each locus for the interacting pairs (A rs1121980 and rs6567160, 
B rs2177596 and rs17759796) with respect to BMI prevalence in UKB population. 3D barplot showing 
prevalence of obesity against genotypes at each interacting locus for two SNP pair interactions: (A) rs1121980 
and rs6567160, and (B) rs2177596 and rs17759796.
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becomes 0.0128. The interaction thus, explains 0.06% of the total phenotypic variance, which is not surprising 
given common variants like these can explain main-effects variance in the order of 0.008–0.3%34. Similarly, we 
examine the interaction effects versus main effects for rs2177596 and rs17759796 (Fig. S1B), where the propor-
tion of variance explained by main effects is 0.00897 and that by including interaction term the proportion of 
variance explained becomes 0.00896. The interaction thus, explains 0.005% of the total phenotypic variance.

Biological relevance of epistatic interactions.  To systematically identify biological connections 
among the genetic loci uncovered for statistical epistatic interactions, we constructed interaction maps based 
on co-expression, co-localization, physical interaction, genetic interaction among the genes annotated to the 
interacting pair of SNPs.

The gene network map of interacting pair rs1121980 (chr16:53809247) and rs6567160 (chr18:57829135) is 
annotated to FTO and MC4R respectively, as shown in Fig. 2A. Interaction between FTO and MC4R has been 
documented in only a couple of studies for obesity in children and adolescents35, and large artery atherosclerotic 
risk36, both studies done in less than 500 subjects, and for gene-diet interactions in 7052 individuals with high 
cardiovascular risk37.

Our results show for the first time that a pairwise interaction among SNPs mapping to FTO and MC4R is 
unequivocally associated with BMI in the UKB cohort of 188,620 individuals (after quality check). Our in-depth 
analysis reveals that FTO co-expresses with MGRN138 which in turn shares a physical interaction with MC4R, 
and it has been shown that MGRN1 inhibits MC4R signalling by displacement of Galpha(s), accounting for coat 
colour and obesity, features of the mahoganoid phenotype in mouse, and plays a key role in insulin sensitivity39–42. 
These results could further our understanding of the mechanism of energy intake and expenditure balance, with 
respect to satiety and weight loss or gain.

The gene network map for interacting pair rs2177596 (chr2:227890283) and rs17759796 (chr22:22190163) is 
shown in Fig. 2B. Genes annotated to rs2177596 are RHBDD1 and COL4A4, the former is a functional compo-
nent of endoplasmic reticulum-associated degradation for misfolded membrane proteins, and required for the 
degradation process of some specific misfolded endoplasmic reticulum (ER) luminal proteins, and apoptosis43, 
and is found to genetically interact with MAPK144, a gene annotated to rs17759796. It is also known that many 
pathways in adipose tissue, liver, and pancreas can be disrupted during ER stress, and ER stress is one of the 

Table 2.   Combinations of allelic states for effect and other allele in individuals of high and low BMI. Column 
headers he, ho and het represent homozygous for the BMI increasing (effect) allele, homozygous for the BMI 
decreasing (other) allele, and heterozygous states respectively. Green cells represent the genotype combinations 
more likely to occur in low BMI rather than high BMI as per prevalence in UKB. Orange cells represent the 
genotype combinations more likely to occur in high BMI rather than low BMI as per prevalence in UKB. Level 
of significance: 0.05

rs1121980-
rs6567160 
(UKB)

ho/ho ho/he
t

ho/he het/ho het/he
t

het/he he/ho he/het he/he

BMI ≥ 25 
kg/sq-m

0.187
98904

1

0.118
0093
3

0.019
07604
4

0.284
42728

4

0.176
99820

8

0.027
54814
4

0.108
07652

5

0.067
56362

0.010
31180
2

BMI < 25 
kg/sq-m

0.212
75153

7

0.120
7216
5

0.016
57280
3

0.296
77742

1

0.167
16422

7

0.025
80322
4

0.096
91942

7

0.055
51162
7

0.007
77808
3

P-value <0.00
01

0.554
3

0.545
8

0.002
5

0.029 0.72 0.018
5

0.014 0.63

rs2177596-
rs17759796 
(UKB)

