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Hirschman and Widder introduced a class of Pólya frequency functions given by 
linear combinations of one-sided exponential functions. The members of this class 
are probability densities, and the class is closed under convolution but not under 
pointwise multiplication. We show that, generically, a polynomial function of such 
a density is a Pólya frequency function only if the polynomial is a homothety, and 
also identify a subclass for which each positive-integer power is a Pólya frequency 
function. We further demonstrate connections between the Maclaurin coefficients, 
the moments of these densities, and the recovery of the density from finitely many 
moments, via Schur polynomials.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction and main results

The class of Pólya frequency functions is central to the theory of total positivity. Its basic properties were 
announced by Schoenberg in 1947–48 [34,35] and further details were provided in subsequent work [36,37]. 
These functions have been actively studied ever since.

Definition 1.1 (Schoenberg). A function Λ : R → [0, ∞) is a Pólya frequency function if it is Lebesgue 
integrable and non-zero at two or more points, and the Toeplitz kernel
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TΛ : R×R → R; (x, y) �→ Λ(x− y)

is totally non-negative. This last statement means that, for any integer p ≥ 1 and real numbers

x1 < · · · < xp and y1 < · · · < yp,

the matrix 
(
Λ(xj − yk)

)p
j,k=1 has non-negative determinant.

Schoenberg showed in [37] that the bilateral Laplace transform

B{Λ}(s) :=
∫
R

e−xsΛ(x) dx

of a Pólya frequency function Λ converges in a open strip containing the imaginary axis, and equals on this 
strip the reciprocal of an entire function Ψ in the Laguerre–Pólya class [23,32], with Ψ(0) = 1. Conversely, 
any function Ψ of this form agrees with the reciprocal of the bilateral Laplace transform of some Pólya 
frequency function on its strip of convergence. Schoenberg also proved that a Pólya frequency function 
necessarily has unbounded support, and either vanishes nowhere or vanishes on a semi-axis. Members of the 
latter class of functions are said to be one sided, and Schoenberg [37] also characterized this subclass via 
the bilateral Laplace transform. This characterization also allows the non-smooth members of this subclass 
to be identified.

Theorem 1.2 (Schoenberg). If the one-sided Pólya frequency function Λ vanishes on (−∞, 0) then 1/B{Λ}
is the restriction of an entire function Ψ in the first Laguerre–Pólya class, so has the form

Ψ(s) = Ceδs
∞∏
j=1

(1 + αjs), where C > 0, δ ≥ 0, αj ≥ 0 and 0 <
∞∑
j=1

αj < ∞. (1.1)

Conversely, if the entire function Ψ has the form (1.1) then there exists a Pólya frequency function Λ
that vanishes on (−∞, 0) such that Ψ(s) = 1/B{Λ}(s) on an open strip containing the origin.

Such a Pólya frequency function Λ is continuous and positive on (δ, ∞) and vanishes on (−∞, δ). Fur-
thermore, the function Λ is smooth if and only if αj is non-zero for infinitely many j, and is continuous 
unless αj is non-zero for exactly one j.

In this note, we study the one-sided Pólya frequency functions which are continuous but non-smooth, 
that is, those with at least two but only finitely many non-zero terms α1, . . . , αm in (1.1), and their powers. 
We may normalize so that Λ is a probability density function, whence C = 1, and we may also assume δ = 0, 
by replacing Λ with x �→ Λ(x + δ). Thus, we study the collection of finitely determined Pólya frequency 
functions of the form Λα, such that

B{Λα}(s) =
m∏
j=1

(1 + αjs)−1, where α := (α1, . . . , αm) and m ≥ 2.

Some historical comments are appropriate, and here we recount this subject’s early developments in 
chronological order. In 1947, Schoenberg [34] announced the notion of a Pólya frequency function. In their 
1949 work, Hirschman and Widder [14] studied Λα for distinct positive α1, . . . , αm and its degree of 
smoothness, via the Laplace transform. This was followed by Schoenberg’s first full paper on Pólya fre-
quency functions [37] in 1951. In this work, Schoenberg placed the analysis of Hirschman and Widder in a 
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wider context, with the last part of Theorem 1.2 showing that the collection of Hirschman–Widder func-
tions is dense, in a suitable sense, in the set of non-smooth one-sided Pólya frequency functions. Finally, 
Hirschman and Widder’s 1955 monograph [15] contains a detailed analysis of these functions and their 
Laplace transforms, and provides ample evidence for the relevance of such functions to operational calculus 
and approximation theory.

For this reason, we adopt the following terminology for this family of functions, now allowing for non-
distinct and negative αj . For brevity, we let R× := R \ {0} denote the set of non-zero real numbers.

Definition 1.3. Given α = (α1, . . . , αm) ∈ (R×)m, where m ≥ 2, the corresponding Hirschman–Widder 
density is the unique continuous function Λα : R → [0, ∞) with bilateral Laplace transform∫

R

e−xsΛα(x) dx =
m∏
j=1

(1 + αjs)−1 (1.2)

on the open half-plane {s ∈ C : Re s > −α−1
j for j = 1, . . . , m}.

The next section focuses on some basic properties of these functions.

(1) Each such function Λα exists and is unique.
(2) The function Λα is both a Pólya frequency function and a probability density function. It is one sided 

if and only if all the entries of α have the same sign.
(3) The function Λα has a multiplicative representation via convolution, as well as an additive one involving 

one-sided exponentials. The class of Pólya frequency functions and its subclass of Hirschman–Widder 
densities are both semigroups for the convolution product.

However, this collection of densities is not closed under pointwise multiplication. The principal con-
tribution of the present work is to identify when some simple algebraic operations preserve the class of 
Hirschman–Widder densities and when they do not. More specifically, we focus on polynomial functions 
and study the generic behavior of these operations and their departure from mapping the class of densities 
to itself.

We consider only those transforms which preserve the Pólya frequency property of infinite order, that is, 
with the natural number p arbitrarily large in Definition 1.1. It was known to Karlin in the 1960s [18] that 
there exist Pólya frequency functions whose αth powers are totally non-negative to some fixed finite order 
for sufficiently large α; see also [20, p. 115]. We note that requiring total non-negativity only up to some 
finite order no longer guarantees that the reciprocal of the Laplace transform is entire.

Our main result is as follows.

Theorem 1.4.

(1) Suppose m ≥ 3. There exists a subset N of (0, ∞)m with Lebesgue measure zero such that

p ◦ Λα : x �→ p
(
Λα(x)

)
is not a Pólya frequency function for any α ∈ (0, ∞)m \ N and any real polynomial p that is not a 
homothety, that is, p(x) �≡ cx for any c > 0.

(2) Suppose α = (α1, . . . , αm) ∈ (0, ∞)m, where m ≥ 2, is such that the reciprocals a1 := α−1
1 , . . . , 

am := α−1
m form an arithmetic progression. Then cΛn

α is a Pólya frequency function for every c > 0 and 
every integer n ≥ 1. If, moreover, α1 = αm or α1/α2 is irrational, then p ◦Λα is not a Pólya frequency 
function for any other real polynomial p.
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We remark that the first assertion with m = 3 and p(x) = xn was shown in our recent work [3], and 
played a key role in characterizing those post-composition transforms that preserve the class of one-sided 
Pólya frequency functions. Theorem 1.4 shows that these m = 3 examples are merely the first in a large, 
multi-parameter family of Pólya frequency functions with the same property.

In the case where p(x) = xn, note that the assumption m ≥ 3 in the first statement is necessary. Indeed, 
the m = 2 case is covered by the second assertion, since every pair of numbers is trivially in arithmetic 
progression.

The exceptional null set N ⊂ (0, ∞)m appearing in Theorem 1.4(1) has the following structure. If a 
tuple α lies in the complement of N in (0, ∞)m then p ◦ Λα is not a Pólya frequency function for any 
non-homothetic polynomial p. The tuples in N are precisely those of the form (α1, . . . , αm) such that 
the coordinates of the reciprocal tuple (α−1

1 , . . . , α−1
m ) are either Q-linearly independent or are roots of a 

countable family of non-zero polynomials given in (4.1). The Q-linearly dependent tuples lie on a countable 
union of hyperplanes, and the zero loci of the polynomials in (4.1) also lie on null sets. The reciprocals of 
these tuples form the null set N .

As discussed in Section 2.4, the Hirschman–Widder densities are connected in multiple ways to classical 
probability theory. In the present work, we link them to another area: the theory of symmetric functions, 
and specifically Schur polynomials. In fact, this also has a possible connection to probability theory: we 
show below that these densities can be reconstructed from finitely many moments, via symmetric function 
identities.

Definition 1.5. Given a field F of size at least m ≥ 2, and a tuple λ = (λ1, . . . , λm) of non-negative integers 
λ1 ≤ · · · ≤ λm, we define the corresponding Schur polynomial to be the polynomial extension of the function

sλ(a1, . . . , am) :=
det(aλk

j )mj,k=1

V (a1, . . . , am)

for distinct a1, . . . , am ∈ F , where V (a1, . . . , am) := det(ak−1
j ) =

∏
1≤j<k≤m(ak − aj) is the usual Vander-

monde determinant. If consecutive exponents are equal, the Schur polynomial is identically zero.

This definition differs from the one more commonly found in the literature, such as [25], in that the entries 
of λ are non-decreasing rather than non-increasing and the determinant in the numerator has exponent λk

instead of λk + n − k. To switch between these two conventions is straightforward: if νj = λm−j+1 −m + j

then ν = (ν1, . . . , νm) is such that ν1 ≥ · · · ≥ νm if and only if λ1 < · · · < λm, in which case s̃ν(a) = sλ(a)
for any a ∈ Fm, where s̃ν is defined as in [25, (3.1)].

