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Abstract

It is well-known that the flip graph of n-vertex triangulated 2-spheres is con-
nected, i.e., each pair of n-vertex triangulated 2-spheres can be turned into each
other by a sequence of edge flips for each n ! 4. In this article, we study various
induced subgraphs of this graph. In particular, we prove that the subgraph of n-
vertex flag 2-spheres distinct from the double cone is still connected. In contrast,
we show that the subgraph of n-vertex stacked 2-spheres has at least as many con-
nected components as there are trees on ⌊n−5

3 ⌋ nodes with maximum node-degree
at most four.
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1 Introduction

The Pachner graph of triangulated 2-spheres is the graph whose nodes are triangulated
2-spheres (also known as planar triangulations), and two nodes are connected by an arc
if and only if their corresponding triangulations can be transformed into each other by a
single bistellar move, i.e., an edge flip, a stellar subdivision of a triangle or its inverse, see
Figure 2.

The Pachner graph of triangulated 2-spheres is connected. More precisely, starting
from an arbitrary node representing an n-vertex 2-sphere, a path of length O(n) can
be found in the Pachner graph ending at the node representing the boundary of the
tetrahedron. Conversely, it is not difficult to see that Ω(n) arcs are also necessary for the
length of such a path.

The Pachner graph has a natural graded structure into induced subgraphs on the sets
of nodes representing n-vertex triangulated 2-spheres with n fixed: The arcs within a level
correspond to edge flips, the arcs corresponding to stellar subdivisions (and their inverses)
connect different levels of the grading. It is well-known that each such level, sometimes
called the flip graph (of n-vertex triangulated 2-spheres), is connected [21]. Moreover, its
diameter is bounded from above by 5n− 23 due to work by Cardinal, Hoffmann, Kusters,
Tóth and Wettstein [6] and bounded from below by 7n/3− 34 due to work by Frati [10].
These two results are the most recent additions to a series of papers aimed at reducing
the gap between upper bounds and lower bounds for the diameter of the flip graph. One
of the current open problems in this area is to find an upper bound and a lower bound
which differ by a factor of two (the optimum achievable by bounding the diameter as
twice the distance of a particular pair of triangulations). See [5] for a survey on previous
attempts to bound the diameter of the flip graph of the 2-sphere.

Sulanke and Lutz [20] show that there are exactly 59 twelve-vertex triangulations of
the orientable surface of genus six. Since they all must be neighbourly, none of them allows
any edge flips. Thus, the flip graph of twelve-vertex triangulated orientable surfaces of
genus six is the discrete graph on 59 nodes.

See various chapters of the book of De Loera, Rambau, and Santos [8] for further and
closely related research concerning the flip graph and similar objects. See also the survery
article of Bose and Hurtado [3], and Bose and Verdonshot [5] for survey on results on the
flip graph of planar graphs and triangulations.

Structural results for, as well as bounds on flip distances in Pachner graphs (of spheres
or, more generally, triangulated manifolds) which are as precise as the ones mentioned
above, are unlikely to be provable in dimensions greater than two. For instance, the best
upper bound for distances in the Pachner graph of generalised triangulations of the 3-
sphere is given by O(t22ct

2
) for the number of moves between a t-tetrahedron triangulation

of S3 and the boundary of the 4-simplex, see Mijatović [15]. Naturally, the corresponding
upper bound in the simplicial setting must be at least as large. Moreover, the n-th level
of the Pachner graph of simplicial triangulations of the 3-sphere is not even connected
(in contrast to the setting of generalised triangulations, see [14]): Consider an n-vertex
triangulation of the 3-sphere containing (i) no edge of degree three and (ii) the complete
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graph with n vertices as edges. Such a triangulation only admits stellar subdivisions
as bistellar moves and is thus isolated in the Pachner graph of n-vertex triangulated
3-spheres. See [9, 18] for a number of examples of such triangulated 3-spheres.

Even more, in dimensions greater than four, no such general upper bounds can exist
at all due to the undecidability of the homeomorphism problem.

In this paper we focus on the connectedness of certain subgraphs of the flip graph
of n-vertex triangulated 2-spheres. Namely, we consider what are called stacked and
flag 2-spheres (see Sections 2.2 and 2.3 for details). In many ways, flag 2-spheres are
the counterpart to stacked 2-spheres. While stacked 2-spheres contain the maximum
number of induced 3-cycles, flag 2-spheres do not contain any such cycle. Moreover,
every triangulated 2-sphere can be decomposed into a collection of flag 2-spheres and
boundaries of the tetrahedron (called standard 2-spheres) by iteratively cutting along its
induced 3-cycles and pasting the missing triangles. For a flag 2-sphere this decomposition
is the 2-sphere itself. For stacked 2-spheres it yields the maximum number of connected
components, each isomorphic to the standard 2-sphere.

Mori, Nakamoto, and Ota [16, Theorem 5] prove upper bounds for the number of edge
flips connecting two flag 2-spheres within the class of Hamiltonian triangulations. Our
main result states that such a sequence of edge flips exists even within the class of flag
2-spheres – as long as both triangulations are distinct from the double cone Γn over the
(n − 2)-gon (Figure 6(a)), see Theorem 6. Observe that excluding the n-vertex double
cone Γn, n ! 6, from Theorem 6 is necessary: Γn is a flag 2-sphere in which every edge
contains a degree four vertex. Thus every edge flip on Γn produces a vertex of degree
three (implying that there exist a missing triangle) and the resulting complex is not flag.
In particular, Γn cannot be connected to any other flag 2-sphere by an edge flip.

This theorem complements a result by Lutz and Nevo [13] stating that for d ! 3,
every pair of piecewise linear homeomorphic d-dimensional flag complexes is connected
by a sequence of edge subdivisions, and edge contractions.

In contrast, the subgraph of the flip graph of n-vertex stacked 2-spheres has much less
uniform properties. In Section 4 we give a precise condition on when exactly an edge flip
of a stacked 2-sphere produces another stacked 2-sphere (Theorem 14). Using this result,
we prove that the flip graph of n-vertex stacked 2-spheres is not connected, and that there
are at least as many connected components as there are trees on ⌊n−5

3
⌋ nodes and with

degrees of nodes at most four. In particular, the number of connected components of the
flip graph of n-vertex stacked 2-spheres is exponential in n (Corollary 20). Furthermore,
we show that a pair of n-vertex stacked 2-spheres can be connected by a sequence of
n-vertex stacked 2-spheres, each related to the previous one by an edge flip, if their
associated stacked 3-balls have a dual graph without degree four vertices (Theorem 22).
These results are complemented by additional experimental data for n " 14 vertices
(Table 1).
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Altogether, the results contained in this paper together with existing results on the
flip graph discussed above allow us to draw a relatively precise map of the flip graph of
n-vertex triangulated 2-spheres. Having more knowledge about the structural properties
of the flip graph might be one key for challenging future endeavours such as sampling
triangulated 2-spheres or even generating triangulated 2-spheres with certain properties
under some conditions of randomness.

For a graphical summary of what is known about the flip graph at present see Figure 1.

2 Preliminaries

2.1 Triangulations of 2-spheres

A triangulation of the 2-sphere, sometimes also referred to as a planar triangulation, is
an n-vertex graph embedded in the 2-sphere with 3n − 6 edges for some n ! 4. As a
direct result, the embedding decomposes the 2-sphere into 2n − 4 triangles. This graph
together with the triangles is called a triangulated 2-sphere. The graph is also called the
edge graph of the triangulated 2-sphere. The simplest example of a triangulated 2-sphere
is the boundary of the tetrahedron, called the standard 2-sphere.

Every n-vertex triangulated 2-sphere can be identified with an abstract simplicial com-
plex, that is, a set of subsets of a finite ground set V , called faces, closed under taking
subsets. For this, label its vertices with the elements of V = {1, . . . , n} and represent tri-
angles, edges and vertices by subsets of V of cardinality three, two and one respectively.
Note that, for the purpose of this article, we sometimes do not make the distinction
between vertices of an abstract simplicial complex and elements of its ground set.

We say that two triangulated 2-spheres are combinatorially isomorphic, or just iso-
morphic for short, if their respective abstract simplicial complexes are equal possibly after
relabelling the elements of the ground set. In this article, whenever we talk about trian-
gulated 2-spheres we mean their corresponding isomorphism classes of abstract simplicial
complexes. By a theorem of Steinitz [19], isomorphism types of triangulated 2-spheres
are in one-to-one correspondence with isomorphism types of simplicial 3-polytopes. This
fact does not generalise to higher dimensions [2, 11].

Given a triangulated 2-sphere S, we usually denote its set of vertices, edges and
triangles by V (S), E(S) and F (S) respectively. Analogous notation is used for arbitrary
abstract simplicial complexes. For v ∈ V (S), its star stS(v) is the simplicial complex
generated by all triangles in F (S) containing v. The edges and vertices of stS(v) not
containing v (i.e., the boundary of stS(v)) constitute the link of v in S, denoted by lkS(v).
The star and the link of an arbitrary face of an arbitrary abstract simplicial complex are
defined analogously. The number of edges containing v is called the degree of v, denoted
by degS(v).