ho/ho ho/het ho/he het/ho het/he
t

het/he he/ho he/het he/he

BMI ≥ 25 
kg/sq-m

0.2429
11623

0.081
87065
2

0.0074
29866

0.3549
2811

0.1230
15215

0.0107
14483

0.1305
951

0.0445
16032

0.0040
18918

BMI < 25 
kg/sq-m

0.2442
18884

0.081
71827
8

0.0074
23066

0.3576
94977

0.1203
98909

0.0100
05003

0.1307
42791

0.0446
67495

0.0031
30598

P-value 0.759 0.974
1

0.9989 0.4813 0.5704 0.8858 0.9742 0.9748 0.8637
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primary characteristics of obesity45. We thus report here the tissue specific expression results in liver and pancreas 
from GTEx for these two interacting loci.

Expression profiles.  Our results show a significant pairwise interaction between FTO (rs1121980) and 
MC4R (rs6567160) associated with human BMI in more than 188,000 individuals. Individually, both FTO and 
MC4R have emerged as strong signals for human obesity34,46. In mice, studies have shown that FTO can regulate 
fasting and feeding, and therefore variation in FTO can result in changes of feeding behaviour and obesity47. 
Recently, it has been shown that engineered deletion in the rs1421085 (r2 > 0.9 with rs1121980 in Europeans) 
conserved cis-regulatory module can affect organismal phenotypes relevant to obesity in mouse48. MC4R defi-
ciency is known to be the most common cause of monogenic obesity49, and gain-of-function variants in MC4R 
is associated with lower risk of obesity, type 2 diabetes, and coronary artery disease50. We delve deeper into the 
individual-wise distribution of the FTO and MC4R alleles as explained in the previous section, and observe 
that carriers with rs6567160-TT (T is BMI decreasing allele) are predisposed to lower BMI in conjunction with 
rs1121980-AG, GG (N = 91,407). This is even more intriguing when we see that the entire UKB dataset has 
61,969 individuals in the lower BMI category (P < 2.2 × 10−16 in a Binomial test). Thus, we posit that it might 
be possible that the BMI decreasing allele of rs6567160 near MC4R, contributing to its expression levels, has a 
significant mitigating effect on obesity in conjunction with the homozygous decreasing allele or heterozygous 
stature of the FTO SNP. FTO and MC4R are expressed in high levels in the hypothalamus and cortex in the brain 
as seen in GTEx tissue expression profiles (Fig. 3A). The eQTL analysis for BMI associated SNPs rs6567160 
(BMI increasing allele = minor allele = C) and rs1121980 (BMI increasing allele = minor allele = A) in the hypo-
thalamus and cortex is shown in Fig. 4A. They do not significantly regulate the expression of MC4R or FTO. 
Nevertheless, when we analyse the eQTL dataset for expressions of FTO and MC4R in cortex and hypothalamus, 
we notice that the lead SNP rs11873305 (Alt allele and minor allele = C) for MC4R significantly increases the 
expression (beta = 0.55, P = 3.5 × 10−4) of MC4R in cortex, while the lead SNP rs10521305 (Alt allele and minor 
allele = C) for FTO significantly decreases the expression (beta =  − 0.55, P = 3.3 × 10−13) of FTO in cortex. Simi-
larly, significant increase and decrease of MC4R and FTO expression levels are observed in the hypothalamus for 
the corresponding lead SNPs rs8083758 (beta = 2.5, P = 1 × 10−5) and rs10521305 (beta =  − 0.55, P = 5.1 × 10−10) 
respectively (Fig. 4B). Thus, an increase in expression of MC4R in cortex and hypothalamus is accompanied by 
a decrease in expression to FTO in cortex and hypothalamus, with respect to the minor allele of these lead SNPs. 
However, these FTO and MC4R SNPs are low frequency (MAF = 1–6% in the European population) and not 
yet known to be associated with BMI, as well as not in LD (1000G European dataset) with the BMI-associated 
SNPs (rs6567160, rs1121980) for which significant epistasis has been identified in this study. rs6567160 and 
rs1121980 had been found to be associated with BMI from array-based genotypes and HapMap imputed stud-
ies. This makes us postulate that there could be another SNP in or near MC4R (say, m1) that is most likely to be 
causally associated with BMI, and in moderate LD with rs6567160 (BMI-associated), rs11873305 and rs8083758. 
Similarly, another SNP in or near FTO (say, f1) could possibly be the causal variant for BMI, and in moderate 
LD with eQTL lead SNPs rs10521305 and rs1121980 (BMI-associated). It would be motivating to uncover such 
SNPs f1 and m1 and investigate epistatic interaction between them, thus elucidating the network biology of obe-