Schur polynomials are a distinguished family of symmetric functions, and form a basis of homogeneous 
symmetric polynomials. They arise naturally as characters of finite-dimensional irreducible representations 
of GLm+1(C) or slm+1(C), and specialize to other families of symmetric functions.

We can now make clear the connections between Hirschman–Widder densities and Schur polynomials: 
both the Maclaurin coefficients and the moments of these densities are given by Schur polynomials, and are, 
in a certain sense, mirror images of one another.

Theorem 1.6. Given α = (α1, . . . , αm) ∈ (0, ∞)m, where m ≥ 2, the Hirschman–Widder density Λα is 
represented by its Maclaurin series on [0, ∞), with nth coefficient

Λ(n)
α (0+) =

{
0 if 0 ≤ n ≤ m− 2,
(−1)n−m+1α−1

1 · · ·α−1
m s(0,1,...,m−2,n)(α−1

1 , . . . , α−1
m ) if n ≥ m− 1.

The density Λα has pth moment
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μp :=
∫
R

xpΛα(x) dx = p! s(0,1,...,m−2,m−1+p)(α1, . . . , αm) if p ≥ 0.

The parameter α can be recovered, up to permutation of its entries, from the first m moments, μ1, . . . , μm, 
and also from the first m + 1 non-trivial Maclaurin coefficients, Λ(m−1)

α (0+), . . . , Λ(2m−1)
α (0+).

It may seem incongruous to require m moments but m + 1 Maclaurin coefficients in order to recover the 
m coordinates α1, . . . , αm. However, this is explained by noting that Λ(n)

α (0+) equals (α1 · · ·αm)−1 times 
a polynomial in the reciprocal coordinates α−1

1 , . . . , α−1
m , and this polynomial is 1 if n = m − 1. Thus, the 

parameter α is recovered from the data Λ(n)
α (0+)/Λ(m−1)

α (0+) for n = m, . . . , 2m − 1.
To the best of our knowledge, the connections in Theorem 1.6 between the moments, the Maclaurin 

coefficients, and the moment-recovery problem for Hirschman–Widder densities have not previously been 
noted in the literature. While the moments are computable from first principles using probability theory, 
we provide another recipe: the moment-generating function may be obtained by evaluating the generating 
function of the complete homogeneous symmetric polynomials. In a similar spirit, the moment-recovery 
problem is seen to be intimately connected with the Jacobi–Trudi identity.

Pólya frequency functions, and in particular the subclass of Hirschman–Widder densities, form a foun-
dational chapter within the wider framework of totally positive kernels. This latter concept continues to 
attract generations of mathematicians, with surprising new developments. It is not the intention of the 
present article to touch on the many ramifications and current discoveries in this subject, with one excep-
tion. The first footnote in the note by Vershik and Kerov [41] contains the following line (our translation): 
“It is worth mentioning that, in works going back to the 30s, Schoenberg, but also Krein and Gantmacher, 
and later Karlin, have developed the theory of totally positive kernels and matrices. However, a connection 
with the characters of the unitary group and Weyl’s formula was not remarked at that time.” That happened 
later, with a series of spectacular discoveries: Fourier transforms of Pólya frequency functions were rediscov-
ered as irreducible characters of representations of the infinite symmetric group [40,28], and independently 
as irreducible characters of unitary representations of the infinite unitary group U(∞), [42,31]. Moreover, 
the classification and explicit expression of spherical functions associated to classical groups [11,13] also 
pointed to the same class of totally positive kernels. The string of coincidental findings of new facets of 
the same object does not stop here: for example, challenging computations of the characteristic functions 
of non-central Wishart distributions in multivariate statistics led to Pólya frequency functions and Schur 
polynomials [17,8,39]. Nowadays, these advances are part of group representation theory [29,41,7] or random 
matrix theory [20–22,10]. By reversing the arrow of discovery, we reproduce without proof in Section 3 an 
orbital integral which encodes analytic properties of Hirschman–Widder densities. Our work remains at an 
independent, elementary level, and we will indicate the simplifications this view provides.
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2. Hirschman–Widder densities and symmetric functions

In this section, we prove Theorem 1.6. We begin by recalling two approaches to constructing Hirschman–
Widder densities, guided by the original memoir [15].

2.1. Two constructions of Hirschman–Widder densities

Following Hirschman and Widder [15], we first establish the existence of their eponymous densities via 
the convolution product.

Proposition 2.1. Let α = (α1, . . . , αm) ∈ (R×)m, where m ≥ 2.

(1) The corresponding Hirschman–Widder density Λα exists and is unique.
(2) The function Λα is both a Pólya frequency function and a probability density function.
(3) The function Λα is one sided if and only if the entries of α all have the same sign.

Proof. If α > 0 then

ϕα : R → [0,∞); x �→
{

0 if x < 0,
α−1e−α−1x if x ≥ 0

is a Pólya frequency function [34, (3)], and if α < 0 then ϕα : x �→ ϕ−α(−x) is also a Pólya frequency 
function. The function

Λα := ϕα1 ∗ · · · ∗ ϕαm
(2.1)

is continuous, being a convolution product, and its bilateral Laplace transform is as required, since 
B{ϕα}(s) = (1 + αs)−1.

The class of Pólya frequency functions is closed under convolution [37, Lemma 5], and so Λα is a Pólya 
frequency function. It is a probability density because B{Λα}(0) = 1.

For uniqueness, we note that any continuous function with prescribed bilateral Laplace transform F such 
that t �→ F (it) is integrable can be recovered everywhere via the Fourier–Mellin integral: here,

Λα(x) = 1
2πi

+i∞∫
−i∞

exs

(1 + α1s) · · · (1 + αms) ds (x ∈ R). (2.2)

If αj and αk have opposite signs then a short calculation shows that (ϕαj
∗ ϕαk

)(x) > 0 for any x ∈ R. 
Furthermore, if f is continuous and positive on R then ϕα ∗ f is also continuous and positive on R, for any 
α ∈ R×. This gives one part of (3) and the converse is immediate. �

As the Laplace transform does not behave well for the product given by pointwise multiplication, it is 
useful to have a second construction for the function Λα.

Given one-sided exponentials

1x≥0 e
−a1x, . . . ,1x≥0 e

−akx, where k ≥ 2 and 0 < a1 < · · · < ak,

there are, up to homothety, only finitely many choices of real coefficients c1, . . . , ck such that the linear 
combination 1x≥0

∑k
j=1 cje

−ajx is a Pólya frequency function. More generally, we have the following result, 
where each coefficient cj may be a polynomial.
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Definition 2.2. For a tuple of positive real numbers a = (a1, . . . , ak) such that k ≥ 1 and a1 < · · · < ak, and 
a tuple of real polynomials c = (c1, . . . , ck), let

Λa,c : R → R; x �→
{∑k

j=1 cj(x)e−ajx if x ≥ 0,
0 if x < 0.

We let deg p denote the degree of the polynomial p, with deg p := −∞ if p = 0.

Proposition 2.3. Suppose a = (a1, . . . , ak) is a tuple of positive real numbers such that k ≥ 1 and a1 < · · · <
ak.

(1) Given any tuple of non-negative integers n = (n1, . . . , nk), not all zero, there exists a unique tuple 
c = ca,n = (ca,n

1 , . . . , ca,n
k ) of real polynomials such that

B{Λa,c}(s) =
k∏

j=1
(1 + αjs)−nj , where αj := a−1

j for j = 1, . . . , k. (2.3)

The tuple ca,n is such that deg ca,nj ≤ nj − 1 for all j.
In particular, if α = (α1, . . . , αm) ∈ (0, ∞)m, a = (a1, . . . , ak) ∈ (0, ∞)k and m = (m1, . . . , mk) are 
such that a1 < · · · < ak and a−1

j appears exactly mj times in α, with m1 + · · ·+mk = m ≥ 2, then the 
function Λa,c with c = ca,m is the Hirschman–Widder density Λα.

(2) If the tuple of real polynomials c is not of the form tca,n for some t > 0 and some non-zero tuple of 
non-negative integers n, then Λa,c is not a Pólya frequency function.

Proof. For (1), partial-fraction decomposition gives a family of real coefficients ca,nj,l such that

k∏
j=1

(1 + αjs)−nj =
k∑

j=1

nj∑
l=1

ca,nj,l (1 + αjs)−l.

Furthermore, if a > 0 and α := a−1 then

B{1x≥0 x
l−1e−ax}(s) = (l − 1)!αl(1 + αs)−l (l = 1, 2, . . .).

It follows that setting

ca,nj (x) :=
nj∑
l=1

aljc
a,n
j,l

(l − 1)!x
l−1 (j = 1, . . . k) (2.4)

gives the existence of ca,n as required. Uniqueness follows by Lerch’s theorem: if B{Λa,c} ≡ B{Λa,c′} on 
some half plane then Λa,c = Λa,c′ , as both restrict to continuous functions on [0, ∞) and vanish elsewhere. 
Hence it suffices to show that

k∑
j=1

pj(x)e−ajx ≡ 0 =⇒ p1(x) = · · · = pk(x) ≡ 0

for any real polynomials p1, . . . , pk, but this follows because
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k∑
j=1

pj(x)e−ajx ≡ 0 =⇒ p1(x) +
k∑

j=2
pj(x)e(a1−aj)x ≡ 0 =⇒ lim

x→∞
p1(x) = 0,

whence p1 = 0, and so on. For the final claim, it suffices to show that Λa,c is continuous at the origin, that 
is,

0 =
k∑

j=1
ca,mj (0) =

∑
j:mj>0

ajc
a,m
j,1 ,

where the second equality comes from (2.4) and the second sum is taken over those j for which mj is 
positive. This sum vanishes because

∑
j:mj>0

ajc
a,m
j,1 = lim

s→∞

k∑
j=1

mj∑
l=1

ca,mj,l s(1 + αjs)−l = lim
s→∞

s
k∏

j=1
(1 + αjs)−mj = 0.

