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Stem cell homeostasis by the WUSCHEL–CLAVATA (WUS-CLV) feedback loop
is generally conserved across species; however, its links with other meristem
regulators can be species-specific, rice being an example. We characterized
the role of rice OsbZIP47 in vegetative and reproductive development. The
knockdown (KD) transgenics showed meristem size abnormality and defects in
developmental progression. The size of the shoot apical meristem (SAM) in 25-day
OsbZIP47KD plants was increased as compared to the wild-type (WT). Inflorescence
of KD plants showed reduced rachis length, number of primary branches, and
spikelets. Florets had defects in the second and third whorl organs and increased
organ number. OsbZIP47KD SAM and panicles had abnormal expression for
CLAVATA peptide-like signaling genes, such as FON2-LIKE CLE PROTEIN1 (FCP1),
FLORAL ORGAN NUMBER 2 (FON2), and hormone pathway genes, such as
cytokinin (CK) ISOPENTEYLTRANSFERASE1 (OsIPT1), ISOPENTEYLTRANSFERASE
8 (OsIPT8), auxin biosynthesis OsYUCCA6, OsYUCCA7 and gibberellic acid (GA)
biosynthesis genes, such as GRAIN NUMBER PER PANICLE1 (GNP1/OsGA20OX1)
and SHORTENED BASAL INTERNODE (SBI/OsGA2ox4). The effects on ABBERANT
PANICLE ORGANIZATION1 (APO1), OsMADS16, and DROOPING LEAF (DL) relate
to the second and third whorl floret phenotypes in OsbZIP47KD. Protein interaction
assays showed OsbZIP47 partnerships with RICE HOMEOBOX1 (OSH1), RICE
FLORICULA/LEAFY (RFL), and OsMADS1 transcription factors. The meta-analysis of
KD panicle transcriptomes in OsbZIP47KD, OsMADS1KD, and RFLKD transgenics,
combined with global OSH1 binding sites divulge potential targets coregulated by
OsbZIP47, OsMADS1, OSH1, and RFL. Further, we demonstrate that OsbZIP47 redox
status affects its DNA binding affinity to a cis element in FCP1, a target locus. Taken
together, we provide insights on OsbZIP47 roles in SAM development, inflorescence
branching, and floret development.
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INTRODUCTION

The post-embryonic shoot development in flowering plants
depends on the balance between stem cell renewal in the central
zone of above ground meristems and the adoption of specific
differentiation programs in cells from the peripheral zone. The
genetic framework of the basic WUSCHEL–CLAVATA (WUS-
CLV) pathway for meristem maintenance is largely conserved
in monocots and dicots, yet some functional differences are
reported among cereal grass models, such as maize and
rice. In maize, functions for TASSEL DWARF1 (TD1, CLV1
ortholog) and FASCIATED EAR2 (FEA2, CLV2 ortholog) in
the shoot apical meristem (SAM) are not obvious in the
respective mutants, yet mutants in these genes have significant
and somewhat differential effects on the female vs. male
inflorescence meristems (IMs) (Bommert et al., 2005; Dodsworth,
2009; Pautler et al., 2013; Chongloi et al., 2019). In rice,
FLORAL ORGAN NUMBER 1 (FON1) is the CLV1 ortholog,
while FON2/FON4, FON2 SPARE1 (FOS1) and FON2-LIKE
CLE PROTEIN1 (FCP1) encode CLV3 peptide paralogs. FON2
signaling through FON1 majorly regulates the homeostasis of
IMs whereas FCP1 triggered signaling regulates SAM through
effects on WUSCHEL RELATED HOMEOBOX (OsWOX4),
functionally related to AtWUS (Nagasawa et al., 1996; Suzaki
et al., 2004, 2006; Ohmori et al., 2013). These tissue-specific
effects of maize TD1, FEA2, and of rice CLV3-like genes exemplify
species-specific innovations in signaling components of this
core meristem regulatory circuit. In the SAM of Arabidopsis,
AtWUS activates SHOOT MERISTEMLESS (STM), and both
directly regulate CLV3 expression to maintain constant stem cell
number (Su et al., 2020). Integration of CLV-WUS pathway with
the roles of class I KNOTTED-1-LIKE HOMEOBOX (KNOX)
genes, Arabidopsis STM, rice HOMEOBOX1 (OSH1), and maize
KNOTTED1 (KN1) in meristem maintenance is conserved across
species (Vollbrecht et al., 2000; Brand et al., 2002; Tsuda et al.,
2011). Similarly, the interlinking of WUS-CLV pathway with
phytohormone-based meristem control, by cytokinin (CK), auxin
(IAA/AUX), gibberellin (GA), brassinosteriod (BR) actions, is
also conserved (Kurakawa et al., 2007; Gordon et al., 2009;
Lee et al., 2009; Zhao et al., 2010; Yamaki et al., 2011;
Somssich et al., 2016). OSH1 positively autoregulates itself
directly by binding to evolutionarily conserved cis-elements
within its locus (Tsuda et al., 2011). Further, OSH1 induces
the expression of CK biosynthesis genes, such as ADENOSINE
PHOSPHATE ISOPENTENYL TRANSFERASE 2 (OsIPT2) and
OsIPT3 (Sakamoto et al., 2006). Interestingly, CK treatment of
callus activates the transcription of rice KNOX genes (Tsuda
et al., 2011). AtWUS and OsWOX4 also regulate CK signaling in
Arabidopsis and rice, respectively (Leibfried et al., 2005; Ohmori
et al., 2013). In the floral meristem center, the timing of the
termination of stem cell activity is co-incident with carpel/ovule
specification. This creates a determinate floral meristem for
normal reproduction. Meristem termination is mediated by
the concerted activity of floral organ identity genes (Class A,
C, and E) whose regulatory effects on WUS-CLV and WUS-
KNOX pathway genes operate in both monocots and eudicots
[reviewed by Tanaka et al. (2013), Callens et al. (2018), and

Chongloi et al. (2019)]. These genes are in turn spatially and
temporally regulated. For example, Arabidopsis LEAFY (LFY)
directly activates APETALA1 (AP1) and WUS (Lenhard et al.,
2001; Lohmann et al., 2001) while repressing the shoot meristem
identity gene, TERMINAL FLOWER1 (TFL1) (Moyroud et al.,
2009, 2010). Furthermore, in young floral meristems, LFY
together with UNUSUAL FLORAL ORGAN (UFO) and WUS
activate APETALA3 (AP3) and AGAMOUS (AG) gene expression
in the third and fourth whorls of the developing meristem (Parcy
et al., 1998; Busch et al., 1999; Wagner et al., 1999; Lenhard
et al., 2001; Lohmann et al., 2001). In the later stages of floral
meristem development, AG directly activates KNUCKLES (KNU)
which leads to the repression of WUS by the recruitment of
Polycomb group (PcG) chromatin modifiers (Ming and Ma, 2009;
Sun et al., 2009, 2014; Liu et al., 2011; Zhang, 2014). Aside
from LFY, the AG expression is also influenced by PERIANTHIA
(PAN) that encodes a bZIP class TF, whose orthologs are
Oryza sativa basic LEUCINE ZIPPER 47 (OsbZIP47) and maize
FASCIATED EAR4 (ZmFEA4). Floral meristem size and organ
patterning defects in the Arabidopsis pan-3 lfy-31 double the
mutant, and in transgenics with modified PAN fusion proteins
(repressive vs. activated forms) show roles of AtPAN in floral
determinacy, meristem size, and floral organ patterning (Running
and Meyerowitz, 1996; Chuang et al., 1999; Das et al., 2009; Maier
et al., 2009, 2011). Maize ZmFEA4 activates the expression of
genes involved in AUX pathway and lateral organ differentiation
and also regulates both SAM and IM size homeostasis
(Pautler et al., 2015). Unlike Arabidopsis and maize, OsbZIP47
(LOC_Os06g15480) is not well-characterized, and its interacting
partners are largely unknown. Further, how inflorescence BM
identity and transition regulators intersect with the two meristem
maintenance pathways (CLV-WUS and KNOX1) is not much
explored in rice. Here, functional characterization of OsbZIP47
by RNA interference (dsRNAi)-based knockdown (KD) and
identification of some meristem regulators, such as OsbZIP47
interacting partners sheds light on its role in meristem size and
meristem developmental progression. Further, our transcriptome
and meta-analysis uncovered downstream pathways that can be
co-regulated by OsbZIP47 and OSH1, OsMADS1, or RFL.

MATERIALS AND METHODS

Plasmid Constructs Generation and Rice
Transformation
For siRNA (interference) mediated KD of endogenous OsbZIP47,
a gene-specific 226bp 3′UTR DNA fragment was cloned in
the sense and in the antisense orientation in pBluescript
vector, and were separated by a 270-bp linker. Subsequently,
the insert in recombinant pBluescript was re-cloned in the
binary rice expression vector, pUN downstream to the maize
ubiquitin promoter for the expression of OsbZIP47 hairpin
RNAs (Supplementary Figure 1; Prasad et al., 2001). For the
over-expression of OsbZIP47, the full length cDNA was cloned
at BamHI (blunted)-KpnI sites in the pUN vector to create
pUbi:OsbZIP47 (Supplementary Figure 4). These constructs for
KD and over-expression of OsbZIP47 were transformed into
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the Agrobacterium tumefaciens strain, LBA4404 and then co-
cultivated with embryogenic calli from TP309 WT (O. Sativa var
japonica) seeds as described by Prasad et al. (2001). Transgenic
plants, dsRNAi OsbZIP47 and Ox-OsbZIP47, were grown in
IISc, Bangalore, Green house condition, approximately at 27◦C
during the months of January–May and July–October always with
wild-type (WT) controls.