Figure 2.   Gene networks. Nodes depicting genes are connected by edges formed on the basis of evidence 
for physical interaction (red), pathway (blue), co-expression (purple), co-localisation (violet) and genetic 
interaction (green). The maps for the detected interaction pairs are as follows: (A) rs1121980-rs6567160, (B) 
rs2177596-rs17759796. The solid black nodes are the query genes and the grey nodes are the resultant genes.
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sity further (schema given in Fig. 4C). This observation from our results is especially interesting in the light of 
recent findings in an UKB-based study that gain-of-function variant [rs2229616 (coding change V103I), present 
in only 2% population] in MC4R can predispose individuals to lower obesity50, and we observe that rs2229616 
is in LD with the cortex eQTL lead SNP rs11873305 (r2 = 0.22), which further provides evidence for the pos-
sible mechanisms we propose in Fig. 4C. With the technological advancements in genomics, when we uncover 
perfectly tagged variants by sequencing-based studies, discovery of epistatic effects would also be facilitated. 
Therefore, studying contribution from interaction effects of simultaneous genetic loci while considering the 
respective allelic combinations and uncovering eQTL SNPs in the same set of study individuals could facilitate 
our understanding of complex phenotypes.

rs17759796-A and rs2177596-T are respectively the BMI increasing alleles for MAPK1 and RHBDD1. Our 
allelic combination analysis above do not reveal any statistically significant trend for belonging to higher or lower 
BMI for any of the nine possible genotype combinations for these two SNPs. We investigate the tissue-specific 
expression data for these two genes in GTEx. The two genes are expressed highly together in liver, pancreas, 
adipose-subcutaneous, and adipose-visceral tissues. In addition, MAPK1 is widely expressed in several other 
tissues (Fig. 3B). Although the eQTL expression analysis of these genes in liver, pancreas, and adipose tissues 
(Fig. S2) could be indicative as to how they are modulated as a response to endoplasmic reticulum stress in 
obesity, the absence of a clear picture of any preferential allelic combination limits such in-depth investigation 
in this paper. There is also scarce genotype data for the lead SNPs for these two genes.

Discussion
We present here a comprehensive perspective of how allele combinations from interacting SNPs can influence 
complex traits like human BMI. Our epistasis analysis shows that a diverse combination of trait increasing and 
trait decreasing allele with respect to their homozygous and/or heterozygous status for both SNPs in the interact-
ing pair lead to differential susceptibility to obesity in the population scale, as the frequency of occurrence and 
the underlying biological function of the interacting SNPs play crucial roles beyond the additive mechanism of 
individuals SNPs in the manifestation of the trait in population scale.

We have detected and replicated two significant pairwise interactions for human BMI between genome-
wide associated loci in more than 188,000 individuals. Interestingly, we uncover for the first-time interactions 
among SNPs near FTO and MC4R associated to BMI. Although, these genes have been implicated in BMI, and 
MC4R is known to play significant role in energy homeostasis, the role of FTO in regulating energy intake and 

Figure 3.   (A) Tissue specific expression profile of FTO (rs1121980) and MC4R (rs6567160). Comparison of 
expression (TPM) across various tissues, generated from GTeX for the genes FTO and MC4R. (B) Tissue specific 
expression profile of RHBDD1 (rs2177596) and MAPK1 (rs17759796). Comparison of expression (TPM) across 
various tissues, generated from GTeX for the genes RHBDD1 and MAPK1.
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expenditure is an active area of research. We show in a first, that they can be part of biological interactions via 
MGRN1, depending on the genotype combinations and allelic status of the interacting SNPs. This interaction 
result detected by GMDR in elucidating epistasis mechanism leads to new insights in governing human BMI in 
populations, that could be tested in functional studies. Additionally, independent SNPs rs7613875 (MON1A/
RBM5) and rs8050136 (FTO/RPGRIPL1), identified as interacting in the discovery dataset, failed to meet the 
criteria for permutation testing in MDR (CVC value at least 7/10). Thus, future studies in FTO might shed more 