For (2), suppose c is not of the form tca,n as asserted. Then B{Λa,c}(s) is a rational function of the 
form p(s)/ 

∏k
j=1(1 + αjs)mj , with the numerator polynomial p not a factor of the denominator. Hence 

the reciprocal of B{Λa,c} is not the restriction of a function belonging to the Laguerre–Pólya class. By 
Theorem 1.2, Λa,c is not a Pólya frequency function. �
2.2. Vandermonde matrices and closed-form expressions

In the first part of Theorem 1.4, the generic tuple α will be taken to have distinct entries. We may 
assume without loss of generality that these are strictly decreasing, whence the entries of the corresponding 
reciprocal tuple a are strictly increasing. The next result provides a closed-form expression for the unique 
tuple c such that Λα = Λa,c is a Hirschman–Widder density. Note first that Proposition 2.3 implies that c
consists of polynomials of degree zero, that is, constants.

Proposition 2.4. Let α ∈ (0, ∞)m be such that m ≥ 2 and α1 > · · · > αm, and let a = (a1, . . . , am), where 
aj := α−1

j for j = 1, . . . , m. The Hirschman–Widder density Λα = Λa,c, where c = (c1, . . . , cm) ∈ (R×)m
is such that

cj = aj
∏
k �=j

ak
ak − aj

(j = 1, . . . ,m).

In particular, the constants c1, . . . , cm alternate in sign and sum to zero.

Here we provide a different proof to that of Hirschman and Widder [15, Section X.2.2] and so demonstrate 
a connection between these densities and the theory of symmetric functions. We employ an algebraic lemma 
involving alternating polynomials.

In the following definition and lemma, we let F denote an arbitrary field.

Definition 2.5. Given any a := (a1, . . . , am) ∈ Fm, where m ≥ 2, let âj ∈ Fm−1 be obtained by removing 
the jth term from a, so that

âj := (a1, . . . , aj−1, aj+1, . . . , am) ∈ Fm−1 (j ∈ 1, . . . ,m).

Recall that V (a) :=
∏

(ak − aj) is the usual Vandermonde determinant.
1≤j<k≤m
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Lemma 2.6. Given any a ∈ Fm, with m ≥ 2, the following identity holds in the polynomial ring F [X]:

V (a)X l =
m∑
j=1

(−1)j+l−1aljV (âj)
∏
k �=j

(X + ak) (l = 0, . . . ,m− 1).

Proof 1. Suppose first that not all the entries of a are distinct, say ap = aq for p �= q. Then V (a) vanishes, 
as do the summands on the right-hand side for j not equal to p or q, whereas the remaining two summands 
cancel each other, since âq can be obtained from âp by |p − q| − 1 transpositions.

We now assume that a has distinct entries. Since both sides are polynomials in X of degree at most m −1, 
it suffices to show they agree at −ap for p = 1, . . . , m. However, when evaluated at −ap, the right-hand 
side reduces to

(−ap)lV (âp)
∏
k<p

(ap − ak)
∏
k>p

(ak − ap),

which is precisely V (a)(−ap)l. �
Proof 2. An alternative argument, suggested by one of the referees, goes as follows. The right-hand side of 
the proposed identity equals (−1)l detB, as seen by expanding along the first column, where

B =

⎛⎜⎜⎜⎜⎜⎝
al1 X + a1 a1(X + a1) · · · am−2

1 (X + a1)
al2 X + a2 a2(X + a2) · · · am−2

2 (X + a2)
al3 X + a3 a3(X + a3) · · · am−2

3 (X + a3)
...

...
...

. . .
...

alm−1 X + am−1 am−1(X + am−1) · · · am−2
m−1(X + am−1)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 a1 · · · am−1

1
1 a2 · · · am−1

2
...

...
. . .

...
1 am · · · am−1

m

⎞⎟⎟⎟⎠ (el+1, Xe1 + e2, Xe2 + e3, . . . , Xem−1 + em)

and {ej : 1 ≤ j ≤ m} is the standard basis of Fm written as column vectors. Expanding the determinant of 
the final matrix along the first column yields (−1)(l+1)+1 times the determinant of a 2 × 2 block diagonal 
matrix, whose (1, 1) block is lower triangular with all l diagonal entries equal to X and whose (2, 2) block 
is upper triangular with all m − l− 1 diagonal entries equal to 1. Hence, the right-hand side of the identity 
equals

(−1)l detB = (−1)lV (a)(−1)lX l = V (a)X l,

as claimed. �
Remark 2.7. Lemma 2.6 can be applied to compute the inverse of the matrix

E(a) :=

⎛⎜⎜⎝
e0(â1) e0(â2) · · · e0(âm)
e1(â1) e1(â2) · · · e1(âm)

...
...

. . .
...

em−1(â1) em−1(â2) · · · em−1(âm)

⎞⎟⎟⎠ , (2.5)

where a = (a1, . . . , am) contains distinct elements of the field F and el is the elementary symmetric poly-
nomial
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e0 ≡ 1 and el(b1, . . . , bn) :=
∑

1≤j1<j2<···<jl≤n

bj1bj2 · · · bjl . (2.6)

These are Schur polynomials in the sense of Definition 1.5, with em−l equal to sλ if λ := (0, 1, . . . , l− 1, l+
1, . . . , m); see [25, (3.9)].

A direct computation gives that

E(a)−1 = (−1)m−1V (a)−1D±

⎛⎜⎜⎜⎝
am−1
1 am−1

2 · · · am−1
m

am−2
1 am−2

2 · · · am−2
m

...
...

. . .
...

1 1 · · · 1

⎞⎟⎟⎟⎠DV D±, (2.7)

where

D± := diag(1,−1, 1,−1, . . .) and DV := diag
(
V (â1), . . . , V (âm)

)
.

The matrix identity (2.7) provides a closed-form expression for the inverse of a standard Vandermonde 
matrix over any field. This formula can also be deduced from an alternative expression for the inverse; 
see [26].

A further consequence of (2.7) is the following expression for the determinant of E(a):

detE(a) = (−1)m(m−1)/2V (a). (2.8)

This formula was proved by a different method in [25, pp. 41–42].

With Lemma 2.6 at hand, we now obtain the aforementioned closed-form expression for the Hirschman–
Widder density.

Proof of Proposition 2.4. Let α and a be as in the statement of the Proposition, and define c by letting

cj := aj
∏
k �=j

ak
ak − aj

= (−1)j−1V (âj)
V (a)

m∏
k=1

ak (j = 1, . . . ,m). (2.9)

The bilateral Laplace transform

B{Λa,c}(s) =
m∑
j=1

(−1)j−1V (âj)
V (a)(s + aj)

m∏
k=1

ak = a1 · · · am
(s + a1) · · · (s + am) = B{Λα}(s),

by Lemma 2.6 with l = 0 and X = s. We therefore conclude that Λα = Λa,c, by Proposition 2.3(1). That 
c1, . . . , cm are alternating follows because cj has the same sign as (−1)j−1, and that they sum to zero was 
shown in the proof of Proposition 2.3(1). �
Remark 2.8. The explicit form of Λa,c obtained above provides a connection to the topic of cardinal L-
splines; see [27], for example, for more on these. In [38, Section 5], the authors study the restriction of a 
certain L-spline to an interval [0, η]. With a slight change of notation to match that used here, this is

Ãm(−x; t) = 1 +
m∑ e−ajx(1 − t)

t− eajη

∏ ak
ak − aj

.

j=1 k �=j



406 A. Belton et al. / Appl. Comput. Harmon. Anal. 60 (2022) 396–425
It follows immediately from Proposition 2.4 that the Hirschman–Widder density Λa,c is the asymptote of 
this spline:

Λa,c(x) = lim
t→±∞

d
dxÃm(−x; t).

Curry and Schoenberg [6] conducted a study of Pólya frequency functions as limits of splines. Their approach 
was recently complemented by Okounkov from the perspective of group representation theory: if Ω is the 
orbit of diag(a1, . . . , am) under conjugation by the unitary group U(m) and P is the projection from Ω to 
R given by taking the upper-left entry of each matrix then the fundamental spline Mm−1(x; a1, a2, . . . , am)
can be viewed as the density of the projection by P of the normalized U(m)-invariant measure on Ω. See 
Section 8 in [29] for details, or [7].

We now give a determinantal representation for generic Hirschman–Widder densities, which follows di-
rectly from (2.9).

Proposition 2.9. Let α ∈ (0, ∞)m have distinct coordinates and let aj := α−1
j for j = 1, . . . , m, where 

m ≥ 2. The Hirschman–Widder density

Λα(x) = a1 · · · am
V (a) det

⎛⎜⎜⎜⎜⎝
e−a1x e−a2x e−a3x · · · e−amx

1 1 1 · · · 1
a1 a2 a3 · · · am
...

...
...

. . .
...

am−2
1 am−2

2 am−2
3 · · · am−2

m

⎞⎟⎟⎟⎟⎠ (x ≥ 0).

2.3. Non-smoothness at the origin

We now take a closer look at Schoenberg’s result [37, Corollary 2] that Hirschman–Widder densities are 
the only non-smooth, continuous one-sided Pólya frequency functions, up to homothety. In the process, we 
obtain what is, to the best of our knowledge, a novel connection between Pólya frequency functions and 
symmetric functions.