Phenotypic Characterization of
Knockdown Transgenic
The transgenic plants, such as dsRNAi OsbZIP47 and Ox-
OsbZIP47 were selected on half-strength MS medium containing
50 mg L−1 of hygromycin. Phenotypic analysis was done with T3
dsRNAi OsbZIP47 transgenics and T1 Ox-OsbZIP47 lines. Eosin-
hematoxylin stained 25 DAG seedling tissue sections (7 µm,
Lecia microtome; RM2045) were imaged by Apotome2 Zeiss.
The cell size in the SAM was measured by ImageJ. The seedling
height was measured at age eight DAG. Adult plant height,
lamina joint angle, panicle length, branch characteristics, and
spikelet numbers were measured after panicle booting. Pre-
anthesis florets, in panicles prior to emergence from the flag leaf,
were imaged using Leica Wild M3Z stereomicroscope.

RNA-Sequencing and RT-qPCR
Next Generation Sequencing (NGS) of RNA from OsbZIP47 KD
panicles (0.1–0.5 cm) was done for two biological replicates with
matched WT panicles as controls. The total RNA was extracted
using Trizol Reagent (Sigma) according to manufacturer’s
instructions. About 1 µg of total RNA was used for library
preparation using rRNA depletion-based NEB Next UltraII RNA
kit. The NGS was performed using Illumina Hi-Seq, pair-end
2 × 150 bp chemistry. After quality check (using FastQC and
multiQC software), the reads were mapped against indexed
O. sativa ssp. japonica cv. reference genome (RAP-DB)1 using
STAR2 (v2.5.3a). Further, differential gene expression (DGE)
of read counts between WT and transgenics were computed
using edgeR (v3.28.0) package with the absolute log2 fold
change≥ 1 with p-value≤ 0.05. For real-time qPCR experiments,
oligo(dT)-primed cDNAs were synthesized using 2 ug of total
RNA with MMLV (reverse transcriptase, NEB). The qRT-PCR
reactions were set up with 50–70 ng of cDNA, 250 nM gene-
specific primers, and FastStart Universal Sybr Green Master
(Rox) mix (Roche) in CFX384 real-time system (Biorad) or
Applied Biosystems ViiA 7 system. Fold change in the transcript
levels of deregulated genes was calculated as a difference in
cycle threshold value between transgenic and wild type. To
obtain normalized threshold value (11Ct), first 1Ct value
was calculated by subtracting the Ct value for internal control;
Ubiquitin5, from the Ct value for each gene of interest (Gene
Ct-Ubi5 Ct). Then 11Ct was calculated by subtracting the WT
1Ct value from the 1Ct value obtained from the transgenic
tissue. The fold-change was calculated as 2ˆ−(11Ct). Primers used
and their sequences are listed in Supplementary Table 2. The
RNA sequencing raw data files used in this study have been

1https://rapdb.dna.affrc.go.jp/

deposited to Gene Expression Omnibus (GEO) database under
the accession number GSE196747.

RNA in situ Hybridization
To generate OsbZIP47 riboprobes, a gene-specific 226bp DNA
fragment from 3′UTR (1329-1555 bp) was PCR-amplified
and cloned in the pBluescript KS + vector. Sense and
antisense Digoxigenin-labeled (DIG-UTP, Roche) riboprobes
were prepared by in vitro transcription using T3 and T7 RNA
polymerases (NEB), respectively. Tissue processing and probe
hybridizations was done according to the study by Prasad et al.
(2005). Signal was developed using anti-digoxygenin-alkaline
phosphatase (AP) conjugated antibodies (Roche) and 5-Bromo-
4-chloro-3-indolyl phosphate (BCIP)-nitro blue tetrazolium
(NBT) chromogenic substrates (Roche). Images were captured by
Apotome2 Zeiss microscope system.

Bacterial Expression of OsbZIP47
Full-Length Protein and Studies of
Oligomeric Status
For OsbZIP47 protein expression and purification from bacteria,
OsbZIP47 full-length (FL) CDS was cloned in the pET32a
vector. Thioredoxin-His-tagged OsbZIP47FL was expressed from
Rosetta (DE3) bacterial strain induced with 0.2 mM of isopropyl
β- d-1-thiogalactopyranoside (IPTG) for 3 h at 37◦C. Oligomeric
states of OsbZIP47 protein was determined by analytical
size-exclusion chromatography (SEC) performed at 4oC on a
Superdex 200 increase column Cytiva (Formerly, GE Healthcare
Life Sciences), Marlborough, United States pre-equilibrated with
a buffer (25 mM of sodium phosphate (pH 7.4), 100 mM of
NaCl, and 5% of glycerol). Approximately, 400 µg of protein,
(∼2 mg/ml) was injected into AKTA purifiers Cytiva (Formerly,
GE Healthcare Life Sciences), Marlborough, United States
connected to the column. The flow rate was maintained at
0.3 ml/min and the protein elution profile was at 220 nm. The
molecular weight was calculated using a standard plot. Molecular
weight was calculated using the equation: Y =−0.602X + 4.6036,
where Y = Ve/Vo (Ve = Elution volume; Vo = Void volume) and
X = Log of molecular weight in Dalton.

Electrophoretic Mobility Shift Assays
Escherichia coli rosetta (DE3) bacterial lysates with the Trx-His-
OsbZIP47 FL was prepared in a buffer: 10mM of HEPES-KOH,
pH 7.8, 50mM of NaCl, 0.5% of Non-idet P-40, 0.5 mM of
EDTA, 1 mM of MgCl2, 10% of glycerol, 0.5 mM of DTT, and
1x protease inhibitor cocktail (Sigma). About 1–4 µl of lysate was
incubated with 5’end P32 labeled DNA oligonucleotide probes
for 30 min at 4◦C in 1× EMSA buffer (20 mM of HEPES-
KOH pH 7.8, 100 mM of KCl, 2 mM of DTT, 1 mM of ETDA,
0.1% of BSA, 10 ng of Herring sperm DNA, 10% of glycerol,
1× protease inhibitor cocktail) in 15 µl reactions. After binding,
the reaction constituents were resolved on an 8% of native-
PAGE gel in 0.5× Tris-borate EDTA (TBE) buffer at room
temperature. Gel autoradiography was done in a phoshorimager
(GE; Typhoon FLA 9500). The DNA probe sequences are listed
in Supplementary Table 2.
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Microscale Thermophoresis Assay
Escherichia coli rosetta (DE3)-expressed proteins (Trx-His-
OsbZIP47 FL and Trx-His; Supplementary Figure 9) were
added to the buffer: 10mM of HEPES-KOH pH 8.0, 50 mM
of NaCl, 0.5% of TWEEN-20, 0.5 mM of EDTA, 1 mM of
MgCl2, 10% of glycerol, 2 mM of beta mercaptoethanol, and
1 mM of PMSF. About 10 mM of each protein was labeled
with 5 mM of Red-NHS 2nd Generation primary amine labeling
dye (NanoTemper GmbH, Cat# MO-L011), and then eluted in
the buffer: 10 mM of HEPES-KOH pH 8.0, 50 mM of NaCl,
0.5% of TWEEN-20, 0.5 mM of EDTA, 1 mM of MgCl2, 10%
of glycerol, 1X PIC (ROSCHE), and a reducing/oxidizing agent
(20 mM of DTT/1 mM of oxidized glutathione). The labeled
protein was incubated with dsOsFCP1 oligonucleotides which
was serially diluted from 100 µM to 3.05 nM in 16 steps
and fluorescence was measured using Monolith NT.115Pico
(NanoTemper GmbH). The excitation power was varied between
1 and 50% to obtain measurable fluorescence signal. The MST
power was varied between medium to high, to achieve high
signal to noise ratio. For OsbZIP47 FL, the initial fluorescence
was measured which is indicative of rapid binding. For Trx-His
tag, the response evaluation was done at default on time. MO
Control v1.6.1 (NanoTemper GmbH) and MO Affinity Analysis
v2.6 (NanoTemper GmbH) were used for the analysis.

Yeast Two-Hybrid Assays
The full length CDS of OsbZIP47 was amplified from KOME
clone, AK109719 using gene-specific primers, cloned into pBSKS
vector and validated by restriction digestions and Sanger
sequencing. The CDS was subsequently cloned into yeast two
hybrid vectors, pGBDUC1 and pGADC1. Similarly, all the CDS
fragments that would encode prey proteins, such as OsMADS1,
OsETTIN1/2, RFL, OSH1, OsMADS15, OsMADS2, OSH15, and
OsMADS15 were PCR-amplified from either KOME cDNA
clones or from cDNA made from panicle tissue RNA, and
subcloned into pGBDUC1 and pGADC-1 vectors. The bait
clone, pGBDUC1 OsbZIP47 and indicated prey recombinants
in pGADC1 were co-transformed into the yeast, pJ69-4A yeast
two-hybrid (Y2H) strain (James et al., 1996). Transformants
were selected on synthetic drop out media lacking leucine and
uracil. Protein interactions were assessed in at least five purified
transformants by serial dilution spotting of broth cultures onto
SD/-Leu-Ura-His plates supplemented with 10 mM of 3AT and
by the ONPG assay (Supplementary Materials and Methods).