Figure 4.   eQTL profile of FTO (i) and MC4R (ii) SNPs in relevant tissues. (A) eQTL profile of FTO (rs1121980) 
and MC4R (rs6567160) in brain cortex and hypothalamus. (B) eQTL profile of lead SNP of FTO (rs10521305) 
and lead SNPs of MC4R (rs11873305 and rs8083758 expressed in brain cortex and hypothalamus respectively). 
(C) eQTL profile of interacting SNPs and lead SNPs for FTO and MC4R in the genomic context. Possible 
mechanisms of action of epistatic SNPs in regulating expression of relevant genes.
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light for understanding the biology of obesity, and lead to our precise understanding of how FTO plays a role in 
energy intake and expenditure.

Our input list consisted of SNPs in established genome wide significant thresholds as well as sub genome 
wide significance levels, yet significant epistasis interactions have been uncovered for SNPs that were associated 
with BMI for single locus effects within P < 1E−04. This suggests that there are loci waiting to be discovered for 
governing the biology of obesity, and probing upto a threshold of comparable significance for SNPs already 
achieved in GWAS to uncover such latent interactions is useful.

This epistasis study on BMI implicated loci helped us identify mechanisms potentially implicated in the biol-
ogy of BMI that cannot be captured by single locus effects analysis. Some of the networks we uncovered, especially 
the connections to energy homeostasis, endoplasmic reticulum stress, concerted expression profiles of interact-
ing genes in liver, pancreas, adipose tissue, and hypothalamus have direct implications in obesity biology. In 
statistical epistasis, interactions are defined by genetic variations and not by physical interaction of biomolecules 
in real systems, the latter is also hard to establish experimentally. Even though statistical models can implicate 
genetic variants that do not occur in transcribed regions, for which the functionality in biological mechanisms 
becomes hard to experimentally prove, they are still our most desired approach, especially in humans, to provide 
insights into unknown biological mechanisms occurring through interactions among loci across the genome. 
Additionally, statistical models can define instances where multiple genetic factors have a non-additive effect on 
a phenotype. It has already been acknowledged51 that biological interpretation of epistasis is usually easiest when 
the penetrance values all equal either 0 or 1, leading to a clear relationship between genotype and phenotype. 
However, this explanation is not straightforward for human complex genetic diseases due to their polygenic 
and multifactorial nature. In humans, due to the complexity of genomic architecture and multitudes of factors 
influencing complex traits like BMI, our results are probably the tip of the iceberg and many more indiscernible 
genetic interactions among human BMI associated loci are waiting to be uncovered.

Despite their widely accepted potential role in capturing the phenotypic variance in traits owing to genetic 
effects, epistatic interaction in human genetic analysis has been debated in recent times. This is largely because of 
imperfect linkage disequilibrium between causal variants with large additive effect size and nearby tagging loci 
resulting in inflated test statistics for interaction terms. Wood et al52 reported that one more strongly associated 
variant uncovered from whole genome sequencing was moderately correlated with both of the interacting SNPs 
(showing very low levels of LD between them) identified by Hemani et al.58, and the inclusion of this third variant 
as a covariate removed any evidence for interaction. This means that the apparent epistasis reported by Hemani 
et al. for SNPs on the same chromosome can actually be attributed to a single causal allele having moderate levels 
of LD with each of the two SNPs, and has recently been dubbed as phantom epistasis53 between unlinked markers.

This is not the scenario in our results since we have detected inter-chromosomal interactions. On the contrary, 
our expression profile analysis reveals plausible mechanisms (Fig. 4C) involving causal variants at the epistatic 
loci that could be obtained by fine mapping.