The theme in this subsection is the smoothness of the map α �→ Λα(x), where x is fixed; for simplicity, 
we consider only α with positive entries. The simplest example is such that

Λ(α1,α2)(x) =

⎧⎪⎪⎨⎪⎪⎩
(α1 − α2)−1(e−α−1

1 x − e−α−1
2 x) if α1 �= α2 and x > 0,

α−2
1 xe−α−1

1 x if α1 = α2 and x > 0,
0 otherwise.

It is readily verified that the map (α1, α2) �→ Λ(α1,α2)(x) is continuous on (0, ∞)2 for any x ∈ R. Indeed, 
more is true.

(1) For any non-negative integer l and any x ∈ R×, the map

(0,∞)2 → R; (α1, α2) �→ Λ(l)
(α1,α2)(x)

is real analytic.
(2) The left and right limits at 0 of the first derivative of Λ(α1,α2) are distinct:

Λ′
(α1,α2)(0

−) := lim Λ′
(α1,α2)(x) = 0
x→0−
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and Λ′
(α1,α2)(0

+) := lim
x→0+

Λ′
(α1,α2)(x) = α−1

1 α−1
2 .

In particular, the Hirschman–Widder density Λ(α1,α2) is not differentiable at the origin.

The following result is a generalization of the claim (1).

Proposition 2.10. For any non-negative integer l and any x ∈ R×, the map α �→ Λ(l)
α (x) is real analytic on 

(0, ∞)m, for any m ≥ 2.

Proof 1. Let α = (α1, . . . , αm) ∈ (0, ∞)m, where m ≥ 2, and recall the identity (2.2):

Λα(x) = 1
2π

∞∫
−∞

eitx
m∏
j=1

(1 + iαjt)−1 dt (x ∈ R).

There is no obstruction to extending this integral to the case where α1, . . . , αm lie in the open right 
half-plane H+ := {z ∈ C : Re z > 0}. Indeed, for such α1, . . . , αm, we have that

|eitx
m∏
j=1

(1 + iαjt)−1| ≤ |t|−m
m∏
j=1

|Reαj |−1,

which is Lebesgue integrable with respect to t. The analyticity of the integrand in the complex variables 
α1, . . . , αm is then inherited by the integral.

We fix x ∈ R×. Integration by parts yields the identity

(−ix)nΛα(x) = 1
2π

∞∫
−∞

eitxGn(t) dt

for any non-negative integer n, where

Gn(t) := ∂n

∂tn

( m∏
j=1

(1 + iαjt)−1
)

= O(|t|−n−m) as |t| → ∞,

since Gn(t) is a homogeneous polynomial in (1 + iα1t)−1, . . . , (1 + iαmt)−1 of degree n + m.
Now suppose n ≥ l −m + 2, and note that the derivative

Fl,n,α(x) := ∂l

∂xl

(
(−ix)nΛα(x)

)
= 1

2π

∞∫
−∞

(it)leitxGn(t) dt.

Differentiation under the integral sign is valid here as long as the function t �→ |t|l|Gn(t)| is integrable, and 
this holds because l − n − m ≤ −2. The integrand is an analytic function in the variables α1, . . . , αm as 
long as these all lie in H+, and an inductive argument now gives the result, as Λ(l)

α (x) can be expressed as 
a linear combination of Fl,n,α(x) and derivatives of lower order. �
Proof 2. If one uses the orbital-integral machinery and the Harish-Chandra–Itzykson–Zuber integral, as 
explained in Section 3, then the representation (3.2) immediately gives the stronger assertion that, for fixed 
l ≥ 0 and x ∈ R×, the map α �→ Λ(l)

α (x) is complex analytic in the half-space {α ∈ Cm : Reαj > 0 for j =
1, . . . , m}. �
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We now examine the right-hand derivatives at the origin of our Hirschman–Widder densities; all of the 
left-hand derivatives here are clearly zero. Our approach will involve another instance of Schur polynomials.

We have already seen that the elementary symmetric polynomials of Remark 2.7 are Schur polynomials. 
Another well studied family of symmetric functions is that of complete homogeneous symmetric polynomials: 
if l is a non-negative integer and a = (a1, . . . , am) ∈ Fm for some m ≥ 1 then

h0 ≡ 1 and hl(a) :=
∑

1≤j1≤j2≤···≤jl≤m

aj1aj2 · · · ajl . (2.10)

These are also Schur polynomials: by [25, (3.9)], we have that

hl = sλ, where λ = (0, 1, . . . ,m− 2,m− 1 + l). (2.11)

Having defined these polynomials, we may now state and prove the following result.

Proposition 2.11. Suppose that a = (a1, . . . , am) ∈ (0, ∞)m, where m ≥ 2, and let α := (α1 = a−1
1 , . . . , αm =

a−1
m ). The Hirschman–Widder density Λα has the Maclaurin-series expansion

Λα(x) = a1 · · · am
∞∑

n=m−1

(−1)n−m+1hn−m+1(a1, . . . , am)
n! xn (2.12)

valid for all x ∈ [0, ∞). Consequently, the function Λα is m − 2 times continuously differentiable, but 
Λ(m−1)
α (0) does not exist.

Proof. We assume first that a1, . . . , am are distinct and, without loss of generality, that a1 < · · · < am. If 
n is a non-negative integer then Proposition 2.9 gives that

Λ(n)
α (0+) = (−1)n a1 · · · am

V (a) det

⎛⎜⎜⎜⎜⎜⎜⎝

an1 an2 · · · anm
1 1 · · · 1
a1 a2 · · · am
a2
1 a2

2 · · · a2
m

...
...

. . .
...

am−2
1 am−2

2 · · · am−2
m

⎞⎟⎟⎟⎟⎟⎟⎠ .

If n = 0, 1, . . . , m − 2, then the matrix above has two identical rows, so its determinant vanishes. For 
n ≥ m − 1, moving the top row to the bottom takes m − 1 transpositions, and now the result follows from 
Definition 1.5 and (2.11), together with the fact that Λα is the restriction to [0, ∞) of an entire function.

Since α �→ Λα(x) is real analytic on (0, ∞)m for any x > 0, by Proposition 2.10, it is continuous there. 
As the right-hand side of (2.12) is also a continuous function of such α for fixed x > 0, the identity holds 
for all (x, α) ∈ (0, ∞)m+1. It also holds trivially when x = 0.

An obstruction to Λα being continuously differentiable can only appear at the origin, where Λ(n)
α (0−) is 

always zero. The working above shows that Λ(n)
α (0+) is also zero if n = 0, . . . , m −2, whereas Λ(m−1)

α (0+) =
h0(a1, . . . , am) = 1. �

As a brief digression, we use Proposition 2.11 to obtain a classical identity in algebraic combinatorics, 
Corollary 2.13. Although the identity is well known (see [25, Chapter I.2] or [4], for example), its connection 
to Pólya frequency functions is not.

We begin with the following elementary observation.
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Lemma 2.12. Let a = (a1, . . . , am) ∈ [0, ∞)m, where m ≥ 2. Then

lim
l→∞

hl(a)1/l = max{a1, . . . , am}.

Proof. If ak ≥ aj for j = 1, . . . , m and l ≥ m − 1 then

alk ≤ hl(a1, . . . , am) ≤
(
l + m− 1

l

)
alk ≤ (2l)m−1alk

(m− 1)! .

The result follows. �
Corollary 2.13. Let a = (a1, . . . , am) ∈ (0, ∞)m, where m ≥ 2. The generating function of the family of 
complete homogeneous symmetric polynomials in a1, . . . , am is

∞∑
l=0

hl(a1, . . . , am)zl =
m∏
j=1

1
1 − ajz

whenever |z| < min{a−1
j : j = 1, . . . ,m}.

As we explain below, this corollary provides a way to obtain the moments of Λα from its Maclaurin 
coefficients. The reverse inference can be drawn if one knows the moments, via arguments of Pólya [33] and 
Schoenberg [37]. This is discussed further in Remark 2.20 below.

Proof. This power series has radius of convergence min{a−1
j : j = 1, . . . , m}, by Lemma 2.12. Now suppose 

0 > z > max{−a−1
j : j = 1, . . . , m} and let s := −z−1. Setting αj := a−1

j for j = 1, . . . , m, we see that

m∏
j=1

1
1 − ajz

= α1 · · ·αmsmB{Λα}(s)

= α1 · · ·αmsm
∞∫
0

e−sxΛα(x) dx

= sm
∞∫
0

∞∑
n=m−1

(−1)n−m+1hn−m+1(a1, . . . , am)
n! xne−sx dx,

by Proposition 2.11. As the series

sm
∞∑

n=m−1

hn−m+1(a1, . . . , am)
n!

∞∫
0

xne−sx dx =
∞∑
l=0

hl(a1, . . . , am)s−l

is absolutely convergent, we may exchange the order of integration and summation in the previous formula 
to see that the product 

∏m
j=1(1 − ajz)−1 equals

∞∑
l=0

hl(a1, . . . , am)zl,

as claimed. We conclude by the identity theorem. �
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2.4. Hirschman–Widder densities and probability theory

We now explore some connections to probability theory. A natural first question is to identify the random 
variables distributed with Hirschman–Widder density functions.

Proposition 2.14. Let α ∈ (0, ∞)m, where m ≥ 2. Then the Hirschman–Widder density Λα is the probability 
density function for the random variable

α1X1 + · · · + αmXm,

where X1, . . . , Xm are independent and identically distributed exponential random variables with mean 1.