For a triangulated 2-sphere S on ground set V and W ⊆ V , the subcomplex induced
by W , denoted S[W ], is the simplicial complex of all triangles, edges and vertices of S
entirely contained inW . Induced subcomplexes on arbitrary abstract simplicial complexes
are defined analogously. In the special case of a graph G = (V,E) and one of its vertices
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v ∈ V , the induced subgraph G[V \{v}] is referred to as the vertex-deleted subgraph G−v.

2.2 Flag and Hamiltonian 2-spheres

There are several special types of triangulated 2-spheres which are relevant for this article.
The most important ones are introduced in this section and in Section 2.3.

Definition 1 (Flag 2-sphere). A flag 2-sphere is a triangulated 2-sphere in which all
minimal non-faces of the underlying simplicial complex are of size two. Equivalently, a
flag 2-sphere is a triangulated 2-sphere distinct from the standard 2-sphere, in which every
3-cycle (i.e., cycle of three edges) bounds a triangle.

Every triangulated 2-sphere S can be decomposed into a collection of flag 2-spheres
and standard 2-spheres: Simply cut along a 3-cycle not bounding a triangle, and fill in
the missing triangle in both parts. Iterating this procedure results in a set of spheres
called the primitive components of S. Identifying each one of them by a node, and the
3-cycles by arcs between nodes this defines a tree. If the tree is a single vertex, S is called
primitive. A triangulated 2-sphere is called 4-connected if its edge graph is 4-connected.
A triangulated 2-sphere distinct from the standard 2-sphere is 4-connected if and only if
it is primitive if and only if it is flag.

Definition 2 (Hamiltonian 2-sphere). A Hamiltonian 2-sphere is a triangulated 2-sphere
containing a Hamiltonian cycle in its edge graph.

Hamiltonian 2-spheres play an important role in the proofs of upper bounds for the
diameter of the flip graph of n-vertex triangulated 2-spheres for a fixed n, see [5] for an
overview. This is due to (i) the well-behaved structure of the flip graph of n-vertex Hamil-
tonian 2-spheres which admits relatively precise bounds on its diameter, see Theorem 5,
and (ii) the fact that a flag 2-sphere is necessarily Hamiltonian [22]. The converse of (ii)
is not true.

2.3 Stacked 3-balls and stacked 2-spheres

A triangulated 3-ball is a collection of tetrahedra (together with their faces) whose union
is a topological 3-ball. If B is a triangulated 3-ball then its boundary ∂B is the complex
generated by all triangles of B contained in only one tetrahedron of B. By the standard
3-ball we mean a single tetrahedron together with its faces. The boundary of the standard
3-ball is the standard 2-sphere.

A triangulated 3-ball B is called a stacked 3-ball if there is a sequence B1, . . . , Bm of
triangulated 3-balls such that B1 is the standard 3-ball, Bm = B and, for 2 " i " m, Bi

is constructed from Bi−1 by gluing (or stacking) a standard 3-ball onto a single triangle
of Bi−1. Note that, by construction, all edges and vertices of B are contained in ∂B.

Conversely, let B be a triangulated 3-ball with all of its edges and vertices in ∂B. If
t is an interior triangle in B then the boundary of t is a 3-cycle in ∂B (i.e., an induced
3-cycle in ∂B). Since B is a union of tetrahedra, B is the union of two smaller 3-balls B1

and B2 glued together along t and all the edges and vertices of Bi are in ∂Bi for i = 1, 2.
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Inductively, this shows that B is a stacked 3-ball. (See [7, Theorem 4.5] for a more general
result with a rigorous proof.) A stacked 2-sphere is a triangulated 2-sphere isomorphic to
the boundary of a stacked 3-ball. It follows from the definition of a stacked ball that an
n-vertex stacked 2-sphere contains exactly n− 4 induced 3-cycles.

For an abstract simplicial complex C whose faces consist of tetrahedra and their
subfaces, the graph whose nodes correspond to the tetrahedra of C and two nodes are
connected by an arc if and only if their corresponding tetrahedra share a triangle is called
the dual graph of C, denoted by Λ(C). If B is a stacked 3-ball then Λ(B) is a tree,
and every node of Λ(B) corresponds to a primitive component of the bounding stacked
2-sphere ∂B. It follows that a triangulated 2-sphere is stacked if and only if all of its
primitive components are standard 2-spheres.

From [1, Lemma 4.6 and Remark 4.1] we know the following statement.

Lemma 3 (Bagchi, Datta [1]). Let S be a stacked 2-sphere with edge graph G. Let S
denote the simplicial complex whose faces are all the cliques of G. Then S is a stacked
3-ball and S = ∂S. Moreover, up to isomorphism, S is the unique stacked 3-ball such that
S = ∂S.

2.4 Bistellar moves

Bistellar moves are local combinatorial alterations of a simplicial complex which, in gen-
eral, change the isomorphism type of the complex, but not the topology of the underlying
space. For a triangulated 2-sphere S there are the following two bistellar moves to consider
(see also Figure 2).

• Replace a triangle of S by three triangles joined around a new vertex. Such a stellar
subdivision of a triangle is also called a 0-move (because a 0-dimensional face is
inserted) or 1-3-move (because one triangle is replaced by three triangles). For its
inverse operation, a so-called 2-move (a 2-dimensional face is inserted) or 3-1-move
(three triangles are replaced by one), remove the vertex star of a vertex of degree
three and replace it by a single triangle. This inverse operation is only possible if the
new triangle is not already present in the triangulation. In particular, the standard
2-sphere does not allow any 2-moves.

• Replace two triangles of S which are joined along a common edge, say abx and aby,
and replace them with triangles axy, bxy. This operation is possible if and only
if xy is not an edge of S. This move is called a 1-move, 2-2-move, or, for obvious
reasons, an edge flip. Throughout this article we denote it by ab '→ xy. The inverse
of an edge flip is again an edge flip.

Definition 4. The Pachner graph P of triangulated 2-spheres is the graph whose nodes
are triangulated 2-spheres up to combinatorial isomorphism, with arcs between all pairs
of triangulated 2-spheres that can be transformed into isomorphic copies of each other by
a single bistellar move.
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0-move

2-move

1-move

Figure 2: The bistellar moves in dimension two.

The flip graph Pn is the induced subgraph of P whose nodes are triangulated 2-spheres
with precisely n vertices.

Note that it is a fundamental and well-known fact that the Pachner graph P of trian-
gulated 2-spheres is connected (see for example [17] for a much more general statement
due to Pachner). Also note that all arcs in the flip graph Pn correspond to edge flips.

The flip graph of n-vertex flag 2-spheres is denoted by Fn, the flip graph of n-vertex
Hamiltonian 2-spheres by Hn, and the flip graph of n-vertex stacked 2-spheres by Sn.
Note that, naturally, all of these graphs are induced subgraphs in the flip graph Pn of
n-vertex 2-spheres. In particular, a priori it is not clear, whether or not any of them is
connected. The following statement is due to work by Mori, Nakamoto and Ota.

Theorem 5 ([12, Theorem 5] and [16, Theorem 1]). For n ! 5, the flip graph Hn is
connected and has diameter at least 2n− 15 and at most 4n− 20.

In this article, we focus on structural properties of Fn and Sn.

3 The flip graph Fn of n-vertex flag 2-spheres

In this section we prove that, for n ! 8, the flip graph Fn of n-vertex flag 2-spheres
contains exactly two components, one of them consisting of the double cone Γn, the other
one containing all other n-vertex flag 2-spheres. If S and S ′ are two n-vertex flag 2-
spheres, we write S ∼ S ′ to mean that there exists a sequence of edge flips connecting S
and S ′ preserving the flagness property at each step. We prove the following statement.

Theorem 6. If S and S ′ are two n-vertex flag 2-spheres distinct from Γn, then S ∼ S ′.

See Figures 3 to 5 for illustrations of the flip graph Fn for n ∈ {8, 9, 10}.

a

b

cc

a

b

cc

Figure 3: The flip graph F8 of 8-vertex flag 2-spheres.
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Figure 4: The flip graph F9.
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a

b

cc
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cc

Figure 5: The flip graph F10.

The proof of Theorem 6 relies on a number of lengthy and technical lemmas (Lemmas 9
to 13). We thus start by introducing all necessary terminology and a sketch of the proof,
before proving all lemmas in detail.