Genetic variations making us susceptible to disease traits or determining the phenotypic variation in quantita-
tive traits is a result of intricate selective forces at play striving to achieve the optimal balance in human systems. 
Epistasis is one of the intrinsic mechanisms on which such stabilising control ought to exist. Therefore, detecting 
statistical epistasis and deciphering biological implications for the same is of utmost importance in understanding 
disease mechanisms. Yet, we are cognizant that epistasis detection is limited by a number of factors. Statistical 
tests of interaction are limited to testing specific hypothesis in relation to genotypic measures in study subjects, 
and we will have insufficient statistical power to investigate all possible allelic combinations when dealing with 
rare variants. Additionally, when the causal variant or putative functional variant is in LD with another com-
mon variant, it is highly likely that the latter will show evidence for interaction in statistical tests due to linkage 
disequilibrium. In addition to these, inadequate controlling for overall genetic background, incidence of false 
positives, uncorrected environmental effects can constrain the identification of true epistatic effects present in 
human complex traits from statistical analysis.

Our results in discovery and replication dataset of more than 188,000 individuals highlight the importance 
of studying the interaction of SNPs for understanding the genetic architecture of complex traits. This is again 
more prominent in our in-depth analysis of the allelic combinations observed in individuals with high versus low 
BMI. We reiterate that our results are suggestively informing about plausible mechanisms to uncover putative 
interacting variants associated with obesity. We hope that our results will encourage large scale future studies to 
uncover epistasis in humans that will expound further the biology and genetic underpinnings of complex traits.

Methods
We considered BMI as our phenotype of interest in this work and set out to identify second order epistatic inter-
actions among genetic loci associated with BMI at a genome wide level. The entire workflow is given in Fig. 5.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership, 
led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

Creating a phenotype and covariate file.  The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
along with UK BioBank (UKB) data repositories were used in this analysis, and we retrieved age, gender, height 
(in cm), and weight (in kg) for each participant. Among the 808 samples genotyped in the ADNI study, 785 had 
all the aforementioned fields. While 485,281 out of 487,405 samples with imputed genotypes in the UKB study 
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had the required phenotype fields. UKB samples that self-identified as ’White British’ and belonged to a similar 
genetic ancestry based on a principal components analysis of the genotypes (407,560 samples) were retained. 
From this set, 188,620 samples did not possess any missing genotypes, and were used for further analysis.

BMI for these individuals was calculated by formula (weight in kilograms)/(height in metres)2. Sample char-
acteristics i.e., age and gender were parsed as covariates and BMI measure was selected as the phenotype. We 
have provided a threshold of BMI 25 kg/m2 in order to suffice the condition of certain programs used in our study 
that requires the user to specify a class variable for the phenotype, although the approach is linear regression to 
identify interaction scores, based on the guidelines laid down by the World Health Organisation with respect 
to the European population (https://​www.​euro.​who.​int/​en/​health-​topics/​disea​se-​preve​ntion/​nutri​tion/a-​healt​
hy-​lifes​tyle/​body-​mass-​index-​bmi).

In order to ensure that BMI is not confounded by cognitive status in the ADNI sample set, we compared the 
BMI distributions in the ADNI study cohort among samples in these three categories of cognition i.e., Dementia, 
Minimal Cognitive Impairment (MCI) and Control Normal (CN). We did not find any significant difference 
(assessed by padj < 0.01) in BMI between CN and MCI, CN and Dementia, MCI and Dementia or MCI + CN 
versus Dementia in Mann–Whitney–Wilcoxon test (Fig. S3).

Selecting BMI Loci.  We selected 466 genetic loci (Table S2) to be analysed for second order interactions 
for BMI by extracting SNPs associated with BMI from large scale meta-analysis studies34,46,54,55. We retrieved 
359 loci, after extracting the genome wide significant and sub genome wide significant loci (p-value < 0.0001) 
reported in these publications and retaining the most significant SNPs among those present within 500 kb of 
each other.

Generating genotype matrix.  In order to rule out allelic bias due to any probable differential cognitive 
status among high and low BMI individuals, we checked for significant differences in allele frequencies of the 
359 BMI-associated loci in a pairwise comparison of the CN, MCI, Dementia groups (Fisher’s exact test, and 
adjusted by Benjamini–Hochberg Procedure). One SNP in the TOMM40 region (rs2075650) with significantly 
different frequencies (padj < 0.01) was removed.