Proof. A exponential random variable X with mean 1 has density function 1x≥0 e
−x, so if α > 0 then αX

has density function 1x≥0 α
−1e−α−1x = ϕα(x). The result now follows by (2.1). �

Remark 2.15. Hirschman–Widder density functions are studied in the probability and statistics literature 
under the name of hypoexponential densities. They are intimately connected to the time to absorption for 
a finite-state Markov chain. When the entries of α are equal, then Λα is an Erlang density, named after 
the father of queueing theory; this is a special case of the gamma distribution, occurring when the shape 
parameter is an integer. These densities have found use in diverse applied fields, including queueing theory, 
population genetics, reliability analysis and cell biology. The connection to Hirschman and Widder’s memoir 
seems to be generally unnoticed in the probability literature.

The probabilistic interpretation also leads to closed-form expressions. The explicit formula for Λα(x)
when α1, . . . , αm are positive and distinct, which appears in Hirschman and Widder’s memoir in analysis 
[15], also appears in probability textbooks; see, for example, Exercise 12 in Chapter I of Feller’s 1966 book [9]. 
An explicit formula in the case where repeats may occur was obtained by Amari and Misra [2].

Remark 2.16. A second probabilistic interpretation of the density Λα can be derived from random matrix 
theory. Consider the diagonal matrix D = diag(a1, . . . , am) and its orbit Ω under unitary conjugation in the 
space of m ×m positive semi-definite matrices. If μ is the normalized U(m)-invariant measure on Ω then 
Λα(x) dx is the distribution of any diagonal entry of a random positive semi-definite matrix of arbitrary 
size distributed according to μ. See Section 3 and [29, Section 8], or [7] for details.

Remark 2.17. Schoenberg’s characterization of Pólya frequency functions, as those for which the reciprocal of 
the bilateral Laplace transform is the restriction of an entire function in the Laguerre–Pólya class, admits the 
same probabilistic interpretation as in Proposition 2.14. The Hadamard–Weierstrass factorization implies 
that such a function is the density function of a possibly infinite linear combination of independent and 
identically distributed exponential random variables, together with at most one Gaussian random variable.

We now obtain the promised closed form for the moments of the random variables distributed according 
to Hirschman–Widder densities.

Proof of Theorem 1.6. The first part of this result has been established in the proof of Proposition 2.11. 
For the second, suppose first that the entries of α = (α1, . . . , αm) are distinct, and let aj := α−1

j for j = 1, 
. . . , m. Suppose further without loss of generality that a1 < · · · < am. If p is a non-negative integer then 
(2.9) gives that
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1
p!

∞∫
−∞

xpΛα(x) dx = a1 · · · am
p!V (a)

m∑
j=1

(−1)j−1V (âj)
∞∫
0

xpe−ajx dx

= a1 · · · am
V (a)

m∑
j=1

(−1)j−1V (âj)a−p−1
j

= a1 · · · am
V (a) det

⎛⎜⎜⎜⎜⎝
a−p−1
1 a−p−1

2 · · · a−p−1
m

1 1 · · · 1
a1 a2 · · · am
...

...
. . .

...
am−2
1 am−2

2 · · · am−2
m

⎞⎟⎟⎟⎟⎠ .

This quantity is unchanged if, for j = 1, . . . , m, we multiply the jth column by αm−2
j , and multiply the 

whole expression by (a1 · · · am)m−2, to obtain

(a1 · · · am)m−1

V (a) det

⎛⎜⎜⎜⎜⎜⎝
αm−1+p

1 αm−1+p
2 · · · αm−1+p

m

αm−2
1 αm−2

2 · · · αm−2
m

αm−3
1 αm−3

2 · · · αm−3
m

...
...

. . .
...

1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎠
= (a1 · · · am)m−1

V (a) (−1)m(m−1)/2V (α)s(0,1,...,m−2,m−1+p)(α1, . . . , αm).

As

V (a) = (a1 · · · am)m−1(−1)m(m−1)/2V (α),

this gives the result when α has distinct entries. The general case now follows by a continuity argument.
Finally, we explain how to recover the parameter α from moments or Maclaurin coefficients. The pth 

moment of Λα is

μp :=
∫
R

xpΛα(x) dx = p!hp(α) (p = 1, 2, . . .). (2.13)

The Jacobi–Trudi identity [25, (3.4)] asserts, for any increasing tuple (λ1, . . . , λm), that

s(λ1,...,λm)(α) = det
(
hλm−j+1−m+k(α)

)m
j,k=1 = det

(
hλj−k+1(α)

)m
j,k=1

with the conventions of Definition 1.5 and hl := 0 whenever l < 0. In particular,

el(α) = s(0,1,...,m−l−1,m−l+1,...,m)(α) = det
(
Al 0
Cl Dl

)
= detDl (l = 1, . . . ,m),

where Al is a lower-triangular matrix with h0(α) = 1 as each entry of the leading diagonal and Dl is the 
l × l Toeplitz matrix ⎛⎜⎜⎜⎜⎜⎜⎝

h1(α) 1 0 · · · 0 0
h2(α) h1(α) 1 · · · 0 0
h3(α) h2(α) h1(α) · · · 0 0

...
...

...
. . .

...
...

hl−1(α) hl−2(α) hl−3(α) · · · h1(α) 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
hl(α) hl−1(α) hl−2(α) · · · h2(α) h1(α)
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It follows that el(α) = detDl = fl(μ1, . . . , μl) for some polynomial function fl. Hence

F (t) := 1 +
m∑
l=1

fl(μ1, . . . , μl)tl =
m∑
l=0

el(α)tl =
m∏
j=1

(1 + αjt) (2.14)

is determined by the moments μ1, . . . , μm and the roots of F yield precisely the entries of α.
Similarly, Proposition 2.11 gives that

Λ(n)
α (0+)/Λ(m−1)

α (0+) = (−1)n−m+1hn−m+1(α−1
1 , . . . , α−1

m ) (n = m, . . . , 2m− 1)

and the previous working shows that we may recover, up to permutation of its entries, the tuple 
(α−1

1 , . . . , α−1
m ) from these ratios of Maclaurin coefficients. �

Remark 2.18. The computation of the moments of Λα in the previous proof was obtained with the assistance 
of the theory of symmetric functions. A more direct approach, using the probabilistic interpretation of Λα, is 
also available. If X1, . . . , Xm are independent exponential random variables, each with mean one, and α1, . . . , 
αm are positive constants, then the random variable X :=

∑m
j=1 αjXj has density Λα, by Proposition 2.14, 

and moment-generating function

∞∑
p=0

μp

p! z
p = E[ezX ] = B{Λα}(−z) =

m∏
j=1

1
1 − αjz

.

Corollary 2.13, with a replaced by α, now shows that the moments are as claimed. Alternatively, we may 
proceed via an explicit computation:

E
[( m∑

j=1
αjXj

)p]
= p!hp(α1, . . . , αm)

for any non-negative integer p, since

( m∑
j=1

αjXj

)p

=
∑

p1+···+pm=p

(
p

p1 · · · pm

)
αp1

1 · · ·αpm
m Xp1

1 · · ·Xpm
m ,

where the sum is taken over non-negative integers, and E[Xp1
1 ] = p1!.

We now provide a connection between Hirschman–Widder densities and certain Pólya frequency se-
quences. Karlin, Proschan, and Barlow proved that a probability density is a Pólya frequency function if 
and only if the sequence of normalized moments is a Pólya frequency sequence, in that the corresponding 
Toeplitz matrix is totally non-negative; see [19, Theorem 3]. This Toeplitz matrix is formed from a bi-infinite 
extension of the normalized-moments sequence, which here is

. . . , 0, 0, 0, 1, h1(α), h2(α), h3(α), . . .

and the total non-negativity of the corresponding Toeplitz matrix is again the numerical shadow of the 
Jacobi–Trudi identity.

The observations above lead to the solution of the following moment problem.
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Corollary 2.19. Suppose μ = (μ1, . . . , μm) ∈ Rm, where m ≥ 2, let μ0 := 1 and let the l × l Toeplitz matrix

Dl :=

⎛⎜⎜⎜⎜⎜⎜⎝

μ1 1 0 · · · 0 0
μ2/2! μ1 1 · · · 0 0
μ3/3! μ2/2! μ1 · · · 0 0

...
...

...
. . .

...
...

μl−1/(l − 1)! μl−2/(l − 2)! μl−3/(l − 3)! · · · μ1 1
μl/l! μl−1/(l − 1)! μl−2/(l − 2)! · · · μ2/2! μ1

⎞⎟⎟⎟⎟⎟⎟⎠
for l = 1, . . . , m. The following are equivalent.

(1) There exists α = (α1, . . . , αm) ∈ (0, ∞)m such that μ is the truncated moment sequence of the 
Hirschman–Widder density Λα.

(2) The generating polynomial

F (t) := 1 +
m∑
l=1

tl detDl

of the determinant sequence (detD1, . . . , detDm) has all of its roots in (−∞, 0), so is in the first 
Laguerre–Pólya class.

(3) The sequence (bn)∞n=−∞ of the form

. . . , 0, 0, 0, b0 = 1,detD1, . . . ,detDm, 0, 0, 0, . . .

is a Pólya frequency sequence, in that det(bpj−qk)lj,k=1 is non-negative for any choice of integers p1 <

· · · < pl and q1 < · · · < ql, where l ≥ 1.

Proof. That (1) =⇒ (2) follows from the proof of Theorem 1.6. For the reverse implication, it follows 
from (2) that there exists α ∈ (0, ∞)m with el(α) = detDl for l = 1, . . . , m. Expanding the determinant 
along its bottom row shows that μl can be recovered from detDl and μ1, . . . , μl−1, so Λα has moments as 
required.