Definition 7. Let S be a flag 2-sphere. A subcomplex Q of S is called a quadrilat-
eral if it is a triangulated disc and its boundary is a 4-cycle. A quadrilateral Q in
S with boundary a-b-c-d-a is called proper, if a-b-c-d-a is an induced cycle in S and
degS(a), degS(b), degS(c), degS(d) ! 5. Since the boundary is an induced cycle, a proper
quadrilateral contains at least one interior vertex. A quadrilateral Q in S is called ordered,
if it contains an interior vertex, and all of its interior vertices are of degree four. A path
in an ordered quadrilateral Q joining two antipodal vertices on the boundary that are
contained in only two triangles of Q, and going through all interior vertices but not any
other vertex on the boundary, is called a diagonal path, or just a diagonal of Q. If Q is
ordered and has more than one interior vertex, then its diagonal is unique.

the electronic journal of combinatorics 29(2) (2022), #P2.6 9



Definition 8. For n ! 7, let An in Fn be as in Figure 6(b). Note that A7 = Γ7, An ∕= Γn

for n ! 8 (see Figure 3), and that An is a vertex of degree one in Fn for n ! 9 (see
Figures 4 and 5). To see the latter claim, note that there are precisely four edges in An,
n ! 8, with endpoints of degree greater than four. All four edges are symmetric and hence
flipping any such edge results in the same isomorphism type of flag 2-sphere triangulation.

For k ! 3, let Qk be the triangulated quadrilateral with k interior vertices shown in
Figure 6(c). The path a0-a1- · · · -ak is said to be the diagonal path of Qk.

c

a

b b

(a)

c

a

bb

(b)

b

a

aka0

c

a1 a2 ak−1

(c)

Figure 6: (a) Double cone Γn over the (n− 2)-gon. (b) Target n-vertex flag 2-sphere An.
(c) QuadrilateralQk with boundary vertices a0, a, ak, b and interior vertices c, a1, . . . , ak−1.

We prove Theorem 6 by showing that S ∼ An, for any n-vertex flag 2-sphere S distinct
from the double cone. For this, we split S (or a slight variation thereof) along an induced
4-cycle into two triangulated quadrilaterals Q and R using Lemma 12. We then use
Lemma 13 to turn both Q and R into ordered quadrilaterals. Finally, we use Lemma 9
to transport excess internal vertices from R to Q (or vice versa), until we obtain An.

The main difficulty in the above procedure is to prove Lemma 13. For this we
need Lemma 11, which allows us to merge two smaller triangulated quadrilaterals, and
Lemma 10, which allows us to resolve a pathological class of triangulations of the quadri-
lateral (triangulation Qk, shown in Figure 6(c)). In addition, all of Lemmas 10, 11 and
13 need Lemma 9 to transport internal vertices from one quadrilateral to another.

For a more precise but less descriptive outline, see the proof of Theorem 6 at the end
of this section.

Lemma 9 (Transport Lemma). Let S be a flag 2-sphere containing two ordered quadri-
laterals α and β with disjoint interiors, but a common boundary edge vw. Furthermore,
let k ! 2 (ℓ ! 1) be the number of interior vertices of α (resp., β), and let v and w satisfy
one of the following conditions:

(1) degS(w) ! 5, and the diagonal paths of α and β intersect in w;

(2) degS(v) ! 5, degS(w) ! 6, the diagonal path of α intersects v, and the diagonal path
of β intersects w.
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Then there exists a flag 2-sphere S ′ such that (i) S ∼ S ′, (ii) S ′ contains two ordered
quadrilaterals α′ and β′, (iii) S ′ = (S \ {α, β}) ∪ {α′, β′}, (iv) vw is a common edge of
α′ and β′ in S ′, and (v) the number of interior vertices of α′ is k − 1, and the number of
interior vertices of β′ is ℓ+ 1.

Lemma 9 gives precise conditions on when exactly we can “transport” an interior
vertex of an ordered quadrilateral of S into an adjacent ordered quadrilateral without
changing anything else in S. Both Condition (1) and (2) for Lemma 9 are satisfied as
soon as α and β only share one edge. If α and β share two edges, the situation is different:
In Condition (1) we can then have degS(w) = 4 if both the common edges of α and β are
through w, in Condition (2) and for k = 2 and ℓ = 1 we can have both degS(v) = 4 and
degS(w) = 5.

Proof. Each ordered quadrilateral of S must be subdivided by a diagonal path containing
all of its interior vertices all of which are of degree four. Hence, up to exchanging the roles
of v and w, there are two possible initial configurations to consider: The diagonal paths
of α and β either meet, or one ends in v and the other in w. The former corresponds to
Condition (1) of the Lemma, the latter one to Condition (2).

Condition (1) The diagonal paths of α and β meet in w. In this case, the sequence
of flips transforming S to S ′ is shown in Figure 7(a) (top to bottom). The dotted edge
denotes the edge to be flipped next, the dashed line denotes the newly inserted edge. The
integer next to a vertex indicates the change of the respective vertex degree with respect
to the initial vertex degree.

Throughout this edge flip sequence the degrees of w, v and the upper left vertex of
α are, at some point, decreased to the initial degree minus one. The degrees of all other
boundary vertices are never decreased below the initial degree. Since all three vertices of
the former group are initially of degree at least five (w by assumption and the other two
by the flagness of S), the flagness condition is preserved in each step. The preconditions
of the lemma ensure that no 3-cycle is introduced in the first flip, the edges introduced by
flip two and three end in the interior of α ∪ β and hence cannot introduce a new 3-cycle,
and the last flip re-introduces the edge removed by the first flip.

Condition (2) α and β have diagonal paths ending in v and w respectively. To comply
with the labelling of the statement of the lemma, let the diagonal of α contain v and the
diagonal of β contain w. The sequence of edge flips transforming S to S ′ in this case is
shown in Figure 7(b) (top to bottom). The meaning of dotted and dashed lines as well
as integers next to vertices is the same as in Condition (1).

Note that, in this procedure, only the degree of w is, at one stage, decreased to the
initial degree minus two. In addition, v and the lower left vertex of α are, at some point,
decreased to the initial degree minus one. The degrees of all other boundary vertices are
never decreased below the initial degree. By assumption, w is of initial degree at least six
and v is of initial degree five. Again, the other vertex of α not containing the diagonal
must be of initial degree at least five by the flagness of S. It follows that the flagness
condition is preserved in each step. Again, no 3-cycle is introduced by the flip sequence
for reasons analogous to the ones described in the previous case.
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w

v

β α00 0

00 0

−10 0

−10 0

00 −1

−10 0

−1+1 −1

−10 0

0+1 −1

00 0β′ α′

(a)

w

v

β α00 0

00 0

−10 0

−10 0

−10 0

00 −1

-2+1 1

00 −1

−1+1 0

+10 −1β′ α′

(b)

Figure 7: Transport Lemma. (a) sequence of edge flips for intersecting diagonal paths
(Cond. (1)). (b) sequence of edge flips for diagonal paths ending in v and w (Cond. (2)).

Lemma 10. Let S be an n-vertex flag 2-sphere, n ! 8, with induced 4-cycle a-a0-b-ak-a
bounding Qk. Then either S = Γn, S ∼ An, or there exists an n-vertex flag 2-sphere S ′

with S ∼ S ′, such that (i) a-a0-b-ak-a is an induced 4-cycle in S ′ bounding an ordered
quadrilateral Q, and (ii) S \ Qk = S ′ \Q.

Proof. We use the notation for Qk as introduced in Figure 6(c) and in accordance with
the vertex labels of the induced 4-cycle a-a0-b-ak-a bounding Qk.

Case k = 3: Refer to Figure 8(a). Consider the two triangles a0ax1, a3ax
′
1 ∈ F (S) outside

but adjacent to Q3. If x1 = x′
1 (i.e., degS(a) = 5) consider triangles a0xixi+1, a3xix

′
i+1 ∈

F (S), i ! 1, until either xℓ+1 ∕= x′
ℓ+1, that is, degS(xℓ) ! 5, or x′

ℓ = xℓ = b.
The case x′

1 = x1 = b is not possible because a-a0-b-ak-a is induced (and because
n ! 8). If x′

ℓ = xℓ = b, ℓ ! 2, S must be isomorphic to Aℓ+6 and we are done. Otherwise,
consider the two triangles a0xℓxℓ+1 and a3xℓx

′
ℓ+1, x

′
ℓ+1 ∕= xℓ+1. Neither a0x

′
ℓ+1 nor a3xℓ+1
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can be edges of S since otherwise there are induced 3-cycles a0-x
′
ℓ+1-xℓ-a0 or a3-xℓ+1-xℓ-a3.

Keeping these observations in mind, we perform edge flip a0xℓ '→ xℓ+1xℓ−1 (see Fig-
ure 8(b)), followed by edge flips a0xℓ−1 '→ xℓ+1xℓ−2, etc. all the way down to a0a '→ xℓ+1a1
(see Figure 8(c)). For each of them we have that, since a3xℓ+1 is not an edge, a3-xi-xℓ+1-a3
is not a 3-cycle of S.