For the ADNI genotype matrix, only bi-allelic variants without missing genotype values and Hardy–Wein-
berg equilibrium exact test p-value > 10−6 were retained. Out of the 466 loci (Table S2), 343 variants (Table S3) 
were selected for further analysis. And for the UKB genotype matrix, the variants with imputation r2 ≥ 0.7 were 
extracted for all chromosomes (39091537 variants). Additionally, biallelic markers with genotyping rate > 99% 
and Hardy–Weinberg equilibrium exact test p-value > 10−6 (35937211 variants) were further selected.

Figure 5.   Study workflow. Schematic of procedures followed to detect and validate statistical epistatic 
interactions.

https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
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We generated the ADNI genotype matrix with 343 variants, where individuals were represented as rows 
and the variants as columns. Of the possible 398 loci obtained from the four meta-analysis studies on BMI 
(p-value <= 10−4), 318 were present in the UKB imputed genotype set (Table S3). The allelic states within each 
cell are represented as 0: homozygous reference, 1: heterozygous and 2: homozygous alternate allele.

UKB replication set.  Of the forty loci comprising the 20 interaction pairs obtained from the ADNI cohort, 
8 loci (chr14:33302882, chr12:41948196, chr2:35404011, chr14:25928179, chr19:18454825, chr5:124330522, 
chr12:41921665, chr12:24075508) were not present in the UKB imputed genotype set, and the rest were inves-
tigated for interaction.

Epistasis detection tools.  Multiple tools based on different classes of algorithms, for example, Exhaustive: 
FastANOVA56, COE57, TEAM58, MDR59, GMDR60, PLINK61; MCMC: BEAM62 and Heuristic: AntEpiSeeker63, 
SNPRuler64; have been developed and are generally used to statistically define gene–gene interactions or multi-
order epistasis from large scale population data.

FastANOVA.  FastANOVA56 relies on the application of ANOVA test for the detection of 2 locus interactions 
in a semi-exhaustive manner. It employs an upper bound which is the sum of one term derived from single-SNP 
ANOVA test, and the other derived from SNPs and independent of any phenotype permutation, to ensure effec-
tive SNP pair pruning.

COE.  COE57 employs a similar approach like FastANOVA, where the single locus test and the genotype of 
the loci pairs are required to compute the upper bound and reduces the number of computations pertaining to 
permutation testing by grouping the SNP pairs according to their genotypes. The approach carried out by COE 
also makes for a tighter upper bound which results in an efficient SNP pruning mechanism and can be applied 
on all statistical tests that are convex by nature.

TEAM: tree‑based epistasis association mapping.  TEAM58 uses the construction of minimum spanning trees 
to define a contingency table that features the observed frequency of genotype permutations of each SNP pair 
related to its phenotype state. The table is then updated for every permutation of phenotype state across the 
population. Given that this method only considers those individuals with differing genotypes between SNP 
pairs, the computational burden to associate a SNP pair to the state of the phenotype is greatly reduced.

MDR: multifactor dimensionality reduction.  MDR59 is a nonparametric method that uses machine learning to 
reduce a 3 × 3 dimensional genotype matrix into a binary classification of case and control. MDR trains its mod-
els on 9/10th of the input genotype matrix and carries out the testing phase on the final (10th) partition. Finally, 
the MDR model with the least prediction error and the most cross validation consistency is selected.

GMDR: generalized multifactor dimensionality reduction.  GMDR60, based on the same principles as the MDR 
approach, can additionally handle quantitative phenotypes by taking into account a score statistic, generated by 
carrying out a generalized linear regression (GLM) with appropriate link function and suitable covariates, which 
is then used to map n-dimensional genotype combination into a 1-dimensional space. Final results are obtained 
after permutation testing.

Plink 1.961.

Fast‑epistasis.  Calculates the odds ratio between loci A and B along with standard error. This procedure is 
performed for both cases and controls, and the epistasis test is defined as:

where R and S are the odds ratios in cases and controls respectively.

Epistasis.  Can input quantitative phenotype values and uses linear regression to fit the model

for each inspected variant pair (A, B), where gA and gB are allele counts; then the β3 coefficients are tested for 
significance.

PLINK does not support including covariates or carrying out permutation testing for epistasis tests.

BEAM: Bayesian epistasis association mapping.  BEAM62 is a Bayesian implementation that defines both single 
locus and multi-locus disease association from case–control datasets. It classifies a pair of loci as interacting if 
their combined distribution better generalises the phenotype data compared to considering the loci indepen-
dently. It uses Markov Chain Monte Carlo on a case–control SNP matrix to iteratively build the posterior prob-
abilities of phenotype association for each marker.