The equivalence (2) ⇐⇒ (3) follows from immediately from [1, Theorem 6]. �
Remark 2.20. We conclude this section with a line of enquiry motivated by historical considerations. 
Pólya showed in his 1915 paper [33] that a function Ψ in the Laguerre–Pólya class with the expansion

1
Ψ(s) = μ0 −

μ1

1! s + μ2

2! s
2 − μ3

3! s
3 + · · · (2.15)

and such that Ψ(0) > 0 has Hankel determinant

det

⎛⎜⎜⎝
μ0 μ1 · · · μn

μ1 μ2 · · · μn+1
...

...
. . .

...
μn μn+1 · · · μ2n

⎞⎟⎟⎠ > 0 for n = 0, 1, 2, . . . . (2.16)

In 1920, Hamburger went the other way [12] and deduced the existence of an underlying density function Λ
from the positivity of these determinants. This is precisely what led Schoenberg to study these maps and 
to develop the theory of Pólya frequency functions. As observed by Schoenberg in [37], the coefficient μp in 
(2.15) is precisely the pth moment of the Pólya frequency function Λ. When Λ = Λα, each normalized mo-
ment is a complete homogeneous symmetric polynomial in the entries of α, and so this Hankel determinant 
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is also a symmetric polynomial. The Jacobi–Trudi identity shows that the Toeplitz moment determinant 
in the proof of Theorem 1.6 is monomial positive (a positive linear combination of monomials) and even 
Schur positive (a positive linear combination of Schur polynomials). It is natural to ask if something similar 
applies to the Hankel moment determinant, but it turns out that neither property holds in general. For 
example, if m = 2 then

μp = p!
p∑

l=0

αl
1α

p−l
2 for p = 0, 1, 2, . . . ,

so

det
(
μ0 μ1
μ1 μ2

)
= α2

1 + α2
2,

which is monomial positive but not Schur positive, and

det
(
μ0 μ1 μ2
μ1 μ2 μ3
μ2 μ3 μ4

)
= 4α6

1 + 12α4
1α

2
2 − 8α3

1α
3
2 + 12α2

1α
4
2 + 4α6

2,

which is not even monomial positive.
We have that Ψ(s) =

∏m
j=1(1 + αjs), so the formula (2.13) for the moments and the expansion (2.15)

give another proof of Corollary 2.13:

m∏
j=1

(1 − αjs)−1 = 1
Ψ(−s) =

∞∑
l=0

μl

l! s
l =

∞∑
l=0

hl(α1, . . . , αm)sl.

This line of thinking, together with (2.14), also provides the identity

∞∑
l=0

μl

l! s
l =

m∏
j=1

(1 − αjs)−1 = 1
F (−s) = 1

1 +
∑m

k=1 fk(μ1, . . . , μk)(−s)k
.

Assuming, as is common in some applied areas, that moments are the only quantities available via mea-
surements, we elaborate an alternative reconstruction scheme which parallels well known algorithms used in 
inverse problems. More specifically, we note that (μj)∞j=0, as a Stieltjes moment sequence, is characterized 
by the positivity of the Hankel determinants of the form (2.16) as well as those with a shifted index,

det(μj+k+1)nj,k=0 > 0 for n = 0, 1, 2, . . . .

For a proof of this, see, for instance [30, §67]. Next, we note that checking whether the polynomial 1 +∑m
k=1 fk(μ1, . . . , μk)(−s)k has only real and negative roots can be achieved by using its Sturm sequence.
A classical result attributed to Kronecker asserts that the formal series

∞∑
j=0

γjs
j

represents a rational function if and only if there exist positive integers n and r0 such that

det(γr+j+k)nj,k=0 = 0 for all r ≥ r0,
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and the minimum value of r0 is the degree of the denominator of the rational function. In principle, to verify 
this criterion involves an infinite sequence of vanishing Hankel determinants. Here, the hidden positivity in 
the moments of a Hirschman–Widder distribution allows a drastic reduction of Kronecker’s criterion, to a 
single vanishing determinant.

To this aim, and in order to identify the denominator Ψ(s) = F (s) in the moment generating series 
without splitting it into factors, we appeal to the theory of cumulants. The cumulant series for Λα is

K(s) =
∞∑
k=1

νks
k := log

∞∑
l=0

μl

l! s
l = −

m∑
j=1

log(1 − αjs)

and this is convergent whenever |s| < min{α−1
1 , . . . , α−1

m }. Its derivative has the series representation

K ′(s) =
∞∑
k=1

kνks
k−1 =

m∑
j=1

αj

1 − αjs
=

m∑
j=1

(αj + α2
js + α3

js
2 + · · · ),

so the kth cumulant

νk = 1
k

m∑
j=1

αk
j (k = 1, 2, 3, . . .). (2.17)

As K ′ is the Stieltjes transform of finitely many point masses, the cumulant-generating function admits the 
representation

K(s) =
∞∫
0

log
( t

t− s

)
dσ(t) (|s| < min{α−1

1 , . . . , α−1
m }),

where σ is the sum of unit point masses at α−1
1 , α−1

2 , . . . , α−1
m . In other words, the cumulant-generating 

function K coincides, up to a constant and for small values of its argument, with the logarithmic potential 
of equally distributed masses at the reciprocals of the entries of α.

As a final step in our reconstruction process, we apply the Padé approximation scheme to the series 
representing K ′(s). We know from Kronecker’s criterion that the minimal choice of n such that det

(
(k +

j + 1)νj+k+1
)n
j,k=0 = 0 is when n = m. Elementary matrix-algebra operations single out a unique pair of 

polynomials, a monic polynomial P (z) with degree m and Q(z) with degree m − 1, such that

P (z)
m+1∑
k=1

kνk
zk

= Q(z) + O
( 1
z2

)
.

Since K ′(s) is the Stieltjes transform of a positive measure, we infer the equality of formal series

1
z
K ′

(1
z

)
= Q(z)

P (z) .

Details of the algorithmic aspects of this derivation are due to Stieltjes. They are masterfully exposed in 
Chapter 9 of [30]. It follows that

F ′(−s)
F (−s) = K ′(s) = s−1Q(s−1)

P (s−1) ,

and so we obtain the identity
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1 +
m∑

k=1

fk(μ1, . . . , μk)(−s)k = smP (s−1).

We stress that this Padé approximation procedure identifies the denominator in the moment generating 
series without computing its zeros.

Above, we touched on the old and eternally dominant theme of inversion of the Laplace transform. 
An effective method of inversion for rational functions without relying on simple-fraction decompositions 
appears in [24]. For a general overview of Laplace transform-inversion, we refer to the monograph [5].

3. Orbital integrals

The Fourier transforms of Pólya frequency functions can be viewed as characteristic functions of certain 
unitarily invariant measures defined on the space of infinite Hermitian matrices. In this section, we sketch 
the basic framework and some key formulas, following the ample and self-contained article of Olshanski and 
Vershik [29]. An alternate reference, with complete proofs and a lucid global perspective on the same topics 
is Faraut’s article [7].

Let U(n) denote the compact group of unitary transformations of Cn, let Ω denote the orbit under 
unitary conjugation S �→ USU∗ of an n × n Hermitian matrix S ∈ H(n), and let μ denote the normalized 
U(n)-invariant measure carried by Ω. The Fourier transform or characteristic function of μ is

fS : H(n) → C; B �→
∫
Ω

ei tr(BM)μ(dM). (3.1)

This function is invariant under unitary conjugation, so that

fS(UBU∗) = fS(B) for all U ∈ U(n) and B ∈ H(n).

Hence fS(B) depends only on the eigenvalues of B and is a symmetric function of these eigenvalues. 
Furthermore, as a Fourier transform, the function fS is positive definite.

We now consider the inductive limit of such measures and functions defined on the space H(∞) =⋃
n H(n) of Hermitian matrices of arbitrary size. The functions, normalized by the condition f(0) = 1, form 

a convex set and the extremal points of this set are multiplicative, in the sense that

f
(
diag(b1, b2, . . . , bm)

)
= F (b1)F (b2) · · ·F (bm)

for some function of a real variable F . This situation occurs precisely when the corresponding unitarily 
invariant measure μ on the union H(∞) is ergodic. The main classification theorem of [29], Theorem 2.9, 
asserts the existence of a bijective correspondence between ergodic, unitarily invariant probability measures 
on H(∞) and Pólya frequency functions. To be more precise, F is the Fourier transform of a Pólya frequency 
function attached to the ergodic measure μ. Moreover, specific invariant measures provide the building blocks 
of the class of Pólya frequency functions [29, Corollaries 2.5 to 2.7].

Now suppose S = diag(a1, . . . , am), where a1, . . . , am are positive, and let B = E11 = diag(1, 0, 0, . . . , 0). 
Passing lightly over the technicalities required to extend fS , and using the symmetry fS(ixB) = fB(ixS), 
which follows from the tracial property, we have that

fS(ixE11) =
∫

exp
(
−x

m∑
j=1

aj |zj |2
)
σ(dz) (x > 0) (3.2)
Ω′
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where Ω′ = S2m−1 ∼= U(m)/U(m −1) is the unit sphere in Cm and σ is the normalized rotationally invariant 
(uniform) measure on the sphere.

We claim that, up to proper normalization, the above spherical average is equal, to the Hirschman–Widder 
distribution Λα at the point x, where α = (a−1

1 , . . . , a−1
m ). The alert reader will recognize the expression 

(3.2) as a Harish-Chandra–Itzykson–Zuber integral [13,16]. A variety of similar integral representations have 
recently been proposed as central technical ingredients in random matrix theory [20–22,10].

3.1. Explicit formulas

The aim of this brief subsection is to describe an explicit link between the spherical integral fS(B)
above and Hirschman–Widder densities. Further details, including complete proofs, are contained in [29, 
Section 5]. Let a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bm) ∈ Cm have corresponding diagonal matrices 
S = diag a ∈ H(m) and B = diagb respectively. As in (3.1) we let fS denote the characteristic function of 
the U(m)-invariant probability measure μ with support Ω, where Ω is the U(m)-orbit of S under conjugation:

fS(B) :=
∫

U(m)

ei tr(BUSU∗) dU =
∫
Ω

ei tr(BM)μ(dM).