It follows that we can perform flips a1c '→ a0a2 (Figure 8(d)) and aa2 '→ a1a3 (Fig-
ure 8(e)), followed by the initial sequence of edge flips in reverse, i.e., xℓ+1a1 '→ a0a,
xℓ+1a '→ a0x1, xℓ+1x1 '→ a0x2, all the way up to xℓ+1xℓ−1 '→ a0xℓ (Figure 8(f)). Observe
that now all vertices inside Q3 are of degree four and outside Q3 the triangulation is
unchanged. This proves the result for k = 3.

b

a

a3a0
a1 a2

c

x1

x!−1

x!

x!+1 x′

!+1

(a)

b

a

a3a0
a1 a2

c

x1

x!−1

x!

x!+1 x′

!+1 (b)

b

a

a3a0
a1 a2

c

x1

x!−1

x!

x!+1 x′

!+1

(c)

b

a

a3a0

a1

a2

c

x1

x!−1

x!

x!+1 x′

!+1

(d)

b

a

a3a0
a1

a2

c

x1

x!−1

x!

x!+1 x′

!+1

(e)

b

a

a3a0
a1

a2

c

x1

x!−1

x!

x!+1 x′

!+1

(f)

Figure 8: Resolving Q3 into a quadrilateral with three interior vertices of degree four.

Case k = 4: Refer to Figure 9(a). The case k = 4 is very similar to the case k = 3.
Again, the case x′

1 = x1 = b is not possible because a-a0-b-ak-a is induced. If x′
ℓ = xℓ = b

for ℓ ! 2, S decomposes into two ordered proper quadrilaterals along induced 4-cycle
a0-a-a4-c-a0 to which we can apply Lemma 9: The ordered proper quadrilateral contained
in Q4, the rest of S, a and a0 take the roles of α, β, w and v. The diagonals are disjoint,
degS(a) = 6 and degS(a0) ! 5. In particular, Condition (2) is satisfied with k = 3 and
ℓ ! 1 and we can transport a1 or a3 away from its quadrilateral to conclude that S ∼ An,
n ! 8.
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b

a

a4a0 a1 a2 a3

c

x1

x!−1

x!

x!+1 x′

!+1

(a)

b

a

a4a0 a1 a2 a3

c

x1

x!−1

x!

x!+1 x′

!+1

(b)

b

a

a4a0

a1

a2 a3

c

x1

x!−1

x!

x!+1 x′

!+1

(c)
b

a

a4a0

a1

a2
a3

c

x1

x!−1

x!

x!+1 x′

!+1

(d)

b

a

a4a0

a1

a2

a3

c

x1

x!−1

x!

x!+1 x′

!+1

(e)

Figure 9: Resolving Q4 into a quadrilateral with four interior vertices of degree four.

If xℓ+1 ∕= x′
ℓ+1 for some ℓ ! 0 we perform a sequence of edge flips similar to the one

in the case k = 3 above. More precisely, the initial set of flips (Figure 9(b)) and the final
set of flips (Figure 9(e)) are identical with the initial two and the final two steps of case
k = 3. Once flip a0a '→ xℓ+1a1 is performed, we can perform a1c '→ a0a2 and a2c '→ a0a3
(Figure 9(c)), followed by a3a '→ a2a4 and a2a '→ a1a4 (Figure 9(d)).

Case k > 4: Refer to Figure 10(a). From k > 4 it follows that n ! 10. Moreover,
a0 ∕= ak, and a0ak is a non-edge of S since a0-a-ak-b-a0 is an induced 4-cycle. We start by
performing flips a0c '→ ba1, a1c '→ ba2, all the way to ak−4c '→ bak−3 (see Figure 10(b)).
The resulting quadrilateral splits into two parts. One with only degree four interior
vertices (at least one), the other one being isomorphic to Q3 with diagonal path going
from ak−3 to ak (see Figure 10(c) for a re-arranged version of the top centre quadrilateral
emphasising this fact).

Use the case k = 3 to turn Q3 into a quadrilateral containing only interior vertices of
degree four with the diagonal path running from a to b (see Figure 10(d)). Since k > 4,
the overall quadrilateral again splits into two parts, one with only degree four interior
vertices (possibly none), the other one being isomorphic to Q4 with diagonal path going
from a to b (see Figure 10(e) for a re-arranged version of the bottom left quadrilateral
emphasising this fact). Use the case k = 4 to either conclude that S ∼ An, or to turn
Q4 into a quadrilateral containing only degree four interior vertices and diagonal running
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ak−1ak−2ak−3

(a)

b

a

aka0

c

ak−1ak−2ak−3
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(b)

b

a

aka0
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(c)

b
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c
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b

a
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c
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ak−2

ak−4 ak−3

(e)

Q4

k = 4

b

a

aka0
ak−4 ak−3 c ak−1 ak−2

(f)

Figure 10: Resolving Qk, k > 4, into a quadrilateral with k interior vertices of degree
four.

from ak−4 to ak. In the latter case the overall quadrilateral now only has interior vertices
of degree four which proves the lemma (see Figure 10(f)).

Lemma 11 (Merge Lemma). Let S be an n-vertex flag 2-sphere containing two ordered
quadrilaterals α and β with disjoint interiors, but common outer edges uv and uw. Then
either S = Γn, S ∼ An, or S ∼ S ′ where S ′ has an ordered quadrilateral γ with boundary
∂(α ∪ β) and S ′ = (S \ {α, β}) ∪ {γ}.

Proof. We have four cases for the initial configuration of α and β emerging from the
different possible relative orientations of the diagonal paths of α and β, see Figure 11.
Throughout this proof, vertices a and b denote the only boundary vertices of α and β
that, possibly, are not contained in both α and β.

Case 1: If a = b then α ∪ β = S. In this case, S = Γn with cone apices v and w and we
are done.

Case 1
v

u

w

a b

α β

Case 2
v

u

w

a b

α β

Case 3
v

u

w

a b

α β

Case 4
v

u

w

a b

α β

Figure 11: The four initial configurations for α and β in the proof of Lemma 11.
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If a ∕= b we can merge α and β into one larger ordered quadrilateral with boundary
∂(α ∪ β).

Case 2
v

u

w

a b

α β

=

u

w ba

v v

α β

Lem. 3.4

(a)

u

w ba

v v

α β

a = b

a != b

=

=

(b)

An

v

u

w

a a

(c)

v

u

w

a b

Q3

(d)

Lem. 3.5

Case 1
v

u

w

a b

Figure 12: Transporting vertices in Case 2: (a) Case 2 redrawn after cutting along edge
uv. (b) After transporting interior vertices away from β (Lemma 9). (c) Case a = b yields
An. (d) Case a ∕= b yields Q3. In the latter case apply Lemma 10 to fall back to Case 1.

Case 2: Refer to Figure 12. As before, if a = b then α ∪ β = S. If, in this case, β
contains only one interior vertex, then we have S = Γn with cone apices v and w and we
are done. If α contains only one interior vertex, both v and w are of degree four, and we
have S = Γn with cone apices u and a = b.

Thus, we can assume both α and β have at least two interior vertices. In this case, we
iteratively apply Lemma 9 to transport interior vertices from β to α across edge uw until
u is of degree five (Figure 12(b)) and we obtain An (Figure 12(c)).

If a ∕= b, we, again, apply Lemma 9 to transport interior vertices from β to α across
edge uw until u is of degree five (Figure 12(b)). The quadrilateral β together with the two
rightmost triangles of α now form a quadrilateral isomorphic to Q3 with diagonal path
from v to w (see Figure 12(d)). This can be resolved into a quadrilateral with interior
vertices all of degree four and diagonal intersecting b (note that a is of degree greater
than four and thus (i) the preconditions of Lemma 10 are satisfied and (ii) we can always
resolve Q3 in this case) and we are back to Case 1.

Case 3: This is completely analogous to Case 2.

Case 4: Again, if a = b then α ∪ β = S, and S is equal to Γn with cone apices u and
a = b.

Hence, let a ∕= b. If α contains only a single interior vertex we fall back to Case 2, if
β contains only a single vertex we fall back to Case 3. Thus we can assume both α and
β have at least two interior vertices. In this case, degS(u) ! 6, degS(v), degS(w) ! 5,
and we apply Lemma 9 to transport vertices from α to β until α contains only a single
interior vertex. Then we proceed with Case 2.
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Lemma 12. For n ! 8, let S ∈ Fn \{Γn}. Then there exists S ′ ∈ Fn \{Γn} with S ∼ S ′,
and a, b, c, d ∈ V (S ′) such that (i) a-b-c-d-a is an induced 4-cycle in S ′, and (ii) degS′(a),
degS′(b), degS′(c), degS′(d) ! 5. In particular, S ′ splits into two proper quadrilaterals
both bounded by a-b-c-d-a.