Bimolecular Fluorescence
Complementation Assays
The OsbZIP47 cDNA with a truncated C domain (amino acid
199–385) was cloned into pSPYCE (M) (C-terminal fusion) and
pSPYNE (R) 173 (N-terminal fusion) bimolecular fluorescence
complementation (BiFC) vectors (Waadt et al., 2008). Similarly,
the full-length CDS encoding prey proteins, such as OsMADS1,
OsETTIN 2, RFL, OSH1, and OsMADS15 were subcloned
into pSPYNE (R) 173 vector. Six combinations of cEYFP and
nEYFP fusions, including positive and negative controls, were
transiently co-expressed in onion (Allium cepa) epidermal cells

by Agrobacterium. tumefaciens (C58C1) infiltration as described
by Xu et al. (2014). Co-transformed tissues were incubated
at 25◦C in dark for 48 h before being assayed for YFP
activity. Fluorescence images were screened using a confocal
laser microscope (Zeiss LSM880, Airyscan) with 2AU 480 nm
excitation and 520 nm emission for the detection of YFP signal.

Meta-Analysis
The published transcriptome datasets in dsRNAiOsMADS1 and
dsRNAiRFL panicles were adopted in this study to compare
them with that of OsbZIP47KD transcriptome dataset. The
differentially expressed genes (DEGs) from each dataset was
taken up for pair-wise comparison to identify unique, or
commonly (upregulated, or downregulated) downstream genes.
The deregulated genes were also corelated with the published
data on OSH1 genome-wide binding (Supplementary Materials
and Methods). To align genes from the diverse datasets, i.e.,
transcriptomes downstream to OsMADS1, RFL, and genes bound
by OSH1 for meta-analysis and for GO enrichment analyses, the
gene IDs as per RAP-dB (see text footnote 1) were converted
to their corresponding gene ID in MSU-TIGR v7.2 After this
curation, among the 2,800 RAP-dB ID genes, only 2,210 genes
were also annotated in MSU-TIGR v7. The list of RAP-dB gene
IDs and their corresponding MSU v7 LOC_IDs are presented in
Supplementary Dataset 1.

RESULTS

OsbZIP47 Knockdown Plants Have
Enlarged Shoot Apical Meristem Size
To investigate the developmental roles of OsbZIP47, we generated
thirteen independent OsbZIP47 KD transgenics (OsbZIP47KD)
by RNA interference (dsRNAi, Figure 1A) specific to a
unique region of OsbZIP47 3′UTR. Based on the degree of
KD and seed viability in primary T0 transgenic lines, we
chose two lines; OsbZIP47KD line #10 and OsbZIP47KD line
#14 for detailed phenotypic analysis in T3 generation. As a
representative, phenotypic data from the OsbZIP47KD line
#14 is further discussed here. In pooled panicle tissues (0.1–
0.5 cm) from this line, qRT-PCR showed approximately 24-
fold downregulation of the endogenous OsbZIP47 transcripts
(Supplementary Figure 1). The earliest phenotype noted was the
seedling height at 8 days after germination (DAG), which was
significantly reduced in OsbZIP47KD as compared to the WT
(Figures 1B,C and Supplementary Table 1). This observation
led us to examine SAM in the histological sections of seedlings
aged 25 days after germination (DAG) from both WT and
OsbZIP47KD plants. First, we examined SAM size and found that
SAM area was increased as compared to WT (Figures 1D,F).
Consistent with SAM enlargement in OsbZIP47KD plants, SAM
width and height showed significant and marginal increase,
respectively (Supplementary Table 1). To understand the cellular
differences that underlie meristem size abnormalities, the cell
size of L1 layer in the upper central and the peripheral zone of

2http://rice.plantbiology.msu.edu/

Frontiers in Plant Science | www.frontiersin.org 4 April 2022 | Volume 13 | Article 865928

http://rice.plantbiology.msu.edu/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-865928 April 7, 2022 Time: 14:8 # 5

Prakash et al. Roles for OsbZIP47 in Rice Meristem Development

FIGURE 1 | OsbZIP47 knockdown (KD) vegetative phenotypes. (A) Schematic representation of dsRNAiOsbZIP47 transgene T-DNA segment. (B) Seedling height of
8-day OsbZIP47KD (dsRNAibZIP47#14) plants is shorter than that of wild-type (WT) plants. Scale bar = 1 cm. (C) Seedling height data shown as mean ± s.d.,
Student’s t-tests, ****P < 0.0001, n = 30. (D) Representative histological sections of SAMs from WT and dsRNAibZIP47#14. SAM area in 25 days after germination
(DAG) seedlings marked by red outline in panels (i,iii). SAM height and width are marked by dashed black lines. Measured cells are marked with white outlines in
panels ii and iv. Scale bar in panes (i,iii) are of 50 µM, and panels (ii,iv) are of 20 µM. (E) Comparison of L1 cell size in the central, and peripheral cells, and in the
lower central cells underlying the central L1 layer. The statistical analysis of cell size, for cells in different regions of the meristem, was derived from 10 to 12 different
sections. Data is shown as mean ± s.d. Student’s t-tests. *P < 0.05, ***P < 0.001. (F) Comparison of SAM area in OsbZIP47KD (dsRNAibZIP47#14) vs. WT in 25
DAG seedlings. Data is shown as mean ± s.d. Student’s t tests, **P < 0.01, n = 10. (G) RT-qPCR analyses of CUC1, APO1, FCP1, FON2, CYP734A2, CYP734A4,
CYP734A6, YUCCA6, DRUS2/FLR2, and FON2 transcripts in SAM from 25 DAG seedlings. Fold-change values were determined by comparing the normalized
expression levels in OsbZIP47KD plants to WT plants.

the meristem and the internal cells underlying the L1 layer were
measured. Intriguingly, the size of these cells was increased as
compared to WT (Figure 1E). Further, the spatial distribution
of dividing cells in 25DAG SAMs was assessed by RNA in situ
hybridization for the cell cycle S-phase marker, HISTONE4
(H4) (Supplementary Figure 2). Compared to WT, the overall
H4 transcript signal in the median longitudinal SAM sections
of OsbZIP47KD seedlings was higher. Altogether, these results
suggest that the increased SAM area in OsbZIP47KD seedlings is
attributed to an increase in cell size and number. To understand
some molecular corelates for SAM phenotypes, transcript levels
for few known regulators of SAM size homeostasis were tested
(Figure 1G) using SAM tissues from 25 DAG seedlings. The
downregulation of FCP1 and FON2 (rice homologs of CLV3),
APO1 (UFO1 homolog), CYP734A4, and YUCCA6 was observed.
Also, CUC1, the lateral meristem boundary marker (Aida et al.,
1997; Takeda et al., 2011), showed a marginal reduction in
expression. The downregulation of rice CLV3 homologs in
OsbZIP47KD SAM may contribute to the overall enlarged SAM
size. Further, the increased cell size in L1 layer and its underlying
cells could be attributed to a reduction in CYP734A4 expression
in SAM of OsbZIP47KD plants. Of note is the report that

SAM cells in CYP734A RNAi plants are more vacuolated as
compared to the WT which was suggested to indicate premature
cell differentiation (Tsuda et al., 2014). Altogether, these gene
expression effects of OsbZIP47 can be related to abnormal SAM
size homeostasis on its KD with novel effects on the components
in the CLV-WUS pathway, on other meristem regulators, AUX,
and BR phytohormone pathways.

Late Heading Date and Altered Panicle
Architecture of OsbZIP47 Knockdown
Plants
OsbZIP47KD plants are delayed by 20 days for SAM to IM
transition. At this stage, OsbZIP47KD plant height was reduced
compared to WT (Figures 2A–D) suggesting that in the
WT, OsbZIP47 promotes developmental transition from the
vegetative to reproductive phase. The shorter plant height was
due to poor stem internode elongation in the KD transgenics
without change in internode number (Figure 2F). The panicle
of KD plants showed developmental abnormalities, i.e., reduced
inflorescence axis (panicle rachis) length (Figure 2E), reduced
number of primary branches, and spikelets (Figures 3A,L,M and
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FIGURE 2 | Phenotypic effects of OsbZIP47KD on plant growth and floral transition. (A) Flowering timing (SAM to inflorescence meristem (IM)/panicle meristem
transition) in OsbZIP47KD plants is delayed by approximately 22 days as compared to the WT. White arrow indicates the booted panicle in WT and red arrow points
to the absence of the booted panicle in a OsbZIP47KD plant of the same age. (B) Height of mature flowering plants shows that as compared to the WT,
OsbZIP47KD plants are shorter. Quantitation of heading dates (C), plant height (D), and panicle rachis length (E) in WT and OsbZIP47KD plants. Data are shown as
the mean ± s.d. (Student’s t-tests, **P < 0.01, ****P < 0.0001, n = 10). (F) Internodes in mature flowering WT and OsbZIP47KD plants are displayed and are
numbered from I to V from the apical end. P is the panicle bearing node and internode. Bar, 2.5 cm. Shorter internodes from I to V in OsbZIP47KD contributes to the
reduced height.