Z = (log(R)− log(S))/sqrt(SE(R)+ SE(S))

Y = β0 + β1gA + β2gB + β3gAgB
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AntEpiSeeker.  AntEpiSeeker63 utilises Ant Colony Optimization (ACO) algorithm to identify statistical epi-
static SNP pairs. Here, the SNPs being assessed form the probability distribution function that is updated 
through weights (pheromones). As the probability density function is fitted for the input genotype matrix, the 
epistatic interactions (paths) with higher corresponding scores get sampled by probes with increased frequency, 
resulting in these interactions being tagged with higher weight scores.

SNPRuler.  SNPRuler64 employs predictive rule learning to identify and assess SNP interactions. With the 
premise that n loci interactions and phenotype class are governed by rules which can be found and evaluated 
qualitatively more efficiently than the interactions themselves. SNPRuler builds an enumeration tree with SNPs 
as nodes and phenotypes representing the leaves, it then prunes the search space using an upper bound on χ2 
statistic.

All the tools described above and employed in this communication use permutation testing or multiple cor-
rection or in-built stringent P value threshold (P < 1E−4) to obtain robust epistasis results.

Hardware.  We executed all the nine programs on a x86_64 architecture-based machine with an Intel(R) 
Xeon(R) Silver 4214 with 32 GB of memory (RAM) and CPU processing at a maximum clock speed of 3.2 GHz. 
The OS on the system was RHEL distribution CentOS 7.

Execution time.  We directed COE, TEAM, FastANOVA, MDR and GMDR to carry out 1000 permutations. 
They clocked run times of 1 min 54 s, 16 s, 11 min 37 s, 16 min 8 s and 9 min 19 s respectively. BEAM, SNPRuler 
and AntEpiSeeker took 1 min 15 s, 1.14 s and 10 s respectively to output interactions at Bonferroni corrected 
P < 0.05. PLINK—fast-epistasis and—epistasis completed runs in 0.151 and 0.04 s respectively.

Memory utilisation.  For executing the pairwise interaction analysis between 343 markers in 785 individu-
als, MDR had the highest memory consumption at 3200  MB. GMDR follows next with a consumption of 
573.552  MB, followed by TEAM at 180  MB and SNPRuler at 180.06  MB. FastANOVA consumed 9.53  MB. 
BEAM, AntEpiSeeker had similar memory signatures with values of 2.84 MB, 2.18 MB respectively. COE con-
sumed the least memory of 1.61 MB.

Biological relevance of interacting SNP pairs.  Generation of SNPs in linkage disequilibrium.  We ob-
tained the variants in high LD with the SNPs that emerged significant in our epistatic models, using the LDproxy 
tool65, from European sub-populations of 1000 Genomes Project (phase3). Only variants with R2 ≥ 0.9 were 
selected for further analysis.

Functional annotation of variants.  We used each interacting SNP along with its corresponding LD variants as 
input for gene annotation in Combined Annotation Dependent Depletion (CADD)66, SNPNexus67, Hypergeo-
metric Optimization of Motif EnRichment (HOMER)68 and gene enhancer regions69.

Mapping the genes onto networks.  The gene annotations were then parsed to generate a gene interaction net-
work for the detected epistatic models. The gene interaction networks were generated using GeneMANIA70, for 
the following subcategories- co-expression, co-localization, physical interaction, genetic interaction and shared 
pathways (Fig. 2).

Sample distribution by genotype states.  For each of the detected SNP interactions, we extracted the number of 
samples for each genotype combination, thus resulting in nine combinations depending on the homozygous 
state for effect or other allele and heterozygous state of the two alleles for each pair of SNPs. We then compared 
the sample proportions in the high and low BMI groups for significant differences of these combinations using 
a two-sample z test for proportions (Table 2).

Data availability
All phenotype and genotype data used in this study for analysis are available at ADNI (http://​adni.​loni.​usc.​
edu/) and UK BIOBANK (https://​www.​ukbio​bank.​ac.​uk). We shall share the in-house scripts as required by 
other researchers.
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