Proof. If S contains a vertex v of degree four, then, by the flagness of S, the link of v is an
induced 4-cycle, say a-b-c-d-a. If any of these vertices, say a, is of degree four, then, since
n ! 8, the boundary of the union of the stars v and a is an induced 4-cycle. Moreover,
b and d are of degree at least five. Iterating this process either yields an induced 4-cycle
x-b-c-d-x, for some vertex x of S of degree at least five, or x = c, and S is isomorphic to
Γn, a contradiction. Hence, assume degS(x) ! 5, and thus x ∕= c. If the degree of c is 4,
consider the union of the quadrilateral containing v and bounded by x-b-c-d-x and the star
of vertex c. As before, iterate this procedure until we obtain an induced 4-cycle x-b-y-d-x
in S (possibly y = c) with x and y necessarily distinct and both of degree at least five
(note that x = y implies S isomorphic to Γn and thus degS(x) = 4, a contradiction).

Since S is flag, it cannot contain a vertex of degree three. If, in addition, S does
not contain a vertex of degree four, then S must contain a vertex w of degree five (this
is a consequence of Euler’s formula which implies that the average vertex degree of a
triangulated 2-sphere must be less than six). Let auw and buw be two adjacent triangles
in the star of w. If a and b have a common neighbour x distinct from w and u, then
x-a-w-b-x is an induced 4-cycle, and we are done since S has no vertex of degree four.
Otherwise the flip uw '→ ab yields a flag 2-sphere in which w has degree four. Now the
link of w is an induced 4-cycle with all four vertices being of degree at least five.

Lemma 13. Let S be an n-vertex flag 2-sphere which splits into two proper quadrilaterals
Q and R along an induced 4-cycle a-c-b-d-a. Then there exists an n-vertex flag 2-sphere
S ′ with S ∼ S ′, such that S ′ = Q′ ∪ R, and the interior of Q′ contains only degree four
vertices.

Note that, in S ′, neither Q′ nor R need to be proper quadrilaterals. However, both
Q′ and R contain interior vertices. In particular, each of a, b, c, and d is contained in
at least two triangles of both Q′ and R. We deal with this issue separately whenever we
need to, namely in the proof of Theorem 6.

Proof. We prove this statement by induction on the number k of interior vertices in Q.
First note that k > 0, and that the statement is true for k " 2.

Let a-c-b-d-a be the boundary of a quadrilateral Q in S with k ! 3 interior vertices,
such that degS(a), degS(b), degS(c), degS(d) ! 5. Since a-c-b-d-a is induced, ab and cd
cannot be edges of S.

Claim: There exist a triangulation S ′ with S ∼ S ′, such that S ′ = Q′ ∪ R, and in the
interior of Q′ either a and b or c and d have at least one common neighbour.

We first complete the proof of the lemma assuming the claim is true. This is then
followed by a proof of the claim. We can thus assume that we have an n-vertex flag 2-
sphere S ′, S ∼ S ′, such that either a and b or c and d have at least one common neighbour
in Q′.
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Assume that there exist at least one common neighbour of a and b (the case that c and
d have at least one common neighbour is completely analogous). If all such neighbours
are of degree four, all interior vertices must be neighbours of a and b of degree four and
we are done. Otherwise, choose a common neighbour e of degree at least five, and split
Q′ into two smaller quadrilaterals Q1 and Q2 with boundaries e-a-c-b-e and e-a-d-b-e
respectively. Without loss of generality, let Q2 be the quadrilateral with at least three
triangles containing e.

If Q1 has interior vertices, use the induction hypothesis to obtain a 2-sphere S ′′,
S ′ ∼ S ′′, in which Q1 is transformed into a quadrilateral Q′

1 with boundary e-a-c-b-e,
S ′ \Q1 = S ′′ \Q′

1, and in which all interior vertices of Q′
1 have degree four. In S ′′ vertex

d is still of degree at least five, vertices a and b must be of degree at least six, and vertex
e must be of degree at least five since at least three triangles containing e are outside Q′

1.
In particular, Q2 is proper and we can apply the induction hypothesis to Q2 to obtain
a triangulated 2-sphere S ′′′ with two ordered quadrilaterals Q′

1 and Q′
2 joined along two

adjacent edges. Use Lemma 11 to merge both quadrilaterals, or conclude that S ∼ An.
We have that S ∕∼ Γn, since Γn does not split into to proper quadrilaterals, as required
by the statement of Lemma 13.

Hence, without loss of generality let Q1 be without interior vertices. Use the induction
hypothesis to transform Q2 into Q′

2 with only degree four vertices inside. Now either e is
of degree four, all interior vertices of Q′ = Q1 ∪ Q′

2 are of degree four, and we are done.
Or Q′ is isomorphic to Qk and, by Lemma 10, can be transformed into a quadrilateral
containing only degree four vertices (or S ∼ An), and again we are done.

Proof of the claim: Refer to Figure 13. In the following procedure we always denote
the flag 2-sphere by S and the quadrilateral enclosed by a-c-b-d-a by Q, although both
objects are altered in the process.

1. Denote all neighbours of a in Q from left to right by c = a0, a1, . . . , am = d.

2. If a0 and am have a common neighbour in Q other than a and b we are done.

3. If no such neighbour exists, let 1 " j " m− 1 be the largest index for which a0 and
aj have common neighbours outside the star of a.

There exist an outermost neighbour x1 in Q, bounding a quadrilateral x1-a0-a-aj-x1

that contains all other common neighbours of a0 and aj. Note that, in this case, aj
must be of degree at least five. If x1 = b, a and b have a common neighbour and
we are done. If x1 ∕= b, then there is at least one triangle inside Q containing a0
but not contained in the quadrilateral inside Q and bounded by x1-a0-a-aj-x1. In
particular, a0 is of degree at least five in S (although S might have changed during
this proof).

4. If the quadrilateral inside Q and bounded by x1-a0-a-aj-x1 does not contain interior
vertices, we must have j = 1 and the quadrilateral consists of the two triangles
a0a1a and a0a1x1. Note that x1 ∕= ai by the flagness of the triangulation, and x1ai
is a non-edge for 2 " i " m by construction of the procedure.
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As explained in detail above, both a0 and a1 are of degree at least five, and a and
x1 do not have common neighbours other than a0 and a1. Hence, we can perform
flip a0a1 '→ ax1 which strictly increases the degree of a inside Q. We then start over
at step 1 with a′0 = a0, a

′
1 = x1, a

′
2 = a1, . . . a

′
m+1 = am.

5. If the quadrilateral inside Q and bounded by x1-a0-a-aj-x1, say Q1, contains interior
vertices, we have degS(x1) ! 5. Moreover, as explained above degS(a0), degS(aj) !
5, and degS(a) ! 5 by assumption. In particular, Q1 is a proper quadrilateral
with fewer interior vertices than Q. We can thus use the induction hypothesis to
rearrange the interior of Q1 to contain only interior vertices of degree four. Note
that, in the new triangulation, all of x1, a0, a and aj still have degree at least
five (i.e., the rearranged quadrilateral is an ordered proper quadrilateral). This is
important later on in the proof.

6. After rearranging Q1, bounded by x1-a0-a-aj-x1, into an ordered proper quadrilat-
eral, repeat steps 3 to 5 by looking for the largest index j < ℓ " m− 1 for which aj
and aℓ have common neighbours outside the star of a. Note that, whenever we flip
an edge in step 4 we start over at step 1 with a strictly larger degree of vertex a in
Q.

This process either yields the desired result, or it terminates with Q having a sequence
of smaller ordered quadrilaterals Q1, . . . , Qp around vertex a, p > 1, see Figure 13.

Call the “peaks” of the quadrilaterals x1, . . . , xp, and the “valleys” between quadri-
laterals a0 = y0, . . . , yp = am (cf. Figure 13). By construction, all xi, 1 " i " p, and yj,
0 " j " p are of degree at least five (see step 5 above). That is, the quadrilaterals Qi,
1 " i " p, are ordered and proper.

Recall that all quadrilaterals Qi, 1 " i " p, contain only degree four interior vertices.
We want all of the diagonal paths of Qi, 1 " i " p, to run from yi−1 to yi. If Qi only has
one interior vertex, this is automatically the case. Thus, assume that there exist a pair
of quadrilaterals Qi and Qi+1, 1 " i " p− 1, sharing common edge ayi, and, without loss
of generality, assume that Qi has a diagonal path from a to xi of length at least two.

Observe that in this particular situation, both a and yi must be of degree at least
six. Hence we can apply Lemma 9 to “transport” all but one interior vertices of Qi to
the diagonal path of Qi+1, and declare the diagonal path in Qi to run from yi−1 to yi.
If the diagonal path of Qi+1 connects yi with yi+1 we are done. If not, note that, again,
both a and yi must be of degree at least six. We proceed by transporting all but one
interior vertices of Qi+1 onto the new diagonal path from yi−1 to yi of Qi, and declare the
diagonal path in Qi+1 to run from yi to yi+1. Repeating this with all pairs of quadrilaterals
containing at least one diagonal intersecting a yields the desired result. Note that this
procedure terminates with the degree of a being at least as large as it was before starting
the process at step 1 (that is, the degree of a in Q is at least m+ 1).