Supplementary Table 1). Together, these phenotypes indicate
early progression of primary branch meristems to spikelets in
OsbZIP47KD plants and point to a possible role of OsbZIP47
in the temporal control of branch meristem indeterminacy.
Moreover, OsbZIP47KD plants had greater flag leaf lamina joint
angle as compared to the WT (Figures 3B,C,K). KD plants of
CYP734A4 (Tsuda et al., 2014), a gene with reduced expression
in OsbZIP47KD plants (Figure 1G), also share this phenotype
and have abnormal meristems. Plant architecture, flowering
time, leaf angle, and inflorescence architectures all impact yield,
grain shape, and size (Harder and Prusinkiewicz, 2013; Sakuma
and Schnurbusch, 2020). Interestingly, seeds from OsbZIP47KD
plants were altered for the length/width (L/W) ratio as compared
to WT (Figures 3I,J), suggesting OsbZIP47 impedes cell
proliferation in the grain width direction, which is supported by
a recent finding of Hao et al. (2021). In later sections of our study
on dsRNAiOsbZIP47 lines, we identify some molecular links
underlying cell proliferation in the developing grain. We propose
that the role of OsbZIP47 in restriction of cell proliferation is
likely attributed to the positive regulation of EL2, encoding a
plant cyclin-dependent kinase inhibitor, and negative regulation
of some key cell-cycle regulators i.e., CYCLIN-D7-1 (CYCD7;1)
and MITOGEN-ACTIVATED PROTEIN KINASE KINASE 10
(MKK10-1) in WT panicles (Supplementary Dataset 1). Rice
EL2 cell cycle inhibitory functions are proposed to link cell

cycle progression with biotic and abiotic stress responses
(Peres et al., 2007). In Arabidopsis, AtCYCD7 expression is
transcriptionally regulated by cell type-specific transcription
factors that confine its expression to appropriate developmental
window as ectopic expression triggered division (Weimer et al.,
2018). The OsMKK10-1 paralog, OsMKK10-2 phosphorylates
OsMPK6 in vivo (Ma et al., 2017). This is interesting since
mutations of OsMPK6 impair differentiation of L1 layer cells
during early embryogenesis (Yi et al., 2016).

OsbZIP47 Contributes to Second and
Third Whorls, Lodicule, and Stamen
Organ Development
OsbZIP47KD floret phenotypes were largely restricted to
lodicules and stamens (Figures 3D–H). The organ defects
were grouped into four classes. Class I, representing 40%
of OsbZIP4KD florets, had mild deformed lodicule (distal
elongation) with normal stamen number (Supplementary
Figure 3). In class II (∼28%), mild lodicule elongation occurred
with abnormal short stamens and poorly developed anthers
(Figure 3H). Florets of class III (∼20%) had partially deformed
lodicules with an increase in stamen number to 7 (Figures 3E,G).
In class IV (∼12%) florets had mildly elongated lodicules
and chimeric organs with lodicule and stamen characteristics
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FIGURE 3 | Floret organ numbers and organ development in OsbZIP47KD plants. (A) Shorter panicle OsbZIP47KD with reduced number of primary branches and
spikelet number per panicle as compared to the WT plant. (B,C) Flag leaf angle in fully headed panicles shows increased lamina joint angle in OsbZIP47KD plant as
compared to the WT. (D) WT floret organs shown after removal of lemma and the spikelet sterile lemmas. Red arrow points to the pair of lodicules and yellow
asterisks to the six normal stamens. (E–H) Organ phenotypes in OsbZIP47KD florets. (E) Floret with seven stamens (yellow asterisks) with normal filaments and
anthers. (F) Floret with mildly deformed lodicule (red arrowhead), two of its six normal stamens (others were removed) and a chimeric second whorl organ with
lodicule and stamenoid features (red asterisk). (G) Floret with deformed lodicule and seven normal stamens (yellow asterisk). (H) Floret with slightly deformed
lodicule, short stamens, and shrunken anthers (red asterisk), two near normal stamens (yellow asterisk). (I,J) Grain morphology in OsbZIP47KD and WT plants. The
length/width (L/W) ratio of OsbZIP47KD seeds was lower than that of WT seeds, suggesting increased grain width. Scale bar = 1 cm in panels (A–I). (J–M)
Statistical analysis (mean ± s. d.) of grain shape, lamina joint angle, primary branch number, and number of spikelets per panicles. Data in panels (J) [n = 40 in panel
(J)], (K) (n = 10), (L) (n = 11), (M) (n = 9), Student’s t-tests, *P < 0.05, **P < 0.01, ***P < 0.001.

(Figure 3F). Also, in most florets of all classes, the lodicules
were abnormally fused with lemma making dissection of the
lemma from the floret difficult. Altogether, these data suggest
that OsbZIP47 contributes to floral organ development in the
second and third whorls. In a complementary analysis, we
examined consequences of ubiquitous overexpression of full-
length OsbZIP47cDNA in transgenic rice. Surprisingly, none
of the OsbZIP47OX lines had any notable phenotypic changes
from the WT despite ∼10-fold overexpression in OsbZIP47OX
panicle tissues (Supplementary Figure 4). A speculation is that
OsbZIP47 functions may depend on partners or that some post-
translational modifications (PTMs) may modulate its functions,
as was concluded from overexpression studies of Arabidopsis
AtPAN (Chuang et al., 1999).

Tissue Expression Profile of OsbZIP47
Through Development
RNA in situ hybridization was performed to examine spatial
distribution of OsbZIP47 mRNA in various above ground

meristems. These experiments confirmed transcripts in
meristems that is consistent with the phenotypes of OsbZIP47KD
plants. In SAM of wild type young seedlings (5 DAG and 25
DAG), transcripts were evenly distributed (Figures 4A,B). This
pattern is somewhat different from maize FEA4 where the signals
are excluded from SAM stem cell niche and from incipient P0
leaf primordium (Pautler et al., 2015). During reproductive
development, high levels of OsbZIP47 transcripts are shown at
the apical end of growing IM/rachis and at the ends of branch
meristem (PBM and SBM, Figures 4C,D) which may relate
to the poorly branched inflorescence of knockdown plants.
In elongating primary and secondary branches (Figure 4D),
transcript signal is mild and spatially uniform. In spikelet
meristem (SM, Sp2, Figure 4E), and in floral meristems (Sp4-
Sp6, Figure 4F), the signal is high and spatially uniform.
However, in mature florets, OsbZIP47 RNA was confined to the
lodicule, stamen and carpel organ primordia, and differentiating
organs (Figure 4G). Additionally, hybridization signal in carpel
wall (c) and ovule (o) was observed (Figure 4H). Arabidopsis
pan mutant flowers occasionally have multiple carpels up to three
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FIGURE 4 | Spatial distribution of OsbZIP47 transcripts in meristems and florets. (A,B) OsbZIP47 in situ RNA hybridization signal in SAM tissues from 5 DAG and 25
seedlings. Expression in SAM and in emerging leaf primordia. (C,D) Inflorescence meristem (IM) with emerging primary branch meristems show expression of
OsbZIP47 in the elongation meristem and primary branch meristems (prb), secondary branch meristems (srb), and in young leaves. (E) OsbZIP47 transcripts in very
early floret meristem (FM) with uniform spatial distribution of signal. (F) Floret uniform signal in the well-formed stamens (st), lemma/palea (le and pa) organ primordia,
and in the central early carpel primordia. (G) High level of OsbZIP47 expression in the lodicule and in stamens, and lower signal in the near mature lemma and palea.
(H) OsbZIP47 transcripts in the ovary wall and ovule. (I,J) SAM in 5 DAG and 25 DAG plants probe with sense probe as a negative control. (K,L) IM and near mature
floret, respectively probed with sense RNA.

with deviated gynoecium (Running and Meyerowitz, 1996). We
speculate OsbZIP47 may have a minor role in carpel development
or could be functionally redundant with floral C-class function
genes. Thus, OsbZIP47 is expressed in various above-ground
meristems reflecting its diverse roles in different meristems.

Heterodimerization of OsbZIP47 With
Other Floral Meristem Regulators
Heterodimerization of transcription factors can modulate
genome wide gene expression by modifying specificity and
affinity to target DNA binding sites, and by integrating
independent pathways controlled by two or more factors.
Interacting partners of OsbZIP47 or of its Arabidopsis and
Maize homologs are largely unknown. To understand molecular
mechanism of OsbZIP47, we investigated its interaction with
different transcription factors. Among the co-occurring motifs
in genome-wide loci bound by OsMADS1, the motif for bZIP
factor binding is enriched (Khanday et al., 2016). This was the
basis for our hypothesis that OsMADS1 and members of OsbZIP
family could function in complexes in early floral meristems.