Since fS is entire and symmetric as a function of the coordinates of b, it admits a Taylor-series expansion 
that is convergent everywhere, so also a convergent expansion in terms of Schur polynomials:

fS(diagb) =
∑
ν

cνsν(b),

where the sum runs over Young diagrams with at most m rows. A computation by Olshanski and Vershik 
using characters of U(m) and change-of-bases formulas between symmetric power-sum polynomials and 
Schur polynomials provides closed-form expressions for the coefficients cν: see [29, Theorem 5.1]. Indeed, 
this strategy appeared in explicit computations of Gel’fand and Naimark [11], and quite remarkably in mul-
tivariate statistics: see James [17] and the comments in [8]. From here, one derives the following expansions: 
see [29, Corollaries 5.2 and 5.4].

Proposition 3.1. If the tuples a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bm) ∈ Cm each have distinct 
coordinates and S = diag a then the orbital integral fS is given by the Harish-Chandra–Itzykson–Zuber 
formula:

fS(−i diagb) =
∏m−1

j=0 j!
V (a)V (b) det

⎛⎜⎜⎜⎝
eb1a1 eb1a2 · · · eb1am

eb2a1 eb2a2 · · · eb2am

...
...

. . .
...

ebma1 ebma2 · · · ebmam

⎞⎟⎟⎟⎠ .

If instead B = diag(1, 0, . . . , 0) = E11 then

fS(−ixB) = (m− 1)!
∞∑
j=0

hj(a1, . . . , am)
(j + m− 1)! xj ,

where hj is the jth complete homogeneous symmetric polynomial.

In particular, if a1, . . . , am are positive and distinct, and x > 0 then, by the second part of Proposition 3.1
and (2.12),
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fS(ixE11) = (m− 1)!(−x)1−m
∞∑

n=m−1

hn−m+1(a1, . . . , am)
n! (−x)n = (m− 1)!x1−m

a1 · · · am
Λα(x),

where α = (a−1
1 , . . . , a−1

m ).
In conclusion, the Hirschman–Widder density possesses the following integral and determinantal repre-

sentations: if x > 0 and σ(dz) denotes the normalized uniform measure on the sphere S2m−1, then

Λα(x) = a1 · · · am
(m− 1)! x

m−1
∫

S2m−1

exp
(
−x

m∑
j=1

aj |zj |2
)
σ(dz) (3.3)

= a1 · · · am
V (a) det

⎛⎜⎜⎜⎜⎝
e−a1x e−a2x e−a3x · · · e−amx

1 1 1 · · · 1
a1 a2 a3 · · · am
...

...
...

. . .
...

am−2
1 am−2

2 am−2
3 · · · am−2

m

⎞⎟⎟⎟⎟⎠ . (3.4)

The second representation can be obtained from the first identity in Proposition 3.1 by taking b =
(−x, 0, y1, . . . , ym−2) and taking successively the jth partial derivative at zero with respect to yj for j = 1 to 
m − 2. Thus one has an alternative, shorter route for proving many of the results contained in the previous 
section, if one accepts from the beginning these two complementary formulas for the Hirschman–Widder 
density Λα. We leave the choice between this and our self-contained approach to the reader.

4. Proof of the main result

With the results of the preceding section at hand, we now prove the main result of this paper. We first 
introduce some notation which will be used in the proof and in a later result.

Definition 4.1. Given an integer m ≥ 2 and a finite set K of positive integers, we let

Δm(K) :=
⋃
k∈K

Δm(k),

where

Δm(k) := {j = (j1, . . . , jm) ∈ Zm : j1, . . . , jm ≥ 0, j1 + · · · + jm = k}

is the set of integer-lattice points in the scaled standard m-simplex. For any k ≥ 1, any j = (j1, . . . , jm) ∈
Δm(k) and any a = (a1, . . . , am) ∈ Rm, we let

(
k

j

)
= k!∏m

l=1 jl!
, aj :=

m∏
l=1

ajll , and j · a :=
m∑
l=1

jlal.

Proof of Theorem 1.4. Part (1). We note first that if the polynomial p is such that p(0) �= 0 and Λα is a 
Hirschman–Widder density for some α ∈ (0, ∞)m, then p ◦Λα equals p(0) on (−∞, 0), so is not integrable. 
Also, we have that cΛα is negative on (0, ∞) if c < 0. Thus we need only to consider polynomials of degree 
at least two with zero constant term for the remainder of this proof.

Suppose first that m ≥ 4. To construct the null set N ⊂ (0, ∞)m, we begin as follows. For any integer 
n ≥ 2, we let

Kn := {K ⊂ {1, . . . , n} : n ∈ K}
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denote the set of subsets of {1, . . . , n} containing n and, for any K ∈ Kn, we define the non-zero multivariate 
polynomial PK by setting PK = f1 − f2, where

fi(a) := (−1)(i−1)nV (âi)n
∏

j∈Δm(K)\{nei}
(j − nei) · a (a ∈ Rm, i = 1, 2), (4.1)

with â1 = (a2, a3, . . . , am) and â2 = (a1, a3, . . . , am), in accordance with Definition 2.5, and {e1, e2, . . . , em}
being the standard basis of Rm.

To see that PK �= 0, we observe that the a1-degree of f1 exceeds that of f2, which gives the claim. To see 
this, we note first that every factor in the product in f1 has a linear a1-term, as n is the maximum element 
of K, so

dega1
f1 = |Δm(K)| − 1.

However, the Vandermonde determinant V (â2) contributes m − 2 linear a1-terms to f2 and therefore

dega1
f2 = n(m− 2) + |Δm(K)| − |{j ∈ Δm(K) : j1 = 0}|

= n(m− 2) + |Δm(K)| − |Δm−1(K)|.

Using the fact that m ≥ 4 and n ≥ 2, it follows that

dega1
f1 − dega1

f2 = |Δm−1(K)| − n(m− 2) − 1

≥ |Δm−1(n)| − n(m− 2) − 1

=
(
n + m− 2
m− 2

)
− n(m− 2) − 1

>
(n + m− 2) · · · (n + 2)(n + 1)

(m− 2)! − (n + 1)(m− 2)

≥ (n + 1)
(m(m− 1) · · · 4

(m− 2)! − (m− 2)
)

= (n + 1)
(m(m− 1)

6 − (m− 2)
)

= (n + 1)(m− 3)(m− 4)
6 ≥ 0.

Let ZK denote the zero locus of PK in Rm, which is a null set because PK is non-zero. With Sm denoting 
the group of permutations of {1, . . . , m}, we let σ ∈ Sm act on subsets of Rm by permuting coordinates, so 
that

σ(A) := {(aσ(1), . . . , aσ(m)) : a = (a1, . . . , am) ∈ A} for any A ⊂ Rm,

and note that this action is measure preserving. Finally, we let

Hq := {x ∈ Rm : q · x = 0}, (4.2)

Ñ := (0,∞)m ∩
( ⋃

q∈Qm\{0}
Hq ∪

⋃
σ∈Sm

∞⋃
n=2

⋃
K∈Kn

σ(ZK)
)

(4.3)

and N := {(a−1
1 , . . . , a−1

m ) : a ∈ Ñ}. (4.4)
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As a countable union of null sets, the set Ñ is null. Furthermore, the set N is also null. To see this, we note 
that the self-inverse map

f : (0,∞)m → (0,∞)m; (x1, . . . , xm) �→ (x−1
1 , . . . , x−1

m )

is Lipschitz when restricted to [l−1, l]m for any positive integer l, so preserves null sets there, and

N =
∞⋃
l=1

f
(
Ñ ∩ [l−1, l]m

)
.

Let α ∈ (0, ∞)m \N . Then the reciprocals of the entries of α are linearly independent over Q, since they 
are contained in no hyperplane of the form Hq, so they are distinct. Thus, we may find a ∈ (0, ∞)m \ Ñ
such that a1 < · · · < am, the sets {a−1

1 , . . . , a−1
m } and {α1, . . . , αm} are equal and PK(a) �= 0 for any n ≥ 2

and any K ∈ Kn.
Now let c be as in Proposition 2.4, so that Λa,c = Λα. If

c := a1 · · · am
V (a)

then

d = (d1, . . . , dm) := c−1c =
(
V (â1),−V (â2), . . . ,±V (âm)

)
. (4.5)

Let Λ := Λa,d = c−1Λα. If p is a polynomial of degree at least two such that p(0) = 0 then p ◦ Λα = q ◦ Λ, 
where the polynomial q is such that q(x) = p(cx), so q also has degree at least two and no constant term. 
Thus it suffices to show that p ◦Λ is not a Pólya frequency function, where p(x) =

∑
k∈K rkx

k, with K ∈ Kn

for some n ≥ 2 and rk �= 0 for all k ∈ K.
For any non-negative integer k, an explicit computation reveals that the bilateral Laplace transform

B{Λk}(s) =
∑

j∈Δm(k)

(
k

j

)
B{dje−(j·a)x}(s) =

∑
j∈Δm(k)

(
k

j

)
dj

s + j · a = pk(s)
qk(s)

(4.6)

for polynomials pk and qk, where the notation is as in Definition 4.1 and

qk(s) :=
∏

j∈Δm(k)

(s + j · a).

Thus

B{p ◦ Λ}(s) =
∑
k∈K

rkB{Λk}(s) =
∑
k∈K

rk
pk(s)
qk(s)

= P (s)
Q(s) ,

where

Q(s) :=
∏
k∈K

qk(s), q̂k(s) :=
∏

l∈K\{k}
ql(s) and P (s) :=

∑
k∈K

rkpk(s)q̂k(s).