In Figure 13, denote the vertices in the upper link of yj by

xj = y0j , y
1
j , y

2
j , . . . , y

rj
j = xj+1.
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b

a

am = yp = dc = y0 = a0 a1 y1 yp−1

x1
xp

y11 y
rp−1−1

p−1

am−1

Q1 Qp

Figure 13: The quadrilateral Q after performing steps 1-6, and after reorganising the
interior vertices of quadrilaterals Qi, 1 " i " p.

By construction we have rj > 0 for all j.
Refer to Figure 14(a). Since p > 1, x1, y1 = aj, and x2 are in the interior of Q.

Moreover, both aj = y1, j > 1, and x2 are of degree at least five and, by design of the
procedure, y0y

ℓ
1, 1 " ℓ " r1, is a non-edge (otherwise yℓ1 is a better choice for x1). It

follows that we can perform the flips x1aj '→ aj−1y
1
1, x1aj−1 '→ aj−2y

1
1, etc., all the way

down to x1a2 '→ a1y
1
1 (see Figure 14(b)). Note that y1 and x1 are now both of degree at

least four, the degree of y11 is larger than before, a1 is of degree five, and all other degrees
have not changed. Since x1ai, 2 " i " m, must be non-edges, a and x1 do not have
common neighbours. We can thus perform the flip a0a1 '→ ax1, see Figure 14(c).

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y11

(a)

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y11

(b)

b

a

ym
=

ap

y0
=

a0 a1 aj−1 y1 = aj

x1

y11

(c)

Figure 14: Increasing the size of the link of a.

This strictly increases the degree of a. We now start over with our procedure at step
1.
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Since there are only finitely many vertices inside Q, this procedure must terminate
with Q containing a common neighbour of a and b. This proves the claim and completes
the proof of the lemma.

Proof of Theorem 6. To prove the theorem it suffices to show that S ∼ An for all
S ∈ Fn \ {Γn}.

Apply Lemma 12 to split S into two proper quadrilaterals S = Q ∪R. This is always
possible since S ∕= Γn. Use Lemma 13 to turn all interior vertices of both Q and R into
vertices of degree four.

If, after the first or second application of Lemma 13, any of the boundary vertices of Q
(or R) are of degree four, we grow Q (or R) such that eventually it is bounded by vertices
of degree at least five, or S ∼ Γn. However, since all edge flips on Γn produce a non-flag
2-sphere triangulation, the latter case implies S = Γn, a contradiction.

Thus, S can be transformed into a triangulation S ′′ of the 2-sphere which splits into
two ordered proper quadrilaterals. This corresponds to the cases a = b in the proof of
Lemma 9. In particular, either S ′′ = Γn, which is impossible, S ′′ = An, or the degrees of
all vertices of the separating induced 4-cycle satisfy the preconditions of Lemma 9, and
we can conclude that S ∼ An.

4 The flip graph Sn of n-vertex stacked 2-spheres

Every pair of n-vertex stacked 2-spheres is, by definition, connected in the Pachner graph
of stacked 2-spheres by a sequence of (n− 4) 2-moves, followed by a sequence of (n− 4)
0-moves. However, if we look at the flip graph Sn of n-vertex stacked 2-spheres, the
situation is different.

In this section we show that the structure of Sn is very special. More precisely, we
prove that Sn is not connected for n ! 7 (Corollary 19), and that the number of connected
components rapidly increases with the number of vertices (Corollary 20). More precisely,
for n fixed, the number of connected components is at least as large as the number of
isomorphism classes of trees of maximum degree at most four on ⌊n−5

3
⌋ vertices. See

Table 1 for the number and cardinalities of connected components of Sn for n " 14.
For a stacked 2-sphere S, let S be the unique stacked 3-ball whose boundary is S, see

Lemma 3. If α is a triangle of S then α is a face of a unique tetrahedron of S (i.e., a clique
of size four in the edge graph of S). We denote this unique tetrahedron by α. Naturally,
α is a node in the dual graph Λ(S).

Theorem 14. Let S be a stacked 2-sphere other than the standard sphere. Let α = abc,
β = abd be two triangles of S. Let α (resp., β) be the unique tetrahedron in S containing
α (resp., β). Then cd is not an edge of S and the 2-sphere T obtained from S by the edge
flip ab '→ cd is stacked if and only if the nodes α and β of Λ(S) are adjacent in Λ(S).

Proof. Suppose α and β are adjacent in the dual graph Λ(S), α ∕= β. Then there exists a
vertex e of S such that α = abce and β = abde (e ∕∈ {d, c} since α ∕= β). If cd is an edge
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n #(Sn) # cc size of connected components

4 1 1 1
5 1 1 1
6 1 1 1
7 3 1 3
8 7 2 1, 6
9 24 2 1, 23
10 93 3 3, 4, 86
11 434 5 1, 7, 10, 19, 397
12 2110 8 1, 2, 6, 43, 46, 57, 82, 1873
13 11002 15 1, 2, 2, 3, 4, 6, 6, 7, 57, 222

223, 246, 326, 394, 9503
14 58713 33 1, 1, 3, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 9, 9, 9, 12,

15, 19, 27, 28, 36, 36, 246, 304, 339, 757,
1165, 1182, 1571, 1944, 1987, 48958

Table 1: Number and cardinalities of the connected components of Sn for n " 14.

of S then {a, b, c, d, e} is a clique in the edge graph of S and hence, by Lemma 3, abcde is
a simplex of S. This is not possible since S is 3-dimensional.

Let B = S ∪ abcd. Since S ∩ abcd is a 2-disk, B is a triangulated 3-ball. The link
lkB(ab) is the induced 3-cycle c-d-e-c in B. LetD be obtained from B by the 3-dimensional
bistellar 2-move that replaces the three tetrahedra abcd, abce and abde around edge ab
with the two tetrahedra γ = acde and δ = bcde sharing triangle cde, denoted by ab '→ cde
in short. By construction we have (i) ∂D = T , where T is the 2-sphere obtained from S
by the edge flip ab '→ cd and (ii) all edges of D are boundary edges (ab is the only edge
of B not in the boundary which is removed by the bistellar move ab '→ cde) and thus T
is stacked (cf. Section 2.3).

Conversely, suppose cd is not an edge of S and the triangulated 2-sphere T obtained
from the stacked 2-sphere S by the edge flip ab '→ cd is a stacked 2-sphere. Observe that
both γ = acd and δ = bcd are triangles of T .

Since ab, abc, abd ∈ S = ∂S, lkS(ab) is a path in E(S) from c to d. Let
lkS(ab) = e0-e1- · · · -ek-ek+1 for some k ! 1, where e0 = c and ek+1 = d. We have
that abce1 = abe0e1, abe1e2, . . . , abek−1ek, abekek+1 = abdek are tetrahedra in S. Thus,
abe1, . . . , abek are interior triangles of S. Since abe1 is an interior triangle with all of its
edges in ∂S, it follows that S[V (S) \ {a, b, e1}] has two components, one containing e0
and the other containing e2. Thus, the common neighbours of e0 and e2 in E(S) = E(S)
are a, b and e1. Similarly, the set of common neighbours of ei−1 and ei+1 is {a, b, ei} for
1 " i " k. This implies that the set of common neighbours of c = e0 and d = ek+1 in
E(T ) is {a, b, e1} ∩ {a, b, ek} (note that E(S) differs from E(T ) = E(T ) only in edges ab
and cd).
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On the other hand the triangles γ = acd = ae0ek+1 and δ = bcd = be0ek+1 are
contained in unique tetrahedra γ = acdx and δ = bcdy of T and hence a, b, x and y are
common neighbours of c and d. By the above this is only possible if e := x = y = e1 = ek.
In particular, lkS(ab) is a path from c to d of length two, α = abce, β = abde, and in
particular α and β are adjacent in Λ(S).

Remark 15. For an edge flip ab '→ cd on a stacked 2-sphere S to be valid, we must have
α = abc, β = abd ∈ F (S) and cd ∕∈ E(S). We have seen that an n-vertex 2-sphere T can
be obtained from a stacked 2-sphere S by an edge flip ab '→ cd (that is, the edge flip is
valid) and T is stacked if and only if the nodes corresponding to tetrahedra α and β of S
are adjacent in Λ(S).

Note that we can replace this latter condition in Theorem 14 by any of the following
equivalent conditions:

• The path in the link of ab in S from c to d is of length exactly two.

• Edge ab is contained in exactly two tetrahedra of S.

• The vertices a and b have exactly three common neighbours in S.

• There exists a unique vertex e ∕∈ {c, d} such that ae and be are edges of S.

While some of these conditions are easier to grasp, others are more efficient for imple-
mentations. It is thus useful to keep all of them in mind.