Further, the temporal co-expression profiles of OsMADS1 and
OsbZIP47 overlap in developing panicles (Arora et al., 2007;
Nijhawan et al., 2008); hence we tested interaction among
these proteins using the heterologous yeast two hybrid assay
(Figure 5). Additionally, to investigate possibility of OsbZIP47
heterodimerization with other meristem regulators, we relied
on reports from genetic studies in Arabidopsis, maize and rice
to curate and choose candidates for interaction assays (Das
et al., 2009; Khanday et al., 2013; Deshpande et al., 2015;
Pautler et al., 2015). OSH1, OsH15, ETTIN1, ETTIN2, and RFL
emerged as candidates. We re-visited reports on the panicle
and floret expression patterns of these meristem regulators to
deduce if spatial co-expression of OsbZIP47, OSH1 and OSH15
could occur. RNA in situ patterns of OSH1 in rice panicles
and florets (Komatsu et al., 2001; Chu et al., 2006; Hu et al.,
2015) and OsbZIP47 transcript spatial profile (Figure 4) point
to an overlap of OsbZIP47 and OSH1 transcripts in primary and
secondary branch primordia and in a broad range of developing
spikelet/floret meristems (Sp2–Sp8) (Supplementary Figure 5).
Further, mutant osh1 (Tsuda et al., 2011, 2014) and OsbZIP47KD
plants share common phenotypes such as increased leaf lamina
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FIGURE 5 | Interaction of OsbZIP47 with other meristem factors. (A) Yeast two hybrid (Y2H) assays with OsbZIP471C protein (lacking 186–380 amino acids in C
terminal) and predicted protein partners, such as OsMADS1 (MIKC14 domain), RFL, OsETTIN1, OsETTIN2, OSH1, OsMADS2, OsMADS15, and OSH15. Serial
dilutions of yeast cells (PJ694A) spotted on media lacking histidine and supplemented with 10 mM 3-AT. Growth after five days at 30◦C is shown. Yeast
transformants with OsMADS15 in pGBDUC1 vector and OsMADS1 MIKC14 in pGADC1vector served as positive control for protein interaction. A combination of
pGADC1 and pGBDUC1 empty vectors (without protein fusion) was the negative control. (B) Validation of Y2H protein interactions by Bimolecular Fluorescence
Complementation (BiFC) assays in onion epidermal cells. YFP fluorescence was detected when OsbZIP471C-cYFP fusion protein was co-expressed with
OsMADS1-nYFP, RFL-nYFP, and OSH1 nYFP. Absence of YFP fluorescence in the negative control i.e., OsbZIP471CYC and YN domain alone was the negative
control. Bars = 50 µm.

joint angle, short panicle with reduced number of spikelets and
deformed stamens. Moreover, Pautler et al. (2015) reported that
several gene loci are cobound by ZmKN1 (the ortholog of rice
OSH1) and ZmFEA4 (ortholog of OsbZIP47). These findings
together indicate likelihood of OsbZIP47 and OSH1 interactions
for co-regulation of target genes. Also, OsH15, a closely related
paralog of OSH1 (Tsuda et al., 2011), co-expresses with OsbZIP47
in spikelet meristem/floret meristem stage 6 (Yoon et al., 2017;
Supplementary Figure 5). As OsbZIP47 KD caused abnormal
floral phenotypes, it was intriguing to determine if OsbZIP47
could heterodimerize with OsH15. In Arabidopsis, pan ettin
phenotypes suggest AtPAN and AtETTIN/AUXIN-RESPONSIVE
FACTOR3 (ARF3) redundantly regulate floral organ numbers and
patterns (Sessions et al., 1997). Additionally, rice ETTIN1 and
ETTIN2 RNAi lines have aberrant plant height, compromised
panicle branching, and defects in stamen and carpel development
(Khanday et al., 2013). Some of these phenotypes resembled
those observed in OsbZIP47KD plants. Similarly, for mutants
in RFL, the rice AtLEAFY ortholog, the alleles apo2 and ssc, or
the RNAi RFLKD (Kyozuka et al., 1998; Rao et al., 2008; Wang
et al., 2017) plants share some phenotypes with OsbZIP47KD
plants. The common phenotypes include shorter plant height,
delayed flowering, reduced panicle rachis length, and branch

complexity. Thus, we hypothesized that OsETTIN1, OsETTIN2,
and RFL may interact with OsbZIP47 to modulate aspects
of organ development. Based on these meta-analyses, protein
partnership between OsbZIP47 and OSH1, OsH15, ETTIN1,
ETTIN2, and RFL was tested by the Y2H assay. Moreover, we
also tested the interactions of OsbZIP47 with OsMADS15 (an
A Class APETALA1/FRUITFULL AP1/FUL-clade transcription
factor) and OsMADS2 (a B class PISTILLATA/GLOBOSA-like
protein). OsMADS15 regulates vegetative to reproductive floral
transition and functions in specifying meristem identity (Kater
et al., 2006; Kobayashi et al., 2012). OsMADS2 functions in
partnership with OsMADS16/SUPERWOMAN1 (SPW) as a
B-class complex (Lombardo et al., 2017; Kong et al., 2019). The
delayed flowering phenotypes of OsbZIP47KD transgenics and
the defects in the second and third whorl floral organs, justified
our choice of OsMADS15 and OsMADS2, respectively. Since
full length OsbZIP47 exhibited transcriptional transactivation
activity in yeast (Supplementary Figure 6A), a C-terminal
truncated version (OsZIP471C) lacking 186-385 amino acids
including the transcription activation domain was taken as bait
protein in fusion with Gal4 BD. Prey proteins (OsMADS1, OSH1,
OsH15, ETTIN1, ETTIN2, RFL, OsMADS15, or OsMADS2)
were fused to GAL4 AD. The GAL4AD-OsMADS15 interaction
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FIGURE 6 | Differentially expressed genes (DEGs) and GO enrichment analysis of pathways downstream to OsbZIP47. Enrichment networks depicting pathways
regulated by OsbZIP47. (A) positively regulated, and (B) negatively regulated pathways. The red and green color nodes represent enriched and depleted functional
categories, respectively (P < 0.05). The size and color intensity of the node correlates with the over-representation of genes within the given class. (C) Enrichment
map of transcription factor (TF) genes shows those encoding members from bHLH, G2-like, C2H2 zinc finger, TCP, Trihelix are underrepresented, whereas TFs, such
as AP2/EREBP, MYB-related, NAC domain, TAZ, WRKY, and bZIP were overrepresented. (D) The 2,210 DEGs annotated in MSU-TIGR v7 were taken for
GO-enrichment analysis for phytohormone metabolism and signaling. Cytokinin (CK) degradation, ethylene signal transduction genes, and gibberellin
(GA)-synthesis-degradation were enriched in negatively regulated dataset, whereas, abscisic acid (ABA), GA pathway, and jasmonate (JA) pathways predominate in
the positively regulated set. (E) RT-qPCR analysis of the relative fold-change for transcripts from several candidate target genes of OsZIP47 in 0.1 to 0.5 cm panicles
from OsbZIP47KD as compared to WT tissues. The normalization of transcript level of each gene was done using UBQ5 transcript levels. Error bars represent the
standard deviation. (F) Venn diagram showing unique and overlapping sets of differentially expressed genes (DEGs) derived from OsMADS1, OsbZIP47, and RFL
transcriptome datasets (Rao et al., 2008; Khanday et al., 2013; this study). (G) Genes implicated to be coregulated by OsMADS1, OsbZIP47, and RFL and bound
by OSH1 (Rao et al., 2008; Khanday et al., 2013; Tsuda et al., 2014; this study).

with GAL4DB-OsMADS1 was taken as the positive control
(Lim et al., 2000). In addition, homodimerization capability of
OsbZIP471C was tested. Growth pattern of transformed yeast
cells on reporter media SD/-Leu-Ura-His + 10 mM3AT and the
X-gal quantitative assays (Supplementary Figure 6B) suggested
that OsbZIP47 can heterodimerize with OsMADS1, OSH1, and
RFL. We also found a strong homodimerization of OsbZIP471C
protein (Figures 5A,B). Both OsMADS15 and OsH15 showed
weak interactions with OsbZIP47 (Figure 5A), while ETTIN1,
ETTIN2, and OsMADS2 showed no interaction. Further, we
performed in-planta BiFC assays to substantiate the protein–
protein interactions screened in Y2H assay. OsbZIP471C was
cloned upstream to the coding sequence of C-terminal region
of split YFP to express OsbZIP471C-cYFP fusion protein. The
coding sequences of OsMADS1, OsbZIP471C, RFL, OsETTIN2,
and OSH1 were cloned in frame downstream to the coding
sequence of the N-terminal split YFP (nYFP) to express nYFP
fusion proteins. These six different combinations of nYFP and
cYFP fusion proteins were transiently co-expressed in onion
epidermal cells. Nuclear YFP fluorescence signals confirmed

protein interaction of OsbZIP47 with OsMADS1, OSH1, and
RFL (Figure 5B). Thus, we suggest that OsbZIP47 partnership
with OsMADS1, OSH1, and RFL could contribute to meristem
functions, inflorescence complexity, and floret development.