For any k ∈ K, the polynomial qk has the set of roots {−k · a : k ∈ Δm(k)}. As the entries of a are 
linearly independent over Q, the roots of Q are simple. Furthermore, if k ∈ Δm(k) then q̂j(s) = 0 whenever 
j ∈ K \ {k}, so
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P (−k · a) = rkpk(−k · a)q̂k(−k · a). (4.7)

It follows from the definitions that

q̂k(−k · a) =
∏

j∈Δm(K)\Δm(k)

(j − k) · a,

and to compute pk(−k · a), we use the final equality in (4.6) and the definition of qk to see that

pk(s) =
∑

j∈Δm(k)

(
k

j

)
dj

∏
j′∈Δm(k)\{j}

(s + j′ · a).

Taking s = −k · a here and combining this with (4.7) shows that

P (−k · a) = rk

(
k

k

)
dk

∏
j∈Δm(K)\{k}

(j − k) · a �= 0, (4.8)

again using Q-linear independence. Thus P does not vanish at any root of Q, and so Theorem 1.2 implies 
that p ◦ Λ is not a Pólya frequency function as long as P is not constant. However,

P (−ne1 · a) − P (−ne2 · a)

= rn

(
V (â1)n

∏
j∈Δm(K)\{ne1}

(j − ne1) · a + (−1)n+1V (â2)n
∏

j∈Δm(K)\{ne2}
(j − ne2) · a

)
= rnPK(a) �= 0,

and this completes the proof whenever m ≥ 4.
We now consider the case m = 3. When p is a monomial, this was resolved in previous work [3, 

Lemma 11.2] whenever the reciprocals of the entries of α are linearly independent over Q, so for Λ as 
above. It remains to verify that p ◦ Λ is not a Pólya frequency function when p(x) =

∑
k∈K rkx

k, with 
rk �= 0 for all k ∈ K and K ∈ Kn containing at least two elements. In this case, the polynomial PK is 
non-zero, since we have that

dega1
f1 − dega1

f2 = |Δ2(K)| − n− 1 > |Δ2(n)| − n− 1 = 0.

Thus we may proceed as above, as long as we take only K containing at least two elements in the definition 
of Ñ .

Part (2). We consider first the case where α1 = · · · = αm = α. The corresponding Hirschman–Widder 
density Λα has bilateral Laplace transform

B{Λα}(s) = (1 + αs)−m,

and inverting this transform gives that

Λα(x) = 1x≥0
α−m

(m− 1)!x
m−1e−α−1x.

It follows immediately that, for any natural number n, the function Λn
α is a positive multiple of Λβ, where 

β = (αn−1, αn−1, . . . , αn−1) ∈ (0, ∞)n(m−1)+1 has all its entries equal, and so Λn
α is a Pólya frequency 

function.
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Now suppose that the polynomial p is not a positive multiple of a monomial. If p has a constant term 
then p ◦Λα is not integrable, so we may assume that p(x) =

∑
k∈K rkx

k, where K is a finite set of natural 
numbers with at least two elements and rk �= 0 for all k ∈ K. Then

B{p ◦ Λα}(s) =
∑
k∈K

rkck(1 + αk−1s)−k(m−1)−1 = P (s)
Q(s) ,

where ck > 0 for all k ∈ K,

Q(s) :=
∏
k∈K

(1 + αk−1s)k(m−1)+1 and P (s) :=
∑
k∈K

rkck
∏

j∈K\{k}
(1 + αj−1s)j(m−1)+1.

The polynomial P is non-constant, since each of the terms in the sum are polynomials with distinct positive 
degrees. Furthermore, the roots of Q are of the form −kα−1 for k ∈ K, and

P (−kα−1) = rkck
∏

j∈K\{k}
(1 − j−1k)j(m−1)+1 �= 0.

Hence Q(s)/P (s) is not the restriction of an entire function and so p ◦Λα is not a Pólya frequency function, 
by Theorem 1.2.

It remains to consider the case where aj = a1 + (j − 1)δ for j = 1, . . . , m, where δ is positive and 
independent of j. We consider the case m = 2 first, so that

Λn
α(x) = 1x≥0

(a1a2

δ

)n n∑
j=0

(
n

j

)
(−1)je−(na1+jδ)x (4.9)

for any natural number n. If b := (na1, na1 + δ, . . . , na1 + nδ) and d = (d0, . . . , dn) is such that Λb,d is a 
Hirschman–Widder density, then Proposition 2.4 gives that

dj = bj
∏
k �=j

bk
bk − bj

= 1
n!δn

n∏
k=0

(na1 + kδ)(−1)j
(
n

j

)
.

Thus Λn
α is a positive multiple of the Hirschman–Widder density Λb,d, so is itself a Pólya frequency function. 

An alternative argument for the m = 2 case, pointed out to us by one of the referees, goes as follows. Since

Λn
α(s) = 1x≥0

(a1a2

δ

)n

e−na1x(1 − e−δx)n,

an explicit computation shows that

( δ

a1a2

)n

B{Λn
α}(s) = 1

δ

∞∫
0

e−(s+na1)x(1 − e−δx)nδ dx

= 1
δ

1∫
0

y(s+na1)/δ(1 − y)ny−1 dy

= 1
δ
β
(
(s + na1)/δ, n + 1

)
,

where β denotes the beta function. From this it follows that
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1
B{Λn

α}(s)
= δ

(
δ

a1a2

)n Γ((s + na1)/δ + (n + 1))
n! Γ((s + na1)/δ)

,

which is clearly a polynomial in s. Hence Λn
α is a Pólya frequency function for all n ≥ 1.

For m ≥ 3, let β := (b−1
1 , b−1

2 ), where b1 := a1/(m −1) and b2 := b1 +δ = am/(m −1). Then, by (4.9) and 
the previous working, the function Λm−1

β is a positive multiple of the Hirschman–Widder density Λα. Hence 

Λn
α is a positive multiple of the Pólya frequency function Λn(m−1)

β , and so is a Pólya frequency function 
itself.

Finally, suppose that α1/α2 is irrational and let p(x) =
∑

k∈K rkx
k, where K is a finite set of natural 

numbers with at least two elements and rk �= 0 for all k ∈ K; as noted above, we need only consider p of 
this form. With the previous notation, we have that Λk

α = ckΛ(m−1)k
β for some c > 0, and therefore

B{p ◦ Λα}(s) =
∑
k∈K

rkck

(m−1)k∏
j=0

(s + ka1 + jδ)−1 = P (s)
Q(s) ,

where ck �= 0 for any k ∈ K,

Q(s) :=
∏
k∈K

(m−1)k∏
j=0

(s + ka1 + jδ)

and

P (s) :=
∑
k∈K

rkck
∏

v∈K\{k}

(m−1)v∏
u=0

(s + va1 + uδ).

The roots of Q are simple, since if (j, k) and (j′, k′) are distinct then

ka1 + jδ = k′a1 + j′δ ⇐⇒
(
(k − j) − (k′ − j′)

)
a1 + ja2 = (j′ − j)a2 =⇒ α1

α2
= a2

a1
∈ Q.

It follows that if k ∈ K and j ∈ {0, 1, . . . , (m − 1)k} then

P (−ka1 − jδ) = rkck
∏

v∈K\{k}

(m−1)v∏
u=0

(
(v − k)a1 + (u− j)δ

)
�= 0.

Furthermore, the polynomial P is the sum of polynomials with distinct positive degrees, so is non-constant. 
We conclude from Theorem 1.2 that p ◦ Λα is not a Pólya frequency function. �

We conclude with a discussion of the structure of the class of polynomials mapping a fixed Hirschman–
Widder density into the class of Pólya frequency functions.

Proposition 4.2. Suppose the entries of a = (a1, . . . , am) ∈ (0, ∞)m are linearly independent over Q and 
strictly increasing, and let c be as in Proposition 2.4. For the polynomial p(x) =

∑
k∈K rkx

k, where K is a 
finite set of non-negative integers and rk �= 0 for all k ∈ K, the following are equivalent.

(1) p ◦ Λa,c is a Pólya frequency function.
(2) The function

evalP̃ : Δm(K) → R; k �→ r|k|

(
|k|
k

)
ck

∏
(j − k) · a
j∈Δm(K)\{k}
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is constant, where |k| := k1 + · · · + km.

Proof. Following the proof of Theorem 1.4(1), we have that B{p ◦ Λa,c}(s) = P̃ (s)/Q(s), where

Q(s) =
∏

k∈Δm(K)

(s + k · a) and P̃ (s) =
∑

k∈Δm(K)

r|k|

(
|k|
k

)
ck

∏
j∈Δm(K)\{k}

(s + j · a).

As for P above, the polynomial P̃ does not vanish at any root of Q. Thus p ◦ Λa,c is a Pólya frequency 
function if and only if P̃ is a constant. Since deg P̃ < |Δm(K)|, it suffices to check that evaluating P̃ at the 
distinct points {−k · a : k ∈ Δm(K)} always yields the same answer, but this is precisely (2) above. �
Remark 4.3. We may further characterize when a polynomial p(x) =

∑
k∈K rkx

k maps the Hirschman–
Widder density Λa,c into the class of all such densities. This happens if and only if Proposition 4.2(2) holds 
and the function p ◦ Λa,c has unit integral. As

(p ◦ Λa,c)(x) =
∑

k∈Δm(K)

r|k|

(
|k|
k

)
cke−(k·a)x,

we obtain the additional condition

∑
k∈Δm(K)

r|k|

(
|k|
k

)
ck

k · a = 1.
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