Remark 16. Let T be obtained from S by the edge flip ab '→ cd and e, α = abc, β = abd,
γ = acd, δ = bcd as in the proof of Theorem 14. Then α = abce, β = abde ∈ S and
γ = acde, δ = bcde ∈ T . Moreover, let the (up to) two nodes adjacent to α in Λ(S) be
acex and bcey, and let the (up to) two nodes adjacent to β in Λ(S) be adez and bdew.

acex

bcey

α̃ = abce abde = β̃

adez

bdew
Λ(S̄)

acex

bcey

bcde = δ̃

γ̃ = acde

adez

bdew
Λ(T̄ )

Figure 15: Transformation of dual graph by edge flip ab '→ cd in the proof of Theorem 14.

Then the dual graph Λ(T ) is the tree built from Λ(S), with set of nodes U = {σ ∈
S | σ is a tetrahedron } \ {α, β}) ∪ {γ, δ} with all arcs in Λ(S) adjacent to α and β
removed, and arcs added between γ and δ (corresponding to triangle cde), γ and acex
(corresponding to ace), δ and bcey (bce), γ and adez (ade), and δ and bdew (bde), see
Figure 15.
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Corollary 17. Let S be a stacked 2-sphere, α = abc, β = abd two triangles of S, α (resp.,
β) the unique tetrahedron of S containing α (resp., β), σ ∈ S correspond to a degree four
node in Λ(S), and let G1, G2, G3, G4 be the connected components of Λ(S) − σ. If the
2-sphere T obtained from S by the edge flip ab '→ cd is also a stacked 2-sphere then

(i) σ is a tetrahedron of T ,

(ii) σ is a degree four node in Λ(T ),

(iii) both α and β are in one component of Λ(S)− σ, say in G4, and

(iv) the components of Λ(T )− σ are G1, G2, G3, G
′
4 for some tree G′

4.

Proof. It follows from Theorem 14 that lkS(ab) is a path of the form c-e-d and α = abce,
β = abde for some vertex e. In particular, α and β are the only two tetrahedra in
S containing ab. Since all the 2-dimensional faces of σ are interior triangles, we have
σ ∕∈ {α, β}. Thus, σ cannot contain the edge ab. Since σ forms a clique in E(S), this
implies that σ forms a clique in E(T ). Hence σ ∈ T . This proves part (i).

Observe that {a, c, d, e} and {b, c, d, e} span cliques in E(T ). Therefore, γ := acde,
δ := bcde ∈ T . Let τ be a 2-dimensional face of σ. Then τ is an interior face in S. Let
τ = σ ∩ µ for some tetrahedron µ ∈ S. If ab ∕⊂ µ then µ forms a clique in E(T ) and
hence µ ∈ T . Then τ = σ ∩ µ is an interior triangle of T . If ab ⊂ µ then µ is α or β.
Assume, without loss of generality, that µ = α = abce. Since ab ∕⊂ σ and µ ∩ σ is a face
of µ, τ = µ ∩ σ = ace or bce. Assume, without loss of generality, that τ = ace. Then
σ = acex for some vertex x and τ = σ ∩ γ. Thus, τ is an interior triangle of T . Thus,
each 2-dimensional face of σ is an interior triangle of T . Part (ii) follows from this.

Part (iii) follows from the fact that α and β share a triangle in S which (necessarily)
is not a face of σ.

The four 2-dimensional faces of γ = acde are acd, ace, ade and cde. Since cd is a
non-edge in S, we have that acd, cde are not in S and ace = γ ∩ α, ade = γ ∩ β. Thus,
by part (iii), γ is not adjacent to any nodes of G1 ∪G2 ∪G3. Similarly, δ is not adjacent
to any nodes of G1 ∪ G2 ∪ G3. Part (iv) now follows since the set of nodes of Λ(T ) is
({τ : τ is a tetrahedron in S} \ {α, β}) ∪ {γ, δ}.

Corollary 18. Let S be a stacked 2-sphere, T a stacked 2-sphere obtained from S by an
edge flip, and let VS (resp., VT ) be the set of degree four nodes in Λ(S) (resp., in Λ(T )).
Then the induced subgraphs Λ(S)[VS] and Λ(T )[VT ] are isomorphic.

Proof. By Corollary 17, VS = VT . For σ1, σ2 ∈ VS = VT , σ1 and σ2 are adjacent in
Λ(S)[VS] if and only if σ1 ∩ σ2 is an interior triangle of S if and only if σ1 ∩ σ2 contains
three vertices if and only if σ1 ∩ σ2 is an interior triangle of T if and only if σ1 and σ2 are
adjacent in Λ(T )[VT ]. The corollary follows from this observation.

Corollary 19. The flip graph Sn of n-vertex stacked 2-spheres is disconnected for n ! 8.
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Proof. The stacked 3-ball associated to an n-vertex stacked 2-sphere, n ! 8, has a dual
graph with m = n − 3 ! 5 nodes, and every m-node tree (with degrees of nodes " 4)
is the dual graph of at least one stacked 3-ball. Hence there exist a stacked 3-ball B1

with dual graph having one node of degree four and m− 1 nodes of degree at most three,
and there exist a stacked 3-ball B2 with dual graph with all m nodes of degree at most
two. Then, by Corollary 18, the n-vertex stacked 2-spheres ∂B1 and ∂B2 are in different
connected components of Sn.

Corollary 20. For m ∈ Z+, let t(m) be the number of non-isomorphic m-node trees
with degrees of nodes at most four. Moreover, let n = 3m+ 5. Then the flip graph Sn of
n-vertex stacked 2-spheres has t(m) components each containing a single stacked 2-sphere.

Proof. Let H be an m-node tree in which the degrees of all the nodes are at most
four. Consider a new graph G by connecting each node of H of degree i to (4 − i)
new nodes. Then G is a connected acyclic graph and hence a tree. By construc-
tion, the number of new nodes in G equals the number of new arcs in G which is!

v∈V (H)(4− degH(v)) = 4m−
!

v∈V (H) degH(v) = 4m− 2(m− 1) = 2m+ 2. Therefore,

G has (m− 1) + (2m + 2) = 3m + 1 arcs, and thus 3m + 2 nodes. It follows that G has
m nodes of degree four and 2m + 2 nodes of degree one, and each degree one node of G
is adjacent to a degree four node.

Let B be a stacked 3-ball whose dual graph Λ(B) is G. It follows from the definition
that we can always construct such a stacked 3-ball. Let S = ∂B. Since S is stacked it
must have 3m+5 vertices. Let α = abc, β = abd be two triangles of S, and let α (resp., β)
be the unique tetrahedron of B containing α (resp., β). Then degΛ(B)(α), degΛ(B)(β) < 4

and hence degΛ(B)(α) = 1 = degΛ(B)(β). If α = β, then cd is an edge and hence we cannot

perform the edge flip ab '→ cd. If α ∕= β, then α and β are not adjacent in Λ(B) (degree
one nodes are only adjacent to degree four nodes in Λ(B)) and hence, by Theorem 14, the
2-sphere T obtained from S by the edge flip ab '→ cd is not stacked. Thus S is isolated in
Sn.

If H1 and H2 are non-isomorphic trees onm nodes, then the above construction carried
out for both H1 and H2 leads to two non-isomorphic trees G1 and G2, leading to two non-
isomorphic stacked 3-balls B1 and B2 with, by Lemma 3, non-isomorphic boundaries S1

and S2. Since there exist at least t(m) non-isomorphic m-node trees with degree of nodes
at most four, we have at least t(m) singleton components in Sn.

Corollary 21. The number of connected components in Sn is bounded from below by Cn,
for some real number C > 1.

Proof. Let m = ⌊n−5
3
⌋. Let t(m) be the number of non-isomorphic m-node trees with

degree of nodes at most four as in Corollary 20.

Claim: The number of components in Sn is at least t(m).

Let T be the set of all m-node trees with node-degrees at most four. For each H ∈ T ,
we can construct a (3m + 2)-nodes tree G whose degree four nodes are the nodes of H
and all others are of degree one (as in the proof of Corollary 20). By randomly attaching
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an additional n− 3m− 5 " 2 extra nodes to existing degree one nodes of G we obtain a
new tree G′ having the same set of degree four nodes as in G. Let B be a stacked 3-ball
whose dual graph is G′ and let S = ∂B. By construction, S is a stacked 2-sphere with
exactly n vertices. Let VS be as in Corollary 18. Then G′[VS] = G[VS] = H. Therefore,
by Corollary 18, the n-vertex stacked 2-spheres obtained in this process corresponding to
different graphs in T are in different components of Sn. This proves the claim.

Since t(m) is exponential in m, the result follows from the claim.

Following arguments along the lines of Corollary 17 we can observe that, apart from
a large number of isolated singleton components in Sn, there are also larger connected
components corresponding to dual graphs with no, or very few nodes of degree four. For
instance, the largest connected component in Sn, n " 14, shown in Table 1, corresponds
to boundaries S of stacked balls S with dual graphs without nodes of degree four (i.e.,
VS = ∅). Let S0

n denote the flip graph consisting of this class of stacked 2-spheres. We
have the following result.