Transcriptome of Developing
Inflorescences of OsbZIP47 Knockdown
Lines
To capture gene expression landscape in OsbZIP47KD
panicles, high throughput RNA-sequencing was carried
out in two biological replicates of OsbZIP47KD and WT
panicles (In2-In4, 1 mm to 5 mm panicles), and the DEGs
(greater than two-fold change, p-value < 0.05) were extracted
(Supplementary Dataset 1, Supplementary Materials and
Methods). Further, DEGs were examined for gene ontology
pathway enrichment. Among the DEGs, 1,945 genes were
upregulated, and 855 genes were downregulated in OsbZIP47KD
panicles (Supplementary Figure 7, Supplementary Dataset 1).
Gene Ontology (GO) analysis of positively regulated gene
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set (Figures 6A,B and Supplementary Materials and
Methods, Supplementary Dataset 2) revealed enrichment
of RNA (regulation of transcription), lipid, CHO metabolism,
signaling, development, and hormone metabolism pathways
(Figure 6A). Whereas in the negatively regulated set, genes
related to secondary metabolism, transport, cell wall, signaling,
stress, hormone metabolism, and miscellaneous factors were
overrepresented (Figure 6B). Not surprisingly, genes involved
in hormone signaling and metabolism were controlled by
OsbZIP47, both positively and negatively (Figures 6C,D).
Specifically, jasmonate (JA) and abscisic acid (ABA) pathway
genes are overrepresented in the positively regulated gene
set. CK degradation and ethylene signal transduction genes
are notable in the negatively regulated gene set. Interestingly,
genes of GA pathway were enriched in the positively regulated
gene set, whereas genes for GA-synthesis-degradation were
enriched in the negatively regulated gene set (Figure 6D).
Examples of OsbZIP47 downstream genes that could interlink
hormone pathways for panicle and floret development include
APETALA-2-LIKE TRANSCRIPTION FACTOR39 (OsAP2-
39), 9- cis-epoxycarotenoid dioxygenase3 (OsNCED3), and
ELONGATED UPPER MOST INTERNODE1 (OsEUI1). AP2-39
balances the antagonistic relation between ABA and GA by
modulating the expression levels of OsNCED3 and OsEUI1
to regulate plant height, yield, and seed germination (Yaish
et al., 2010; Shu et al., 2016). We observed positive regulation
of OsAP2-39 and OsNCED3, and negative regulation of
EUI1 by OsbZIP47. Thus, we suggest that OsbZIP47 may
enhance ABA biosynthesis and modulate GA biosynthesis
possibly to regulate plant height and panicle rachis elongation
(Figures 2D,E). Examples of other OsbZIP47 downstream
genes linked to different phenotypes in OsbZIP47KD plants are
further discussed. Interestingly, in OsbZIP47KD inflorescences,
whole transcriptome analyses showed higher transcript levels
for the CLV3 paralog genes, FON2/4 and FCP1. Moreover, genes
from the KNOX-WUS pathway, and isopentenyl-transferases,
IPT6, and IPT8 that encode CK-biosynthesis rate limiting
enzymes were also upregulated. These results together, suggest
the roles of OsbZIP47 in the regulation of panicle primary
branch meristems and secondary branch meristems. Reduced
transcript expression was observed for SQUAMOSA PROMOTER
BINDING PROTEIN-LIKE 7 (SPL7), OsMADS16, and YABBY
domain factor-DROOPING LEAF (DL) in OsbZIP47KD. The
SPL7 regulates inflorescence meristem and spikelet transition
(Dai et al., 2018). OsMADS16 and DL regulate lodicule, stamen,
and carpel development (Nagasawa et al., 2003; Yamaguchi et al.,
2004). Moreover, the F-box gene, APO1 with roles in spikelet
and floret development was also deregulated (Supplementary
Dataset 1 and Figure 6E; Ikeda et al., 2005, 2007). These findings
corelate with the OsbZIP47KD inflorescence branching and floret
organ defects (Figures 2, 3). The positive regulation of CUC1
by OsbZIP47 supports plausible mechanism for its influence
on organ whorl boundaries (Takeda et al., 2011; Figure 6E and
Supplementary Dataset 1) and could explain the development of
chimeric floral organs in OsbZIP47KD transgenics. Transcription
factors control the dynamics of hormone signaling pathways by
modulating gene expression levels. Transcription factors genes

that are deregulated in OsbZIP47KD panicles include bHLH gene
members (22 genes), Co-like Zn finger (5 genes), TCP class 1 (2
genes), and TCP class 2 (1 gene), trihelix (4 genes), C2H2 zinc (20
genes) (Figure 6C and Supplementary Dataset 2). The genes for
transcription factors that are positively regulated by OsbZIP47
are from NAC class, WRKY class, and MYB-related class
genes. Among the latter class is OsLHY (LATE ELONGATED
HYPOCOTYL)/CCA1 (CIRCADIAN CLOCK ASSOCIATED1)
which functions in photoperiodic flowering, plant tillering, and
grain yield (Wang et al., 2020; Sun et al., 2021). We speculate that
the delayed flowering phenotype of OsbZIP47KD plants can be
associated with the positive regulation of OsLHY by OsbZIP47.
We also speculate that positive regulation of DWARF AND
RUNTISH SPIKELET2/FERONIA like Receptor 2 (DRUS2/FLR2)
may contribute to architecture, fertility, and seed yield (Li
et al., 2016; Figure 6E and Supplementary Dataset 1). To
obtain a predicted list of candidate direct genes and targets
of OsbZIP47, we queried the dataset of deregulated genes in
OsbZIP47KD panicles for the occurrence of cis motif typical to
the TGA-subclade within the large family of bZIP factors in the
rice, Arabidopsis, and maize genomes. Arabidopsis TGA sub-
family includes AtPAN, the homolog of OsbZIP47, and AtPAN
binds to the core cis regulatory element TGACG (Gutsche
and Zachgo, 2016). Among the 2,210 differentially expressed
annotated (MSU-TIGR v7) genes, a large number displayed the
core motif TGACG in their TSS-promoter proximal regions
(-500 bp to + 100 bp from TSS; Supplementary Dataset 3).
Interestingly, the TGACG core motif occurred three times in
this region of the FCP1 locus hinting that FCP1 deregulation
is likely a direct effect of OsbZIP47. Other predicted direct
targets that relate to developmental functions of OsbZIP47
are APO1, GNP1 (GA20Ox1), CYCD7, OsSPL7, OsIAA20, and
GRX6, to name a few. Other gene targets could be regulated
by degenerate cis elements related to “core motif ” or by “core
motif ” in other distal regions of these loci. This in silico
prediction of downstream targets of OsbZIP47 provides an
extra level of confidence to the transcriptome-based deregulated
gene set and can facilitate DNA–protein interaction studies.
Overall, these results give a snapshot of OsbZIP47 molecular
functions in inflorescence tissues and give leads to its unique vs.
evolutionarily conserved roles for panicle meristem transitions
and floral organ development.

Comprehensive Datamining of
Transcriptome Datasets of OsMADS1,
OsbZIP47, RFL, and Genome Binding
Dataset for OSH1
Extending our findings of OsbZIP47 interaction with OsMADS1,
RFL, and OSH1, we carried out meta-analyses of published
transcriptome datasets affected in mutants of these partner
proteins. To identify candidate genes for co-regulation by these
factors, the differential transcriptome in dsRNAiOsbZIP47KD,
dsRNAiOsMADS1, and dsRNAiRFL panicles were examined
(Rao et al., 2008; Khanday et al., 2013). First, we aligned
genes from three different transcriptomic datasets for this
meta-study (Supplementary Materials and Methods). The
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2,210 (as annotated by MSU-TIGR v7) deregulated genes in
dsRNAiOsbZIP47KD panicles were examined for overlap with
8,246 affected genes in dsRNAiOsMADS1KD transcriptome
(Figure 6F and Supplementary Dataset 4; Khanday et al., 2013).
Among 758 candidate genes co-regulated by both OsbZIP47
and OsMADS1 (Figure 6F and Supplementary Dataset 4),
204 genes were downregulated in both OsbZIP47KD and
OsMADS1KD lines. These genes included Gibberellin-regulated
protein precursor expressed (GASR3), auxin-responsive
SMALL AUXIN-UP RNA 11 (OsSAUR11), DRUS2/FLR2, and
JASMONATE ZIM-DOMAIN12 (TIFY11D/OsJAZ12) (ZIM
domain transcription factor). Another group of genes (386
out of 758 genes) were upregulated in both OsbZIP47KD and
OsMADS1KD panicle datasets. This sub-set includes OsMADS16,
GNP1 (GRAIN NUMBER PER PANICLE1) and genes that
regulate hormone signaling, such as OsIAA20, YUCCA7,
PROBABLE AUXIN EFFLUX CARRIER COMPONENT 5B
(PIN5B), and ETHYLENE INSENSITIVE LIKE 4 (EIL). Among
the 758 candidate genes co-regulated by OsbZIP47 and
OsMADS1, a subgroup of 153 genes (Figure 6G) are also bound
by OSH1 (Tsuda et al., 2014). Striking among this sub-set
are: IAA20, YUCCA7, SPLIT-HULL (SPH), and DRUS2/FLR2.
Similarly, 41 genes (Figure 6F) are common to the DEGs in
OsbZIP47KD panicles (RNA-Seq) and a low-density microarray
study of panicles from dsRNAiRFL KD plants (Rao et al.,
2008). Interestingly, 32 out of 41 genes were downregulated
in both these datasets including ethylene signaling gene,
ACO1 which regulates internode elongation (Iwamoto et al.,
2011), JA signaling gene, TIFY11D (Kim et al., 2009), and the
EMBRYOSAC1 (OsEMSA1) involved in embryo sac development
(Zhu Q. et al., 2017). Finally, we identified 105 DEGs common
to the differential transcriptome in RFLKD, OsMADS1KD, and
OsbZIP47KD panicles (Figure 6F). The notable genes include
ETHYLENE INSENSITIVE-LIKE GENE 2 (EIL2), ALLENE
OXIDE SYNTHASE (AOS1), and GIBBERELLIN 2-OXIDASE
9 (GA2OX9). A subset of 23 genes are potentially regulated
by OSH1 (Figure 6G; Tsuda et al., 2014). We infer that these
transcription regulators possibly multimerize in one or more
forms of complexes to regulate meristem development in rice.
Overall, these findings hint that protein complexes, plausibly
heterogeneous, with the combinations of OsbZIP47 and its
varied partner factors may spatially and temporally co-ordinate
downstream gene expression during panicle development,
spikelet, and floret development.

Redox-Dependent DNA Binding of
OsbZIP47
DNA binding by Arabidopsis AtPAN is redox-sensitive due to
the five Cysteine residues in the extended N-terminal domain
(Gutsche and Zachgo, 2016; Supplementary Figure 8). Unlike
AtPAN homologs from diverse species, rice OsbZIP47 lacks this
domain. All proteins share a conserved Cys in the C terminal
transcription transactivation domain (AtPAN Cys340/OsbZIP47
Cys269). Cys17 in OsbZIP47 is conserved in monocot species,
while Cys196 is unique to OsbZIP47. Thus, though the rice and
Arabidopsis proteins are homologs, they differ in size and in

the overall number of cysteine residues. To examine OsbZIP47
oligomerization and the effects of its redox status on binding
to target gene cis DNA elements, the full length (FL) OsbZIP47
protein was expressed in bacteria. The DNA binding activity
of AtPAN is regulated by S-glutathionylation of the conserved
Cys340 by AtROXY1, a glutaredoxin redox enzyme (Li et al.,
2009; Gutsche and Zachgo, 2016). The corresponding conserved
Cys 269 in OsbZIP47 may also render the rice protein to
be redox-sensitive for biochemical activity. To determine if
OsbZIP47 FL protein forms higher order self-oligomers, SEC
with the purified Trx-His OsbZIP47 (62 Kda) protein was done
and the elution of the protein in the column void volume
(Figure 7A) suggested either aggregation or the formation of high
order oligomers in the given condition. To examine the latter
possibility, the purified OsbZIP47-His-Trx protein was treated
with 2 mM of diamide, an oxidizing agent. In parallel, another
aliquot of the protein was treated with 20 mM DTT, a reducing
agent, and both treated protein fractions were analyzed on a
non-reducing SDS-PAGE gel. The oxidized OsbZIP47-His-Trx
sample had slower mobility whereas the reduced OsbZIP47-His-
Trx sample migrated with the expected mobility for a ∼68 Kda
protein. Importantly, we found that the effects of the oxidizing
agent (diamide) can be reversed by DTT treatment. These data
show that OsbZIP47 oligomerization is affected by its redox
status (Figure 7B). Recently, OsbZIP47 maize ortholog, FEA4
was shown to switch its oligomerization status following redox
change (Yang et al., 2021). Next, we tested the DNA binding
affinity of OsbZIP47 to the TGACGT cis motif (predicted for
OsbZIP47 DNA binding) present at around -371 bp upstream
of the start codon in the OsFCP1 locus (Figure 7C). The
latter is a downstream gene target whose expression levels are
affected in the SAM and in the panicles of OsbZIP47KD plants.
The OsbZIP47 FL protein status was altered by incubation
with the reducing agent DTT (20 mM) or with the oxidant
diamide (2 mM) for 30 min prior to the incubation with
the TGACGT motif containing DNA substrate. OsbZIP47 FL
protein bound to the TGACGT motif under reducing conditions.
Interestingly, incubation with diamide decreased OsbZIP47 FL-
DNA interaction. Thus, electrophoretic mobility shift assays
showed redox-sensitive DNA-binding of the OsbZIP47 FL
protein (Figure 7D). Further, we quantified the binding affinity
of OsbZIP47 FL with cis element from the OsFCP1 locus using
microscale thermophoresis (MST). To this end, OsbZIP47 FL
protein was labeled with the RED-NHS 2nd Generation Dye
(MO-L011, Nanotemper GmbH) and was mixed with increasing
concentrations of OsFCP1 oligos until saturation. The fluorescent
signals obtained with increasing ligand concentrations followed a
clear sigmoidal binding curve. As expected, OsbZIP47 FL protein
displayed a stronger binding affinity to the OsFCP1 locus in its
reduced state, with a dissociation constant Kd of 815 nM, as
compared to Kd of 2.16 uM in the oxidized state (Figure 7E).
The differential Kd values confirm a redox sensitive DNA–protein
interaction. The Trx-His tag protein was taken as a negative
control in these assays and no interaction between protein and
ligand was detected (Supplementary Figure 9). Overall, the
results of our qualitative and quantitative data suggest that
affinity of OsbZIP47 FL binding to DNA was redox-dependent
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FIGURE 7 | OsbZIP47 oligomerization and the effects of its redox status on DNA binding. (A) Size-exclusion chromatography (SEC) profile for OsbZIP47
protein/oligomer on a Superdex 200 increase column. (B) Mobility of purified OsbZIP47-Trx protein on non-reducing 10% of SDS-PAGE after treatment with 2 mM of
diamide (an oxidizing agent), or with 20 mM DTT (a reducing agent), or with 2 mM diamide followed by 20 mM DTT. (C) Schematic representation of the FCP1 gene
locus. Exons are open white boxes, introns are shown as black lines, and the predicted cis motifs for bZIP DNA binding domain (DBD) are represented as inverted
triangles. The DNA binding properties of OsbZIP47FL protein was tested for the TGACGT cis motif located at -371bp of FCP1 (marked with a filled inverted triangle).
(D) Schematic representation of OsbZIP47 FL protein (amino acid 1 to 385) used for EMSA and microscale thermophoresis assays. EMSA assays with full-length
OsbZIP47 (62 Kda protein) shows retarded mobility of DNA-protein complex for the OsFCP1 locus (as indicated by red arrow). Lanes 1 and 2 correspond to the
oxidized and reduced form of bZIP47 FL protein incubated with 2 µM of oligo. Lanes 4 and 5 represent the oxidized and reduced form of the same protein,
incubated with 4 µM of oligo. Lanes 8 and 9 correspond to Trx-Tag protein incubated with 4 µM of probe. Lanes 3 and 6 are blank. Unbound dsDNA oligonucleotide
is at the bottom. (E) Microscale thermophoresis-based assay to determine the dissociation constant for OsbZIP47 full-length and OsFCP1 dsDNA oligo interaction.
80 nM of fluorescently labeled protein was taken for binding with DNA sequences from OsFCP1 locus taken at a wide concentration range (100 µM to 3.05 nM). The
OsbZIP47 full length protein was reduced with 20 mM DTT or oxidized with 1mM of oxidized glutathione. OsbZIP47 full length protein shows increased binding in the
reduced state as compared to the oxidized state.

despite the absence of the extended Cys rich N-terminal domain
commonly found in homologs from other species. Recently,
OsbZIP47 close ortholog, ZmFEA4 was shown to interact with
three GRX proteins to modulate its redox status and DNA
accessibility (Yang et al., 2021).

DISCUSSION

Arabidopsis PAN, maize FEA4, and rice bZIP47 proteins share
a significant degree of similarity throughout their lengths with
the most conserved region being the DNA binding domain
(Supplementary Figure 8; Chuang et al., 1999; Nijhawan et al.,
2008). Species-specific developmental roles for these factors
may therefore arise from interacting co-regulators, from protein
modification of these transcriptional regulators, and through
variations in their downstream genes and pathways. Arabidopsis
AtPAN has pleiotropic vegetative and reproductive growth
effects. Flowers in the pan mutant are characterized by an

increase in the floral organ number without a corresponding
increase in FM size (Running and Meyerowitz, 1996; Chuang
et al., 1999). Another study reported early flowering of pan
mutant plants in long-day and short-day grown plants having
an enlarged SAM and inflorescence meristems (Maier et al.,
2011). Maize mutant zmfea4 have enlarged vegetative SAMs,
severely fasciated inflorescences, and florets with reduced stamen
numbers (Pautler et al., 2015). We show that OsbZIP47KD
plants have abnormalities in the shoot meristem size homeostasis
similar to the enlarged SAM of maize fea4 mutant. Yet, other
phenotypes are unique to rice OsbZIP47KD lines, for instance,
delayed flowering, increased stamen numbers, chimeric floral
organs, and subtle changes to grain size and shape. Hence,
despite redundancy of bZIP transcription factors, the phenotypes
of single mutants, such as atpan1, zmfea4, and OsbZIP47KD
indicate OsbZIP47 has evolutionarily conserved as well as unique
roles in the vegetative and reproductive development. The
partnership of OsbZIP47, with meristem regulators, OsMADS1,
RFL, and OSH1 (KNOX1/STM), its oligomeric and redox
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status could relate to its functions in different meristems. This
partnership and the findings that emerge from the differential
transcriptome in OsbZIP47KD panicles allowed us to map
OsbZIP47-regulated downstream genes, and those potentially
dependent on its co-regulators.

Meristem Development in Vegetative and
Reproductive Phase
The enlarged SAM in OsbZIP47KD seedlings is superficially
similar to that of maize fea4, yet there are underlying subtle
differences in rice KD plants. A detailed phenotyping of SAMs
from OsbZIP47KD seedlings showed increased cell size of
L1 layer and its underlying cells suggesting precocious cell
differentiation. Further, SAMs of OsbZIP47KD showed increased
transcript signal of cell proliferation marker, H4 as indicated
by in situ hybridization. The downregulation of FON2, FCP1,
YUCCA6, CUC1, APO1, and CYP734A4 in SAM, suggests several
complex pathways by which OsbZIP47 contributes to SAM
size and plant growth by modulating cell proliferation and
differentiation. Notable here is the regulation of CYP734A, which
as a direct target of OSH1 is suggested to repress premature cell
differentiation in meristems (Tsuda et al., 2014). This observation
together with our data on protein interactions between OsbZIP47
and OSH1 supports a plausible mechanism by which OsbZIP47-
OSH1 partnership could regulate CYP734A expression with
ensuing effects on meristem and lateral primordia development.
Further, phytohormones, CK, AUX, and GA are also essential
for cell division and organ differentiation (Leibfried et al., 2005;
Zhao et al., 2010; Su et al., 2011). Transcriptome profiling of
OsbZIP47KD panicles shows deregulated expression levels for
different phytohormone related genes including KNOTTED1-
LIKE11, IPT1, IPT8, OsGA3OX2 OsGA2OX3, OsGA2OX4,
OsGA20OX1, YUCCA6, and YUCCA7. Plant meristems are
under redox control by reactive oxygen species (ROS), the
by-products of aerobic metabolism. ROS levels control the
expression of WUS and the activity of TCP class1 transcription
factors to balance cell proliferation and differentiation in
Arabidopsis SAM (Viola et al., 2013; Zeng et al., 2017). Like
TCP class1, proteins containing cysteines with low pKa values
are sensitive to cellular redox status (Martins et al., 2018).
Glutaredoxins (GRX) reduce cellular ROS level and interact with
different proteins including AtPAN1, ZmFEA4, and OsbZIP47
to modulate their activity by modifying their redox state (Li
et al., 2009; Laporte et al., 2012; Schippers et al., 2016; Hao
et al., 2021; Yang et al., 2021). Arabidopsis pan and maize fea4
mutants exhibited increased meristem size (Maier et al., 2011;
Pautler et al., 2015). Contrastingly, single, double, and triple
mutations of different GRX paralogs in maize showed progressive
reduction of meristem size, proposing a model where GRXs
balance redox status and activity of ZmFEA4 to control meristem
size (Yang et al., 2021). Interestingly, in transcriptome profiling
of OsbZIP47KD panicles, OsGRX6 was downregulated whereas
OsGRX16 and OsGRX20 were upregulated (Supplementary
Dataset 1), suggesting a mechanism by which OsbZIP47 could
be regulating meristem development. We propose OsbZIP47
functions as an integrator of the WUS-CLV and KNOX pathways