Theorem 22. The flip graph S0
n is connected.

We split the proof of Theorem 22 into two lemmas.

Lemma 23. Each stacked 2-sphere S ∈ S0
n is connected to a stacked 2-sphere T in the

flip graph S0
n, where the dual graph Λ(T ) of T is a path.

Proof. The idea of the proof is to show that, for every S ∈ S0
n with Λ(S) not a path, S is

connected in S0
n to a stacked 2-sphere T ∈ S0

n with the number of nodes of degree three
in Λ(T ) less than that in Λ(S).

For S ∈ S0
n and α, β nodes in Λ(S), let dS(α, β) be the length of the unique path

from α to β in the tree Λ(S). Moreover, if S has a degree three node in Λ(S), let
ℓ(S) = min{dS(α, β) | α leaf, β degree three in Λ(S)}.
Claim 1: Let S ∈ S0

n be a stacked 2-sphere such that Λ(S) is not a path. If ℓ(S) ! 2
then there exists a stacked 2-sphere T ∈ S0

n such that (i) S is connected to T in S0
n, (ii)

the number of degree three nodes in Λ(T ) is the same as in Λ(S) and (iii) ℓ(T ) = ℓ(S)−1.

Let ℓ = ℓ(S) = dS(γ, δ), where γ is a degree three node and δ is a leaf in Λ(S).
Let γ0-γ1- · · · -γℓ be the path in Λ(S) from γ = γ0 to δ = γℓ. Then degΛ(S)(γ0) = 3,
degΛ(S)(γi) = 2 for 1 " i " ℓ− 1, and degΛ(S)(γℓ) = 1. Let the other nodes adjacent to γ
be α and β. Assume, without loss of generality, that γ = 1234, α = 124a, β = 134b and
γ1 = 123x1. Then, the link of 23 in S is of the form 4-1-x1- · · · -xk for some k " ℓ.

Case 1. Let k = 1. It follows that 23x1 is a face of S = ∂S. By Theorem 14, the
triangulated 2-sphere T obtained from S by the edge flip 23 '→ 4x1 is stacked and hence,
by Corollary 17, is in S0

n. By Lemma 3, γ′ := 134x1 and γ′
1 := 124x1 are tetrahedra in T .

Following the transformation of the dual graph of a stacked ball under an edge flip,
as shown in Figure 15, the dual graph Λ(T ) is obtained from Λ(S) by replacing the three
edges adjacent to γ with the path β-γ′-γ′

1-α, and attaching the path γ2- · · · -γℓ to either
γ′ or γ′

1. In either case, the path from the new degree three node to γℓ is of length ℓ− 1,
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and since the remaining part of Λ(T ) is equal to the remaining part of Λ(S), we have
ℓ(T ) = ℓ(S)− 1 and Claim 1 is true in this case.

Case 2. Let k ! 2. In this case we can assume that γi = 23xi−1xi for 2 " i " k, and
that the triangles 21x1, 2x1x2, . . . , 2xk−2xk−1, 31x1, 3x1x2, . . . , 3xk−2xk−1 ∈ S (i.e., are in
the boundary of S). Since degΛ(S)(γk) " 2 (= 1 if k = ℓ and = 2 if k < ℓ), at least two
2-dimensional faces of γk are triangles of S. This implies that at least one of the triangles
2xk−1xk and 3xk−1xk is a triangle of S.

2 3

4

xk

xk−1

xk−2

x1

1

a b

S

2 3

4

xk

xk−1

xk−2

x1

1

a b

Sk−1

Figure 16: Sequence of edge flips as performed in the proof of Lemma 23, Claim 1, Case
2.

Assume, without loss of generality, that 2xk−1xk ∈ S. (In that case, γk+1 is of
the form 3xk−1xkxk+1 for some xk+1 ∈ V (S) when k < ℓ.) Let S1 be obtained from
S = S0 by the edge flip 2xk−1 '→ xkxk−2. Since lkS(2xk−1) = xk−2-3-xk, by Theo-
rem 14, S1 is stacked. Observe that the path γk−2-γk−1-γk-γk+1 in Λ(S) is replaced by
γk−2-(23xkxk−2)-(3xkxk−1xk−2)-γk+1 in Λ(S1) when k < ℓ, and γk−2-γk−1-γk is replaced by
γk−2-(23xkxk−2)-(3xkxk−1xk−2) when k = ℓ. Thus, Λ(S1) is isomorphic to Λ(S).

Inductively, for 1 " i " k − 1, lkS(2xk−i) = xk−i−1-3-xk and hence the sphere Si

obtained from Si−1 by the edge flip 2xk−i '→ xkxk−i−1 is stacked. Then Λ(Si) is isomorphic
to Λ(Si−1), see Figure 16. (Note that Sk−1 is obtained by the sequence of edge flips
2xk−1 '→ xkxk−2, 2xk−2 '→ xkxk−3, . . . , 2x2 '→ xkx1, 2x1 '→ xk1.)

It follows that Sk−1 is stacked, S can be joined to Sk−1 in S0
n, Λ(Sk−1) is isomorphic

to Λ(S), and lkSk−1
(23) = 4-1-xk. In particular, Sk−1 satisfies the hypothesis of Case 1,

ℓ(Sk−1) = ℓ(S) and the number of degree three nodes in Λ(Sk−1) is the same as that in
Λ(S). Consequently, by Case 1, Sk−1 is connected to some T in S0

n, such that the number
of degree three nodes in Λ(T ) is the same as that in Λ(Sk−1) (which is the same as that
in Λ(S)) and ℓ(T ) = ℓ(Sk−1)− 1 = ℓ(S)− 1. This completes the proof of Claim 1.

Claim 2: For S ∈ S0
n, if Λ(S) has a leaf which is adjacent to a degree three node in Λ(S)

(i.e., ℓ(S) = 1) then there exists T ∈ S0
n which can be obtained from S by an edge flip

and the number of nodes of degree three in Λ(T ) is one less than that in Λ(S).
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Let δ = 123d be a leaf node which is adjacent to a degree three node γ = 1234.
Assume, as above, that the adjacent nodes of γ are α = 124a and β = 134b. Then edge
23 is in two tetrahedra and, by Theorem 14, the 2-sphere T obtained from S by the
edge flip 23 '→ 4d is stacked and hence in S0

n by Corollary 17. Moreover, by Lemma 3,
γ′ := 124d and δ′ := 134d are in T . Again, by following the transformation shown in
Figure 15, Λ(T ) contains the path α-γ′-δ′-β instead of the three edges adjacent to γ in
Λ(S). Since the remaining parts of Λ(S) and Λ(T ) coincide, Claim 2 follows.

The result follows inductively using Claims 1 and 2.

Lemma 24. Let ∂∆n be as shown in Figure 17 and let S ∈ S0
n. If Λ(S) is a path then S

is connected to ∂∆n in S0
n.

2

1

3

1

4

1

n

Figure 17: The stacked 3-ball ∆n. Note that this complex is also used as a target in [4]
to prove upper bounds on the diameter of the flip graph Pn of n-vertex 2-spheres.

Proof. Let Λ(S) = γ1-γ2- · · · -γn−3.
Since the stacked 3-ball ∆n is characterised by the property of being the star of an

edge (all of its tetrahedra share an edge), we prove this lemma by verifying the following
claim.

Claim: If γ1, . . . , γk have a common edge and γ1, . . . , γk+1 have no common edge, k "
n− 4, then S can be joined to T ∈ S0

n, where Λ(T ) is a path of the form α1-α2- · · · -αn−3

such that α1, . . . ,αk+1 have a common edge.
Since γ1, . . . , γk+1 have no common edge, we can assume that k ! 3. Let γi = abxixi+1

for 1 " i " k. Assume without loss of generality that γk+1 = bxkxk+1xk+2. Then
lkS(axk) = xk−1-b-xk+1. Thus, by Theorem 14, the 2-sphere S1 obtained from S by the
edge flip axk '→ xk+1xk−1 is stacked. Similarly, the 2-sphere S2 obtained from S1 by
the edge flip axk−1 '→ xk+1xk−2 is stacked. Continuing this way, we obtain a stacked
sphere T = Sk−1 from Sk−2 by the edge flip ax2 '→ xk+1x1, see Figure 18. Hence S can
be joined to T in S0

n and Λ(T ) = α1-α2- · · · -αk+1-γk+2- · · · -γn−3, where α1 = bxk+1ax1,
αi = bxk+1xi−1xi, 2 " i " k, and αk+1 = bxk+1xkxk+2. This proves the claim.

The lemma follows by induction using the claim.
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a b

x1

xk+1

xk+2

xk

xk−1

x2

S

a b

x1

xk+1

xk+2

xk

xk−1

x2

Sk−1

Figure 18: Sequence of edge flips as performed in the proof of Lemma 24.

Proof of Theorem 22. The result follows from Lemmas 23 and 24.
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