for meristem development as it regulates the expression levels
of key signaling factors in both pathways. Also, genes predicted
to have roles in floral organ primordia differentiation such as
OsBLH1 (BEL1-like homeodomain), OsKANADI1, and CUC1
are deregulated in OsbZIP47KD panicle tissues. Interestingly,
reproductive panicle branching phenotypes of OsbZIP47KD
panicles resemble apo1 and apo2/rfl mutants (Ikeda et al.,
2005, 2007; Rao et al., 2008; Ikeda-Kawakatsu et al., 2009;
Deshpande et al., 2015). Thus, the interactions between RFL and
OsbZIP47 could positively regulate the panicle meristem branch
identity and its developmental transitions. One example of a
target gene for co-regulation by OsbZIP47 and RFL is CUC1.
Further, the elevated transcript levels of APO1 in OsbZIP47KD
panicle tissues hints that OsbZIP47 in the WT panicle suppresses
the expression of APO1 which we speculate may affect the
partnership with APO2/RFL. From this, we anticipate that
OsbZIP47 could have evolved to regulate some unique molecular
pathways for vegetative and reproductive phase meristem growth
and development.

Transition of Shoot Apical Meristem to
Inflorescence Meristem
Knockdown of rice OsbZIP47 showed delayed flowering
(Figure 2A). This trait is common in mutants or KD
transgenics in OsMADS1 and APO2/RFL that encode OsbZIP47
protein partners (Jeon et al., 2000; Rao et al., 2008; Ikeda-
Kawakatsu et al., 2012; Kannan et al., 2021). These observations
support our hypothesis that these factors function in “one or
more” complexes. Panicle transcript analysis in KD transgenics
indicates that OsbZIP47 can promote flowering by fine-
tuning the expression of several flowering time regulators that
are upstream to florigens, HEADING DATE 3a (Hd3a) and
RICE FLOWERING LOCUS (RFT), and by controlling the
expression of circadian clock-associated genes. Examples of genes
from these two categories are O. sativa LATE FLOWERING
(OsLF), LATERAL ORGAN BOUNDARY DOMAIN (OsLBD38),
INDETERMINATE DOMAIN 6 (OsIDD6), FLAVIN-BINDING,
KELCH REPEAT F-BOX1 (OsFKF1), PHYTOCLOCK 1(OsPCL1),
and OsLHY/CCA1. Several rice flowering time quantitative trait
loci (QTLs) also influence grain traits (Chen et al., 2014; Zhu
Y.J. et al., 2017; Ma et al., 2019). The effect of OsbZIP47KD
on rice grain shape is not reported for maize fea kernels
suggesting unique effects of OsbZIP47 on grain size and shape
in rice as also reported by Hao et al. (2021). Our transcriptomic
analysis identified a set of grain shape genes regulated by
OsbZIP47. Examples of this category are LONG GRAIN 3
(OsLG3), GRAIN SHAPE GENE ON CHROMOSOME 9 (GS9),
GRAIN WIDTH QTL on chromosome 7 (GW) and FLOURY
ENDOSPERM 2 (FLO2). GS9 positively controls the grain size
by altering the cell division along with BR signaling (Zhao et al.,
2018). Interestingly, we noted increased expression of CYCD7;1
in OsbZIP47KD panicles (Supplementary Dataset 1). This is
remarkable as in Arabidopsis, the tissue and stage-specific control
of this G1-S phase cell cycle gene controls the cell division
in different contexts, with ectopic expression driving increased
cell division and expansion in the embryo and the endosperm
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(Collins et al., 2012; Weimer et al., 2018). With this, we postulate
that OsbZIP47 links flowering time, cell cycle, and BR signaling
to regulate grain shape.

Regulation of Inner Floral Organ Identity
and Specification
Consistent with OsbZIP47 expression in the second and
third whorl organs of near mature florets (Sp6–Sp8),
we observed lodicule and stamen differentiation defects
in dsRNAiOsbZIP47 florets. Increased stamen numbers,
with degenerated anthers on short filaments and lodicule-
stamen chimeric organs support roles for OsbZIP47 in organ
differentiation. Interestingly, in OsbZIP47KD florets, the higher
transcript abundance of OsMADS16 (homolog of AtAP3)
and DL, a contributor to Class C function in rice florets
(Supplementary Dataset 2), are indicative of some distinct
effects in rice florets. Overexpression of OsMADS16 can increase
stamen numbers and form stamenoid carpels without any
effects on lodicules (Lee et al., 2003). More recently, rice
transgenics with a modified repressive OsMADS16 (OsMADS16-
SDX repressor domain fusion) exhibited indehiscent anthers
(Sato et al., 2012). These phenotypes are akin to third whorl
organ differentiation defects seen in OsbZIP47KD florets.
Microsporogenesis in anthers of Arabidopsis flowers requires
SPOROCYTELESS/NOZZLE (SPL/NZZ), a target of Class B
and C organ identity factors (Ito et al., 2004). In line with
this, we noted upregulation of OsSPL, possibly an effect
of increased OsMADS16 in OsbZIP47KD florets. Since we
did not detect OsbZIP47 interaction with OsMADS2 in the
Y2H assay, we speculate that OsbZIP47 regulates stamen
differentiation by modulating the expression of OsMADS16.
Upstream regulators of OsMADS16 are OsDL and FON2
(Ikeda et al., 2007; Xu et al., 2017). Both are upregulated in
OsbZIP47KD inflorescence. The upregulated transcript of FON2
in OsbZIP47KD inflorescence suggests that OsbZIP47KD stamen
phenotypes are OsMADS16-mediated.

Biochemical Properties of OsbZIP47 Can
Underlie Its Unique Functions and
Downstream Effects
Multiple sequence alignment shows that OsbZIP47 shares nearly
50% of amino acid identity with homologs across diverse
species. A common feature among many bZIP47 proteins,
except OsbZIP47 and Bamboo PH01000727G0540, is a variably
extended N terminal domain (Supplementary Figure 8). DNA
binding activity of Arabidopsis PAN is redox-sensitive due
to the presence of five Cysteine (Cys) amino acids in the
extended N-ter domain and the conserved C-ter Cys340 in
the transcription transactivation domain (Gutsche and Zachgo,
2016). OsbZIP47 protein has only three Cys (Cys17, Cys196,
and Cys269). Cys17 is represented in all the monocot species.
Cyse269 (Cys 340 of AtPAN) is conserved in all homologs
compared here (Supplementary Figure 8). Cys196 is unique
to OsbZIP47. Interestingly, among proteins compared here,
wheat TAE56722G002 has the maximum number of 11 Cys.
These observations hint that the number of Cys residues in this

clade of bZIP proteins may have evolved for species-specific
roles, plausibly for the adoption of unique structures with
effects on tissue-specific target gene expression. Despite being
a shorter protein with fewer Cys residues, OsbZIP47 showed
redox-dependent DNA binding to OsFCP1, a downstream gene
whose expression was upregulated in OsbZIP47KD panicles.
Yang et al. (2021) demonstrated that OsbZIP47 maize ortholog,
FEA4 interacts with three GRX proteins to modulate its
redox status and DNA accessibility proposing a model by
which redox status of FEA4 mediate meristem size. In rice,
OsGRX19 or MICROSPORELESS1 (OsMIL1) is a potential
glutaredoxin redox enzyme for OsbZIP47 as it is a homolog
of the glutaredoxin redox enzyme, AtROXY1 and ZmMSCA1
from Arabidopsis and maize, respectively (Timofejeva et al.,
2013; Yang et al., 2015). Interaction between OsMIL1 and
TGA1 in yeast and the reduction of glutathionylation of
OsbZIP47 by ROXY homolog, WG1 are both established
(Hong et al., 2012; Hao et al., 2021). Indehiscent anthers
phenotype is common to OsbZIP47KD and mil1 mutant (Hong
et al., 2012) leading us to propose S-glutathionylation of
OsbZIP47 could be important for the development of anther.
Overall, we uncover conserved as well as unique functions and
mechanisms of OsbZIP47 that support meristem growth and
determinacy during vegetative and reproductive development
leading to grain formation. Together, these functions make
OsbZIP47 a potential locus for allele mining and crop
improvement.
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